Open and Closed Magnetic Configurations of Twisted Flux Tubes

We construct two classes of magnetohydrostatic (MHS) equilibria for an axisymmetric vertical flux tube spanning from the photosphere to the lower part of the transition region within a realistic stratified solar atmosphere subject to solar gravity. We assume a general quadratic expression of the mag...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 877; no. 2; pp. 127 - 149
Main Authors Sen, Samrat, Mangalam, A.
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.06.2019
IOP Publishing
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/ab141a

Cover

Loading…
Abstract We construct two classes of magnetohydrostatic (MHS) equilibria for an axisymmetric vertical flux tube spanning from the photosphere to the lower part of the transition region within a realistic stratified solar atmosphere subject to solar gravity. We assume a general quadratic expression of the magnetic flux function for the gas pressure and poloidal current and solve the Grad-Shafranov equation analytically. The solution is a combination of a homogeneous and a particular part where the former is separable by a Coulomb function in r and exponential in z, while the particular part is an open configuration that has no z dependence. We also present another open field solution by using a self-similar formulation with two different profile functions and incorporating stratified solar gravity to maintain the magnetohydrostatic equilibria, which is a modification of earlier self-similar models with a twist. We study the admitted parameter space that is consistent with the conditions in the solar atmosphere and derive the magnetic and thermodynamic structures inside the flux tube that are reasonably consistent with the photospheric magnetic bright points for both open and closed field Coulomb function and self-similar models as estimated from observations and simulations. The obtained open and closed field flux tube solutions can be used as the background conditions for the numerical simulations for the study of the wave propagation through the flux tubes. The solutions can also be used to construct realistic magnetic canopies.
AbstractList We construct two classes of magnetohydrostatic (MHS) equilibria for an axisymmetric vertical flux tube spanning from the photosphere to the lower part of the transition region within a realistic stratified solar atmosphere subject to solar gravity. We assume a general quadratic expression of the magnetic flux function for the gas pressure and poloidal current and solve the Grad–Shafranov equation analytically. The solution is a combination of a homogeneous and a particular part where the former is separable by a Coulomb function in r and exponential in z, while the particular part is an open configuration that has no z dependence. We also present another open field solution by using a self-similar formulation with two different profile functions and incorporating stratified solar gravity to maintain the magnetohydrostatic equilibria, which is a modification of earlier self-similar models with a twist. We study the admitted parameter space that is consistent with the conditions in the solar atmosphere and derive the magnetic and thermodynamic structures inside the flux tube that are reasonably consistent with the photospheric magnetic bright points for both open and closed field Coulomb function and self-similar models as estimated from observations and simulations. The obtained open and closed field flux tube solutions can be used as the background conditions for the numerical simulations for the study of the wave propagation through the flux tubes. The solutions can also be used to construct realistic magnetic canopies.
We construct two classes of magnetohydrostatic (MHS) equilibria for an axisymmetric vertical flux tube spanning from the photosphere to the lower part of the transition region within a realistic stratified solar atmosphere subject to solar gravity. We assume a general quadratic expression of the magnetic flux function for the gas pressure and poloidal current and solve the Grad–Shafranov equation analytically. The solution is a combination of a homogeneous and a particular part where the former is separable by a Coulomb function in r and exponential in z , while the particular part is an open configuration that has no z dependence. We also present another open field solution by using a self-similar formulation with two different profile functions and incorporating stratified solar gravity to maintain the magnetohydrostatic equilibria, which is a modification of earlier self-similar models with a twist. We study the admitted parameter space that is consistent with the conditions in the solar atmosphere and derive the magnetic and thermodynamic structures inside the flux tube that are reasonably consistent with the photospheric magnetic bright points for both open and closed field Coulomb function and self-similar models as estimated from observations and simulations. The obtained open and closed field flux tube solutions can be used as the background conditions for the numerical simulations for the study of the wave propagation through the flux tubes. The solutions can also be used to construct realistic magnetic canopies.
Author Sen, Samrat
Mangalam, A.
