A Hybrid Neural Network Model for ENSO Prediction in Combination with Principal Oscillation Pattern Analyses
El Niño-Southern Oscillation (ENSO) can be currently predicted reasonably well six months and longer, but large biases and uncertainties remain in its real-time prediction. Various approaches have been taken to improve understanding of ENSO processes, and different models for ENSO predictions have b...
Saved in:
Cover
Loading…
Abstract | El Niño-Southern Oscillation (ENSO) can be currently predicted reasonably well six months and longer, but large biases and uncertainties remain in its real-time prediction. Various approaches have been taken to improve understanding of ENSO processes, and different models for ENSO predictions have been developed, including linear statistical models based on principal oscillation pattern (POP) analyses, convolutional neural networks (CNNs), and so on. Here, we develop a novel hybrid model, named as POP-Net, by combining the POP analysis procedure with CNN-long short-term memory (LSTM) algorithm to predict the Niño-3.4 sea surface temperature (SST) index. ENSO predictions are compared with each other from the corresponding three models: POP model, CNN-LSTM model, and POP-Net, respectively. The POP-based pre-processing acts to enhance ENSO-related signals of interest while filtering unrelated noise. Consequently, an improved prediction is achieved in the POP-Net relative to others. The POP-Net shows a high-correlation skill for 17-month lead time prediction (correlation coefficients exceeding 0.5) during the 1994–2020 validation period. The POP-Net also alleviates the spring predictability barrier (SPB). It is concluded that value-added artificial neural networks for improved ENSO predictions are possible by including the process-oriented analyses to enhance signal representations. |
---|---|
AbstractList | El Ni?o-Southern Oscillation (ENSO) can be currently predicted reasonably well six months and longer, but large biases and uncertainties remain in its real-time prediction. Various approaches have been taken to improve understanding of ENSO processes, and different models for ENSO predictions have been developed, including linear statistical models based on principal oscillation pattern (POP) analyses, convolutional neural networks (CNNs), and so on. Here, we develop a novel hybrid model, named as POP-Net, by combining the POP analysis procedure with CNN-long short-term memory (LSTM) algorithm to predict the Ni?o-3.4 sea surface temperature (SST) index. ENSO predictions are compared with each other from the corresponding three models: POP model, CNN-LSTM model, and POP-Net, respectively. The POP-based pre-processing acts to enhance ENSO-related signals of interest while filtering unrelated noise. Consequently, an improved prediction is achieved in the POP-Net relative to others. The POP-Net shows a high-correlation skill for 17-month lead time prediction (correlation coefficients exceeding 0.5) during the 1994–2020 validation period. The POP-Net also alleviates the spring predictability barrier (SPB). It is concluded that value-added artificial neural networks for improved ENSO predictions are possible by including the process-oriented analyses to enhance signal representations. El Niño-Southern Oscillation (ENSO) can be currently predicted reasonably well six months and longer, but large biases and uncertainties remain in its real-time prediction. Various approaches have been taken to improve understanding of ENSO processes, and different models for ENSO predictions have been developed, including linear statistical models based on principal oscillation pattern (POP) analyses, convolutional neural networks (CNNs), and so on. Here, we develop a novel hybrid model, named as POP-Net, by combining the POP analysis procedure with CNN-long short-term memory (LSTM) algorithm to predict the Niño-3.4 sea surface temperature (SST) index. ENSO predictions are compared with each other from the corresponding three models: POP model, CNN-LSTM model, and POP-Net, respectively. The POP-based pre-processing acts to enhance ENSO-related signals of interest while filtering unrelated noise. Consequently, an improved prediction is achieved in the POP-Net relative to others. The POP-Net shows a high-correlation skill for 17-month lead time prediction (correlation coefficients exceeding 0.5) during the 1994–2020 validation period. The POP-Net also alleviates the spring predictability barrier (SPB). It is concluded that value-added artificial neural networks for improved ENSO predictions are possible by including the process-oriented analyses to enhance signal representations. |
