A Hybrid Neural Network Model for ENSO Prediction in Combination with Principal Oscillation Pattern Analyses

El Niño-Southern Oscillation (ENSO) can be currently predicted reasonably well six months and longer, but large biases and uncertainties remain in its real-time prediction. Various approaches have been taken to improve understanding of ENSO processes, and different models for ENSO predictions have b...

Full description

Saved in:
Bibliographic Details
Published inAdvances in atmospheric sciences Vol. 39; no. 6; pp. 889 - 902
Main Authors Zhou, Lu, Zhang, Rong-Hua
Format Journal Article
LanguageEnglish
Published Heidelberg Science Press 01.06.2022
Springer Nature B.V
Laboratory for Ocean and Climate Dynamics,Pilot National Laboratory for Marine Science and Technology,Qingdao 266237,China
University of Chinese Academy of Sciences,Beijing 100029,China%CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China
CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China
University of Chinese Academy of Sciences,Beijing 100029,China
Center for Excellence in Quaternary Science and Global Change,Chinese Academy of Sciences,Xi'an 710061,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract El Niño-Southern Oscillation (ENSO) can be currently predicted reasonably well six months and longer, but large biases and uncertainties remain in its real-time prediction. Various approaches have been taken to improve understanding of ENSO processes, and different models for ENSO predictions have been developed, including linear statistical models based on principal oscillation pattern (POP) analyses, convolutional neural networks (CNNs), and so on. Here, we develop a novel hybrid model, named as POP-Net, by combining the POP analysis procedure with CNN-long short-term memory (LSTM) algorithm to predict the Niño-3.4 sea surface temperature (SST) index. ENSO predictions are compared with each other from the corresponding three models: POP model, CNN-LSTM model, and POP-Net, respectively. The POP-based pre-processing acts to enhance ENSO-related signals of interest while filtering unrelated noise. Consequently, an improved prediction is achieved in the POP-Net relative to others. The POP-Net shows a high-correlation skill for 17-month lead time prediction (correlation coefficients exceeding 0.5) during the 1994–2020 validation period. The POP-Net also alleviates the spring predictability barrier (SPB). It is concluded that value-added artificial neural networks for improved ENSO predictions are possible by including the process-oriented analyses to enhance signal representations.
AbstractList El Ni?o-Southern Oscillation (ENSO) can be currently predicted reasonably well six months and longer, but large biases and uncertainties remain in its real-time prediction. Various approaches have been taken to improve understanding of ENSO processes, and different models for ENSO predictions have been developed, including linear statistical models based on principal oscillation pattern (POP) analyses, convolutional neural networks (CNNs), and so on. Here, we develop a novel hybrid model, named as POP-Net, by combining the POP analysis procedure with CNN-long short-term memory (LSTM) algorithm to predict the Ni?o-3.4 sea surface temperature (SST) index. ENSO predictions are compared with each other from the corresponding three models: POP model, CNN-LSTM model, and POP-Net, respectively. The POP-based pre-processing acts to enhance ENSO-related signals of interest while filtering unrelated noise. Consequently, an improved prediction is achieved in the POP-Net relative to others. The POP-Net shows a high-correlation skill for 17-month lead time prediction (correlation coefficients exceeding 0.5) during the 1994–2020 validation period. The POP-Net also alleviates the spring predictability barrier (SPB). It is concluded that value-added artificial neural networks for improved ENSO predictions are possible by including the process-oriented analyses to enhance signal representations.
El Niño-Southern Oscillation (ENSO) can be currently predicted reasonably well six months and longer, but large biases and uncertainties remain in its real-time prediction. Various approaches have been taken to improve understanding of ENSO processes, and different models for ENSO predictions have been developed, including linear statistical models based on principal oscillation pattern (POP) analyses, convolutional neural networks (CNNs), and so on. Here, we develop a novel hybrid model, named as POP-Net, by combining the POP analysis procedure with CNN-long short-term memory (LSTM) algorithm to predict the Niño-3.4 sea surface temperature (SST) index. ENSO predictions are compared with each other from the corresponding three models: POP model, CNN-LSTM model, and POP-Net, respectively. The POP-based pre-processing acts to enhance ENSO-related signals of interest while filtering unrelated noise. Consequently, an improved prediction is achieved in the POP-Net relative to others. The POP-Net shows a high-correlation skill for 17-month lead time prediction (correlation coefficients exceeding 0.5) during the 1994–2020 validation period. The POP-Net also alleviates the spring predictability barrier (SPB). It is concluded that value-added artificial neural networks for improved ENSO predictions are possible by including the process-oriented analyses to enhance signal representations.
