Investigation on the cavitation effect of underwater shock near different boundaries

When the shock wave of underwater explosion propagates to the surfaces of different boundaries, it gets reflected. Then, a negative pressure area is formed by the superposition of the incident wave and reflected wave. Cavitation occurs when the value of the negative pressure falls below the vapor pr...

Full description

Saved in:
Bibliographic Details
Published inChina ocean engineering Vol. 31; no. 4; pp. 396 - 407
Main Authors Xiao, Wei, Wei, Hai-peng, Feng, Liang
Format Journal Article
LanguageEnglish
Published Nanjing Chinese Ocean Engineering Society 01.08.2017
Springer Nature B.V
College of Engineering, Ocean University of China, Qingdao 266100, China%Beijing Institute of Astronautical System Engineering, Beijing 100076, China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When the shock wave of underwater explosion propagates to the surfaces of different boundaries, it gets reflected. Then, a negative pressure area is formed by the superposition of the incident wave and reflected wave. Cavitation occurs when the value of the negative pressure falls below the vapor pressure of water. An improved numerical model based on the spectral element method is applied to investigate the cavitation effect of underwater shock near different boundaries, mainly including the feature of cavitation effect near different boundaries and the influence of different parameters on cavitation effect. In the implementation of the improved numerical model, the bilinear equation of state is used to deal with the fluid field subjected to cavitation, and the field separation technique is employed to avoid the distortion of incident wave propagating through the mesh and the second-order doubly asymptotic approximation is applied to simulate the non-reflecting boundary. The main results are as follows. As the peak pressure and decay constant of shock wave increases, the range of cavitation domain increases, and the duration of cavitation increases. As the depth of water increases, the influence of cavitation on the dynamic response of spherical shell decreases.
AbstractList When the shock wave of underwater explosion propagates to the surfaces of different boundaries,it gets reflectcd.Then,a negative pressure area is formed by the superposition of the incident wave and reflected wave.Cavitation occurs when the value of the negative pressure falls below the vapor pressure of water.An improved numerical model based on the spectral element method is applied to investigate the cavitation effect of underwater shock near different boundaries,mainly including the feature of cavitation effect near different boundaries and the influence of different parameters on cavitation effect.In the implementation of the improved numerical model,the bilinear equation of state is used to deal with the fluid field subjected to cavitation,and the field separation technique is employed to avoid the distortion of incident wave propagating through the mesh and the second-order doubly asymptotic approximation is applied to simulate the non-reflecting boundary.The main results are as follows.As the peak pressure and decay constant of shock wave increases,the range of cavitation domain increases,and the duration of cavitation increases.As the depth of water increases,the influence of cavitation on the dynamic response of spherical shell decreases.
When the shock wave of underwater explosion propagates to the surfaces of different boundaries, it gets reflected. Then, a negative pressure area is formed by the superposition of the incident wave and reflected wave. Cavitation occurs when the value of the negative pressure falls below the vapor pressure of water. An improved numerical model based on the spectral element method is applied to investigate the cavitation effect of underwater shock near different boundaries, mainly including the feature of cavitation effect near different boundaries and the influence of different parameters on cavitation effect. In the implementation of the improved numerical model, the bilinear equation of state is used to deal with the fluid field subjected to cavitation, and the field separation technique is employed to avoid the distortion of incident wave propagating through the mesh and the second-order doubly asymptotic approximation is applied to simulate the non-reflecting boundary. The main results are as follows. As the peak pressure and decay constant of shock wave increases, the range of cavitation domain increases, and the duration of cavitation increases. As the depth of water increases, the influence of cavitation on the dynamic response of spherical shell decreases.