Author | Zhou, Lu Zhang, Rong-Hua |
AuthorAffiliation | CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China;University of Chinese Academy of Sciences,Beijing 100029,China%CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China;University of Chinese Academy of Sciences,Beijing 100029,China;Laboratory for Ocean and Climate Dynamics,Pilot National Laboratory for Marine Science and Technology,Qingdao 266237,China;Center for Excellence in Quaternary Science and Global Change,Chinese Academy of Sciences,Xi'an 710061,China |
AuthorAffiliation_xml | – name: CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China;University of Chinese Academy of Sciences,Beijing 100029,China%CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China;University of Chinese Academy of Sciences,Beijing 100029,China;Laboratory for Ocean and Climate Dynamics,Pilot National Laboratory for Marine Science and Technology,Qingdao 266237,China;Center for Excellence in Quaternary Science and Global Change,Chinese Academy of Sciences,Xi'an 710061,China |
Author_xml | – sequence: 1 givenname: Lu surname: Zhou fullname: Zhou, Lu organization: CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Rong-Hua surname: Zhang fullname: Zhang, Rong-Hua email: rzhang@qdio.ac.cn organization: CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Laboratory for Ocean and Climate Dynamics, Pilot National Laboratory for Marine Science and Technology, Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences |
BookMark | eNp9kUFPGzEQhS1EJQLlB3Cz1BOHLWN7d717jCIgSJQgAWfL8c5Sh8UOtqM0_fV12EpISO1pZjTvex75HZND5x0ScsbgOwOQFxFAyLoAzgom6qYoD8iENTUr2kqIQzIBXtUFqwQckeMYV1ndioZNyDCl890y2I7e4SboIZe09eGF_vAdDrT3gV7ePSzofcDOmmS9o9bRmX9dWqffx61NP_PaOmPXmV9EY4dhXN3rlDA4OnV62EWMX8mXXg8RT__WE_J0dfk4mxe3i-ub2fS2MKKCVGjBy6XRDYqSy2opJTKQQvNSVAZYKbBFreseueQMpYFOylbwpu-arhM69yfkfPTdatdr96xWfhPyDVF1by-_Vr8VcuAcaoAya7-N2nXwbxuM6UPM65K3TNZs78hGlQk-xoC9Wgf7qsNOMVD7ANQYgMoBqH0Aau8sPzHGpvePSUHb4b8kH8mYX3HPGD5u-jf0BzEnm1U |
CitedBy_id | crossref_primary_10_1007_s12517_022_11146_7 crossref_primary_10_1016_j_ocecoaman_2023_106917 crossref_primary_10_1016_j_ocemod_2025_102500 crossref_primary_10_3390_jmse11081529 crossref_primary_10_3390_rs15071728 crossref_primary_10_1016_j_ins_2025_122084 crossref_primary_10_3390_math10203793 crossref_primary_10_34133_2022_9870950 crossref_primary_10_1126_sciadv_adf2827 crossref_primary_10_1007_s00382_024_07119_z crossref_primary_10_3389_fmars_2024_1396322 crossref_primary_10_1016_j_aosl_2023_100351 crossref_primary_10_1038_s41612_024_00741_y crossref_primary_10_1360_N072024_0038 crossref_primary_10_3389_fmars_2023_1143499 crossref_primary_10_3390_jmse11102003 crossref_primary_10_1016_j_ocemod_2024_102450 crossref_primary_10_1029_2023GL104034 crossref_primary_10_1016_j_aosl_2023_100330 crossref_primary_10_3390_jmse10081161 crossref_primary_10_3389_fclim_2022_1058677 crossref_primary_10_1007_s00382_024_07566_8 crossref_primary_10_1016_j_atmosres_2023_106947 crossref_primary_10_1007_s11430_024_1396_x crossref_primary_10_1007_s44295_024_00047_y crossref_primary_10_1016_j_eswa_2024_124492 crossref_primary_10_3389_fmars_2024_1332769 crossref_primary_10_3390_cli13020025 |
Cites_doi | 10.1016/j.neunet.2006.01.004 10.1029/JD093iD09p11015 10.1007/s00376-017-7109-z 10.1126/science.1132588 10.1029/JD093iD09p11022 10.1038/s41586-019-0912-1 10.1007/s00382-008-0397-3 10.1126/science.269.5231.1699 10.1007/s00376-020-0028-4 10.1007/s11434-016-1064-4 10.5194/gmd-14-6977-2021 10.1016/S0893-6080(97)00097-X 10.1007/s00382-016-3097-4 10.1175/JAMC-D-11-093.1 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2 10.1175/BAMS-D-11-00111.1 10.5194/gmd-9-1937-2016 10.5194/acp-16-2007-2016 10.1162/neco.1997.9.8.1735 10.1007/s00382-002-0231-2 10.1175/MWR3000.1 10.1029/97JC03413 10.1007/s003820050156 10.1126/science.228.4703.1085 10.1007/s00343-020-0157-8 10.3402/tellusb.v51i1.16261 10.3390/sym12060893 10.1038/36081 10.3390/atmos12030365 10.1029/90JC01979 10.5194/esd-9-969-2018 10.1038/s41598-020-65070-5 10.1038/s41586-019-1559-7 10.1175/1520-0469(1986)043<0606:UADEMI>2.0.CO;2 10.1038/s42256-021-00374-3 10.1016/j.cageo.2021.104695 10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2 10.1007/s00382-019-04930-x 10.1016/j.heliyon.2018.e00938 10.1175/1520-0442(1993)006<1545:EAERPP>2.0.CO;2 10.1175/JCLI-D-17-0860.1 10.3390/rs11111349 10.1002/joc.636 10.1093/nsr/nwy105 10.1126/sciadv.aba1482 10.1038/321827a0 |