Author Zhou, Lu
Zhang, Rong-Hua
AuthorAffiliation CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China;University of Chinese Academy of Sciences,Beijing 100029,China%CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China;University of Chinese Academy of Sciences,Beijing 100029,China;Laboratory for Ocean and Climate Dynamics,Pilot National Laboratory for Marine Science and Technology,Qingdao 266237,China;Center for Excellence in Quaternary Science and Global Change,Chinese Academy of Sciences,Xi'an 710061,China
AuthorAffiliation_xml – name: CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China;University of Chinese Academy of Sciences,Beijing 100029,China%CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China;University of Chinese Academy of Sciences,Beijing 100029,China;Laboratory for Ocean and Climate Dynamics,Pilot National Laboratory for Marine Science and Technology,Qingdao 266237,China;Center for Excellence in Quaternary Science and Global Change,Chinese Academy of Sciences,Xi'an 710061,China
Author_xml – sequence: 1
  givenname: Lu
  surname: Zhou
  fullname: Zhou, Lu
  organization: CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Rong-Hua
  surname: Zhang
  fullname: Zhang, Rong-Hua
  email: rzhang@qdio.ac.cn
  organization: CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Laboratory for Ocean and Climate Dynamics, Pilot National Laboratory for Marine Science and Technology, Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences
BookMark eNp9kUFPGzEQhS1EJQLlB3Cz1BOHLWN7d717jCIgSJQgAWfL8c5Sh8UOtqM0_fV12EpISO1pZjTvex75HZND5x0ScsbgOwOQFxFAyLoAzgom6qYoD8iENTUr2kqIQzIBXtUFqwQckeMYV1ndioZNyDCl890y2I7e4SboIZe09eGF_vAdDrT3gV7ePSzofcDOmmS9o9bRmX9dWqffx61NP_PaOmPXmV9EY4dhXN3rlDA4OnV62EWMX8mXXg8RT__WE_J0dfk4mxe3i-ub2fS2MKKCVGjBy6XRDYqSy2opJTKQQvNSVAZYKbBFreseueQMpYFOylbwpu-arhM69yfkfPTdatdr96xWfhPyDVF1by-_Vr8VcuAcaoAya7-N2nXwbxuM6UPM65K3TNZs78hGlQk-xoC9Wgf7qsNOMVD7ANQYgMoBqH0Aau8sPzHGpvePSUHb4b8kH8mYX3HPGD5u-jf0BzEnm1U
CitedBy_id crossref_primary_10_1007_s12517_022_11146_7
crossref_primary_10_1016_j_ocecoaman_2023_106917
crossref_primary_10_1016_j_ocemod_2025_102500
crossref_primary_10_3390_jmse11081529
crossref_primary_10_3390_rs15071728
crossref_primary_10_1016_j_ins_2025_122084
crossref_primary_10_3390_math10203793
crossref_primary_10_34133_2022_9870950
crossref_primary_10_1126_sciadv_adf2827
crossref_primary_10_1007_s00382_024_07119_z
crossref_primary_10_3389_fmars_2024_1396322
crossref_primary_10_1016_j_aosl_2023_100351
crossref_primary_10_1038_s41612_024_00741_y
crossref_primary_10_1360_N072024_0038
crossref_primary_10_3389_fmars_2023_1143499
crossref_primary_10_3390_jmse11102003
crossref_primary_10_1016_j_ocemod_2024_102450
crossref_primary_10_1029_2023GL104034
crossref_primary_10_1016_j_aosl_2023_100330
crossref_primary_10_3390_jmse10081161
crossref_primary_10_3389_fclim_2022_1058677
crossref_primary_10_1007_s00382_024_07566_8
crossref_primary_10_1016_j_atmosres_2023_106947
crossref_primary_10_1007_s11430_024_1396_x
crossref_primary_10_1007_s44295_024_00047_y
crossref_primary_10_1016_j_eswa_2024_124492
crossref_primary_10_3389_fmars_2024_1332769
crossref_primary_10_3390_cli13020025
Cites_doi 10.1016/j.neunet.2006.01.004
10.1029/JD093iD09p11015
10.1007/s00376-017-7109-z
10.1126/science.1132588
10.1029/JD093iD09p11022
10.1038/s41586-019-0912-1
10.1007/s00382-008-0397-3
10.1126/science.269.5231.1699
10.1007/s00376-020-0028-4
10.1007/s11434-016-1064-4
10.5194/gmd-14-6977-2021
10.1016/S0893-6080(97)00097-X
10.1007/s00382-016-3097-4
10.1175/JAMC-D-11-093.1
10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
10.1175/BAMS-D-11-00111.1
10.5194/gmd-9-1937-2016
10.5194/acp-16-2007-2016
10.1162/neco.1997.9.8.1735
10.1007/s00382-002-0231-2
10.1175/MWR3000.1
10.1029/97JC03413
10.1007/s003820050156
10.1126/science.228.4703.1085
10.1007/s00343-020-0157-8
10.3402/tellusb.v51i1.16261
10.3390/sym12060893
10.1038/36081
10.3390/atmos12030365
10.1029/90JC01979
10.5194/esd-9-969-2018
10.1038/s41598-020-65070-5
10.1038/s41586-019-1559-7
10.1175/1520-0469(1986)043<0606:UADEMI>2.0.CO;2
10.1038/s42256-021-00374-3
10.1016/j.cageo.2021.104695
10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2
10.1007/s00382-019-04930-x
10.1016/j.heliyon.2018.e00938
10.1175/1520-0442(1993)006<1545:EAERPP>2.0.CO;2
10.1175/JCLI-D-17-0860.1
10.3390/rs11111349
10.1002/joc.636
10.1093/nsr/nwy105
10.1126/sciadv.aba1482
10.1038/321827a0
ContentType Journal Article
Copyright Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022
Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7TG
F1W
H96
KL.