Author Feng, Liang
Wei, Hai-peng
Xiao, Wei
AuthorAffiliation College of Engineering, Ocean University of China, Qingdao 266100, China%Beijing Institute of Astronautical System Engineering, Beijing 100076, China
AuthorAffiliation_xml – name: College of Engineering, Ocean University of China, Qingdao 266100, China%Beijing Institute of Astronautical System Engineering, Beijing 100076, China
Author_xml – sequence: 1
  givenname: Wei
  surname: Xiao
  fullname: Xiao, Wei
  email: xiaowei@ouc.edu.cn
  organization: College of Engineering, Ocean University of China
– sequence: 2
  givenname: Hai-peng
  surname: Wei
  fullname: Wei, Hai-peng
  organization: Beijing Institute of Astronautical System Engineering
– sequence: 3
  givenname: Liang
  surname: Feng
  fullname: Feng, Liang
  organization: College of Engineering, Ocean University of China
BookMark eNp9kE1LAzEQhoMoWKs_wNuCJw-rk2y2yR6l-FEQvNRzyKaT7daarUlarb_elC0ogkJgIHmemcx7Qg5d55CQcwpXFEBcB1oUnOdARQ7AR_nHARkwWtFcVrw8JAOQFeQll-KYnISwAChpyemATCdugyG2jY5t57J04hwzozdt7G_QWjQx62y2djP07zqiz8K8My-ZQ-2zWZsAjy5mdZcI7VsMp-TI6mXAs30dkue72-n4IX98up-Mbx5zU5QQc80roSWvha2tNAxGlloxEgIkUiFqQaUUtEY0AJKBkaMyPc-0sZoZbsu6GJLLvu-7dla7Ri26tXdpovps5tvGKGQpEOAALLEXPbvy3ds6rfwN04rJQjBR8USJnjK-C8GjVWYfRPS6XSoKahe36uNWqbvaxa0-kkl_mSvfvmq__ddhvRMS6xr0P_70p_QFGtKVVQ
CitedBy_id crossref_primary_10_1016_j_apor_2019_03_001
crossref_primary_10_1016_j_ijmecsci_2025_110047
crossref_primary_10_1007_s12650_020_00664_9
crossref_primary_10_1016_j_oceaneng_2023_116549
crossref_primary_10_4236_ojfd_2025_151001
crossref_primary_10_1016_j_apm_2024_01_056
crossref_primary_10_1088_1757_899X_869_5_052074
crossref_primary_10_1016_j_oceaneng_2021_108596
crossref_primary_10_1016_j_apor_2025_104516
crossref_primary_10_2113_2024_lithosphere_2024_138
Cites_doi 10.1016/0045-7825(84)90134-8
10.1121/1.389286
10.1016/j.tafmec.2009.08.006
10.1016/j.apor.2014.02.003
10.1017/jfm.2015.323
10.1121/1.382093
10.1115/1.3408664
10.1016/j.ijimpeng.2008.01.016
10.1016/j.oceaneng.2005.03.011
10.5962/bhl.title.48411
10.1007/s10483-012-1615-8
10.1006/jfls.1997.0120
10.1016/j.oceaneng.2016.03.040
10.1016/0020-7683(70)90034-X
10.1016/0021-9991(84)90128-1
10.1016/j.jcp.2015.03.049
10.1155/1998/967539
10.1016/j.oceaneng.2009.02.001
10.1016/j.marstruc.2011.06.002
10.1016/S0021-9991(02)00024-4
10.1016/S0263-8223(97)00081-0
10.1016/j.apnum.2006.07.014
10.1007/s12204-014-1508-4
10.1016/j.cma.2005.03.007
10.1016/j.compstruc.2004.03.075
10.1016/j.ijimpeng.2007.01.007
ContentType Journal Article
Copyright Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany 2017
Copyright Springer Science & Business Media 2017
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany 2017
– notice: Copyright Springer Science & Business Media 2017
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7TN
F1W
H96
L.G
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s13344-017-0046-x
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 2191-8945
EndPage 407
ExternalDocumentID zghygc_e201704002
10_1007_s13344_017_0046_x
GrantInformation_xml – fundername: This work was financially supported by the National Natural Science Foundation of China; Postdoctoral Applied Research Project of Qingdao City and the Fundamental Research Funds for the Central Universities
  funderid: (Grant 51509228); (Grant 201513041)
GroupedDBID -01
-0A
-EM
-SA
-S~
06D
0R~
0VY
188
29B
29~
2B.