Author_xml – sequence: 1
  givenname: Samrat
  orcidid: 0000-0003-1546-381X
  surname: Sen
  fullname: Sen, Samrat
  email: samrat@iiap.res.in
  organization: Indian Institute of Astrophysics , Sarjapur Road, Koramangala 2nd Block, Bangalore-560034, , India
– sequence: 2
  givenname: A.
  orcidid: 0000-0001-9282-0011
  surname: Mangalam
  fullname: Mangalam, A.
  email: mangalam@iiap.res.in
  organization: Indian Institute of Astrophysics , Sarjapur Road, Koramangala 2nd Block, Bangalore-560034, , India
BookMark eNp9kM1LxDAQxYMouLt691jwat2k6Ud68CDFVWFlLyt4C0kzWbLUpCYt6n9va0VB0NMww-_NvHlzdGidBYTOCL6kLC2WJKMsTmlWLIUkKREHaPY9OkQzjHEa57R4OkbzEPZjm5TlDF1tWrCRsCqqGhdARQ9iZ6EzdVQ5q82u96IzzobI6Wj7akI3IKumf4u2vYRwgo60aAKcftUFelzdbKu7eL25va-u13FNM9zFQgOoUimdK8WIxBKUVLVkoBkRKcYJCF1KTbSkJSmYLnXCFIFE5EyIFDK6QOfT3ta7lx5Cx_eu93Y4yROaZ2x4hdCByieq9i4ED5rXpvu033lhGk4wH6PiYy58zIVPUQ1C_EvYevMs_Pt_kotJYlz7Y-ZP_AN-33yZ
CitedBy_id crossref_primary_10_3847_1538_4357_ac3003
Cites_doi 10.1007/BF00151438
10.1016/j.asr.2017.05.032
10.1051/0004-6361/200912450
10.1051/0004-6361/201424545
10.1086/164837
10.1086/521726
10.3847/0004-637X/817/1/12
10.1007/s11207-016-0889-y
10.1007/BF00162481
10.1063/1.1756167
10.1007/BF00156095
10.1051/0004-6361/201629773
10.1051/0004-6361/201116894
10.1063/1.864115
10.1007/BF02702413
10.1088/0004-637X/769/1/59
10.1051/0004-6361/201322882
10.1051/0004-6361/200913846
10.1134/S1063773715050072
10.1088/2041-8205/723/2/L164
10.1051/0004-6361/200810867
10.1086/190731
10.1038/srep43147
10.1007/BF00151539
10.1086/309486
10.1088/0004-637X/789/1/42
10.1088/0004-637X/786/2/81
10.1007/BF00148783
10.1023/A:1005007828403
10.1086/523671
10.1086/306691
10.1007/s11207-009-9407-9
10.1086/166485
10.1086/176504
10.1088/2041-8205/740/2/L46
10.1093/mnras/stt1328
10.1103/PhysRevLett.33.1139
ContentType Journal Article
Copyright 2019. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Jun 01, 2019
Copyright_xml – notice: 2019. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Jun 01, 2019
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/ab141a
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate Open and Closed Magnetic Configurations of Twisted Flux Tubes
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_ab141a
apjab141a
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c350t-afeed9ddf6dd81b0bedbdcb8ef81a4002eaf9bf1fb39178f9f28d1e2a68aa4e53
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Wed Aug 13 11:15:26 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
Tue Jul 01 04:09:50 EDT 2025
Wed Aug 21 03:33:06 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-afeed9ddf6dd81b0bedbdcb8ef81a4002eaf9bf1fb39178f9f28d1e2a68aa4e53
Notes AAS15069
The Sun and the Heliosphere
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1546-381X
0000-0001-9282-0011
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/ab141a/pdf
PQID 2365829913
PQPubID 4562441
PageCount 23
ParticipantIDs iop_journals_10_3847_1538_4357_ab141a
crossref_citationtrail_10_3847_1538_4357_ab141a
crossref_primary_10_3847_1538_4357_ab141a
proquest_journals_2365829913
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2019
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Parker (apjab141abib27) 1988; 330
Riethmüller (apjab141abib31) 2017; 598
Judge (apjab141abib18) 2006
Osherovitch (apjab141abib24) 1979; 64