L.G
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s00376-021-1368-4
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1861-9533
EndPage 902
ExternalDocumentID dqkxjz_e202206004
10_1007_s00376_021_1368_4
GroupedDBID -5A
-5G
-5~
-BR
-EM
-SA
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
2.D
23M
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VR
5VS
5XA
5XB
67M
6J9
6NX
7XC
88I
8FE
8FH
8TC
8UJ
92E
92I
92Q
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
C1A
CAG
CAJEA
CCEZO
CCPQU
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
D1K
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
I~X
I~Z
J-C
JBSCW
JZLTJ
K6-
KOV
L8X
LAS
LK5
LLZTM
M1Q
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q--
Q2X
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCL
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGP
TSG
TUC
U1G
U2A
U5K
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z7R
Z8M
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TG
ABRTQ
F1W
H96
KL.
L.G
4A8
PMFND
PSX
ID FETCH-LOGICAL-c350t-a324bca8e34275b77e1073a2435c0143e9eaa6fe2721e7c0d779328fd8dd3a793
IEDL.DBID U2A
ISSN 0256-1530
IngestDate Thu May 29 04:02:40 EDT 2025
Fri Jul 25 09:09:58 EDT 2025
Tue Jul 01 02:41:01 EDT 2025
Thu Apr 24 23:05:57 EDT 2025
Fri Feb 21 02:47:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords the principal oscillation pattern (POP) analyses
a hybrid approach
ENSO prediction
神经网络
混合建模
neural network
主振荡型分析和神经网络相结合
ENSO预测
主振荡型分析
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-a324bca8e34275b77e1073a2435c0143e9eaa6fe2721e7c0d779328fd8dd3a793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2642917619
PQPubID 54452
PageCount 14
ParticipantIDs wanfang_journals_dqkxjz_e202206004
proquest_journals_2642917619
crossref_primary_10_1007_s00376_021_1368_4
crossref_citationtrail_10_1007_s00376_021_1368_4
springer_journals_10_1007_s00376_021_1368_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
– name: Dordrecht
PublicationTitle Advances in atmospheric sciences
PublicationTitleAbbrev Adv. Atmos. Sci
PublicationTitle_FL Advances in Atmospheric Sciences
PublicationYear 2022
Publisher Science Press
Springer Nature B.V
Laboratory for Ocean and Climate Dynamics,Pilot National Laboratory for Marine Science and Technology,Qingdao 266237,China
University of Chinese Academy of Sciences,Beijing 100029,China%CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China
CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China
University of Chinese Academy of Sciences,Beijing 100029,China
Center for Excellence in Quaternary Science and Global Change,Chinese Academy of Sciences,Xi'an 710061,China
Publisher_xml – name: Science Press
– name: Springer Nature B.V
– name: University of Chinese Academy of Sciences,Beijing 100029,China%CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China
– name: CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,and Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China
– name: Laboratory for Ocean and Climate Dynamics,Pilot National Laboratory for Marine Science and Technology,Qingdao 266237,China
– name: Center for Excellence in Quaternary Science and Global Change,Chinese Academy of Sciences,Xi'an 710061,China
– name: University of Chinese Academy of Sciences,Beijing 100029,China
References Eyring, Bony, Meehl, Senior, Stevens, Stouffer, Taylor (CR9) 2016; 9
Gao, Zhang (CR11) 2017; 48
Pratt, Mostow, Kamm (CR28) 1991
Guo, Cao, Liu, Peng (CR14) 2020; 12
Gao, Zhang, Wu, Sun (CR12) 2018; 35
Bjerknes (CR4) 1969; 97
Zhang (CR48) 2020; 38
Irrgang, Boers, Sonnewald, Barnes, Kadow, Staneva, Saynisch-Wagner (CR19) 2021; 3
Von Storch, Bruns, Fischer-Bruns, Hasselmann (CR36) 1988; 93
Mu, Qin, Yuan (CR25) 2021; 14
Latif (CR21) 1998; 103
Tangang, Hsieh, Tang (CR33) 1997; 13
Zhang, Wang, Jiang, Ma (CR49) 2021; 12
Scarselli, Tsoi (CR30) 1998; 11
Varotsos, Tzanis, Sarlis (CR35) 2016; 16
Hasselmann (CR16) 1988; 93
Wang, Mu, Liu (CR38) 2021; 149
Xu (CR40) 2019; 11
Ham, Kim, Luo (CR15) 2019; 573
Tang (CR32) 2018; 5
Zheng, Li, Zhang, Liu (CR50) 2020; 6
Philander (CR27) 1999; 51
McPhaden, Zebiak, Glantz (CR24) 2006; 314
Hirst (CR17) 1986; 43
CR41
Hochreiter, Schmidhuber (CR18) 1997; 9
Chen, Zebiak, Busalacchi, Cane (CR7) 1995; 269
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (CR29) 2019; 566
Barnston, Tippett, L’Heureux, Li, DeWitt (CR3) 2012; 93
Tang, Hsieh (CR31) 2002; 19
Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (CR1) 2018; 4
Duchi, Hazan, Singer (CR8) 2011; 12
Cane, Zebiak, Dolan (CR6) 1986; 321
Wu, Hsieh, Tang (CR39) 2006; 19
Zhang, Rothstein, Busalacchi (CR46) 1998; 391
McCreary, Anderson (CR23) 1991; 96
Cane, Zebiak (CR5) 1985; 228
Jin (CR20) 2008; 31
Zhang, Zebiak, Kleeman, Keenlyside (CR47) 2005; 133