ContentType | Journal Article |
Copyright | Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 7TG F1W H96 KL. L.G 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s00376-021-1368-4 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1861-9533 |
EndPage | 902 |
ExternalDocumentID | dqkxjz_e202206004 10_1007_s00376_021_1368_4 |
GroupedDBID | -5A -5G -5~ -BR -EM -SA -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 2.D 23M 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 5XB 67M 6J9 6NX 7XC 88I 8FE 8FH 8TC 8UJ 92E 92I 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS C1A CAG CAJEA CCEZO CCPQU CCVFK CHBEP COF CS3 CSCUP CW9 D1K DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC I~X I~Z J-C JBSCW JZLTJ K6- KOV L8X LAS LK5 LLZTM M1Q M2P M4Y M7R MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q-- Q2X QOK QOS R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCL SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGP TSG TUC U1G U2A U5K UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z7R Z8M ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TG ABRTQ F1W H96 KL. L.G 4A8 PMFND PSX |
ID | FETCH-LOGICAL-c350t-a324bca8e34275b77e1073a2435c0143e9eaa6fe2721e7c0d779328fd8dd3a793 |
IEDL.DBID | U2A |
ISSN | 0256-1530 |
IngestDate | Thu May 29 04:02:40 EDT 2025 Fri Jul 25 09:09:58 EDT 2025 Tue Jul 01 02:41:01 EDT 2025 Thu Apr 24 23:05:57 EDT 2025 Fri Feb 21 02:47:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | the principal oscillation pattern (POP) analyses a hybrid approach ENSO prediction 神经网络 混合建模 neural network 主振荡型分析和神经网络相结合 ENSO预测 主振荡型分析 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-a324bca8e34275b77e1073a2435c0143e9eaa6fe2721e7c0d779328fd8dd3a793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2642917619 |
PQPubID | 54452 |
PageCount | 14 |
ParticipantIDs | wanfang_journals_dqkxjz_e202206004 proquest_journals_2642917619 crossref_primary_10_1007_s00376_021_1368_4 crossref_citationtrail_10_1007_s00376_021_1368_4 springer_journals_10_1007_s00376_021_1368_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg – name: Dordrecht |
PublicationTitle | Advances in atmospheric sciences |
PublicationTitleAbbrev | Adv. Atmos. Sci |
PublicationTitle_FL | Advances in Atmospheric Sciences |
PublicationYear | 2022 |
Publisher | Science Press Springer Nature B.V Laboratory for Ocean and Climate Dynamics,Pilot National Laboratory for Marine Science and Technology,Qingdao 266237,China University of Chinese Academy of Sciences,Beijing 100029,China%CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China University of Chinese Academy of Sciences,Beijing 100029,China Center for Excellence in Quaternary Science and Global Change,Chinese Academy of Sciences,Xi'an 710061,China |
Publisher_xml | – name: Science Press – name: Springer Nature B.V – name: University of Chinese Academy of Sciences,Beijing 100029,China%CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China – name: CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China – name: Laboratory for Ocean and Climate Dynamics,Pilot National Laboratory for Marine Science and Technology,Qingdao 266237,China – name: Center for Excellence in Quaternary Science and Global Change,Chinese Academy of Sciences,Xi'an 710061,China – name: University of Chinese Academy of Sciences,Beijing 100029,China |
References | Eyring, Bony, Meehl, Senior, Stevens, Stouffer, Taylor (CR9) 2016; 9 Gao, Zhang (CR11) 2017; 48 Pratt, Mostow, Kamm (CR28) 1991 Guo, Cao, Liu, Peng (CR14) 2020; 12 Gao, Zhang, Wu, Sun (CR12) 2018; 35 Bjerknes (CR4) 1969; 97 Zhang (CR48) 2020; 38 Irrgang, Boers, Sonnewald, Barnes, Kadow, Staneva, Saynisch-Wagner (CR19) 2021; 3 Von Storch, Bruns, Fischer-Bruns, Hasselmann (CR36) 1988; 93 Mu, Qin, Yuan (CR25) 2021; 14 Latif (CR21) 1998; 103 Tangang, Hsieh, Tang (CR33) 1997; 13 Zhang, Wang, Jiang, Ma (CR49) 2021; 12 Scarselli, Tsoi (CR30) 1998; 11 Varotsos, Tzanis, Sarlis (CR35) 2016; 16 Hasselmann (CR16) 1988; 93 Wang, Mu, Liu (CR38) 2021; 149 Xu (CR40) 2019; 11 Ham, Kim, Luo (CR15) 2019; 573 Tang (CR32) 2018; 5 Zheng, Li, Zhang, Liu (CR50) 2020; 6 Philander (CR27) 1999; 51 McPhaden, Zebiak, Glantz (CR24) 2006; 314 Hirst (CR17) 1986; 43 CR41 Hochreiter, Schmidhuber (CR18) 1997; 9 Chen, Zebiak, Busalacchi, Cane (CR7) 1995; 269 Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (CR29) 2019; 566 Barnston, Tippett, L’Heureux, Li, DeWitt (CR3) 2012; 93 Tang, Hsieh (CR31) 2002; 19 Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (CR1) 2018; 4 Duchi, Hazan, Singer (CR8) 2011; 12 Cane, Zebiak, Dolan (CR6) 1986; 321 Wu, Hsieh, Tang (CR39) 2006; 19 Zhang, Rothstein, Busalacchi (CR46) 1998; 391 McCreary, Anderson (CR23) 1991; 96 Cane, Zebiak (CR5) 1985; 228 Jin (CR20) 2008; 31 Zhang, Zebiak, Kleeman, Keenlyside (CR47) 2005; 133 Yan, Mu, Wang, Ranjan, Zomaya (CR42) 2020; 10 Zebiak, Cane (CR44) 1987; 115 Goddard, Mason, Zebiak, Ropelewski, Basher, Cane (CR13) 2001; 21 Zhang, Gao (CR45) 2016; 61 Feng, Zhang, Yu, Han (CR10) 2020; 37 Wang (CR37) 2019; 53 LeCun, Bengio (CR22) 1995 You, Furtado (CR43) 2018; 31 Barnett, Graham, Pazan, White, Latif, Flügel (CR2) 1993; 6 Tippett, Barnston, Li (CR34) 2012; 51 Nooteboom, Feng, López, Hernández-García, Dijkstra (CR26) 2018; 9 J Bjerknes (1368_CR4) 1969; 97 H Von Storch (1368_CR36) 1988; 93 F Scarselli (1368_CR30) 1998; 11 T P Barnett (1368_CR2) 1993; 6 C Gao (1368_CR11) 2017; 48 R-H Zhang (1368_CR46) 1998; 391 Y N Guo (1368_CR14) 2020; 12 J P McCreary Jr (1368_CR23) 1991; 96 M A Cane (1368_CR6) 1986; 321 A M Wu (1368_CR39) 2006; 19 S Wang (1368_CR38) 2021; 149 S Hochreiter (1368_CR18) 1997; 9 R-H Zhang (1368_CR45) 2016; 61 G Zheng (1368_CR50) 2020; 6 R-H Zhang (1368_CR48) 2020; 38 R-H Zhang (1368_CR47) 2005; 133 B Mu (1368_CR25) 2021; 14 C Z Wang (1368_CR37) 2019; 53 S G Philander (1368_CR27) 1999; 51 M Reichstein (1368_CR29) 2019; 566 Y Tang (1368_CR31) 2002; 19 M J McPhaden (1368_CR24) 2006; 314 C A Varotsos (1368_CR35) 2016; 16 J Duchi (1368_CR8) 2011; 12 Y M Tang (1368_CR32) 2018; 5 1368_CR41 M Latif (1368_CR21) 1998; 103 L Goddard (1368_CR13) 2001; 21 Y LeCun (1368_CR22) 1995 Y G Ham (1368_CR15) 2019; 573 A C Hirst (1368_CR17) 1986; 43 S E Zebiak (1368_CR44) 1987; 115 G J Xu (1368_CR40) 2019; 11 S W Zhang (1368_CR49) 2021; 12 E K Jin (1368_CR20) 2008; 31 F T Tangang (1368_CR33) 1997; 13 C Gao (1368_CR12) 2018; 35 C Irrgang (1368_CR19) 2021; 3 P D Nooteboom (1368_CR26) 2018; 9 J N Yan (1368_CR42) 2020; 10 Y J You (1368_CR43) 2018; 31 A G Barnston (1368_CR3) 2012; 93 M K Tippett (1368_CR34) 2012; 51 L C Feng (1368_CR10) 2020; 37 D Chen (1368_CR7) 1995; 269 K Hasselmann (1368_CR16) 1988; 93 L Y Pratt (1368_CR28) 1991 V Eyring (1368_CR9) 2016; 9 O I Abiodun (1368_CR1) 2018; 4 M A Cane (1368_CR5) 1985; 228 |
References_xml | – volume: 6 start-page: eaba1482 issue: 29 year: 2020 ident: CR50 article-title: Purely satellite data-driven deep learning forecast of complicated tropical instability waves publication-title: Science Advances – volume: 93 start-page: 11015 issue: D9 year: 1988 end-page: 11021 ident: CR16 article-title: PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns publication-title: J. Geophys. Res.: Atmos. – volume: 9 start-page: 1937 year: 2016 end-page: 1958 ident: CR9 article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization publication-title: Geosci. Model Dev. – volume: 38 start-page: 930 issue: 4 year: 2020 end-page: 961 ident: CR48 article-title: A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China publication-title: Journal of Oceanology and Limnology – volume: 97 start-page: 163 issue: 3 year: 1969 end-page: 172 ident: CR4 article-title: Atmospheric teleconnections from the equatorial Pacific publication-title: Mon. Wea. Rev. – volume: 37 start-page: 847 year: 2020 end-page: 860 ident: CR10 article-title: The roles of wind stress and subsurface cold water in the second-year cooling of the 2017/18 La Niña event publication-title: Adv. Atmos. Sci. – volume: 391 start-page: 879 issue: 6670 year: 1998 end-page: 883 ident: CR46 article-title: Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean publication-title: Nature – volume: 4 start-page: e00938 issue: 11 year: 2018 ident: CR1 article-title: State-of-the-art in artificial neural network applications: A survey publication-title: Heliyon – volume: 149 start-page: 104695 year: 2021 ident: CR38 article-title: A hybrid approach for El Niño prediction based on Empirical Mode Decomposition and convolutional LSTM Encoder-Decoder publication-title: Computers & Geosciences – volume: 31 start-page: 10141 issue: 24 year: 2018 end-page: 10163 ident: CR43 article-title: The South Pacific meridional mode and its role in tropical Pacific climate variability