Steiner (apjab141abib40) 1986; 170
Solov’ev (apjab141abib37) 2015; 41
Utz (apjab141abib46) 2013; 554
Yun (apjab141abib52) 1971; 16
Centeno (apjab141abib7) 2007; 666
Prasad (apjab141abib30) 2014; 786
Stepanov (apjab141abib41) 1965
Uitenbroek (apjab141abib44) 2013; 84
Wittmann (apjab141abib50) 1974; 36
Taylor (apjab141abib42) 1974; 33
Muller (apjab141abib21) 1987; 112
Guglielmino (apjab141abib15) 2011
Srivastava (apjab141abib39) 2017; 7
Peter (apjab141abib28) 2005
Hagenaar (apjab141abib16) 1999; 511
Solov’ev (apjab141abib38) 1968; 26
Shafranov (apjab141abib35) 1958; 33
Abramowitz (apjab141abib1) 1972
Finn (apjab141abib11) 1983; 26
Muller (apjab141abib22) 1994; 283
Balthasar (apjab141abib5) 1993; 279
Sen (apjab141abib34) 2018; 61
Zhang (apjab141abib53) 1998; 183
Fedun (apjab141abib10) 2011; 740
Vigeesh (apjab141abib49) 2009; 508
Fedun (apjab141abib9) 2009; 258
Gent (apjab141abib12) 2014; 789
Vernazza (apjab141abib48) 1981; 45
Prasad (apjab141abib29) 2016; 817
Atanasiu (apjab141abib3) 2004; 11
Yang (apjab141abib51) 2016; 291
Utz (apjab141abib45) 2009; 498
Berger (apjab141abib6) 1995; 454
Mangalam (apjab141abib20) 2000; 21
Lagg (apjab141abib19) 2010; 723
Murawski (apjab141abib23) 2015; 577
Aschwanden (apjab141abib2) 2000; 541
Avrett (apjab141abib4) 2008; 175
Gent (apjab141abib13) 2013; 435
van Ballegooijen (apjab141abib47) 1986; 311
Osherovitch (apjab141abib25) 1982; 77
Ruzmaikin (apjab141abib32) 1998; 337
Hewitt (apjab141abib17) 2014; 565
Grad (apjab141abib14) 1958
Pahlke (apjab141abib26) 1990; 228
Thalmann (apjab141abib43) 2013; 769
Dixit (apjab141abib8) 2015; 26
Shelyag (apjab141abib36) 2010; 515
Schlüter (apjab141abib33) 1958
References_xml – volume: 64
  start-page: 261
  year: 1979
  ident: apjab141abib24
  publication-title: SoPh
  doi: 10.1007/BF00151438
– volume: 61
  start-page: 617
  year: 2018
  ident: apjab141abib34
  publication-title: AdSpR
  doi: 10.1016/j.asr.2017.05.032
– volume: 508
  start-page: 951
  year: 2009
  ident: apjab141abib49
  publication-title: A&A
  doi: 10.1051/0004-6361/200912450
– start-page: 14.1
  year: 2005
  ident: apjab141abib28
– volume: 577
  start-page: A126
  year: 2015
  ident: apjab141abib23
  publication-title: A&A
  doi: 10.1051/0004-6361/201424545
– volume: 311
  start-page: 1001
  year: 1986
  ident: apjab141abib47
  publication-title: ApJ
  doi: 10.1086/164837
– volume: 666
  start-page: L137
  year: 2007
  ident: apjab141abib7
  publication-title: ApJL
  doi: 10.1086/521726
– volume: 817
  start-page: 12
  year: 2016
  ident: apjab141abib29
  publication-title: ApJ
  doi: 10.3847/0004-637X/817/1/12
– start-page: 190
  year: 1958
  ident: apjab141abib14
– volume: 337
  start-page: L9
  year: 1998
  ident: apjab141abib32
  publication-title: A&A
– volume: 291
  start-page: 1089
  year: 2016
  ident: apjab141abib51
  publication-title: SoPh
  doi: 10.1007/s11207-016-0889-y
– volume: 16
  start-page: 398
  year: 1971
  ident: apjab141abib52
  publication-title: SoPh
  doi: 10.1007/BF00162481
– volume: 11
  start-page: 3510
  year: 2004
  ident: apjab141abib3
  publication-title: PhPl
  doi: 10.1063/1.1756167
– volume: 26
  start-page: 626
  year: 1968
  ident: apjab141abib38
  publication-title: Journal of Experimental and Theoretical Physics
– volume: 77
  start-page: 63
  year: 1982
  ident: apjab141abib25
  publication-title: SoPh