Yan, Mu, Wang, Ranjan, Zomaya (CR42) 2020; 10
Zebiak, Cane (CR44) 1987; 115
Goddard, Mason, Zebiak, Ropelewski, Basher, Cane (CR13) 2001; 21
Zhang, Gao (CR45) 2016; 61
Feng, Zhang, Yu, Han (CR10) 2020; 37
Wang (CR37) 2019; 53
LeCun, Bengio (CR22) 1995
You, Furtado (CR43) 2018; 31
Barnett, Graham, Pazan, White, Latif, Flügel (CR2) 1993; 6
Tippett, Barnston, Li (CR34) 2012; 51
Nooteboom, Feng, López, Hernández-García, Dijkstra (CR26) 2018; 9
J Bjerknes (1368_CR4) 1969; 97
H Von Storch (1368_CR36) 1988; 93
F Scarselli (1368_CR30) 1998; 11
T P Barnett (1368_CR2) 1993; 6
C Gao (1368_CR11) 2017; 48
R-H Zhang (1368_CR46) 1998; 391
Y N Guo (1368_CR14) 2020; 12
J P McCreary Jr (1368_CR23) 1991; 96
M A Cane (1368_CR6) 1986; 321
A M Wu (1368_CR39) 2006; 19
S Wang (1368_CR38) 2021; 149
S Hochreiter (1368_CR18) 1997; 9
R-H Zhang (1368_CR45) 2016; 61
G Zheng (1368_CR50) 2020; 6
R-H Zhang (1368_CR48) 2020; 38
R-H Zhang (1368_CR47) 2005; 133
B Mu (1368_CR25) 2021; 14
C Z Wang (1368_CR37) 2019; 53
S G Philander (1368_CR27) 1999; 51
M Reichstein (1368_CR29) 2019; 566
Y Tang (1368_CR31) 2002; 19
M J McPhaden (1368_CR24) 2006; 314
C A Varotsos (1368_CR35) 2016; 16
J Duchi (1368_CR8) 2011; 12
Y M Tang (1368_CR32) 2018; 5
1368_CR41
M Latif (1368_CR21) 1998; 103
L Goddard (1368_CR13) 2001; 21
Y LeCun (1368_CR22) 1995
Y G Ham (1368_CR15) 2019; 573
A C Hirst (1368_CR17) 1986; 43
S E Zebiak (1368_CR44) 1987; 115
G J Xu (1368_CR40) 2019; 11
S W Zhang (1368_CR49) 2021; 12
E K Jin (1368_CR20) 2008; 31
F T Tangang (1368_CR33) 1997; 13
C Gao (1368_CR12) 2018; 35
C Irrgang (1368_CR19) 2021; 3
P D Nooteboom (1368_CR26) 2018; 9
J N Yan (1368_CR42) 2020; 10
Y J You (1368_CR43) 2018; 31
A G Barnston (1368_CR3) 2012; 93
M K Tippett (1368_CR34) 2012; 51
L C Feng (1368_CR10) 2020; 37
D Chen (1368_CR7) 1995; 269
K Hasselmann (1368_CR16) 1988; 93
L Y Pratt (1368_CR28) 1991
V Eyring (1368_CR9) 2016; 9
O I Abiodun (1368_CR1) 2018; 4
M A Cane (1368_CR5) 1985; 228
References_xml – volume: 6
  start-page: eaba1482
  issue: 29
  year: 2020
  ident: CR50
  article-title: Purely satellite data-driven deep learning forecast of complicated tropical instability waves
  publication-title: Science Advances
– volume: 93
  start-page: 11015
  issue: D9
  year: 1988
  end-page: 11021
  ident: CR16
  article-title: PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns
  publication-title: J. Geophys. Res.: Atmos.
– volume: 9
  start-page: 1937
  year: 2016
  end-page: 1958
  ident: CR9
  article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
  publication-title: Geosci. Model Dev.
– volume: 38
  start-page: 930
  issue: 4
  year: 2020
  end-page: 961
  ident: CR48
  article-title: A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China
  publication-title: Journal of Oceanology and Limnology
– volume: 97
  start-page: 163
  issue: 3
  year: 1969
  end-page: 172
  ident: CR4
  article-title: Atmospheric teleconnections from the equatorial Pacific
  publication-title: Mon. Wea. Rev.
– volume: 37
  start-page: 847
  year: 2020
  end-page: 860
  ident: CR10
  article-title: The roles of wind stress and subsurface cold water in the second-year cooling of the 2017/18 La Niña event
  publication-title: Adv. Atmos. Sci.
– volume: 391
  start-page: 879
  issue: 6670
  year: 1998
  end-page: 883
  ident: CR46
  article-title: Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean
  publication-title: Nature
– volume: 4
  start-page: e00938
  issue: 11
  year: 2018
  ident: CR1
  article-title: State-of-the-art in artificial neural network applications: A survey
  publication-title: Heliyon
– volume: 149
  start-page: 104695
  year: 2021
  ident: CR38
  article-title: A hybrid approach for El Niño prediction based on Empirical Mode Decomposition and convolutional LSTM Encoder-Decoder
  publication-title: Computers & Geosciences
– volume: 31
  start-page: 10141
  issue: 24
  year: 2018
  end-page: 10163
  ident: CR43
  article-title: The South Pacific meridional mode and its role in tropical Pacific climate variability
  publication-title: J. Climate
– volume: 51
  start-page: 637
  issue: 3
  year: 2012
  end-page: 654
  ident: CR34
  article-title: Performance of recent multimodel ENSO forecasts
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 5
  start-page: 826
  issue: 6
  year: 2018
  end-page: 839
  ident: CR32
  article-title: Progress in ENSO prediction and predictability study
  publication-title: National Science Review
– volume: 35
  start-page: 410
  year: 2018
  end-page: 422
  ident: CR12
  article-title: Idealized experiments for optimizing model parameters using a 4D-Variational method in an intermediate coupled model of ENSO
  publication-title: Adv. Atmos. Sci.
