Numerical Simulation of Icing on Nrel 5-MW Reference Offshore Wind Turbine Blades Under Different Icing Conditions
Offshore wind energy resources are operational in cold regions, while offshore wind turbines will face the threat of icing. Therefore, it is necessary to study icing of offshore wind turbines under different icing conditions. In this study, icing sensitivity of offshore wind turbine blades are perfo...
Saved in:
Published in | China ocean engineering Vol. 36; no. 5; pp. 767 - 780 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2022
Springer Nature B.V School of Naval Architecture&Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China%The Department of Engineering,Lancaster University,Lancaster LA1 4YW,UK |
Subjects | |
Online Access | Get full text |
ISSN | 0890-5487 2191-8945 |
DOI | 10.1007/s13344-022-0068-x |
Cover
Loading…
Abstract | Offshore wind energy resources are operational in cold regions, while offshore wind turbines will face the threat of icing. Therefore, it is necessary to study icing of offshore wind turbines under different icing conditions. In this study, icing sensitivity of offshore wind turbine blades are performed using a combination of FLUENT and FENSAP-ICE software, and the effects of liquid water content (LWC), medium volume diameter (MVD), wind speed and air temperature on blade icing shape are analyzed by two types of ice, namely rime ice and glaze ice. The results show that the increase of LWC and MVD will increase the amount of ice that forms on the blade surface for either glaze ice or rime ice, and an increase of MVD will expand the adhesion surface between ice and blade. Before reaching the rated wind speed of 11.4 m/s, it does not directly affect the icing shape. However, after reaching the rated wind speed, the attack angle of the incoming flow decreases obviously, and the amount of ice increases markedly. When the ambient air temperature meets the icing conditions of glaze ice (i.e., −5°C to 0°C), the lower the temperature, the more glaze ice freezes, whereas air temperature has no impact on the icing of rime ice. Compared with onshore wind turbines, offshore wind turbines might face extreme meteorological conditions, and the wind speed has no impact on the amount of ice that forms on the blade surface for most wind speeds |
---|---|
AbstractList | Offshore wind energy resources are operational in cold regions, while offshore wind turbines will face the threat of icing. Therefore, it is necessary to study icing of offshore wind turbines under different icing conditions. In this study, icing sensitivity of offshore wind turbine blades are performed using a combination of FLUENT and FENSAP-ICE software, and the effects of liquid water content (LWC), medium volume diameter (MVD), wind speed and air temperature on blade icing shape are analyzed by two types of ice, namely rime ice and glaze ice. The results show that the increase of LWC and MVD will increase the amount of ice that forms on the blade surface for either glaze ice or rime ice, and an increase of MVD will expand the adhesion surface between ice and blade. Before reaching the rated wind speed of 11.4 m/s, it does not directly affect the icing shape. However, after reaching the rated wind speed, the attack angle of the incoming flow decreases obviously, and the amount of ice increases markedly. When the ambient air temperature meets the icing conditions of glaze ice (i.e., −5°C to 0°C), the lower the temperature, the more glaze ice freezes, whereas air temperature has no impact on the icing of rime ice. Compared with onshore wind turbines, offshore wind turbines might face extreme meteorological conditions, and the wind speed has no impact on the amount of ice that forms on the blade surface for most wind speeds Offshore wind energy resources are operational in cold regions,while offshore wind turbines will face the threat of icing.Therefore,it is necessary to study icing of offshore wind turbines under different icing conditions.In this study,icing sensitivity of offshore wind turbine blades are performed using a combination of FLUENT and FENSAP-ICE software,and the effects of liquid water content(LWC),medium volume diameter(MVD),wind speed and air tem-perature on blade icing shape are analyzed by two types of ice,namely rime ice and glaze ice.The results show that the increase of LWC and MVD will increase the amount of ice that forms on the blade surface for either glaze ice or rime ice,and an increase of MVD will expand the adhesion surface between ice and blade.Before reaching the rated wind speed of 11.4 m/s,it does not directly affect the icing shape.However,after reaching the rated wind speed,the attack angle of the incoming flow decreases obviously,and the amount of ice increases markedly.When the ambient air temperature meets the icing conditions of glaze ice(i.e.,-5℃to 0℃),the lower the temperature,the more glaze ice freezes,whereas air temperature has no impact on the icing of rime ice.Compared with onshore wind turbines,offshore wind turbines might face extreme meteorological conditions,and the wind speed has no impact on the amount of ice that forms on the blade surface for most wind speeds |