publication-title: J. Climate – volume: 51 start-page: 637 issue: 3 year: 2012 end-page: 654 ident: CR34 article-title: Performance of recent multimodel ENSO forecasts publication-title: J. Appl. Meteorol. Climatol. – volume: 5 start-page: 826 issue: 6 year: 2018 end-page: 839 ident: CR32 article-title: Progress in ENSO prediction and predictability study publication-title: National Science Review – volume: 35 start-page: 410 year: 2018 end-page: 422 ident: CR12 article-title: Idealized experiments for optimizing model parameters using a 4D-Variational method in an intermediate coupled model of ENSO publication-title: Adv. Atmos. Sci. – volume: 21 start-page: 1111 issue: 9 year: 2001 end-page: 1152 ident: CR13 article-title: Current approaches to seasonal to interannual climate predictions publication-title: International Journal of Climatology – volume: 31 start-page: 647 issue: 6 year: 2008 end-page: 664 ident: CR20 article-title: Current status of ENSO prediction skill in coupled ocean—atmosphere models publication-title: Climate Dyn. – volume: 96 start-page: 3125 issue: S01 year: 1991 end-page: 3150 ident: CR23 article-title: An overview of coupled ocean-atmosphere models of El Niño and the Southern Oscillation publication-title: J. Geophys. Res.: Oceans – volume: 6 start-page: 1545 issue: 8 year: 1993 end-page: 1566 ident: CR2 article-title: ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean-atmosphere model publication-title: J. Climate – volume: 269 start-page: 1699 issue: 5231 year: 1995 end-page: 1702 ident: CR7 article-title: An improved procedure for El Niño forecasting: Implications for predictability publication-title: Science – volume: 12 start-page: 893 issue: 6 year: 2020 ident: CR14 article-title: El Niño index prediction using deep learning with ensemble empirical mode decomposition publication-title: Symmetry – volume: 93 start-page: 631 issue: 5 year: 2012 end-page: 651 ident: CR3 article-title: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? publication-title: Bull. Amer. Meteor. Soc. – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: CR8 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: Journal of Machine Learning Research – volume: 314 start-page: 1740 issue: 5806 year: 2006 end-page: 1745 ident: CR24 article-title: ENSO as an integrating concept in earth science publication-title: Science – volume: 10 start-page: 8055 issue: 1 year: 2020 ident: CR42 article-title: Temporal convolutional networks for the advance prediction of ENSO publication-title: Scientific Reports – volume: 14 start-page: 6977 year: 2021 end-page: 6999 ident: CR25 article-title: ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air—sea coupler publication-title: Geoscientific Model Development – start-page: 255 year: 1995 end-page: 258 ident: CR22 article-title: Convolutional networks for images, speech, and time series publication-title: The Handbook of Brain Theory and Neural Networks – volume: 61 start-page: 1061 issue: 13 year: 2016 end-page: 1070 ident: CR45 article-title: The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015–2016 El Niño event publication-title: Science Bulletin – volume: 115 start-page: 2262 issue: 10 year: 1987 end-page: 2278 ident: CR44 article-title: A model El Niño—Southern oscillation publication-title: Mon. Wea. Rev. – volume: 573 start-page: 568 issue: 7775 year: 2019 end-page: 572 ident: CR15 article-title: Deep learning for multi-year ENSO forecasts publication-title: Nature – volume: 103 start-page: 14375 issue: C7 year: 1998 end-page: 14393 ident: CR21 article-title: A review of the predictability and prediction of ENSO publication-title: J. Geophys. Res.: Oceans – volume: 53 start-page: 5119 issue: 7 year: 2019 end-page: 5136 ident: CR37 article-title: Three-ocean interactions and climate variability: A review and perspective publication-title: Climate Dyn. – volume: 11 start-page: 15 issue: 1 year: 1998 end-page: 37 ident: CR30 article-title: Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results publication-title: Neural Networks – volume: 228 start-page: 1085 issue: 4703 year: 1985 end-page: 1087 ident: CR5 article-title: A theory for El Niño and the Southern Oscillation publication-title: Science – volume: 19 start-page: 145 issue: 2 year: 2006 end-page: 154 ident: CR39 article-title: Neural network forecasts of the tropical Pacific sea surface temperatures publication-title: Neural Networks – start-page: 584 year: 