Knowledge Integration into deep learning in dynamical systems: an overview and taxonomy
Despite the sudden rise of AI, it still leaves a question mark to many newcomers on its widespread adoption as it exhibits a lack of robustness and interpretability. For instance, the insufficient amount of training data usually hinders its performance due to the lack of generalization, and the blac...
Saved in:
Published in | Journal of mechanical science and technology Vol. 35; no. 4; pp. 1331 - 1342 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Society of Mechanical Engineers
01.04.2021
Springer Nature B.V 대한기계학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the sudden rise of AI, it still leaves a question mark to many newcomers on its widespread adoption as it exhibits a lack of robustness and interpretability. For instance, the insufficient amount of training data usually hinders its performance due to the lack of generalization, and the black box nature of deep neural networks does not allow for a precise explanation behind its mechanism preventing a new scientific discovery. Such limitations have led to the development of several branches of deep learning one of which include physics-informed neural networks that will be covered in the rest of this paper. In this overview, we defined the general concept of informed deep learning followed by an extensive literature survey in the field of dynamical systems. We hope to make a contribution to our mechanical engineering community by conveying knowledge and insights on this emerging field of study through this survey paper. |
---|---|
AbstractList | Despite the sudden rise of AI, it still leaves a question mark to many newcomers on its widespread adoption as it exhibits a lack of robustness and interpretability. For instance, the insufficient amount of training data usually hinders its performance due to the lack of generalization, and the black box nature of deep neural networks does not allow for a precise explanation behind its mechanism preventing a new scientific discovery. Such limitations have led to the development of several branches of deep learning one of which include physics-informed neural networks that will be covered in the rest of this paper. In this overview, we defined the general concept of informed deep learning followed by an extensive literature survey in the field of dynamical systems. We hope to make a contribution to our mechanical engineering community by conveying knowledge and insights on this emerging field of study through this survey paper. KCI Citation Count: 0 Despite the sudden rise of AI, it still leaves a question mark to many newcomers on its widespread adoption as it exhibits a lack of robustness and interpretability. For instance, the insufficient amount of training data usually hinders its performance due to the lack of generalization, and the black box nature of deep neural networks does not allow for a precise explanation behind its mechanism preventing a new scientific discovery. Such limitations have led to the development of several branches of deep learning one of which include physics-informed neural networks that will be covered in the rest of this paper. In this overview, we defined the general concept of informed deep learning followed by an extensive literature survey in the field of dynamical systems. We hope to make a contribution to our mechanical engineering community by conveying knowledge and insights on this emerging field of study through this survey paper. |
Author | Kim, Sung Wook Lee, Jonghwan Lee, Seungchul Kim, Iljeok |