– volume: 21
  start-page: 1111
  issue: 9
  year: 2001
  end-page: 1152
  ident: CR13
  article-title: Current approaches to seasonal to interannual climate predictions
  publication-title: International Journal of Climatology
– volume: 31
  start-page: 647
  issue: 6
  year: 2008
  end-page: 664
  ident: CR20
  article-title: Current status of ENSO prediction skill in coupled ocean—atmosphere models
  publication-title: Climate Dyn.
– volume: 96
  start-page: 3125
  issue: S01
  year: 1991
  end-page: 3150
  ident: CR23
  article-title: An overview of coupled ocean-atmosphere models of El Niño and the Southern Oscillation
  publication-title: J. Geophys. Res.: Oceans
– volume: 6
  start-page: 1545
  issue: 8
  year: 1993
  end-page: 1566
  ident: CR2
  article-title: ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean-atmosphere model
  publication-title: J. Climate
– volume: 269
  start-page: 1699
  issue: 5231
  year: 1995
  end-page: 1702
  ident: CR7
  article-title: An improved procedure for El Niño forecasting: Implications for predictability
  publication-title: Science
– volume: 12
  start-page: 893
  issue: 6
  year: 2020
  ident: CR14
  article-title: El Niño index prediction using deep learning with ensemble empirical mode decomposition
  publication-title: Symmetry
– volume: 93
  start-page: 631
  issue: 5
  year: 2012
  end-page: 651
  ident: CR3
  article-title: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing?
  publication-title: Bull. Amer. Meteor. Soc.
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: CR8
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: Journal of Machine Learning Research
– volume: 314
  start-page: 1740
  issue: 5806
  year: 2006
  end-page: 1745
  ident: CR24
  article-title: ENSO as an integrating concept in earth science
  publication-title: Science
– volume: 10
  start-page: 8055
  issue: 1
  year: 2020
  ident: CR42
  article-title: Temporal convolutional networks for the advance prediction of ENSO
  publication-title: Scientific Reports
– volume: 14
  start-page: 6977
  year: 2021
  end-page: 6999
  ident: CR25
  article-title: ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air—sea coupler
  publication-title: Geoscientific Model Development
– start-page: 255
  year: 1995
  end-page: 258
  ident: CR22
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The Handbook of Brain Theory and Neural Networks
– volume: 61
  start-page: 1061
  issue: 13
  year: 2016
  end-page: 1070
  ident: CR45
  article-title: The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015–2016 El Niño event
  publication-title: Science Bulletin
– volume: 115
  start-page: 2262
  issue: 10
  year: 1987
  end-page: 2278
  ident: CR44
  article-title: A model El Niño—Southern oscillation
  publication-title: Mon. Wea. Rev.
– volume: 573
  start-page: 568
  issue: 7775
  year: 2019
  end-page: 572
  ident: CR15
  article-title: Deep learning for multi-year ENSO forecasts
  publication-title: Nature
– volume: 103
  start-page: 14375
  issue: C7
  year: 1998
  end-page: 14393
  ident: CR21
  article-title: A review of the predictability and prediction of ENSO
  publication-title: J. Geophys. Res.: Oceans
– volume: 53
  start-page: 5119
  issue: 7
  year: 2019
  end-page: 5136
  ident: CR37
  article-title: Three-ocean interactions and climate variability: A review and perspective
  publication-title: Climate Dyn.
– volume: 11
  start-page: 15
  issue: 1
  year: 1998
  end-page: 37
  ident: CR30
  article-title: Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results
  publication-title: Neural Networks
– volume: 228
  start-page: 1085
  issue: 4703
  year: 1985
  end-page: 1087
  ident: CR5
  article-title: A theory for El Niño and the Southern Oscillation
  publication-title: Science
– volume: 19
  start-page: 145
  issue: 2
  year: 2006
  end-page: 154
  ident: CR39
  article-title: Neural network forecasts of the tropical Pacific sea surface temperatures
  publication-title: Neural Networks
– start-page: 584
  year: 1991
  end-page: 589
  ident: CR28
  article-title: Direct transfer of learned information among neural networks
  publication-title: Proc. 9th National Conf. on Artificial Intelligence
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: CR18
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: 16
  start-page: 2007
  issue: 4
  year: 2016
  end-page: 2011
  ident: CR35
  article-title: On the progress of the 2015–2016 El Niño event
  publication-title: Atmospheric Chemistry and Physics
– volume: 43
  start-page: 606
  issue: 6
  year: 1986
  end-page: 632
  ident: CR17
  article-title: Unstable and damped equatorial modes in simple coupled ocean-atmosphere models
  publication-title: Journal of Atmospheric Sciences
– volume: 13
  start-page: 135
  issue: 2
  year: 1997
  end-page: 147
  ident: CR33
  article-title: Forecasting the equatorial Pacific sea surface temperatures by neural network models
  publication-title: Climate Dyn.