  doi: 10.1007/BF00156095
– volume: 283
  start-page: 232
  year: 1994
  ident: apjab141abib22
  publication-title: A&A
– volume: 598
  start-page: A123
  year: 2017
  ident: apjab141abib31
  doi: 10.1051/0004-6361/201629773
– volume: 554
  start-page: A65
  year: 2013
  ident: apjab141abib46
  publication-title: A&A
  doi: 10.1051/0004-6361/201116894
– volume: 26
  start-page: 3540
  year: 1983
  ident: apjab141abib11
  publication-title: PhFl
  doi: 10.1063/1.864115
– volume: 21
  start-page: 299
  year: 2000
  ident: apjab141abib20
  publication-title: JApA
  doi: 10.1007/BF02702413
– start-page: 263
  year: 1958
  ident: apjab141abib33
– volume: 769
  start-page: 59
  year: 2013
  ident: apjab141abib43
  publication-title: ApJ
  doi: 10.1088/0004-637X/769/1/59
– volume: 26
  start-page: 49
  year: 2015
  ident: apjab141abib8
  publication-title: Scientia Series A
– volume: 565
  start-page: A84
  year: 2014
  ident: apjab141abib17
  publication-title: A&A
  doi: 10.1051/0004-6361/201322882
– volume: 515
  start-page: A107
  year: 2010
  ident: apjab141abib36
  publication-title: A&A
  doi: 10.1051/0004-6361/200913846
– volume: 41
  start-page: 211
  year: 2015
  ident: apjab141abib37
  publication-title: AstL
  doi: 10.1134/S1063773715050072
– volume: 170
  start-page: 126
  year: 1986
  ident: apjab141abib40
  publication-title: A&A
– volume: 723
  start-page: L164
  year: 2010
  ident: apjab141abib19
  publication-title: ApJL
  doi: 10.1088/2041-8205/723/2/L164
– volume: 279
  start-page: 243
  year: 1993
  ident: apjab141abib5
  publication-title: A&A
– start-page: 259
  year: 2006
  ident: apjab141abib18
– volume: 498
  start-page: 289
  year: 2009
  ident: apjab141abib45
  publication-title: A&A
  doi: 10.1051/0004-6361/200810867
– volume: 45
  start-page: 635
  year: 1981
  ident: apjab141abib48
  publication-title: ApJS
  doi: 10.1086/190731
– volume: 7
  start-page: 43147
  year: 2017
  ident: apjab141abib39
  publication-title: NatSR
  doi: 10.1038/srep43147
– volume: 84
  start-page: 369
  year: 2013
  ident: apjab141abib44
  publication-title: MmSAI
– volume: 36
  start-page: 29
  year: 1974
  ident: apjab141abib50
  publication-title: SoPh
  doi: 10.1007/BF00151539
– volume: 541
  start-page: 1059
  year: 2000
  ident: apjab141abib2
  publication-title: ApJ
  doi: 10.1086/309486
– volume: 789
  start-page: 42
  year: 2014
  ident: apjab141abib12
  publication-title: ApJ
  doi: 10.1088/0004-637X/789/1/42
– volume: 786
  start-page: 81
  year: 2014
  ident: apjab141abib30
  publication-title: ApJ
  doi: 10.1088/0004-637X/786/2/81
– year: 1972
  ident: apjab141abib1
– volume: 112
  start-page: 295
  year: 1987
  ident: apjab141abib21
  publication-title: SoPh
  doi: 10.1007/BF00148783
– volume: 183
  start-page: 283
  year: 1998
  ident: apjab141abib53
  publication-title: SoPh
  doi: 10.1023/A:1005007828403
– volume: 33
  start-page: 710
  year: 1958
  ident: apjab141abib35
  publication-title: Journal of Theoretical and Experimental Physics
– volume: 175
  start-page: 229
  year: 2008
  ident: apjab141abib4
  publication-title: ApJS
  doi: 10.1086/523671
– start-page: 140
  year: 2011
  ident: apjab141abib15
– volume: 511
  start-page: 932
  year: 1999
  ident: apjab141abib16
  publication-title: ApJ
  doi: 10.1086/306691
– volume: 258
  start-page: 219
  year: 2009