Author_xml | – sequence: 1 givenname: Sung Wook surname: Kim fullname: Kim, Sung Wook organization: Department of Mechanical Engineering, Pohang University of Science and Technology – sequence: 2 givenname: Iljeok surname: Kim fullname: Kim, Iljeok organization: Department of Mechanical Engineering, Pohang University of Science and Technology – sequence: 3 givenname: Jonghwan surname: Lee fullname: Lee, Jonghwan organization: Department of Mechanical Engineering, Pohang University of Science and Technology – sequence: 4 givenname: Seungchul surname: Lee fullname: Lee, Seungchul email: seunglee@postech.ac.kr organization: Department of Mechanical Engineering, Pohang University of Science and Technology, Graduate School of Artificial Intelligence, Pohang University of Science and Technology, Institute of Convergence Research and Education in Advanced Technology, Yonsei University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002703417$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kE1LxDAQhoMo-PkDvAU8eajmo22MNxE_FhcEWdFbSJtpiXaTNYmr---NVhAEPc0wvM_M8GyjdecdILRPyRElRBxHyhipC8JoQXjJimoNbVEp6oKfsHI994KfFKUsHzfRdoxPhNSspHQLPdw4_zaA6QFPXII-6GS9w9Yljw3AAg-gg7OuzyNsVk7PbasHHFcxwTyeYu2wX0JYWnjLvcFJv3vn56tdtNHpIcLed91B95cXs_PrYnp7NTk_mxYtr0gqdFMbQrQ2nPNSAGlYRYFC08quMxIAqrqhlLVG1rUgJbCuYsRAI6uqaU1t-A46HPe60Knn1iqv7VftvXoO6uxuNlFSCMoZy9mDMbsI_uUVYlJP_jW4_J7KZ6lkgjOZU3RMtcHHGKBTi2DnOqwUJerTtRpdq-xafbpWVWbEL6a16ctkCtoO_5JsJGO-4noIPz_9DX0A0b2Vpw |
CitedBy_id | crossref_primary_10_1007_s12541_021_00600_3 crossref_primary_10_1016_j_cma_2024_117342 crossref_primary_10_1115_1_4067089 crossref_primary_10_3390_s25051401 crossref_primary_10_1007_s10845_022_01999_w crossref_primary_10_1116_5_0204409 crossref_primary_10_1063_5_0176702 crossref_primary_10_1007_s10207_025_00987_4 crossref_primary_10_1109_TII_2023_3268407 crossref_primary_10_1109_TNNLS_2023_3338619 crossref_primary_10_1007_s12206_025_0124_6 crossref_primary_10_1007_s10915_022_01939_z crossref_primary_10_1017_dce_2023_16 crossref_primary_10_3390_s25061952 crossref_primary_10_3390_ai5030074 crossref_primary_10_1016_j_ces_2024_121153 crossref_primary_10_3390_computation9090097 crossref_primary_10_3390_computers13100252 crossref_primary_10_1063_5_0136886 crossref_primary_10_1016_j_ress_2022_108869 crossref_primary_10_1109_TGRS_2023_3327781 crossref_primary_10_1007_s12206_024_0624_9 crossref_primary_10_1016_j_engappai_2023_107350 crossref_primary_10_1016_j_ress_2023_109514 crossref_primary_10_1016_j_mfglet_2024_09_181 crossref_primary_10_1016_j_procs_2024_02_052 |
Cites_doi | 10.1016/j.ijmachtools.2006.04.007 10.1016/j.asoc.2017.05.031 10.1109/JSAC.2019.2951964 10.1016/0893-6080(91)90009-T 10.1016/S0142-1123(97)00081-9 10.1109/TSG.2017.2691782 10.1016/j.engappai.2020.103947 10.1007/s12206-018-1205-6 10.1016/j.compfluid.2018.07.021 10.1016/j.procir.2018.03.046 10.1137/18M1225409 10.1016/j.engstruct.2020.110704 10.1002/eqe.219 10.1109/JPROC.2018.2820126 10.1109/JSEN.2019.2898634 10.1109/22.643839 10.1016/j.neucom.2018.02.029 10.1023/A:1023283917997 10.1109/TR.2018.2866152 10.1016/j.jcp.2019.05.024 10.1109/72.286886 10.1002/pse.180 10.1088/1361-6501/ab2295 10.1111/j.1467-8667.2008.00589.x 10.3390/machines5010004 10.1017/jfm.2016.615 10.1109/ACCESS.2017.2720965 10.1002/eqe.2935 10.1088/1742-5468/ab3195 10.1016/j.jcp.2019.05.027 10.1109/72.712178 10.1038/s41586-019-0912-1 10.1109/CVPR.2017.241 10.1117/12.2561610 10.12783/shm2019/32301 10.36001/phmconf.2019.v11i1.814 10.2514/6.2020-1149 10.1137/1.9781611975673.63 10.1109/ICPHM.2019.8819403 10.1109/BigData.2018.8621955 10.1137/1.9781611976700.69 10.1016/j.neucom.2021.04.122 10.1007/978-3-030-29513-4_37 |
ContentType | Journal Article |
Copyright | The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION 7TB 8FD FR3 ACYCR |
DOI | 10.1007/s12206-021-0342-5 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Korean Citation Index |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1976-3824 |