– volume: 9
  start-page: 969
  issue: 3
  year: 2018
  end-page: 983
  ident: CR26
  article-title: Using network theory and machine learning to predict El Niño
  publication-title: Earth System Dynamics
– volume: 133
  start-page: 2777
  issue: 9
  year: 2005
  end-page: 2802
  ident: CR47
  article-title: Retrospective El Niño forecasts using an improved intermediate coupled model
  publication-title: Mon. Wea. Rev.
– volume: 51
  start-page: 71
  issue: 1
  year: 1999
  end-page: 90
  ident: CR27
  article-title: A review of tropical ocean—atmosphere interactions
  publication-title: Tellus B
– volume: 321
  start-page: 827
  issue: 6073
  year: 1986
  end-page: 832
  ident: CR6
  article-title: Experimental forecasts of El Niño
  publication-title: Nature
– volume: 3
  start-page: 667
  issue: 8
  year: 2021
  end-page: 674
  ident: CR19
  article-title: Towards neural earth system modelling by integrating artificial intelligence in earth system science
  publication-title: Nature Machine Intelligence
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  end-page: 204
  ident: CR29
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
– volume: 19
  start-page: 343
  issue: 3
  year: 2002
  end-page: 353
  ident: CR31
  article-title: Hybrid coupled models of the tropical Pacific—II ENSO prediction
  publication-title: Climate Dyn.
– volume: 93
  start-page: 11022
  issue: D9
  year: 1988
  end-page: 11036
  ident: CR36
  article-title: Principal oscillation pattern analysis of the 30- to 60-day oscillation in general circulation model equatorial troposphere
  publication-title: J. Geophys. Res.: Atmos.
– volume: 48
  start-page: 597
  issue: 1–2
  year: 2017
  end-page: 617
  ident: CR11
  article-title: The roles of atmospheric wind and entrained water temperature (T ) in the second-year cooling of the 2010–12 La Niña event
  publication-title: Climate Dyn.
– ident: CR41
– volume: 12
  start-page: 365
  issue: 3
  year: 2021
  ident: CR49
  article-title: Evaluation of ENSO prediction skill changes since 2000 based on multimodel hindcasts
  publication-title: Atmosphere
– volume: 11
  start-page: 1349
  issue: 11
  year: 2019
  ident: CR40
  article-title: Oceanic eddy identification using an AI scheme
  publication-title: Remote Sensing
– volume: 19
  start-page: 145
  issue: 2
  year: 2006
  ident: 1368_CR39
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2006.01.004
– volume: 93
  start-page: 11015
  issue: D9
  year: 1988
  ident: 1368_CR16
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/JD093iD09p11015
– volume: 35
  start-page: 410
  year: 2018
  ident: 1368_CR12
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-017-7109-z
– volume: 314
  start-page: 1740
  issue: 5806
  year: 2006
  ident: 1368_CR24
  publication-title: Science
  doi: 10.1126/science.1132588
– volume: 93
  start-page: 11022
  issue: D9
  year: 1988
  ident: 1368_CR36
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/JD093iD09p11022
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  ident: 1368_CR29
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 31
  start-page: 647
  issue: 6
  year: 2008
  ident: 1368_CR20
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-008-0397-3
– volume: 269
  start-page: 1699
  issue: 5231
  year: 1995
  ident: 1368_CR7
  publication-title: Science
  doi: 10.1126/science.269.5231.1699
– volume: 37
  start-page: 847
  year: 2020
  ident: 1368_CR10
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-020-0028-4
– volume: 61
  start-page: 1061
  issue: 13
  year: 2016
  ident: 1368_CR45
  publication-title: Science Bulletin
  doi: 10.1007/s11434-016-1064-4
– volume: 14
  start-page: 6977
  year: 2021
  ident: 1368_CR25
  publication-title: Geoscientific Model Development
  doi: 10.5194/gmd-14-6977-2021
– volume: 11
  start-page: 15
  issue: 1
  year: 1998
  ident: 1368_CR30
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(97)00097-X
– start-page: 255
  volume-title: The Handbook of Brain Theory and Neural Networks
  year: 1995
  ident: 1368_CR22
– volume: 48
  start-page: 597
  issue: 1–2
  year: 2017
  ident: 1368_CR11
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-016-3097-4
– volume: 51
  start-page: 637
  issue: 3
  year: 2012
  ident: 1368_CR34
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-11-093.1
– volume: 97
  start-page: 163
  issue: 3
  year: 1969
  ident: 1368_CR4
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
– volume: 93
  start-page: 631
  issue: 5
  year: 2012
  ident: 1368_CR3
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-11-00111.1
– volume: 9
  start-page: 1937
  year: 2016
  ident: 1368_CR9
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-1937-2016
– volume: 16
  start-page: 2007
  issue: 4
  year: 2016
  ident: 1368_CR35
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-16-2007-2016
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 1368_CR18
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 19
  start-page: 343
  issue: 3
  year: 2002
  ident: 1368_CR31
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-002-0231-2
– volume: 133
  start-page: 2777
  issue: 9
  year: 2005
  ident: 1368_CR47
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR3000.1
– volume: 103
  start-page: 14375
  issue: C7
  year: 1998
  ident: 1368_CR21
  publication-title: J. Geophys. Res.: Oceans
  doi: 10.1029/97JC03413
– volume: 13
  start-page: 135
  issue: 2
  year: 1997
  ident: 1368_CR33
  publication-title: Climate Dyn.