2C.
2KG
2KM
30V
4.4
406
408
5GY
5VR
5XA
5XB
8RM
92E
92I
92M
92Q
93N
96X
9D9
9DA
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BGNMA
CAJEA
CCEZO
CCVFK
CHBEP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JUIAU
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PT4
Q--
Q-0
R-A
R9I
RLLFE
ROL
RSV
RT1
S..
S1Z
S27
S3B
SCL
SEG
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T8Q
TCJ
TGP
TSG
U1F
U1G
U2A
U5A
U5K
UG4
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z7R
ZMTXR
~A9
~LH
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7TN
ABRTQ
F1W
H96
L.G
4A8
PSX
ID FETCH-LOGICAL-c350t-a497a84b7fbf8c206f1f767708e177b718871beec00820c865f76dacfa2c4f5b3
IEDL.DBID U2A
ISSN 0890-5487
IngestDate Thu May 29 03:55:51 EDT 2025
Wed Aug 13 02:37:16 EDT 2025
Tue Jul 01 01:29:47 EDT 2025
Thu Apr 24 22:57:34 EDT 2025
Fri Feb 21 02:36:05 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords boundary
fluid structure interaction
spectral element
underwater explosion
cavitation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-a497a84b7fbf8c206f1f767708e177b718871beec00820c865f76dacfa2c4f5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1928372794
PQPubID 2043672
PageCount 12
ParticipantIDs wanfang_journals_zghygc_e201704002
proquest_journals_1928372794
crossref_citationtrail_10_1007_s13344_017_0046_x
crossref_primary_10_1007_s13344_017_0046_x
springer_journals_10_1007_s13344_017_0046_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Nanjing
PublicationPlace_xml – name: Nanjing
– name: Heidelberg
PublicationTitle China ocean engineering
PublicationTitleAbbrev China Ocean Eng
PublicationTitle_FL China Ocean Engineering
PublicationYear 2017
Publisher Chinese Ocean Engineering Society
Springer Nature B.V
College of Engineering, Ocean University of China, Qingdao 266100, China%Beijing Institute of Astronautical System Engineering, Beijing 100076, China
Publisher_xml – name: Chinese Ocean Engineering Society
– name: Springer Nature B.V
– name: College of Engineering, Ocean University of China, Qingdao 266100, China%Beijing Institute of Astronautical System Engineering, Beijing 100076, China
References Zhang, Cui, Cui, Wang (CR25) 2015; 776
Zhang, Ren, Li, Li (CR27) 2012; 33
Wang, Zhang, Yu, Li, Kong (CR21) 2014; 46
Wood (CR22) 1998
Geers, Felippa (CR6) 1983; 73
Cole (CR3) 1948
Bleich, Sandler (CR1) 1970; 6
Liang, Tai (CR11) 2006; 33
Shin (CR17) 2004; 82
Hung, Lin, Hwang-Fuu, Hsu (CR8) 2009; 36
Ming, Zhang, Xue, Wang (CR15) 2016; 117
Zhang, Liu (CR26) 2015; 294
Zhang, Zhou, Wang, Feng (CR28) 2011; 24
Shin, Santiago (CR18) 1998; 5
Brett, Yiannakopolous (CR2) 2008; 35
Jen (CR9) 2009; 52
Kalavalapally, Penmetsa, Grandhi (CR10) 2009; 36
Liu, Khoo, Xie (CR12) 2006; 1
McCoy, Sun (CR14) 1997; 37
Mäkinen (CR13) 1998; 12
Patera (CR16) 1984; 54
Sprague, Geers (CR19) 2003; 184
Xiao, Zhang, Wang (CR23) 2014; 19
Sprague, Geers (CR20) 2006; 195
Geers (CR5) 1978; 64
Xie, Liu, Khoo (CR24) 2007; 57
Felippa, Deruntz (CR4) 1984; 44
Huang (CR7) 1970; 37
Zong, Chen, Ye, Li, Zhao (CR29) 2014; 18
R. Kalavalapally (46_CR10) 2009; 36
M.A. Sprague (46_CR19) 2003; 184
M.A. Sprague (46_CR20) 2006; 195
C.F. Hung (46_CR8) 2009; 36
H.H. Bleich (46_CR1) 1970; 6