EndPage | 1342 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9771322 10_1007_s12206_021_0342_5 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .UV .VR 06D 0R~ 0VY 1N0 2.D 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 6NX 8FE 8FG 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LLZTM M7S MA- MK~ ML~ MZR NDZJH NF0 NPVJJ NQJWS O9- P9P PF0 PT4 PTHSS Q2X QOS R89 R9I RHV ROL RPX RSV S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TDB TSG TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8R Z8T Z8W ZMTXR ZZE ~A9 AAPKM AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT 7TB 8FD ABRTQ FR3 ACYCR |
ID | FETCH-LOGICAL-c350t-ab6d00aad33347e0b251e1ebc9ffd9eee56b112cd966704e2f520deb955bcd6d3 |
IEDL.DBID | U2A |
ISSN | 1738-494X |
IngestDate | Sun Mar 09 07:54:24 EDT 2025 Fri Jul 25 12:21:55 EDT 2025 Tue Jul 01 04:23:33 EDT 2025 Thu Apr 24 23:08:50 EDT 2025 Fri Feb 21 02:48:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Deep neural networks Taxonomy Knowledge integration Knowledge representation Informed deep learning Physics-informed Dynamical system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-ab6d00aad33347e0b251e1ebc9ffd9eee56b112cd966704e2f520deb955bcd6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2511927329 |
PQPubID | 326249 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9771322 proquest_journals_2511927329 crossref_primary_10_1007_s12206_021_0342_5 crossref_citationtrail_10_1007_s12206_021_0342_5 springer_journals_10_1007_s12206_021_0342_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Journal of mechanical science and technology |
PublicationTitleAbbrev | J Mech Sci Technol |
PublicationYear | 2021 |
Publisher | Korean Society of Mechanical Engineers Springer Nature B.V 대한기계학회 |
Publisher_xml | – name: Korean Society of Mechanical Engineers – name: Springer Nature B.V – name: 대한기계학회 |
References | Yang, Zhang, Karniadakis (CR65) 2020; 42 Fatemi, Yang (CR44) 1998; 20 Huang, Hung, Wen, Tu (CR24) 2003; 32 CR39 CR38 CR37 de Bezenac, Pajot, Gallinari (CR32) 2019; 2019 CR35 CR71 Qureshi, Khan, Zameer, Usman (CR72) 2017; 58 Zhang, Liu, Sun (CR4) 2020; 215 Li, Yang, Liu, Cai (CR41) 2018; 290 Wang, Zhang (CR14) 1997; 45 Yousefianmoghadam, Behmanesh, Stavridis, Moaveni, Nozari, Sacco (CR29) 2018; 47 CR3 CR6 Pfrommer, Zimmerling, Liu, Kärger, Henning, Beyerer (CR10) 2018; 72 CR5 CR8 CR9 CR49 CR48 Gao, Lu, Yan (CR60) 2019; 30 CR47 CR46 CR43 CR42 CR40 Hornik (CR30) 1991; 4 Nguyen, Cheng, Yu, Thai (CR70) 2019; 33 Lagaris, Likas, Fotiadis (CR17) 1998; 9 Tianping, Hong (CR31) 1993; 4 Du, Liu, Basevi, Leonardis, Freeman, Tenenbaum, Wu (CR36) 2018; 31 CR19 CR18 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR34) 2014; 15 CR16 CR15 CR58 Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (CR66) 2017; 30 CR12 CR56 CR55 CR54 CR53 Zhang, Tao, Wu, Guan (CR7) 2017; 5 CR51 Leary, Bhaskar, Keane (CR11) 2003; 26 Butter, Kasieczka, Plehn, Russell (CR25) 2018; 5 CR50 Sadoughi, Hu (CR27) 2019; 19 Wang, Lu, Liu, Yan (CR61) 2018; 68 Yu, Yao, Liu (CR2) 2020; 96 Ling, Kurzawski, Templeton (CR23) 2016; 807 Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais (CR1) 2019; 566 Ortega, Frossard, Kovačević, Moura, Vandergheynst (CR52) 2018; 106 Swischuk, Mainini, Peherstorfer, Willcox (CR20) 2019; 179 CR26 Kim, Koc, Ni (CR13) 2007; 47 CR69 Mojallal, Lotfifard (CR57) 2017; 9 Lu, Rajora, Zou, Liang (CR21) 2017; 5 CR67 CR22 Moaveni, Conte, Hemez (CR28) 2009; 24 Zhu, Zabaras, Koutsourelakis, Perdikaris (CR33) 2019; 394 CR64 CR63 Yang, Perdikaris (CR68) 2019; 394 CR62 Chen, Hu, Zhang, Yu, He (CR59) 2019; 38 Frangopol, Kallen, v. Noortwijk (CR45) 2004; 6 R Zhang (342_CR4) 2020; 215 R Zhang (342_CR7) 2017; 5 C-S Huang (342_CR24) 2003; 32 342_CR47 342_CR48 342_CR49 342_CR54 342_CR55 342_CR12 342_CR56 J Pfrommer (342_CR10) 2018; 72 342_CR50 342_CR51 M Reichstein (342_CR1) 2019; 566 342_CR53 N Srivastava (342_CR34) 2014; 15 Y Lu (342_CR21) 2017; 5 F Wang (342_CR14) 1997; 45 