1991 end-page: 589 ident: CR28 article-title: Direct transfer of learned information among neural networks publication-title: Proc. 9th National Conf. on Artificial Intelligence – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: CR18 article-title: Long short-term memory publication-title: Neural Computation – volume: 16 start-page: 2007 issue: 4 year: 2016 end-page: 2011 ident: CR35 article-title: On the progress of the 2015–2016 El Niño event publication-title: Atmospheric Chemistry and Physics – volume: 43 start-page: 606 issue: 6 year: 1986 end-page: 632 ident: CR17 article-title: Unstable and damped equatorial modes in simple coupled ocean-atmosphere models publication-title: Journal of Atmospheric Sciences – volume: 13 start-page: 135 issue: 2 year: 1997 end-page: 147 ident: CR33 article-title: Forecasting the equatorial Pacific sea surface temperatures by neural network models publication-title: Climate Dyn. – volume: 9 start-page: 969 issue: 3 year: 2018 end-page: 983 ident: CR26 article-title: Using network theory and machine learning to predict El Niño publication-title: Earth System Dynamics – volume: 133 start-page: 2777 issue: 9 year: 2005 end-page: 2802 ident: CR47 article-title: Retrospective El Niño forecasts using an improved intermediate coupled model publication-title: Mon. Wea. Rev. – volume: 51 start-page: 71 issue: 1 year: 1999 end-page: 90 ident: CR27 article-title: A review of tropical ocean—atmosphere interactions publication-title: Tellus B – volume: 321 start-page: 827 issue: 6073 year: 1986 end-page: 832 ident: CR6 article-title: Experimental forecasts of El Niño publication-title: Nature – volume: 3 start-page: 667 issue: 8 year: 2021 end-page: 674 ident: CR19 article-title: Towards neural earth system modelling by integrating artificial intelligence in earth system science publication-title: Nature Machine Intelligence – volume: 566 start-page: 195 issue: 7743 year: 2019 end-page: 204 ident: CR29 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature – volume: 19 start-page: 343 issue: 3 year: 2002 end-page: 353 ident: CR31 article-title: Hybrid coupled models of the tropical Pacific—II ENSO prediction publication-title: Climate Dyn. – volume: 93 start-page: 11022 issue: D9 year: 1988 end-page: 11036 ident: CR36 article-title: Principal oscillation pattern analysis of the 30- to 60-day oscillation in general circulation model equatorial troposphere publication-title: J. Geophys. Res.: Atmos. – volume: 48 start-page: 597 issue: 1–2 year: 2017 end-page: 617 ident: CR11 article-title: The roles of atmospheric wind and entrained water temperature (T ) in the second-year cooling of the 2010–12 La Niña event publication-title: Climate Dyn. – ident: CR41 – volume: 12 start-page: 365 issue: 3 year: 2021 ident: CR49 article-title: Evaluation of ENSO prediction skill changes since 2000 based on multimodel hindcasts publication-title: Atmosphere – volume: 11 start-page: 1349 issue: 11 year: 2019 ident: CR40 article-title: Oceanic eddy identification using an AI scheme publication-title: Remote Sensing – volume: 19 start-page: 145 issue: 2 year: 2006 ident: 1368_CR39 publication-title: Neural Networks doi: 10.1016/j.neunet.2006.01.004 – volume: 93 start-page: 11015 issue: D9 year: 1988 ident: 1368_CR16 publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/JD093iD09p11015 – volume: 35 start-page: 410 year: 2018 ident: 1368_CR12 publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-017-7109-z – volume: 314 start-page: 1740 issue: 5806 year: 2006 ident: 1368_CR24 publication-title: Science doi: 10.1126/science.1132588 – volume: 93 start-page: 11022 issue: D9 year: 1988 ident: 1368_CR36 publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/JD093iD09p11022 – volume: 566 start-page: 195 issue: 7743 year: 2019 ident: 1368_CR29 publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 31 start-page: 647 issue: 6 year: 2008 ident: 1368_CR20 publication-title: Climate Dyn. doi: 10.1007/s00382-008-0397-3 – volume: 269 start-page: 1699 issue: 5231 year: 1995 ident: 1368_CR7 publication-title: Science doi: 10.1126/science.269.5231.1699 – volume: 37 start-page: 847 year: 2020 ident: 1368_CR10 publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-020-0028-4 – volume: 61 start-page: 1061 issue: 13 year: 2016 ident: 1368_CR45 publication-title: Science Bulletin doi: 10.1007/s11434-016-1064-4 – volume: 14 start-page: 6977 year: 2021 ident: 1368_CR25 