  doi: 10.1007/s003820050156
– volume: 228
  start-page: 1085
  issue: 4703
  year: 1985
  ident: 1368_CR5
  publication-title: Science
  doi: 10.1126/science.228.4703.1085
– volume: 38
  start-page: 930
  issue: 4
  year: 2020
  ident: 1368_CR48
  publication-title: Journal of Oceanology and Limnology
  doi: 10.1007/s00343-020-0157-8
– volume: 51
  start-page: 71
  issue: 1
  year: 1999
  ident: 1368_CR27
  publication-title: Tellus B
  doi: 10.3402/tellusb.v51i1.16261
– volume: 12
  start-page: 893
  issue: 6
  year: 2020
  ident: 1368_CR14
  publication-title: Symmetry
  doi: 10.3390/sym12060893
– volume: 391
  start-page: 879
  issue: 6670
  year: 1998
  ident: 1368_CR46
  publication-title: Nature
  doi: 10.1038/36081
– volume: 12
  start-page: 365
  issue: 3
  year: 2021
  ident: 1368_CR49
  publication-title: Atmosphere
  doi: 10.3390/atmos12030365
– volume: 96
  start-page: 3125
  issue: S01
  year: 1991
  ident: 1368_CR23
  publication-title: J. Geophys. Res.: Oceans
  doi: 10.1029/90JC01979
– volume: 9
  start-page: 969
  issue: 3
  year: 2018
  ident: 1368_CR26
  publication-title: Earth System Dynamics
  doi: 10.5194/esd-9-969-2018
– volume: 10
  start-page: 8055
  issue: 1
  year: 2020
  ident: 1368_CR42
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-65070-5
– ident: 1368_CR41
– start-page: 584
  volume-title: Proc. 9th National Conf. on Artificial Intelligence
  year: 1991
  ident: 1368_CR28
– volume: 573
  start-page: 568
  issue: 7775
  year: 2019
  ident: 1368_CR15
  publication-title: Nature
  doi: 10.1038/s41586-019-1559-7
– volume: 43
  start-page: 606
  issue: 6
  year: 1986
  ident: 1368_CR17
  publication-title: Journal of Atmospheric Sciences
  doi: 10.1175/1520-0469(1986)043<0606:UADEMI>2.0.CO;2
– volume: 3
  start-page: 667
  issue: 8
  year: 2021
  ident: 1368_CR19
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-021-00374-3
– volume: 149
  start-page: 104695
  year: 2021
  ident: 1368_CR38
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2021.104695
– volume: 115
  start-page: 2262
  issue: 10
  year: 1987
  ident: 1368_CR44
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2
– volume: 53
  start-page: 5119
  issue: 7
  year: 2019
  ident: 1368_CR37
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-019-04930-x
– volume: 4
  start-page: e00938
  issue: 11
  year: 2018
  ident: 1368_CR1
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00938
– volume: 6
  start-page: 1545
  issue: 8
  year: 1993
  ident: 1368_CR2
  publication-title: J. Climate
  doi: 10.1175/1520-0442(1993)006<1545:EAERPP>2.0.CO;2
– volume: 31
  start-page: 10141
  issue: 24
  year: 2018
  ident: 1368_CR43
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-17-0860.1
– volume: 12
  start-page: 2121
  year: 2011
  ident: 1368_CR8
  publication-title: Journal of Machine Learning Research
– volume: 11
  start-page: 1349
  issue: 11
  year: 2019
  ident: 1368_CR40
  publication-title: Remote Sensing
  doi: 10.3390/rs11111349
– volume: 21
  start-page: 1111
  issue: 9
  year: 2001
  ident: 1368_CR13
  publication-title: International Journal of Climatology
  doi: 10.1002/joc.636
– volume: 5
  start-page: 826
  issue: 6
  year: 2018
  ident: 1368_CR32
  publication-title: National Science Review
  doi: 10.1093/nsr/nwy105
– volume: 6
  start-page: eaba1482
  issue: 29
  year: 2020
  ident: 1368_CR50
  publication-title: Science Advances
  doi: 10.1126/sciadv.aba1482
– volume: 321
  start-page: 827
  issue: 6073
  year: 1986
  ident: 1368_CR6
  publication-title: Nature
  doi: 10.1038/321827a0
SSID ssj0039381
Score 2.4526453
Snippet El Niño-Southern Oscillation (ENSO) can be currently predicted reasonably well six months and longer, but large biases and uncertainties remain in its...