342_CR18 342_CR19 H S Kim (342_CR13) 2007; 47 A Mojallal (342_CR57) 2017; 9 342_CR58 342_CR15 K Chen (342_CR59) 2019; 38 342_CR16 E de Bezenac (342_CR32) 2019; 2019 342_CR22 342_CR67 Y Du (342_CR36) 2018; 31 342_CR62 342_CR63 342_CR64 K Hornik (342_CR30) 1991; 4 A Butter (342_CR25) 2018; 5 A S Qureshi (342_CR72) 2017; 58 T Wang (342_CR61) 2018; 68 Y Yang (342_CR68) 2019; 394 R Swischuk (342_CR20) 2019; 179 Y Yu (342_CR2) 2020; 96 M Sadoughi (342_CR27) 2019; 19 B Moaveni (342_CR28) 2009; 24 D M Frangopol (342_CR45) 2004; 6 342_CR69 342_CR26 342_CR3 342_CR35 C Tianping (342_CR31) 1993; 4 Y Zhu (342_CR33) 2019; 394 S Yousefianmoghadam (342_CR29) 2018; 47 L Yang (342_CR65) 2020; 42 342_CR9 342_CR71 342_CR8 I Gulrajani (342_CR66) 2017; 30 342_CR5 342_CR6 I E Lagaris (342_CR17) 1998; 9 V H Nguyen (342_CR70) 2019; 33 A Fatemi (342_CR44) 1998; 20 342_CR37 342_CR38 342_CR39 S J Leary (342_CR11) 2003; 26 342_CR43 342_CR46 342_CR40 J Ling (342_CR23) 2016; 807 342_CR42 A Ortega (342_CR52) 2018; 106 J Li (342_CR41) 2018; 290 Z Gao (342_CR60) 2019; 30 |
References_xml | – ident: CR22 – ident: CR49 – volume: 47 start-page: 211 issue: 2 year: 2007 end-page: 222 ident: CR13 article-title: A hybrid multi-fidelity approach to the optimal design of warm forming processes using a knowledge-based artificial neural network publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2006.04.007 – ident: CR39 – ident: CR16 – ident: CR51 – ident: CR12 – volume: 58 start-page: 742 year: 2017 end-page: 755 ident: CR72 article-title: Wind power prediction using deep neural network based meta regression and transfer learning publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.05.031 – ident: CR35 – ident: CR54 – volume: 38 start-page: 119 issue: 1 year: 2019 end-page: 131 ident: CR59 article-title: Fault location in power distribution systems via deep graph convolutional networks publication-title: IEEE Journal on Selected Areas in Communications doi: 10.1109/JSAC.2019.2951964 – ident: CR8 – ident: CR58 – volume: 4 start-page: 251 issue: 2 year: 1991 end-page: 257 ident: CR30 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Networks doi: 10.1016/0893-6080(91)90009-T – ident: CR42 – volume: 20 start-page: 9 issue: 1 year: 1998 end-page: 34 ident: CR44 article-title: Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials publication-title: International Journal of Fatigue doi: 10.1016/S0142-1123(97)00081-9 – volume: 9 start-page: 5599 issue: 6 year: 2017 end-page: 5612 ident: CR57 article-title: Multi-physics graphical modelbased fault detection and isolation in wind turbines publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2017.2691782 – volume: 96 start-page: 103947 year: 2020 ident: CR2 article-title: Structural dynamics simulation using a novel physics-guided machine learning method publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103947 – ident: CR46 – ident: CR71 – ident: CR19 – volume: 33 start-page: 41 issue: 1 year: 2019 end-page: 50 ident: CR70 article-title: An architecture of deep learning network based on ensemble empirical mode decomposition in precise identification of bearing vibration signal publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-018-1205-6 – volume: 30 start-page: 5767 year: 2017 end-page: 5777 ident: CR66 article-title: Improved training of wasserstein gans publication-title: Advances in Neural Information Processing Systems – volume: 31 start-page: 1726 year: 2018 end-page: 1736 ident: CR36 article-title: Learning to exploit stability for 3d scene parsing publication-title: Advances in Neural Information Processing Systems – ident: CR67 – ident: CR15 – volume: 179 start-page: 704 year: 2019 end-page: 717 ident: CR20 article-title: Projection-based model reduction: formulations for physics-based machine learning publication-title: Computers & Fluids