publication-title: Geoscientific Model Development doi: 10.5194/gmd-14-6977-2021 – volume: 11 start-page: 15 issue: 1 year: 1998 ident: 1368_CR30 publication-title: Neural Networks doi: 10.1016/S0893-6080(97)00097-X – start-page: 255 volume-title: The Handbook of Brain Theory and Neural Networks year: 1995 ident: 1368_CR22 – volume: 48 start-page: 597 issue: 1–2 year: 2017 ident: 1368_CR11 publication-title: Climate Dyn. doi: 10.1007/s00382-016-3097-4 – volume: 51 start-page: 637 issue: 3 year: 2012 ident: 1368_CR34 publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-11-093.1 – volume: 97 start-page: 163 issue: 3 year: 1969 ident: 1368_CR4 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2 – volume: 93 start-page: 631 issue: 5 year: 2012 ident: 1368_CR3 publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-11-00111.1 – volume: 9 start-page: 1937 year: 2016 ident: 1368_CR9 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-1937-2016 – volume: 16 start-page: 2007 issue: 4 year: 2016 ident: 1368_CR35 publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-16-2007-2016 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 1368_CR18 publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 19 start-page: 343 issue: 3 year: 2002 ident: 1368_CR31 publication-title: Climate Dyn. doi: 10.1007/s00382-002-0231-2 – volume: 133 start-page: 2777 issue: 9 year: 2005 ident: 1368_CR47 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR3000.1 – volume: 103 start-page: 14375 issue: C7 year: 1998 ident: 1368_CR21 publication-title: J. Geophys. Res.: Oceans doi: 10.1029/97JC03413 – volume: 13 start-page: 135 issue: 2 year: 1997 ident: 1368_CR33 publication-title: Climate Dyn. doi: 10.1007/s003820050156 – volume: 228 start-page: 1085 issue: 4703 year: 1985 ident: 1368_CR5 publication-title: Science doi: 10.1126/science.228.4703.1085 – volume: 38 start-page: 930 issue: 4 year: 2020 ident: 1368_CR48 publication-title: Journal of Oceanology and Limnology doi: 10.1007/s00343-020-0157-8 – volume: 51 start-page: 71 issue: 1 year: 1999 ident: 1368_CR27 publication-title: Tellus B doi: 10.3402/tellusb.v51i1.16261 – volume: 12 start-page: 893 issue: 6 year: 2020 ident: 1368_CR14 publication-title: Symmetry doi: 10.3390/sym12060893 – volume: 391 start-page: 879 issue: 6670 year: 1998 ident: 1368_CR46 publication-title: Nature doi: 10.1038/36081 – volume: 12 start-page: 365 issue: 3 year: 2021 ident: 1368_CR49 publication-title: Atmosphere doi: 10.3390/atmos12030365 – volume: 96 start-page: 3125 issue: S01 year: 1991 ident: 1368_CR23 publication-title: J. Geophys. Res.: Oceans doi: 10.1029/90JC01979 – volume: 9 start-page: 969 issue: 3 year: 2018 ident: 1368_CR26 publication-title: Earth System Dynamics doi: 10.5194/esd-9-969-2018 – volume: 10 start-page: 8055 issue: 1 year: 2020 ident: 1368_CR42 publication-title: Scientific Reports doi: 10.1038/s41598-020-65070-5 – ident: 1368_CR41 – start-page: 584 volume-title: Proc. 9th National Conf. on Artificial Intelligence year: 1991 ident: 1368_CR28 – volume: 573 start-page: 568 issue: 7775 year: 2019 ident: 1368_CR15 publication-title: Nature doi: 10.1038/s41586-019-1559-7 – volume: 43 start-page: 606 issue: 6 year: 1986 ident: 1368_CR17 publication-title: Journal of Atmospheric Sciences doi: 10.1175/1520-0469(1986)043<0606:UADEMI>2.0.CO;2 – volume: 3 start-page: 667 issue: 8 year: 2021 ident: 1368_CR19 publication-title: Nature Machine Intelligence doi: 10.1038/s42256-021-00374-3 – volume: 149 start-page: 104695 year: 2021 ident: 1368_CR38 publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2021.104695 – volume: 115 start-page: 2262 issue: 10 year: 1987 ident: 1368_CR44 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2 – volume: 53 start-page: 5119 issue: 7 year: 2019 ident: 1368_CR37 publication-title: Climate Dyn. doi: 10.1007/s00382-019-04930-x – volume: 4 start-page: e00938 issue: 11 year: 2018 ident: 1368_CR1 publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00938 – volume: 6 start-page: 1545 issue: 8 year: 1993 ident: 1368_CR2 publication-title: J. Climate doi: 10.1175/1520-0442(1993)006<1545:EAERPP>2.0.CO;2 – volume: 31 start-page: 10141 issue: 24 year: 2018 ident: 1368_CR43 publication-title: J. Climate doi: 10.1175/JCLI-D-17-0860.1 – volume: 12 start-page: 2121 year: 2011 ident: 1368_CR8 publication-title: Journal of Machine Learning Research – volume: 11 start-page: 1349 issue: 11 year: 2019 ident: 1368_CR40 publication-title: Remote Sensing doi: 10.3390/rs11111349 – volume: 21 start-page: 1111 issue: 9 year: 2001 ident: 1368_CR13 publication-title: International Journal of Climatology doi: 10.1002/joc.636 – volume: 5 start-page: 826 issue: 6 year: 2018 ident: 1368_CR32 publication-title: National Science Review doi: 10.1093/nsr/nwy105 – volume: 6 start-page: eaba1482 issue: 29 year: 2020 ident: 1368_CR50 publication-title: Science Advances doi: 10.1126/sciadv.aba1482 – volume: 321 start-page: 827 issue: 6073 year: 1986 ident: 1368_CR6 publication-title: Nature doi: 10.1038/321827a0 |