T.L. Geers (46_CR6) 1983; 73
K. Mäkinen (46_CR13) 1998; 12
R.W. McCoy (46_CR14) 1997; 37
Z. Zong (46_CR29) 2014; 18
F.R. Ming (46_CR15) 2016; 117
Y.S. Shin (46_CR18) 1998; 5
T.L. Geers (46_CR5) 1978; 64
A.T. Patera (46_CR16) 1984; 54
A.M. Zhang (46_CR25) 2015; 776
A.M. Zhang (46_CR28) 2011; 24
A.M. Zhang (46_CR26) 2015; 294
R.H. Cole (46_CR3) 1948
C.C. Liang (46_CR11) 2006; 33
H. Huang (46_CR7) 1970; 37
Y.S. Shin (46_CR17) 2004; 82
J.M. Brett (46_CR2) 2008; 35
C.Y. Jen (46_CR9) 2009; 52
A.M. Zhang (46_CR27) 2012; 33
G.H. Wang (46_CR21) 2014; 46
W.F. Xie (46_CR24) 2007; 57
C.A. Felippa (46_CR4) 1984; 44
T.G. Liu (46_CR12) 2006; 1
W. Xiao (46_CR23) 2014; 19
S.L. Wood (46_CR22) 1998
References_xml – volume: 44
  start-page: 297
  issue: 3
  year: 1984
  end-page: 337
  ident: CR4
  article-title: Finite element analysis of shock-induced hull cavitation
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/0045-7825(84)90134-8
– volume: 73
  start-page: 1152
  issue: 4
  year: 1983
  end-page: 1159
  ident: CR6
  article-title: Doubly asymptotic approximations for vibration analysis of submerged structures
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.389286
– volume: 52
  start-page: 96
  issue: 2
  year: 2009
  end-page: 110
  ident: CR9
  article-title: Coupled acoustic-structural response of optimized ring-stiffened hull for scaled down submerged vehicle subject to underwater explosion
  publication-title: Theoretical and Applied Fracture Mechanics
  doi: 10.1016/j.tafmec.2009.08.006
– volume: 46
  start-page: 40
  year: 2014
  end-page: 53
  ident: CR21
  article-title: Investigation of the shock wave propagation characteristicsand cavitation effects of underwater explosion near boundaries
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2014.02.003
– volume: 776
  start-page: 137
  year: 2015
  end-page: 160
  ident: CR25
  article-title: Experimental study on bubble dynamics subject to buoyancy
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2015.323
– volume: 64
  start-page: 1500
  issue: 5
  year: 1978
  end-page: 1508
  ident: CR5
  article-title: Doubly asymptotic approximations for transient motions of submerged structures
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.382093
– volume: 37
  start-page: 1091
  issue: 4
  year: 1970
  end-page: 1099
  ident: CR7
  article-title: An exact analysis of the transient interaction of acoustic plane waves with a cylindrical elastic shell
  publication-title: Journal of Applied Mechanics
  doi: 10.1115/1.3408664
– volume: 36
  start-page: 343
  issue: 2
  year: 2009
  end-page: 351
  ident: CR10
  article-title: Configuration design of a lightweight torpedo subjected to an underwater explosion
  publication-title: International Journal of Impact Engineering
  doi: 10.1016/j.ijimpeng.2008.01.016
– volume: 33
  start-page: 748
  issue: 5–6
  year: 2006
  end-page: 772
  ident: CR11
  article-title: Shock responses of a surface ship subjected to noncontact underwater explosions
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2005.03.011
– year: 1948
  ident: CR3
  publication-title: Underwater Explosion
  doi: 10.5962/bhl.title.48411
– volume: 33
  start-page: 1191
  issue: 9