doi: 10.1016/j.compfluid.2018.07.021 – ident: CR50 – volume: 72 start-page: 426 year: 2018 end-page: 431 ident: CR10 article-title: Optimisation of manufacturing process parameters using deep neural networks as surrogate models publication-title: Procedia CiRP doi: 10.1016/j.procir.2018.03.046 – ident: CR9 – volume: 15 start-page: 1929 issue: 1 year: 2014 end-page: 1958 ident: CR34 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: The Journal of Machine Learning Research – ident: CR5 – volume: 42 start-page: A292 issue: 1 year: 2020 end-page: A317 ident: CR65 article-title: Physics-informed generative adversarial networks for stochastic differential equations publication-title: SIAM Journal on Scientific Computing doi: 10.1137/18M1225409 – volume: 215 start-page: 110704 year: 2020 ident: CR4 article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling publication-title: Engineering Structures doi: 10.1016/j.engstruct.2020.110704 – ident: CR64 – volume: 32 start-page: 187 issue: 2 year: 2003 end-page: 206 ident: CR24 article-title: A neural network approach for structural identification and diagnosis of a building from seismic response data publication-title: Earthquake Engineering & Structural Dynamics doi: 10.1002/eqe.219 – volume: 106 start-page: 808 issue: 5 year: 2018 end-page: 828 ident: CR52 article-title: Graph signal processing: overview, challenges, and applications publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2018.2820126 – ident: CR26 – volume: 19 start-page: 4181 issue: 11 year: 2019 end-page: 4192 ident: CR27 article-title: Physics-based convolutional neural network for fault diagnosis of rolling element bearings publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2019.2898634 – volume: 45 start-page: 2333 issue: 12 year: 1997 end-page: 2343 ident: CR14 article-title: Knowledge-based neural models for microwave design publication-title: IEEE Transactions on Microwave Theory and Techniques doi: 10.1109/22.643839 – volume: 290 start-page: 26 year: 2018 end-page: 33 ident: CR41 article-title: Deep rotation equivariant network publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.029 – volume: 26 start-page: 297 issue: 3 year: 2003 end-page: 319 ident: CR11 article-title: A knowledge-based approach to response surface modelling in multifidelity optimization publication-title: Journal of Global Optimization doi: 10.1023/A:1023283917997 – ident: CR18 – ident: CR43 – volume: 5 start-page: 1707.08966 issue: 28 year: 2018 ident: CR25 article-title: Deep-learned top tagging with a Lorentz layer publication-title: SciPost Phys – ident: CR47 – volume: 68 start-page: 1034 issue: 3 year: 2018 end-page: 1049 ident: CR61 article-title: Graph-based change detection for condition monitoring of rotating machines: techniques for graph similarity publication-title: IEEE Transactions on Reliability doi: 10.1109/TR.2018.2866152 – ident: CR37 – ident: CR53 – volume: 394 start-page: 56 year: 2019 end-page: 81 ident: CR33 article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2019.05.024 – ident: CR6 – volume: 4 start-page: 910 issue: 6 year: 1993 end-page: 918 ident: CR31 article-title: Approximations of continuous functions by neural networks with application to dynamic system publication-title: IEEE Transition Neural Networks doi: 10.1109/72.286886 – ident: CR56 – volume: 6 start-page: 197 issue: 4 year: 2004 end-page: 212 ident: CR45 article-title: Probabilistic models for life-cycle performance of deteriorating structures: review and future directions publication-title: Progress in Structural Engineering and Materials doi: 10.1002/pse.180 – ident: CR40 – volume: 30 start-page: 115002 issue: 11 year: 2019 ident: CR60 article-title: Graph-based change detection for condition monitoring of industrial machinery: an enhanced framework for non-stationary