SSID | ssj0039381 |
Score | 2.4526453 |
Snippet | El Niño-Southern Oscillation (ENSO) can be currently predicted reasonably well six months and longer, but large biases and uncertainties remain in its... El Ni?o-Southern Oscillation (ENSO) can be currently predicted reasonably well six months and longer, but large biases and uncertainties remain in its... |
SourceID | wanfang proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 889 |
SubjectTerms | Algorithms Artificial neural networks Atmospheric Sciences Coefficients Correlation coefficient Correlation coefficients Earth and Environmental Science Earth Sciences El Nino El Nino phenomena El Nino-Southern Oscillation event Geophysics/Geodesy Lead time Long short-term memory Mathematical models Meteorology Modelling Neural networks Noise prediction Original Paper Pattern analysis Predictions Sea surface Sea surface temperature Signal processing Southern Oscillation Statistical analysis Statistical models Surface temperature |
Title | A Hybrid Neural Network Model for ENSO Prediction in Combination with Principal Oscillation Pattern Analyses |
URI | https://link.springer.com/article/10.1007/s00376-021-1368-4 https://www.proquest.com/docview/2642917619 https://d.wanfangdata.com.cn/periodical/dqkxjz-e202206004 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA4uFy_iinUjiHhQAtNJZumxLa1FcRS0oKchyWSkOky1raD-et_LLFUQwdPMkOUwX97L9_KWEHIsQeOlraZmyvcTBoxYMJX6LQayxY0PK8ZzMDn5KvIHQ3Fx792XedzTKtq9cklaTV0nu2GpFAyYbbIm90MmFsmyh6Y7LOKh267UL29xezMp7uUMxLl2Zf42xc_NaM4wa6eoTeXJU5k_ftt1-mtktaSLtF3gu04WTL5BGlfAdMcTeyBOT2g3GwHttF-bJGvTwQdmYVEsuwFDoyLOm-KlZxkFikp70e01vZmghwZRoaOcglYAC9mCRPFkFprtGTyMv4Y9MisC5uiNLcaZ06KSiZlukWG_d9cdsPJGBaa558yYBPqktAwNF27gqSAwYP1x6QJn0ljoz7SMlH5qXLALTaCdJADxdcM0CZOES3jfJkv5ODc7hDYTw1UqfE95WoSuVkpKTySSh1oFxqQN4lS_NtZluXG89SKL60LJFo0Y0IgRjVg0yGk95KWotfFX5_0Kr7gUu2kM7M4F-xOMwgY5qzCcN_8x2VEJ87xz8vr8_vQZGxdzkYEWit1_TblHVnBkEVW2T5ZmkzdzAPxlpg7Jcrvf6UT4PH-47B3a9fsF5HDpgw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3oRn1itGkQ8KIF2k330WEpL1b7AFnoLSTYr1WWrbQX11zvJPqoggrddNslhv8zMN5lHELoUoPGiek0R6XkhAUbMiIy8OgHZotqDHeNWTXFyr-91xuxu4k6yOu5Fnu2ehyStpi6K3UyrFJMwWyM16gWEraMN4AKByeMaO41c_dI6tTeTGltOQJyLUOZvS_w0RiuGWQRFbSlPEonk8ZvVae-g7Ywu4kaK7y5a08keKveA6c7m9kAcX-FmPAXaad_2UdzAnQ9ThYVN2w2Y2k_zvLG59CzGQFFxq_8wwMO5idAYVPA0waAVwEO2IGFzMguf7Rk8zB-AjYzThDk8tM04E5x2MtGLAzRut0bNDsluVCCKutUlEUCfpBKBpszxXen7Grw_KhzgTMo0-tN1LYQXaQf8Qu2rauiD-DpBFAZhSAU8H6JSMkv0EcK1UFMZMc-VrmKBo6QUwmWhoIGSvtZRGVXzX8tV1m7c3HoR86JRskWDAxrcoMFZGV0XU17SXht_Da7kePFM7BYc2J0D_ic4hWV0k2O4-vzHYhcZzKvB4evz-9Mn146pRQZayI7_teQ52uyMel3eve3fn6Ats0qaYVZBpeX8TZ8Cl1nKM7t3vwBrOOlm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyNBEG5WF8SL6KoYdbVZxINLY2a655FjyCZkH8aAG_DW9Gsku8OoSQT111vV84jCIuxthunuw3z9-Kqr6itCThTseFknMEzHsWXAiAXTWdxhsLa4i2HGRG1MTr4YxcOJ-HEdXVd1Tud1tHvtkixzGlClqVic39nsvEl8Q9kUDJ4NWMDjlIkV8hF24wCn9STs1lsx73BfpRTPdQZLu3Fr_muItwfTkm02DlKf1lNkqrh5dQINNslGRR1pt8R6i3xwxSfSugDWezvzl-P0lPbyKVBQ_7ZN8i4dPmFGFkUJDug6KmO-KRZAyynQVdofXV3S8Qy9NYgQnRYUdgiwlj1gFG9p4bO_j4f-l3Be5mXwHB17Yc6Clqombr5DJoP-796QVdUVmOFRe8EUUCltVOq4CJNIJ4kDS5CrEPiTQdE_13FKxZkLwUZ0iWnbBJZymGY2tZYreN4lq8Vt4fYIDazjOhNxpCMj0tBorVQkrOKp0YlzWYu0618rTSU9jhUwctmIJns0JKAhEQ0pWuSs6XJX6m681_iwxktWS3AugemFYIuCgdgiX2sMl5_fGexLBfOysb3_-_jnWboQ85KBIor9_xrymKyNvw3kr--jnwdkHQcpg80Oyepi9uA-A61Z6CM_dV8A5Drtog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Neural+Network+Model+for+ENSO+Prediction+in+Combination+with+Principal+Oscillation+Pattern+Analyses&rft.jtitle=Advances+in+atmospheric+sciences&rft.au=Zhou%2C+Lu&rft.au=Zhang%2C+Rong-Hua&rft.date=2022-06-01&rft.issn=0256-1530&rft.eissn=1861-9533&rft.volume=39&rft.issue=6&rft.spage=889&rft.epage=902&rft_id=info:doi/10.1007%2Fs00376-021-1368-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00376_021_1368_4 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdqkxjz-e%2Fdqkxjz-e.jpg |