  year: 2012
  end-page: 1206
  ident: CR27
  article-title: 3D numerical simulation on the fluid-structure interaction of structure subjected to underwater explosion with cavitation
  publication-title: Applied Mathematics and Mechanics
  doi: 10.1007/s10483-012-1615-8
– volume: 12
  start-page: 85
  issue: 1
  year: 1998
  end-page: 101
  ident: CR13
  article-title: Cavitation models for structures excited by a plane shock wave
  publication-title: Journal of Fluids and Structures
  doi: 10.1006/jfls.1997.0120
– volume: 117
  start-page: 359
  year: 2016
  end-page: 382
  ident: CR15
  article-title: Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2016.03.040
– year: 1998
  ident: CR22
  publication-title: Cavitation Effects on A Ship-Like Box Structure Subjected to An Underwater Explosion
– volume: 6
  start-page: 617
  issue: 5
  year: 1970
  end-page: 639
  ident: CR1
  article-title: Interaction between structures and bilinear fluids
  publication-title: International Journal of Solids and Structures
  doi: 10.1016/0020-7683(70)90034-X
– volume: 54
  start-page: 468
  issue: 3
  year: 1984
  end-page: 488
  ident: CR16
  article-title: A spectral element method for fluid dynamics: laminar flow in a channel expansion
  publication-title: Journal of Computational Physics
  doi: 10.1016/0021-9991(84)90128-1
– volume: 294
  start-page: 208
  year: 2015
  end-page: 223
  ident: CR26
  article-title: Improved three-dimensional bubble dynamics model based on boundary element method
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2015.03.049
– volume: 5
  start-page: 129
  issue: 2
  year: 1998
  end-page: 137
  ident: CR18
  article-title: Surface ship shock modeling and simulation:two-dimensional analysis
  publication-title: Shock and Vibration
  doi: 10.1155/1998/967539
– volume: 36
  start-page: 564
  issue: 8
  year: 2009
  end-page: 577
  ident: CR8
  article-title: Dynamic response of cylindrical shell structures subjected to underwater explosion
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2009.02.001
– volume: 1
  start-page: 898
  issue: 5
  year: 2006
  end-page: 919
  ident: CR12
  article-title: The modified ghost fluid method as applied to extreme fluid-structure interaction in the presence of cavitation
  publication-title: Communications in Computational Physics
– volume: 24
  start-page: 396
  issue: 4
  year: 2011
  end-page: 411
  ident: CR28
  article-title: Dynamic response of the non-contact underwater explosion on naval equipment
  publication-title: Marine Structures
  doi: 10.1016/j.marstruc.2011.06.002
– volume: 18
  start-page: 385
  issue: 4
  year: 2014
  end-page: 394
  ident: CR29
  article-title: Numerical simulation of cavitation caused by underwater explosion
  publication-title: Journal of Ship Mechanics
– volume: 184
  start-page: 149
  issue: 1
  year: 2003
  end-page: 162
  ident: CR19
  article-title: Spectral elements and field separation for an acoustic fluid subject to cavitation
  publication-title: Journal of Computational Physics
  doi: 10.1016/S0021-9991(02)00024-4
– volume: 37
  start-page: 45
  issue: 1
  year: 1997
  end-page: 55
  ident: CR14
  article-title: Fluid-structure interaction analysis of a thick section composite cylinder subjected to underwater blast loading
  publication-title: Composite Structures
  doi: 10.1016/S0263-8223(97)00081-0
– volume: 57
  start-page: 734
  issue: 5–7
  year: 2007
  end-page: 745
  ident: CR24
  article-title: The simulation of cavitating flows induced by underwater shock and free surface interaction
  publication-title: Applied Numerical Mathematics
  doi: 10.1016/j.apnum.2006.07.014
– volume: 19
  start-page: 346
  issue: 3
  year: 2014
  end-page: 353
  ident: CR23
  article-title: Modified numerical model for simulating fluid-filled structure response to underwater explosion with cavitation
  publication-title: Journal of Shanghai Jiaotong University (Science)
  doi: 10.1007/s12204-014-1508-4
– volume: 195
  start-page: 2149
  issue: 17–18
  year: 2006
  end-page: 2167
  ident: CR20
  article-title: A spectral/finite-element analysis of a ship-like structure subjected to an underwater explosion
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2005.03.007
– volume: 82
  start-page: 2211
  issue: 23–26
  year: 2004
  end-page: 2219
  ident: CR17
  article-title: Ship shock modeling and simulation for far-field underwater explosion
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2004.03.075
– volume: 35
  start-page: 206
  issue: 4
  year: 2008
  end-page: 225
  ident: CR2
  article-title: A study of explosive effects in close proximity to a submerged cylinder
  publication-title: International Journal of Impact Engineering
  doi: 10.1016/j.ijimpeng.2007.01.007
– volume: 82
  start-page: 2211
  issue: 23–26
  year: 2004
  ident: 46_CR17
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2004.03.075
– volume: 36
  start-page: 564
  issue: 8
  year: 2009
  ident: 46_CR8
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2009.02.001
– volume: 44
  start-page: 297
  issue: 3
  year: 1984
  ident: 46_CR4
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/0045-7825(84)90134-8
– volume: 46
  start-page: 40
  year: 2014
  ident: 46_CR21
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2014.02.003
– volume: 776
  start-page: 137
  year: 2015
  ident: 46_CR25
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2015.323
– volume: 33
  start-page: 748
  issue: 5–6
  year: 2006
  ident: 46_CR11
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2005.03.011
– volume: 294
  start-page: 208
  year: 2015
  ident: 46_CR26
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2015.03.049
– volume: 57
  start-page: 734
  issue: 5–7
  year: 2007
  ident: 46_CR24
  publication-title: Applied Numerical Mathematics
  doi: 10.1016/j.apnum.2006.07.014
– volume: 36
  start-page: 343
  issue: 2
  year: 2009
  ident: 46_CR10
  publication-title: International Journal of Impact Engineering
  doi: 10.1016/j.ijimpeng.2008.01.016
– volume: 184
  start-page: 149
  issue: 1
  year: 2003
  ident: 46_CR19
  publication-title: Journal of Computational Physics
  doi: 10.1016/S0021-9991(02)00024-4
– volume: 195
  start-page: 2149
  issue: 17–18
  year: 2006
  ident: 46_CR20
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2005.03.007
– volume: 19
  start-page: 346
  issue: 3
  year: 2014