El Ni?o-Southern Oscillation (ENSO) can be currently predicted reasonably well six months and longer, but large biases and uncertainties remain in its...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 889
SubjectTerms Algorithms
Artificial neural networks
Atmospheric Sciences
Coefficients
Correlation coefficient
Correlation coefficients
Earth and Environmental Science
Earth Sciences
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
Geophysics/Geodesy
Lead time
Long short-term memory
Mathematical models
Meteorology
Modelling
Neural networks
Noise prediction
Original Paper
Pattern analysis
Predictions
Sea surface
Sea surface temperature
Signal processing
Southern Oscillation
Statistical analysis
Statistical models
Surface temperature
Title A Hybrid Neural Network Model for ENSO Prediction in Combination with Principal Oscillation Pattern Analyses
URI https://link.springer.com/article/10.1007/s00376-021-1368-4
https://www.proquest.com/docview/2642917619
https://d.wanfangdata.com.cn/periodical/dqkxjz-e202206004
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA4uFy_iinUjiHhQAtNJZumxLa1FcRS0oKchyWSkOky1raD-et_LLFUQwdPMkOUwX97L9_KWEHIsQeOlraZmyvcTBoxYMJX6LQayxY0PK8ZzMDn5KvIHQ3Fx792XedzTKtq9cklaTV0nu2GpFAyYbbIm90MmFsmyh6Y7LOKh267UL29xezMp7uUMxLl2Zf42xc_NaM4wa6eoTeXJU5k_ftt1-mtktaSLtF3gu04WTL5BGlfAdMcTeyBOT2g3GwHttF-bJGvTwQdmYVEsuwFDoyLOm-KlZxkFikp70e01vZmghwZRoaOcglYAC9mCRPFkFprtGTyMv4Y9MisC5uiNLcaZ06KSiZlukWG_d9cdsPJGBaa558yYBPqktAwNF27gqSAwYP1x6QJn0ljoz7SMlH5qXLALTaCdJADxdcM0CZOES3jfJkv5ODc7hDYTw1UqfE95WoSuVkpKTySSh1oFxqQN4lS_NtZluXG89SKL60LJFo0Y0IgRjVg0yGk95KWotfFX5_0Kr7gUu2kM7M4F-xOMwgY5qzCcN_8x2VEJ87xz8vr8_vQZGxdzkYEWit1_TblHVnBkEVW2T5ZmkzdzAPxlpg7Jcrvf6UT4PH-47B3a9fsF5HDpgw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3oRn1itGkQ8KIF2k330WEpL1b7AFnoLSTYr1WWrbQX11zvJPqoggrddNslhv8zMN5lHELoUoPGiek0R6XkhAUbMiIy8OgHZotqDHeNWTXFyr-91xuxu4k6yOu5Fnu2ehyStpi6K3UyrFJMwWyM16gWEraMN4AKByeMaO41c_dI6tTeTGltOQJyLUOZvS_w0RiuGWQRFbSlPEonk8ZvVae-g7Ywu4kaK7y5a08keKveA6c7m9kAcX-FmPAXaad_2UdzAnQ9ThYVN2w2Y2k_zvLG59CzGQFFxq_8wwMO5idAYVPA0waAVwEO2IGFzMguf7Rk8zB-AjYzThDk8tM04E5x2MtGLAzRut0bNDsluVCCKutUlEUCfpBKBpszxXen7Grw_KhzgTMo0-tN1LYQXaQf8Qu2rauiD-DpBFAZhSAU8H6JSMkv0EcK1UFMZMc-VrmKBo6QUwmWhoIGSvtZRGVXzX8tV1m7c3HoR86JRskWDAxrcoMFZGV0XU17SXht_Da7kePFM7BYc2J0D_ic4hWV0k2O4-vzHYhcZzKvB4evz-9Mn146pRQZayI7_teQ52uyMel3eve3fn6Ats0qaYVZBpeX8TZ8Cl1nKM7t3vwBrOOlm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyNBEG5WF8SL6KoYdbVZxINLY2a655FjyCZkH8aAG_DW9Gsku8OoSQT111vV84jCIuxthunuw3z9-Kqr6itCThTseFknMEzHsWXAiAXTWdxhsLa4i2HGRG1MTr4YxcOJ-HEdXVd1Tud1tHvtkixzGlClqVic39nsvEl8Q9kUDJ4NWMDjlIkV8hF24wCn9STs1lsx73BfpRTPdQZLu3Fr_muItwfTkm02DlKf1lNkqrh5dQINNslGRR1pt8R6i3xwxSfSugDWezvzl-P0lPbyKVBQ_7ZN8i4dPmFGFkUJDug6KmO-KRZAyynQVdofXV3S8Qy9NYgQnRYUdgiwlj1gFG9p4bO_j4f-l3Be5mXwHB17Yc6Clqombr5DJoP-796QVdUVmOFRe8EUUCltVOq4CJNIJ4kDS5CrEPiTQdE_13FKxZkLwUZ0iWnbBJZymGY2tZYreN4lq8Vt4fYIDazjOhNxpCMj0tBorVQkrOKp0YlzWYu0618rTSU9jhUwctmIJns0JKAhEQ0pWuSs6XJX6m681_iwxktWS3AugemFYIuCgdgiX2sMl5_fGexLBfOysb3_-_jnWboQ85KBIor9_xrymKyNvw3kr--jnwdkHQcpg80Oyepi9uA-A61Z6CM_dV8A5Drtog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Neural+Network+Model+for+ENSO+Prediction+in+Combination+with+Principal+Oscillation+Pattern+Analyses&rft.jtitle=Advances+in+atmospheric+sciences&rft.au=Zhou%2C+Lu&rft.au=Zhang%2C+Rong-Hua&rft.date=2022-06-01&rft.issn=0256-1530&rft.eissn=1861-9533&rft.volume=39&rft.issue=6&rft.spage=889&rft.epage=902&rft_id=info:doi/10.1007%2Fs00376-021-1368-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00376_021_1368_4
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdqkxjz-e%2Fdqkxjz-e.jpg