condition signals publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/ab2295 – ident: CR63 – volume: 24 start-page: 320 issue: 5 year: 2009 end-page: 334 ident: CR28 article-title: Uncertainty and sensitivity analysis of damage identification results obtained using finite element model updating publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/j.1467-8667.2008.00589.x – volume: 5 start-page: 4 issue: 1 year: 2017 ident: CR21 article-title: Physics-embedded machine learning: case study with electrochemical micro-machining publication-title: Machines doi: 10.3390/machines5010004 – ident: CR69 – volume: 807 start-page: 155 year: 2016 end-page: 166 ident: CR23 article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2016.615 – ident: CR48 – volume: 5 start-page: 14347 year: 2017 end-page: 14357 ident: CR7 article-title: Transfer learning with neural networks for bearing fault diagnosis in changing working conditions publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2720965 – volume: 47 start-page: 25 issue: 1 year: 2018 end-page: 47 ident: CR29 article-title: System identification and modeling of a dynamically tested and gradually damaged 10-story reinforced concrete building publication-title: Earthquake Engineering & Structural Dynamics doi: 10.1002/eqe.2935 – ident: CR3 – ident: CR38 – volume: 2019 start-page: 124009 issue: 12 year: 2019 ident: CR32 article-title: Deep learning for physical processes: incorporating prior scientific knowledge publication-title: Journal of Statistical Mechanics: Theory and Experiment doi: 10.1088/1742-5468/ab3195 – volume: 394 start-page: 136 year: 2019 end-page: 152 ident: CR68 article-title: Adversarial uncertainty quantification in physics-informed neural networks publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2019.05.027 – ident: CR55 – volume: 9 start-page: 987 issue: 5 year: 1998 end-page: 1000 ident: CR17 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.712178 – ident: CR62 – volume: 566 start-page: 195 issue: 7743 year: 2019 end-page: 204 ident: CR1 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 5 start-page: 1707.08966 issue: 28 year: 2018 ident: 342_CR25 publication-title: SciPost Phys – ident: 342_CR40 – volume: 9 start-page: 987 issue: 5 year: 1998 ident: 342_CR17 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.712178 – ident: 342_CR63 – volume: 38 start-page: 119 issue: 1 year: 2019 ident: 342_CR59 publication-title: IEEE Journal on Selected Areas in Communications doi: 10.1109/JSAC.2019.2951964 – volume: 24 start-page: 320 issue: 5 year: 2009 ident: 342_CR28 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/j.1467-8667.2008.00589.x – volume: 47 start-page: 211 issue: 2 year: 2007 ident: 342_CR13 publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2006.04.007 – ident: 342_CR53 – ident: 342_CR38 doi: 10.1109/CVPR.2017.241 – ident: 342_CR15 doi: 10.1117/12.2561610 – ident: 342_CR48 – volume: 20 start-page: 9 issue: 1 year: 1998 ident: 342_CR44 publication-title: International Journal of Fatigue doi: 10.1016/S0142-1123(97)00081-9 – ident: 342_CR3 – volume: 5 start-page: 14347 year: 2017 ident: 342_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2720965 – volume: 33 start-page: 41 issue: 1 year: 2019 ident: 342_CR70 publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-018-1205-6 – ident: 342_CR67 – ident: 342_CR43 doi: 10.12783/shm2019/32301 – ident: 342_CR64 – volume: 106 start-page: 808 issue: 5 year: 2018 ident: 342_CR52 publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2018.2820126 – ident: 342_CR12 – ident: 342_CR37 – volume: 32 start-page: 187 issue: 2 year: 2003 ident: 342_CR24 publication-title: Earthquake Engineering & Structural Dynamics doi: 10.1002/eqe.219 – ident: 342_CR16 – volume: 31 start-page: 1726 year: 2018 ident: 342_CR36 publication-title: Advances in Neural Information Processing Systems – ident: 342_CR22 – volume: 58 start-page: 742 year: 2017 ident: 342_CR72 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.05.031 – volume: 4 start-page: 910 issue: 6 year: 1993 ident: 342_CR31 publication-title: IEEE Transition Neural Networks doi: 10.1109/72.286886 – volume: 96 start-page: 103947 year: 2020 ident: 342_CR2 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103947 – volume: 47 start-page: 25 issue: 1 year: 2018 ident: 342_CR29 publication-title: Earthquake Engineering & Structural Dynamics doi: 10.1002/eqe.2935 – ident: 342_CR46 doi: 10.36001/phmconf.2019.v11i1.814 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 342_CR34 publication-title: The Journal of Machine Learning Research – ident: 342_CR47 doi: 10.2514/6.2020-1149 – volume: 5 start-page: 4 issue: 1 year: 2017 ident: 342_CR21 publication-title: Machines doi: 10.3390/machines5010004 – ident: 342_CR54 – ident: 342_CR50 – volume: 19 start-page: 4181 issue: 11 year: 2019 ident: 342_CR27 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2019.2898634 – ident: 342_CR5 doi: 10.1137/1.9781611975673.63 – ident: 342_CR58 doi: 10.1109/ICPHM.2019.8819403 – volume: 215 start-page: 110704 year: 2020 ident: 342_CR4 publication-title: Engineering Structures doi: 10.1016/j.engstruct.2020.110704 – volume: 2019 start-page: 124009 issue: 12 year: 2019 ident: 342_CR32 publication-title: Journal of Statistical Mechanics: Theory and Experiment doi: 10.1088/1742-5468/ab3195 – ident: 342_CR42 – volume: 72 start-page: 426 year: 2018 ident: 342_CR10 publication-title: Procedia CiRP doi: 10.1016/j.procir.2018.03.046 – volume: 45 start-page: 2333 issue: 12 year: 1997 ident: 342_CR14 publication-title: IEEE Transactions on Microwave Theory and Techniques doi: 10.1109/22.643839 – ident: 342_CR71 – volume: 6 start-page: 197 issue: 4 year: 2004 ident: 342_CR45 publication-title: Progress in Structural Engineering and Materials doi: 10.1002/pse.180 – volume: 807 start-page: 155 year: 2016 ident: 342_CR23 publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2016.615 – ident: 342_CR9 – ident: 342_CR55 – volume: 4 start-page: 251 issue: 2 year: 1991 ident: 342_CR30 publication-title: Neural Networks doi: 10.1016/0893-6080(91)90009-T – ident: 342_CR51 – volume: 9 start-page: 5599 issue: 6 year: 2017 ident: 342_CR57 publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2017.2691782 – ident: 342_CR19 doi: 10.1109/BigData.2018.8621955 – ident: 342_CR39 – volume: 30 start-page: 115002 issue: 11 year: 2019 ident: 342_CR60 publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/ab2295 – ident: 342_CR18 – volume: 394 start-page: 56 year: 2019 ident: 342_CR33 publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2019.05.024 – ident: 342_CR62 – ident: 342_CR35 – ident: 342_CR69 doi: 10.1137/1.9781611976700.69 – ident: 342_CR6 doi: 10.1016/j.neucom.2021.04.122 – ident: 342_CR56 – volume: 30 start-page: 5767 year: 2017 ident: 342_CR66 publication-title: Advances in Neural Information Processing Systems – volume: 179 start-page: 704 year: 2019 ident: 342_CR20 publication-title: Computers & Fluids doi: 10.1016/j.compfluid.2018.07.021 – volume: 42 start-page: A292 issue: 1 year: 2020 ident: 342_CR65 publication-title: SIAM Journal on Scientific Computing doi: 10.1137/18M1225409 – ident: 342_CR8 – volume: 566 start-page: 195 issue: 7743 year: 2019 ident: 342_CR1 publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 26 start-page: 297 issue: 3 year: 2003 ident: 342_CR11 publication-title: Journal of Global Optimization doi: 10.1023/A:1023283917997 – ident: 342_CR49 – ident: 342_CR26 doi: 10.1007/978-3-030-29513-4_37 – volume: 68 start-page: 1034 issue: 3 year: 2018 ident: 342_CR61 publication-title: IEEE Transactions on Reliability doi: 10.1109/TR.2018.2866152 – volume: 290 start-page: 26 year: 2018 ident: 342_CR41 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.029 – volume: 394 start-page: 136 year: 2019 ident: 342_CR68 publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2019.05.027 |