  ident: 46_CR23
  publication-title: Journal of Shanghai Jiaotong University (Science)
  doi: 10.1007/s12204-014-1508-4
– volume: 12
  start-page: 85
  issue: 1
  year: 1998
  ident: 46_CR13
  publication-title: Journal of Fluids and Structures
  doi: 10.1006/jfls.1997.0120
– volume-title: Cavitation Effects on A Ship-Like Box Structure Subjected to An Underwater Explosion
  year: 1998
  ident: 46_CR22
– volume: 64
  start-page: 1500
  issue: 5
  year: 1978
  ident: 46_CR5
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.382093
– volume: 54
  start-page: 468
  issue: 3
  year: 1984
  ident: 46_CR16
  publication-title: Journal of Computational Physics
  doi: 10.1016/0021-9991(84)90128-1
– volume: 37
  start-page: 45
  issue: 1
  year: 1997
  ident: 46_CR14
  publication-title: Composite Structures
  doi: 10.1016/S0263-8223(97)00081-0
– volume: 73
  start-page: 1152
  issue: 4
  year: 1983
  ident: 46_CR6
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.389286
– volume: 117
  start-page: 359
  year: 2016
  ident: 46_CR15
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2016.03.040
– volume: 37
  start-page: 1091
  issue: 4
  year: 1970
  ident: 46_CR7
  publication-title: Journal of Applied Mechanics
  doi: 10.1115/1.3408664
– volume: 24
  start-page: 396
  issue: 4
  year: 2011
  ident: 46_CR28
  publication-title: Marine Structures
  doi: 10.1016/j.marstruc.2011.06.002
– volume: 6
  start-page: 617
  issue: 5
  year: 1970
  ident: 46_CR1
  publication-title: International Journal of Solids and Structures
  doi: 10.1016/0020-7683(70)90034-X
– volume: 33
  start-page: 1191
  issue: 9
  year: 2012
  ident: 46_CR27
  publication-title: Applied Mathematics and Mechanics
  doi: 10.1007/s10483-012-1615-8
– volume: 18
  start-page: 385
  issue: 4
  year: 2014
  ident: 46_CR29
  publication-title: Journal of Ship Mechanics
– volume: 52
  start-page: 96
  issue: 2
  year: 2009
  ident: 46_CR9
  publication-title: Theoretical and Applied Fracture Mechanics
  doi: 10.1016/j.tafmec.2009.08.006
– volume-title: Underwater Explosion
  year: 1948
  ident: 46_CR3
  doi: 10.5962/bhl.title.48411
– volume: 5
  start-page: 129
  issue: 2
  year: 1998
  ident: 46_CR18
  publication-title: Shock and Vibration
  doi: 10.1155/1998/967539
– volume: 35
  start-page: 206
  issue: 4
  year: 2008
  ident: 46_CR2
  publication-title: International Journal of Impact Engineering
  doi: 10.1016/j.ijimpeng.2007.01.007
– volume: 1
  start-page: 898
  issue: 5
  year: 2006
  ident: 46_CR12
  publication-title: Communications in Computational Physics
SSID ssj0051541
Score 2.1068099
Snippet When the shock wave of underwater explosion propagates to the surfaces of different boundaries, it gets reflected. Then, a negative pressure area is formed by...
When the shock wave of underwater explosion propagates to the surfaces of different boundaries,it gets reflectcd.Then,a negative pressure area is formed by the...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 396
SubjectTerms Approximation
Boundaries
Cavitation
Coastal Sciences
Computer simulation
Distortion
Duration
Dynamic response
Engineering
Equations of state
Finite element method
Fluid- and Aerodynamics