  ident: apjab141abib9
  publication-title: SoPh
  doi: 10.1007/s11207-009-9407-9
– volume: 330
  start-page: 474
  year: 1988
  ident: apjab141abib27
  publication-title: ApJ
  doi: 10.1086/166485
– start-page: 267
  year: 1965
  ident: apjab141abib41
– volume: 454
  start-page: 531
  year: 1995
  ident: apjab141abib6
  publication-title: ApJ
  doi: 10.1086/176504
– volume: 228
  start-page: 246
  year: 1990
  ident: apjab141abib26
  publication-title: A&A
– volume: 740
  start-page: L46
  year: 2011
  ident: apjab141abib10
  publication-title: ApJL
  doi: 10.1088/2041-8205/740/2/L46
– volume: 435
  start-page: 689
  year: 2013
  ident: apjab141abib13
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1328
– volume: 33
  start-page: 1139
  year: 1974
  ident: apjab141abib42
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.33.1139
SSID ssj0004299
Score 2.306775
Snippet We construct two classes of magnetohydrostatic (MHS) equilibria for an axisymmetric vertical flux tube spanning from the photosphere to the lower part of the...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127
SubjectTerms Astrophysics
Atmosphere
Atmospheric models
Computer simulation
Configurations
Fluctuations
Gas pressure
Gravitation
Magnetic flux
magnetohydrodynamics (MHD)
Mathematical models
Numerical simulations
Photosphere
Self-similarity
Solar atmosphere
Sun: activity
Sun: magnetic fields
Sun: photosphere
Sun: transition region
Tubes
Vertical flux
Wave propagation
Title Open and Closed Magnetic Configurations of Twisted Flux Tubes
URI https://iopscience.iop.org/article/10.3847/1538-4357/ab141a
https://www.proquest.com/docview/2365829913
Volume 877
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9zIvjit_gxJQ8q-NCtbdqsQXwQcaig7mHDPQglaRIRZyt2xY-_3kvTKX4wxJdyD5e0udzlfpfmLgjtBFwxLd22Q7kPAQp1I0eIMHFY0o5ClyfMLdPHLi7paT84H4SDGjr4yIXJHqulvwmkLRRsRWjsm8Ba2iptFLx8u8WFF3gAjqZJRKm5t-HsqvuZFOmzCvsGDiXtgf1H-WsPX3zSFLz3x8JcepvOPLoZf6c9ZHLfLEaimbx9K-H4z4EsoLkKheIjy7qIaipdQmtHudkXzx5e8R4uabvtkS-hma6lltGhOYGCeSrx8TDLlcQX_DY1iZDY5A7e3RZWo3Kcadx7NjokcWdYvOBeIVS-gvqdk97xqVNdweAkJHRHDtfgQ5mUmkoJANcVSgqZiEjpyONg_r7imgntaUEg7os0034kPeVzGnEeqJCsonqapWoNYQBaDMJhykNT_4d6MGYAo0QxH9oD8FlHrfEkxElVn9xckzGMIU4x8oqNvGIjr9jKax3tf7R4tLU5JvDuwjTElYHmE_ga45n_ZPYJ4DRQJ49s_LGbTTQLyIrZM2UNVB89FWoL0MtIbJdaCs8rcv0Ox_Xm-g
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYoCMSCoIDK2wMgMYQmcV4eGKpCVR4tHVrRLbJjGyGVpCKtgH_POU6pEKhi82A70Xc-33e27w6hU49JqoQdWgFzwUEJ7Mji3E8smoSRb7OE2kX4WKcbtAfe3dAflnVOi1iYbFxu_ZfQNImCDYRavwnspfVCR8HKh3XGHc9h9bFQFbTiEzCmsKAfydM8MNKlJf_1rICEQ3NP-ecsP-xSBb79a3MuLE5rE22UVBE3zI9toSWZVlGtkevD6-z1E5_jom3OJvIqWu2Z1ja60s9EMEsFbo6yXArcYc-pjlbEOsDv5XlqxJ7jTOH-uxa0wK3R9AP3p1zmO2jQuuk321ZZJ8FKiG9PLKbA0FEhVCAEsFCbS8FFwiOpIoeBjrqSKcqVozgB5yxSVLmRcKTLgogxT_pkFy2nWSprCAMbouCzBszXSXoCB7ABxkgkdWE8sJM9VJ-hFCdlEnFdy2IUgzOhcY01rrHGNTa47qGL7xFjk0BjQd8zAD4utShf0O9wJpp5Z1fLH-TtkP1_TnOC1nrXrfjhtnt_gNaBCVHzBuwQLU_epvII2MaEHxcr6guPr8rL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Open+and+Closed+Magnetic+Configurations+of+Twisted+Flux+Tubes&rft.jtitle=The+Astrophysical+journal&rft.au=Sen%2C+Samrat&rft.au=Mangalam%2C+A.&rft.date=2019-06-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=877&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Fab141a&rft.externalDocID=apjab141a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon