Knowledge Integration into deep learning in dynamical systems: an overview and taxonomy

Despite the sudden rise of AI, it still leaves a question mark to many newcomers on its widespread adoption as it exhibits a lack of robustness and interpretability. For instance, the insufficient amount of training data usually hinders its performance due to the lack of generalization, and the blac...

Full description

Saved in:
Bibliographic Details
Published inJournal of mechanical science and technology Vol. 35; no. 4; pp. 1331 - 1342
Main Authors Kim, Sung Wook, Kim, Iljeok, Lee, Jonghwan, Lee, Seungchul
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Mechanical Engineers 01.04.2021
Springer Nature B.V
대한기계학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the sudden rise of AI, it still leaves a question mark to many newcomers on its widespread adoption as it exhibits a lack of robustness and interpretability. For instance, the insufficient amount of training data usually hinders its performance due to the lack of generalization, and the black box nature of deep neural networks does not allow for a precise explanation behind its mechanism preventing a new scientific discovery. Such limitations have led to the development of several branches of deep learning one of which include physics-informed neural networks that will be covered in the rest of this paper. In this overview, we defined the general concept of informed deep learning followed by an extensive literature survey in the field of dynamical systems. We hope to make a contribution to our mechanical engineering community by conveying knowledge and insights on this emerging field of study through this survey paper.
AbstractList Despite the sudden rise of AI, it still leaves a question mark to many newcomers on its widespread adoption as it exhibits a lack of robustness and interpretability. For instance, the insufficient amount of training data usually hinders its performance due to the lack of generalization, and the black box nature of deep neural networks does not allow for a precise explanation behind its mechanism preventing a new scientific discovery. Such limitations have led to the development of several branches of deep learning one of which include physics-informed neural networks that will be covered in the rest of this paper. In this overview, we defined the general concept of informed deep learning followed by an extensive literature survey in the field of dynamical systems. We hope to make a contribution to our mechanical engineering community by conveying knowledge and insights on this emerging field of study through this survey paper. KCI Citation Count: 0
Despite the sudden rise of AI, it still leaves a question mark to many newcomers on its widespread adoption as it exhibits a lack of robustness and interpretability. For instance, the insufficient amount of training data usually hinders its performance due to the lack of generalization, and the black box nature of deep neural networks does not allow for a precise explanation behind its mechanism preventing a new scientific discovery. Such limitations have led to the development of several branches of deep learning one of which include physics-informed neural networks that will be covered in the rest of this paper. In this overview, we defined the general concept of informed deep learning followed by an extensive literature survey in the field of dynamical systems. We hope to make a contribution to our mechanical engineering community by conveying knowledge and insights on this emerging field of study through this survey paper.
Author Kim, Sung Wook
Lee, Jonghwan
Lee, Seungchul
Kim, Iljeok
Author_xml – sequence: 1
  givenname: Sung Wook
  surname: Kim
  fullname: Kim, Sung Wook
  organization: Department of Mechanical Engineering, Pohang University of Science and Technology
– sequence: 2
  givenname: Iljeok
  surname: Kim
  fullname: Kim, Iljeok
  organization: Department of Mechanical Engineering, Pohang University of Science and Technology
– sequence: 3
  givenname: Jonghwan
  surname: Lee
  fullname: Lee, Jonghwan
  organization: Department of Mechanical Engineering, Pohang University of Science and Technology
– sequence: 4
  givenname: Seungchul
  surname: Lee
  fullname: Lee, Seungchul
  email: seunglee@postech.ac.kr
  organization: Department of Mechanical Engineering, Pohang University of Science and Technology, Graduate School of Artificial Intelligence, Pohang University of Science and Technology, Institute of Convergence Research and Education in Advanced Technology, Yonsei University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002703417$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE1LxDAQhoMo-PkDvAU8eajmo22MNxE_FhcEWdFbSJtpiXaTNYmr---NVhAEPc0wvM_M8GyjdecdILRPyRElRBxHyhipC8JoQXjJimoNbVEp6oKfsHI994KfFKUsHzfRdoxPhNSspHQLPdw4_zaA6QFPXII-6GS9w9Yljw3AAg-gg7OuzyNsVk7PbasHHFcxwTyeYu2wX0JYWnjLvcFJv3vn56tdtNHpIcLed91B95cXs_PrYnp7NTk_mxYtr0gqdFMbQrQ2nPNSAGlYRYFC08quMxIAqrqhlLVG1rUgJbCuYsRAI6uqaU1t-A46HPe60Knn1iqv7VftvXoO6uxuNlFSCMoZy9mDMbsI_uUVYlJP_jW4_J7KZ6lkgjOZU3RMtcHHGKBTi2DnOqwUJerTtRpdq-xafbpWVWbEL6a16ctkCtoO_5JsJGO-4noIPz_9DX0A0b2Vpw
CitedBy_id crossref_primary_10_1007_s12541_021_00600_3
crossref_primary_10_1016_j_cma_2024_117342
crossref_primary_10_1115_1_4067089
crossref_primary_10_3390_s25051401
crossref_primary_10_1007_s10845_022_01999_w
crossref_primary_10_1116_5_0204409
crossref_primary_10_1063_5_0176702
crossref_primary_10_1007_s10207_025_00987_4
crossref_primary_10_1109_TII_2023_3268407
crossref_primary_10_1109_TNNLS_2023_3338619
crossref_primary_10_1007_s12206_025_0124_6
crossref_primary_10_1007_s10915_022_01939_z
crossref_primary_10_1017_dce_2023_16
crossref_primary_10_3390_s25061952
crossref_primary_10_3390_ai5030074
crossref_primary_10_1016_j_ces_2024_121153
crossref_primary_10_3390_computation9090097
crossref_primary_10_3390_computers13100252
crossref_primary_10_1063_5_0136886
crossref_primary_10_1016_j_ress_2022_108869
crossref_primary_10_1109_TGRS_2023_3327781
crossref_primary_10_1007_s12206_024_0624_9
crossref_primary_10_1016_j_engappai_2023_107350
crossref_primary_10_1016_j_ress_2023_109514
crossref_primary_10_1016_j_mfglet_2024_09_181
crossref_primary_10_1016_j_procs_2024_02_052
Cites_doi 10.1016/j.ijmachtools.2006.04.007
10.1016/j.asoc.2017.05.031
10.1109/JSAC.2019.2951964
10.1016/0893-6080(91)90009-T
10.1016/S0142-1123(97)00081-9
10.1109/TSG.2017.2691782
10.1016/j.engappai.2020.103947
10.1007/s12206-018-1205-6
10.1016/j.compfluid.2018.07.021
10.1016/j.procir.2018.03.046
10.1137/18M1225409
10.1016/j.engstruct.2020.110704
10.1002/eqe.219
10.1109/JPROC.2018.2820126
10.1109/JSEN.2019.2898634
10.1109/22.643839
10.1016/j.neucom.2018.02.029
10.1023/A:1023283917997
10.1109/TR.2018.2866152
10.1016/j.jcp.2019.05.024
10.1109/72.286886
10.1002/pse.180
10.1088/1361-6501/ab2295
10.1111/j.1467-8667.2008.00589.x
10.3390/machines5010004
10.1017/jfm.2016.615
10.1109/ACCESS.2017.2720965
10.1002/eqe.2935
10.1088/1742-5468/ab3195
10.1016/j.jcp.2019.05.027
10.1109/72.712178
10.1038/s41586-019-0912-1
10.1109/CVPR.2017.241
10.1117/12.2561610
10.12783/shm2019/32301
10.36001/phmconf.2019.v11i1.814
10.2514/6.2020-1149
10.1137/1.9781611975673.63
10.1109/ICPHM.2019.8819403
10.1109/BigData.2018.8621955
10.1137/1.9781611976700.69
10.1016/j.neucom.2021.04.122
10.1007/978-3-030-29513-4_37
ContentType Journal Article
Copyright The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
7TB
8FD
FR3
ACYCR
DOI 10.1007/s12206-021-0342-5
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Korean Citation Index
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3824
EndPage 1342
ExternalDocumentID oai_kci_go_kr_ARTI_9771322
10_1007_s12206_021_0342_5
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.UV
.VR
06D
0R~
0VY
1N0
2.D
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
6NX
8FE
8FG
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LLZTM
M7S
MA-
MK~
ML~
MZR
NDZJH
NF0
NPVJJ
NQJWS
O9-
P9P
PF0
PT4
PTHSS
Q2X
QOS
R89
R9I
RHV
ROL
RPX
RSV
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TDB
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8R
Z8T
Z8W
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
7TB
8FD
ABRTQ
FR3
ACYCR
ID FETCH-LOGICAL-c350t-ab6d00aad33347e0b251e1ebc9ffd9eee56b112cd966704e2f520deb955bcd6d3
IEDL.DBID U2A
ISSN 1738-494X
IngestDate Sun Mar 09 07:54:24 EDT 2025
Fri Jul 25 12:21:55 EDT 2025
Tue Jul 01 04:23:33 EDT 2025
Thu Apr 24 23:08:50 EDT 2025
Fri Feb 21 02:48:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep neural networks
Taxonomy
Knowledge integration
Knowledge representation
Informed deep learning
Physics-informed
Dynamical system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-ab6d00aad33347e0b251e1ebc9ffd9eee56b112cd966704e2f520deb955bcd6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2511927329
PQPubID 326249
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9771322
proquest_journals_2511927329
crossref_primary_10_1007_s12206_021_0342_5
crossref_citationtrail_10_1007_s12206_021_0342_5
springer_journals_10_1007_s12206_021_0342_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Journal of mechanical science and technology
PublicationTitleAbbrev J Mech Sci Technol
PublicationYear 2021
Publisher Korean Society of Mechanical Engineers
Springer Nature B.V
대한기계학회
Publisher_xml – name: Korean Society of Mechanical Engineers
– name: Springer Nature B.V
– name: 대한기계학회
References Yang, Zhang, Karniadakis (CR65) 2020; 42
Fatemi, Yang (CR44) 1998; 20
Huang, Hung, Wen, Tu (CR24) 2003; 32
CR39
CR38
CR37
de Bezenac, Pajot, Gallinari (CR32) 2019; 2019
CR35
CR71
Qureshi, Khan, Zameer, Usman (CR72) 2017; 58
Zhang, Liu, Sun (CR4) 2020; 215
Li, Yang, Liu, Cai (CR41) 2018; 290
Wang, Zhang (CR14) 1997; 45
Yousefianmoghadam, Behmanesh, Stavridis, Moaveni, Nozari, Sacco (CR29) 2018; 47
CR3
CR6
Pfrommer, Zimmerling, Liu, Kärger, Henning, Beyerer (CR10) 2018; 72
CR5
CR8
CR9
CR49
CR48
Gao, Lu, Yan (CR60) 2019; 30
CR47
CR46
CR43
CR42
CR40
Hornik (CR30) 1991; 4
Nguyen, Cheng, Yu, Thai (CR70) 2019; 33
Lagaris, Likas, Fotiadis (CR17) 1998; 9
Tianping, Hong (CR31) 1993; 4
Du, Liu, Basevi, Leonardis, Freeman, Tenenbaum, Wu (CR36) 2018; 31
CR19
CR18
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR34) 2014; 15
CR16
CR15
CR58
Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (CR66) 2017; 30
CR12
CR56
CR55
CR54
CR53
Zhang, Tao, Wu, Guan (CR7) 2017; 5
CR51
Leary, Bhaskar, Keane (CR11) 2003; 26
Butter, Kasieczka, Plehn, Russell (CR25) 2018; 5
CR50
Sadoughi, Hu (CR27) 2019; 19
Wang, Lu, Liu, Yan (CR61) 2018; 68
Yu, Yao, Liu (CR2) 2020; 96
Ling, Kurzawski, Templeton (CR23) 2016; 807
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais (CR1) 2019; 566
Ortega, Frossard, Kovačević, Moura, Vandergheynst (CR52) 2018; 106
Swischuk, Mainini, Peherstorfer, Willcox (CR20) 2019; 179
CR26
Kim, Koc, Ni (CR13) 2007; 47
CR69
Mojallal, Lotfifard (CR57) 2017; 9
Lu, Rajora, Zou, Liang (CR21) 2017; 5
CR67
CR22
Moaveni, Conte, Hemez (CR28) 2009; 24
Zhu, Zabaras, Koutsourelakis, Perdikaris (CR33) 2019; 394
CR64
CR63
Yang, Perdikaris (CR68) 2019; 394
CR62
Chen, Hu, Zhang, Yu, He (CR59) 2019; 38
Frangopol, Kallen, v. Noortwijk (CR45) 2004; 6
R Zhang (342_CR4) 2020; 215
R Zhang (342_CR7) 2017; 5
C-S Huang (342_CR24) 2003; 32
342_CR47
342_CR48
342_CR49
342_CR54
342_CR55
342_CR12
342_CR56
J Pfrommer (342_CR10) 2018; 72
342_CR50
342_CR51
M Reichstein (342_CR1) 2019; 566
342_CR53
N Srivastava (342_CR34) 2014; 15
Y Lu (342_CR21) 2017; 5
F Wang (342_CR14) 1997; 45
342_CR18
342_CR19
H S Kim (342_CR13) 2007; 47
A Mojallal (342_CR57) 2017; 9
342_CR58
342_CR15
K Chen (342_CR59) 2019; 38
342_CR16
E de Bezenac (342_CR32) 2019; 2019
342_CR22
342_CR67
Y Du (342_CR36) 2018; 31
342_CR62
342_CR63
342_CR64
K Hornik (342_CR30) 1991; 4
A Butter (342_CR25) 2018; 5
A S Qureshi (342_CR72) 2017; 58
T Wang (342_CR61) 2018; 68
Y Yang (342_CR68) 2019; 394
R Swischuk (342_CR20) 2019; 179
Y Yu (342_CR2) 2020; 96
M Sadoughi (342_CR27) 2019; 19
B Moaveni (342_CR28) 2009; 24
D M Frangopol (342_CR45) 2004; 6
342_CR69
342_CR26
342_CR3
342_CR35
C Tianping (342_CR31) 1993; 4
Y Zhu (342_CR33) 2019; 394
S Yousefianmoghadam (342_CR29) 2018; 47
L Yang (342_CR65) 2020; 42
342_CR9
342_CR71
342_CR8
I Gulrajani (342_CR66) 2017; 30
342_CR5
342_CR6
I E Lagaris (342_CR17) 1998; 9
V H Nguyen (342_CR70) 2019; 33
A Fatemi (342_CR44) 1998; 20
342_CR37
342_CR38
342_CR39
S J Leary (342_CR11) 2003; 26
342_CR43
342_CR46
342_CR40
J Ling (342_CR23) 2016; 807
342_CR42
A Ortega (342_CR52) 2018; 106
J Li (342_CR41) 2018; 290
Z Gao (342_CR60) 2019; 30
References_xml – ident: CR22
– ident: CR49
– volume: 47
  start-page: 211
  issue: 2
  year: 2007
  end-page: 222
  ident: CR13
  article-title: A hybrid multi-fidelity approach to the optimal design of warm forming processes using a knowledge-based artificial neural network
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2006.04.007
– ident: CR39
– ident: CR16
– ident: CR51
– ident: CR12
– volume: 58
  start-page: 742
  year: 2017
  end-page: 755
  ident: CR72
  article-title: Wind power prediction using deep neural network based meta regression and transfer learning
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.05.031
– ident: CR35
– ident: CR54
– volume: 38
  start-page: 119
  issue: 1
  year: 2019
  end-page: 131
  ident: CR59
  article-title: Fault location in power distribution systems via deep graph convolutional networks
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2019.2951964
– ident: CR8
– ident: CR58
– volume: 4
  start-page: 251
  issue: 2
  year: 1991
  end-page: 257
  ident: CR30
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(91)90009-T
– ident: CR42
– volume: 20
  start-page: 9
  issue: 1
  year: 1998
  end-page: 34
  ident: CR44
  article-title: Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials
  publication-title: International Journal of Fatigue
  doi: 10.1016/S0142-1123(97)00081-9
– volume: 9
  start-page: 5599
  issue: 6
  year: 2017
  end-page: 5612
  ident: CR57
  article-title: Multi-physics graphical modelbased fault detection and isolation in wind turbines
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2017.2691782
– volume: 96
  start-page: 103947
  year: 2020
  ident: CR2
  article-title: Structural dynamics simulation using a novel physics-guided machine learning method
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103947
– ident: CR46
– ident: CR71
– ident: CR19
– volume: 33
  start-page: 41
  issue: 1
  year: 2019
  end-page: 50
  ident: CR70
  article-title: An architecture of deep learning network based on ensemble empirical mode decomposition in precise identification of bearing vibration signal
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-018-1205-6
– volume: 30
  start-page: 5767
  year: 2017
  end-page: 5777
  ident: CR66
  article-title: Improved training of wasserstein gans
  publication-title: Advances in Neural Information Processing Systems
– volume: 31
  start-page: 1726
  year: 2018
  end-page: 1736
  ident: CR36
  article-title: Learning to exploit stability for 3d scene parsing
  publication-title: Advances in Neural Information Processing Systems
– ident: CR67
– ident: CR15
– volume: 179
  start-page: 704
  year: 2019
  end-page: 717
  ident: CR20
  article-title: Projection-based model reduction: formulations for physics-based machine learning
  publication-title: Computers & Fluids
  doi: 10.1016/j.compfluid.2018.07.021
– ident: CR50
– volume: 72
  start-page: 426
  year: 2018
  end-page: 431
  ident: CR10
  article-title: Optimisation of manufacturing process parameters using deep neural networks as surrogate models
  publication-title: Procedia CiRP
  doi: 10.1016/j.procir.2018.03.046
– ident: CR9
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  end-page: 1958
  ident: CR34
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– ident: CR5
– volume: 42
  start-page: A292
  issue: 1
  year: 2020
  end-page: A317
  ident: CR65
  article-title: Physics-informed generative adversarial networks for stochastic differential equations
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/18M1225409
– volume: 215
  start-page: 110704
  year: 2020
  ident: CR4
  article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2020.110704
– ident: CR64
– volume: 32
  start-page: 187
  issue: 2
  year: 2003
  end-page: 206
  ident: CR24
  article-title: A neural network approach for structural identification and diagnosis of a building from seismic response data
  publication-title: Earthquake Engineering & Structural Dynamics
  doi: 10.1002/eqe.219
– volume: 106
  start-page: 808
  issue: 5
  year: 2018
  end-page: 828
  ident: CR52
  article-title: Graph signal processing: overview, challenges, and applications
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2018.2820126
– ident: CR26
– volume: 19
  start-page: 4181
  issue: 11
  year: 2019
  end-page: 4192
  ident: CR27
  article-title: Physics-based convolutional neural network for fault diagnosis of rolling element bearings
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2019.2898634
– volume: 45
  start-page: 2333
  issue: 12
  year: 1997
  end-page: 2343
  ident: CR14
  article-title: Knowledge-based neural models for microwave design
  publication-title: IEEE Transactions on Microwave Theory and Techniques
  doi: 10.1109/22.643839
– volume: 290
  start-page: 26
  year: 2018
  end-page: 33
  ident: CR41
  article-title: Deep rotation equivariant network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.029
– volume: 26
  start-page: 297
  issue: 3
  year: 2003
  end-page: 319
  ident: CR11
  article-title: A knowledge-based approach to response surface modelling in multifidelity optimization
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1023283917997
– ident: CR18
– ident: CR43
– volume: 5
  start-page: 1707.08966
  issue: 28
  year: 2018
  ident: CR25
  article-title: Deep-learned top tagging with a Lorentz layer
  publication-title: SciPost Phys
– ident: CR47
– volume: 68
  start-page: 1034
  issue: 3
  year: 2018
  end-page: 1049
  ident: CR61
  article-title: Graph-based change detection for condition monitoring of rotating machines: techniques for graph similarity
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2018.2866152
– ident: CR37
– ident: CR53
– volume: 394
  start-page: 56
  year: 2019
  end-page: 81
  ident: CR33
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2019.05.024
– ident: CR6
– volume: 4
  start-page: 910
  issue: 6
  year: 1993
  end-page: 918
  ident: CR31
  article-title: Approximations of continuous functions by neural networks with application to dynamic system
  publication-title: IEEE Transition Neural Networks
  doi: 10.1109/72.286886
– ident: CR56
– volume: 6
  start-page: 197
  issue: 4
  year: 2004
  end-page: 212
  ident: CR45
  article-title: Probabilistic models for life-cycle performance of deteriorating structures: review and future directions
  publication-title: Progress in Structural Engineering and Materials
  doi: 10.1002/pse.180
– ident: CR40
– volume: 30
  start-page: 115002
  issue: 11
  year: 2019
  ident: CR60
  article-title: Graph-based change detection for condition monitoring of industrial machinery: an enhanced framework for non-stationary condition signals
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/ab2295
– ident: CR63
– volume: 24
  start-page: 320
  issue: 5
  year: 2009
  end-page: 334
  ident: CR28
  article-title: Uncertainty and sensitivity analysis of damage identification results obtained using finite element model updating
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/j.1467-8667.2008.00589.x
– volume: 5
  start-page: 4
  issue: 1
  year: 2017
  ident: CR21
  article-title: Physics-embedded machine learning: case study with electrochemical micro-machining
  publication-title: Machines
  doi: 10.3390/machines5010004
– ident: CR69
– volume: 807
  start-page: 155
  year: 2016
  end-page: 166
  ident: CR23
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2016.615
– ident: CR48
– volume: 5
  start-page: 14347
  year: 2017
  end-page: 14357
  ident: CR7
  article-title: Transfer learning with neural networks for bearing fault diagnosis in changing working conditions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2720965
– volume: 47
  start-page: 25
  issue: 1
  year: 2018
  end-page: 47
  ident: CR29
  article-title: System identification and modeling of a dynamically tested and gradually damaged 10-story reinforced concrete building
  publication-title: Earthquake Engineering & Structural Dynamics
  doi: 10.1002/eqe.2935
– ident: CR3
– ident: CR38
– volume: 2019
  start-page: 124009
  issue: 12
  year: 2019
  ident: CR32
  article-title: Deep learning for physical processes: incorporating prior scientific knowledge
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
  doi: 10.1088/1742-5468/ab3195
– volume: 394
  start-page: 136
  year: 2019
  end-page: 152
  ident: CR68
  article-title: Adversarial uncertainty quantification in physics-informed neural networks
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2019.05.027
– ident: CR55
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  end-page: 1000
  ident: CR17
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.712178
– ident: CR62
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  end-page: 204
  ident: CR1
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 5
  start-page: 1707.08966
  issue: 28
  year: 2018
  ident: 342_CR25
  publication-title: SciPost Phys
– ident: 342_CR40
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  ident: 342_CR17
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.712178
– ident: 342_CR63
– volume: 38
  start-page: 119
  issue: 1
  year: 2019
  ident: 342_CR59
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2019.2951964
– volume: 24
  start-page: 320
  issue: 5
  year: 2009
  ident: 342_CR28
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/j.1467-8667.2008.00589.x
– volume: 47
  start-page: 211
  issue: 2
  year: 2007
  ident: 342_CR13
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2006.04.007
– ident: 342_CR53
– ident: 342_CR38
  doi: 10.1109/CVPR.2017.241
– ident: 342_CR15
  doi: 10.1117/12.2561610
– ident: 342_CR48
– volume: 20
  start-page: 9
  issue: 1
  year: 1998
  ident: 342_CR44
  publication-title: International Journal of Fatigue
  doi: 10.1016/S0142-1123(97)00081-9
– ident: 342_CR3
– volume: 5
  start-page: 14347
  year: 2017
  ident: 342_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2720965
– volume: 33
  start-page: 41
  issue: 1
  year: 2019
  ident: 342_CR70
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-018-1205-6
– ident: 342_CR67
– ident: 342_CR43
  doi: 10.12783/shm2019/32301
– ident: 342_CR64
– volume: 106
  start-page: 808
  issue: 5
  year: 2018
  ident: 342_CR52
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2018.2820126
– ident: 342_CR12
– ident: 342_CR37
– volume: 32
  start-page: 187
  issue: 2
  year: 2003
  ident: 342_CR24
  publication-title: Earthquake Engineering & Structural Dynamics
  doi: 10.1002/eqe.219
– ident: 342_CR16
– volume: 31
  start-page: 1726
  year: 2018
  ident: 342_CR36
  publication-title: Advances in Neural Information Processing Systems
– ident: 342_CR22
– volume: 58
  start-page: 742
  year: 2017
  ident: 342_CR72
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.05.031
– volume: 4
  start-page: 910
  issue: 6
  year: 1993
  ident: 342_CR31
  publication-title: IEEE Transition Neural Networks
  doi: 10.1109/72.286886
– volume: 96
  start-page: 103947
  year: 2020
  ident: 342_CR2
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103947
– volume: 47
  start-page: 25
  issue: 1
  year: 2018
  ident: 342_CR29
  publication-title: Earthquake Engineering & Structural Dynamics
  doi: 10.1002/eqe.2935
– ident: 342_CR46
  doi: 10.36001/phmconf.2019.v11i1.814
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 342_CR34
  publication-title: The Journal of Machine Learning Research
– ident: 342_CR47
  doi: 10.2514/6.2020-1149
– volume: 5
  start-page: 4
  issue: 1
  year: 2017
  ident: 342_CR21
  publication-title: Machines
  doi: 10.3390/machines5010004
– ident: 342_CR54
– ident: 342_CR50
– volume: 19
  start-page: 4181
  issue: 11
  year: 2019
  ident: 342_CR27
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2019.2898634
– ident: 342_CR5
  doi: 10.1137/1.9781611975673.63
– ident: 342_CR58
  doi: 10.1109/ICPHM.2019.8819403
– volume: 215
  start-page: 110704
  year: 2020
  ident: 342_CR4
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2020.110704
– volume: 2019
  start-page: 124009
  issue: 12
  year: 2019
  ident: 342_CR32
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
  doi: 10.1088/1742-5468/ab3195
– ident: 342_CR42
– volume: 72
  start-page: 426
  year: 2018
  ident: 342_CR10
  publication-title: Procedia CiRP
  doi: 10.1016/j.procir.2018.03.046
– volume: 45
  start-page: 2333
  issue: 12
  year: 1997
  ident: 342_CR14
  publication-title: IEEE Transactions on Microwave Theory and Techniques
  doi: 10.1109/22.643839
– ident: 342_CR71
– volume: 6
  start-page: 197
  issue: 4
  year: 2004
  ident: 342_CR45
  publication-title: Progress in Structural Engineering and Materials
  doi: 10.1002/pse.180
– volume: 807
  start-page: 155
  year: 2016
  ident: 342_CR23
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2016.615
– ident: 342_CR9
– ident: 342_CR55
– volume: 4
  start-page: 251
  issue: 2
  year: 1991
  ident: 342_CR30
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(91)90009-T
– ident: 342_CR51
– volume: 9
  start-page: 5599
  issue: 6
  year: 2017
  ident: 342_CR57
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2017.2691782
– ident: 342_CR19
  doi: 10.1109/BigData.2018.8621955
– ident: 342_CR39
– volume: 30
  start-page: 115002
  issue: 11
  year: 2019
  ident: 342_CR60
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/ab2295
– ident: 342_CR18
– volume: 394
  start-page: 56
  year: 2019
  ident: 342_CR33
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2019.05.024
– ident: 342_CR62
– ident: 342_CR35
– ident: 342_CR69
  doi: 10.1137/1.9781611976700.69
– ident: 342_CR6
  doi: 10.1016/j.neucom.2021.04.122
– ident: 342_CR56
– volume: 30
  start-page: 5767
  year: 2017
  ident: 342_CR66
  publication-title: Advances in Neural Information Processing Systems
– volume: 179
  start-page: 704
  year: 2019
  ident: 342_CR20
  publication-title: Computers & Fluids
  doi: 10.1016/j.compfluid.2018.07.021
– volume: 42
  start-page: A292
  issue: 1
  year: 2020
  ident: 342_CR65
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/18M1225409
– ident: 342_CR8
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  ident: 342_CR1
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 26
  start-page: 297
  issue: 3
  year: 2003
  ident: 342_CR11
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1023283917997
– ident: 342_CR49
– ident: 342_CR26
  doi: 10.1007/978-3-030-29513-4_37
– volume: 68
  start-page: 1034
  issue: 3
  year: 2018
  ident: 342_CR61
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2018.2866152
– volume: 290
  start-page: 26
  year: 2018
  ident: 342_CR41
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.029
– volume: 394
  start-page: 136
  year: 2019
  ident: 342_CR68
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2019.05.027
SSID ssj0062411
Score 2.440698
SecondaryResourceType review_article
Snippet Despite the sudden rise of AI, it still leaves a question mark to many newcomers on its widespread adoption as it exhibits a lack of robustness and...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1331
SubjectTerms Artificial neural networks
Control
Deep learning
Dynamical Systems
Engineering
Industrial and Production Engineering
Invited Review Article
Literature reviews
Machine learning
Mechanical Engineering
Neural networks
Taxonomy
Vibration
기계공학
Title Knowledge Integration into deep learning in dynamical systems: an overview and taxonomy
URI https://link.springer.com/article/10.1007/s12206-021-0342-5
https://www.proquest.com/docview/2511927329
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002703417
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Mechanical Science and Technology, 2021, 35(4), , pp.1331-1342
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8eNEH8ROncwTxSSl0bdIa34Y6P6a-6HA-haZJxph0slXwz_eua52KCj6ltGkKd0nud73L7wAOnAu5sPrYi5PUeVTb1pOJ5h5aBh04J0PpyFG8vYsuu_y6J3rlOe5Jle1ehSSLnXp22C0IyPsNKAWIowc1D4uCXHecxN2gVW2_EZqkwsuKcSVzyXtVKPOnIb4Yo_ls7L7gzG-h0cLitFdhpYSKrDXV7RrM2Wwdlj8RCG7AY6f6JcauSt4HlDMbZPmIGWtfWFkUoo-3mJkWn8chp_TNkxOWZIxSOCk8gNeG5clbcchhE7rt84fTS68sleClofBzL9GR8f0kMWEY8tj6GmGLbVqdSueMtNaKSCOySg16N7HPbeBQdMZqKYROTWTCLVjIRpndBhaLpnY84doZYgOU0iKE4TY0TSKxdbwGfiUzlZY84lTO4lnNGJBJzArFrEjMStTg8OOVlymJxl-d91ERapgOFFFfU9sfqeFYIcC_UghXyX-uQb3SkyoX3USRtyQRjgWyBkeV7maPf_3izr9678JSUMwgyt6pw0I-frV7CExy3YDF1tntzT21F0-d80YxMd8BL_HcYg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8eFAfxE-cn0F8UgpdmrSLbyKOza-nDfcWmiYRUbqxVfDP965rnYoKPrW0aQp3Se53ucvvAE68j4R0phUkaeYDqm0bqNSIAC2D4d6rSHlyFO_u405fXA_koDrHPamz3euQZLlSzw67cU7eL6cUIIEe1DwsIhZoUR5Xn1_Uy2-MJqn0shKcyUKJQR3K_KmLL8ZoPh_7LzjzW2i0tDjtNVitoCK7mOp2HeZcvgErnwgEN-Hhpt4SY92K9wHlzJ7yYsiscyNWFYV4xEfMTovPY5dT-ubJOUtzRimcFB7Ae8uK9K085LAF_fZV77ITVKUSgiySYRGkJrZhmKY2iiKRuNAgbHFNZzLlvVXOORkbRFaZRe8mCYXjXvLQOqOkNJmNbbQNC_kwdzvAEtk0XqTCeEtsgEo5hDDCRbZJJLZeNCCsZaazikecylm86BkDMolZo5g1iVnLBpx-fDKakmj81fgYFaGfsydN1Nd0fRzq57FGgN_VCFfJf27Afq0nXU26iSZvSSEc46oBZ7XuZq9__ePuv1ofwVKnd3erb7v3N3uwzMvRRJk8-7BQjF_dAYKUwhyWg_Id6NHcLQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-wwEB68gHgexCvu8RbEJ6XYTZPW-Cbq4nrDBxf3LTRNIqJ0l90eOD_fmV5cFRV8amnTFGaSzDeZyTcAe95HQjpzFCRp5gOqbRuo1IgALYPh3qtIeXIUb27ji5647Mt-Xed03GS7NyHJ6kwDsTTlxeHQ-sPJwTfOyRPmlA4k0Juahllcjds0rHv8pFmKYzRPpceV4KwWSvSbsOZXXXwwTNP5yH_AnJ_CpKX16SzCQg0b2Uml5yWYcvky_HlHJrgCD1fN9hjr1hwQKHP2lBcDZp0bsrpAxCM-YrYqRI9dVlTO42OW5ozSOSlUgPeWFen_8sDDKvQ65_enF0FdNiHIIhkWQWpiG4ZpaqMoEokLDUIY13YmU95b5ZyTsUGUlVn0dJJQOO4lD60zSkqT2dhGazCTD3K3DiyRbeNFKoy3xAyolEM4I1xk20Ro60ULwkZmOqs5xam0xYuesCGTmDWKWZOYtWzB_tsnw4pQ46fGu6gI_Zw9aaLBpuvjQD-PNIL9rkboSr50CzYbPel6Ao41eU4KoRlXLThodDd5_e0f__6q9Q7M3Z119HX39moD5nk5mCipZxNmitE_t4V4pTDb5Zh8BcRp4Gk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+Integration+into+deep+learning+in+dynamical+systems%3A+an+overview+and+taxonomy&rft.jtitle=Journal+of+mechanical+science+and+technology&rft.au=Kim%2C+Sung+Wook&rft.au=Kim%2C+Iljeok&rft.au=Lee%2C+Jonghwan&rft.au=Lee%2C+Seungchul&rft.date=2021-04-01&rft.pub=Korean+Society+of+Mechanical+Engineers&rft.issn=1738-494X&rft.eissn=1976-3824&rft.volume=35&rft.issue=4&rft.spage=1331&rft.epage=1342&rft_id=info:doi/10.1007%2Fs12206-021-0342-5&rft.externalDocID=10_1007_s12206_021_0342_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-494X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-494X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-494X&client=summon