Marine & Freshwater Sciences
Mathematical models
Numerical and Computational Physics
Oceanography
Offshore Engineering
Peak pressure
Shock waves
Simulation
Spectral element method
Spherical shells
Superposition (mathematics)
Underwater
Underwater explosions
Vapor pressure
Vapour pressure
Water depth
Wave propagation
Title Investigation on the cavitation effect of underwater shock near different boundaries
URI https://link.springer.com/article/10.1007/s13344-017-0046-x
https://www.proquest.com/docview/1928372794
https://d.wanfangdata.com.cn/periodical/zghygc-e201704002
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-yvaggOhWncwTxSQlkbfOxxyGbQ1FfNphPpUmT7UE62ernX--la9cKKgh9S3PQu-vd70judwidKx5TGyhOWCdWJDDcEqW5IlpZ7QdSGZMxMd3d8-E4uJmwSd7HvSxuuxdHklmkLpvdfD9wNyYEcUUdAeBYZ650Bycee70i_EJ-zsZVUtmlxMHx4ijzJxHfk1GJMNeHolkrT2KjZFrJOoNdtJPDRdxb2XcPbZikgbYqJIINtP2gTZTkzNP7aFRhzpgnGB6AeFhHrzkZN17d4MBzi13_2OINwOYCL2cQF3ECbo-LkSkpVtnIJVdLH6DxoD-6GpJ8dALRPqMpiYKuiGSghFVWao9y27GCC0Gl6QihICFBoQSG0BkE0JIzWI4jbSNPB5Yp_xDVknlijhCGnTHIYUwaBrZUSjhMw6mMQKVG2iaihQ5DnX-KG2_xFJaMyE7tIag9dGoP35voYr3leUWq8dfLrcIwYf5_LUPApVBZexBMmuiyMFZl-XdhZ7k9y5c_p7OPqQ6N56iEIKR5x_8SeYI2vcyj3KXAFqqlixdzCkAlVW1U710_3vbbmYN-AcIV4vA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yH_wA0ak4nRrEJyXQtWmSPQ5xTN3mywZ7C02WbA_SyVY__3ovXbtWUEHoW5qD3qV3vyN3v0PoUrGxZ6liJGyMFaGGWaI0U0QrqwMqlDEpE1OvzzpDej8KR1kf9yKvds-vJFNPXTS7BQF1FROcuKSOAHBcBywgXB3X0G_l7hficzqu0hNNjzg4nl9l_iTiezAqEObqUjRt5YltFE9KUae9i3YyuIhbS_vuoTUTV9FWiUSwirYftYnijHl6Hw1KzBmzGMMDEA_r6DUj48bLCg48s9j1j83fAGzO8WIKfhHHcOxxPjIlwSodueRy6QM0bN8ObjokG51AdBB6CYlok0eCKm6VFdr3mG1Yzjj3hGlwriAgQaIEhtApBNCChbA8jrSNfE1tqIJDVIlnsTlCGHaOQU4YChOCLZXiDtMwT0SgUiNsDXm5DqXOPsWNt3iSBSOyU7sEtUundvleQ1erLc9LUo2_Xq7nhpHZ_7WQgEshs_bBmdTQdW6s0vLvwi4yexYvf06mHxMtje-ohMCl-cf_EnmONjqDXld27_oPJ2jTT0-XKxCso0oyfzGnAFoSdZYe0i957uRP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQVQQrYrVqkE8KaHbfSTpsajFZ_XQQm9hk03ag6SlXZ-_3sl2t62ggrC3JAM7k8x8ITPfIHQqaeKZUFIS1RNJQk0NkYpKoqRRQcil1hkT00ObXnfD217Uy_ucTops9-JJclrT4FiabFobJaY2L3wLgtBlTzDiLngEQOQyeOO629Zdv1m4YojVWetKjzc84qB58az5k4jvgWmONmcPpFlZjzWx7S9EoNYm2sihI25Obb2FlrQto7UFQsEyWn9UOrY5C_U26iywaAwthg_gHlbxa07MjafZHHhosKslG78B8BzjyQB8JLZwBHDRPiXFMmu_5O7VO6jbuupcXJO8jQJRQeSlJA4bLOahZEYarnyPmrphlDGP6zpjEoITXJrAKCqDA4rTCIaTWJnYV6GJZLCLSnZo9R7CsDIBOVHEdQR2lZI5fEM9HoNKNTcV5BU6FCr_Fdfq4lnM2ZGd2gWoXTi1i_cKOpstGU0JNv6aXC0MI_KzNhGAUeGW7YNjqaDzwlgLw78LO8ntOZ_82R989JXQvqMVAvfm7_9L5DFaebpsifub9t0BWvWzzeVyBauolI5f9CHgl1QeZXv0C6EB6Is
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+the+Cavitation+Effect+of+Underwater+Shock+near+Different+Boundaries&rft.jtitle=%E4%B8%AD%E5%9B%BD%E6%B5%B7%E6%B4%8B%E5%B7%A5%E7%A8%8B%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=XIAO+Wei&rft.au=WEI+Hai-peng&rft.au=FENG+Liang&rft.date=2017-08-01&rft.pub=College+of+Engineering%2C+Ocean+University+of+China%2C+Qingdao+266100%2C+China%25Beijing+Institute+of+Astronautical+System+Engineering%2C+Beijing+100076%2C+China&rft.issn=0890-5487&rft.volume=31&rft.issue=4&rft.spage=396&rft.epage=407&rft_id=info:doi/10.1007%2Fs13344-017-0046-x&rft.externalDocID=zghygc_e201704002
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghygc-e%2Fzghygc-e.jpg