SSID | ssj0062411 |
Score | 2.440698 |
SecondaryResourceType | review_article |
Snippet | Despite the sudden rise of AI, it still leaves a question mark to many newcomers on its widespread adoption as it exhibits a lack of robustness and... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1331 |
SubjectTerms | Artificial neural networks Control Deep learning Dynamical Systems Engineering Industrial and Production Engineering Invited Review Article Literature reviews Machine learning Mechanical Engineering Neural networks Taxonomy Vibration 기계공학 |
Title | Knowledge Integration into deep learning in dynamical systems: an overview and taxonomy |
URI | https://link.springer.com/article/10.1007/s12206-021-0342-5 https://www.proquest.com/docview/2511927329 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002703417 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Mechanical Science and Technology, 2021, 35(4), , pp.1331-1342 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8eNEH8ROncwTxSSl0bdIa34Y6P6a-6HA-haZJxph0slXwz_eua52KCj6ltGkKd0nud73L7wAOnAu5sPrYi5PUeVTb1pOJ5h5aBh04J0PpyFG8vYsuu_y6J3rlOe5Jle1ehSSLnXp22C0IyPsNKAWIowc1D4uCXHecxN2gVW2_EZqkwsuKcSVzyXtVKPOnIb4Yo_ls7L7gzG-h0cLitFdhpYSKrDXV7RrM2Wwdlj8RCG7AY6f6JcauSt4HlDMbZPmIGWtfWFkUoo-3mJkWn8chp_TNkxOWZIxSOCk8gNeG5clbcchhE7rt84fTS68sleClofBzL9GR8f0kMWEY8tj6GmGLbVqdSueMtNaKSCOySg16N7HPbeBQdMZqKYROTWTCLVjIRpndBhaLpnY84doZYgOU0iKE4TY0TSKxdbwGfiUzlZY84lTO4lnNGJBJzArFrEjMStTg8OOVlymJxl-d91ERapgOFFFfU9sfqeFYIcC_UghXyX-uQb3SkyoX3USRtyQRjgWyBkeV7maPf_3izr9678JSUMwgyt6pw0I-frV7CExy3YDF1tntzT21F0-d80YxMd8BL_HcYg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8eFAfxE-cn0F8UgpdmrSLbyKOza-nDfcWmiYRUbqxVfDP965rnYoKPrW0aQp3Se53ucvvAE68j4R0phUkaeYDqm0bqNSIAC2D4d6rSHlyFO_u405fXA_koDrHPamz3euQZLlSzw67cU7eL6cUIIEe1DwsIhZoUR5Xn1_Uy2-MJqn0shKcyUKJQR3K_KmLL8ZoPh_7LzjzW2i0tDjtNVitoCK7mOp2HeZcvgErnwgEN-Hhpt4SY92K9wHlzJ7yYsiscyNWFYV4xEfMTovPY5dT-ubJOUtzRimcFB7Ae8uK9K085LAF_fZV77ITVKUSgiySYRGkJrZhmKY2iiKRuNAgbHFNZzLlvVXOORkbRFaZRe8mCYXjXvLQOqOkNJmNbbQNC_kwdzvAEtk0XqTCeEtsgEo5hDDCRbZJJLZeNCCsZaazikecylm86BkDMolZo5g1iVnLBpx-fDKakmj81fgYFaGfsydN1Nd0fRzq57FGgN_VCFfJf27Afq0nXU26iSZvSSEc46oBZ7XuZq9__ePuv1ofwVKnd3erb7v3N3uwzMvRRJk8-7BQjF_dAYKUwhyWg_Id6NHcLQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-wwEB68gHgexCvu8RbEJ6XYTZPW-Cbq4nrDBxf3LTRNIqJ0l90eOD_fmV5cFRV8amnTFGaSzDeZyTcAe95HQjpzFCRp5gOqbRuo1IgALYPh3qtIeXIUb27ji5647Mt-Xed03GS7NyHJ6kwDsTTlxeHQ-sPJwTfOyRPmlA4k0Juahllcjds0rHv8pFmKYzRPpceV4KwWSvSbsOZXXXwwTNP5yH_AnJ_CpKX16SzCQg0b2Uml5yWYcvky_HlHJrgCD1fN9hjr1hwQKHP2lBcDZp0bsrpAxCM-YrYqRI9dVlTO42OW5ozSOSlUgPeWFen_8sDDKvQ65_enF0FdNiHIIhkWQWpiG4ZpaqMoEokLDUIY13YmU95b5ZyTsUGUlVn0dJJQOO4lD60zSkqT2dhGazCTD3K3DiyRbeNFKoy3xAyolEM4I1xk20Ro60ULwkZmOqs5xam0xYuesCGTmDWKWZOYtWzB_tsnw4pQ46fGu6gI_Zw9aaLBpuvjQD-PNIL9rkboSr50CzYbPel6Ao41eU4KoRlXLThodDd5_e0f__6q9Q7M3Z119HX39moD5nk5mCipZxNmitE_t4V4pTDb5Zh8BcRp4Gk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+Integration+into+deep+learning+in+dynamical+systems%3A+an+overview+and+taxonomy&rft.jtitle=Journal+of+mechanical+science+and+technology&rft.au=Kim%2C+Sung+Wook&rft.au=Kim%2C+Iljeok&rft.au=Lee%2C+Jonghwan&rft.au=Lee%2C+Seungchul&rft.date=2021-04-01&rft.pub=Korean+Society+of+Mechanical+Engineers&rft.issn=1738-494X&rft.eissn=1976-3824&rft.volume=35&rft.issue=4&rft.spage=1331&rft.epage=1342&rft_id=info:doi/10.1007%2Fs12206-021-0342-5&rft.externalDocID=10_1007_s12206_021_0342_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-494X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-494X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-494X&client=summon |