Author | Ma, Xian-dong Yang, Xiang-yu Cao, Hui-qing Bai, Xu Yin, Qun |
AuthorAffiliation | School of Naval Architecture&Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China%The Department of Engineering,Lancaster University,Lancaster LA1 4YW,UK |
AuthorAffiliation_xml | – name: School of Naval Architecture&Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China%The Department of Engineering,Lancaster University,Lancaster LA1 4YW,UK |
Author_xml | – sequence: 1 givenname: Hui-qing surname: Cao fullname: Cao, Hui-qing organization: School of Naval Architecture & Ocean Engineering, Jiangsu University of Science and Technology – sequence: 2 givenname: Xu surname: Bai fullname: Bai, Xu email: baixu@just.edu.cn organization: School of Naval Architecture & Ocean Engineering, Jiangsu University of Science and Technology – sequence: 3 givenname: Xian-dong surname: Ma fullname: Ma, Xian-dong organization: The Department of Engineering, Lancaster University – sequence: 4 givenname: Qun surname: Yin fullname: Yin, Qun organization: School of Naval Architecture & Ocean Engineering, Jiangsu University of Science and Technology – sequence: 5 givenname: Xiang-yu surname: Yang fullname: Yang, Xiang-yu organization: School of Naval Architecture & Ocean Engineering, Jiangsu University of Science and Technology |
BookMark | eNp9kcFOFTEUhhsCCRf0Adw1ceWietppZ6ZLvaKSICQKYdn0dk6HkrkdbGci-PT2MiQkJrLqWXzff5rzH5H9OEYk5A2H9xyg-ZB5VUnJQAgGULfsfo-sBNectVqqfbKCVgNTsm0OyVHOtwCKK8lXJJ3PW0zB2YH-DNt5sFMYIx09PXUh9rTM5wkHqtj3a_oDPSaMDumF9_lmTEivQ-zo5Zw2ISL9NNgOM72KHSb6OfhHenpKWo-xC7vw_IoceDtkfP30HpOrLyeX62_s7OLr6frjGXOVgonpDda2c7JulNROqFojl1JIzjega9VVlbUovVPcK92Aaz14LoUX7YZzX_nqmLxbcn_b6G3sze04p1g2mj_9zUPvDIpyLlAAurBvF_Yujb9mzNMzLJpKla2qbgrVLJRLY84JvXFherzYlGwYDAezK8MsZZiSbnZlmPti8n_MuxS2Nj286IjFyYWNPabnP_1f-gst1p2k |
CitedBy_id | crossref_primary_10_1007_s13344_024_0045_7 crossref_primary_10_1016_j_oceaneng_2024_117726 crossref_primary_10_3390_coatings14020155 crossref_primary_10_3390_app14052109 crossref_primary_10_3390_en15238998 crossref_primary_10_1016_j_heliyon_2024_e31859 crossref_primary_10_1016_j_apor_2024_104234 crossref_primary_10_3390_en17225785 crossref_primary_10_3390_en17122805 crossref_primary_10_1007_s13344_023_0039_x crossref_primary_10_1016_j_oceaneng_2025_120803 |
Cites_doi | 10.1115/1.2424966 10.1186/2251-6832-3-1 10.1115/1.4003187 10.2514/6.2009-274 10.1016/j.enconman.2014.05.026 10.2514/6.1992-647 10.2514/2.2646 10.1016/j.renene.2021.07.033 10.2172/947422 10.1016/j.coldregions.2021.103250 10.1016/j.coldregions.2015.12.007 10.1016/j.oceaneng.2022.111725 10.1260/0309-524X.34.2.207 10.1016/j.jweia.2017.11.024 10.1109/PEMWA.2009.5208325 10.1175/2008JAS2503.1 10.1016/j.apenergy.2021.116610 10.1002/we.1573 10.1002/we.477 10.1007/978-3-319-05191-8 10.1115/1.4001574 10.1115/1.2888048 10.1007/s13344-021-0053-9 10.1260/0309524011495791 10.1016/0167-6105(92)90006-V |
ContentType | Journal Article |
Copyright | Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2022. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 7TN F1W H96 L.G 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s13344-022-0068-x |
DatabaseName | CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 2191-8945 |
EndPage | 780 |
ExternalDocumentID | zghygc_e202205009 10_1007_s13344_022_0068_x |
GroupedDBID | -01 -0A -EM -SA -S~ 06D 0R~ 0VY 188 29B 29~ 2B. 2C. 2KG 2KM 30V 4.4 406 408 5GY 5VR 5XA 5XB 8RM 92E 92I 92M 92Q 93N 96X 9D9 9DA AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BGNMA CAJEA CCEZO CCVFK CHBEP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR J-C JBSCW JUIAU JZLTJ LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J P2P P9P PT4 Q-- Q-0 R-A R9I RLLFE ROL RSV RT1 S.. S1Z S27 S3B SCL SEG SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T8Q TCJ TGP TSG U1F U1G U2A U5A U5K UG4 UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 WK8 Z7R ZMTXR ~A9 ~LH AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7TN ABRTQ F1W H96 L.G 4A8 PSX |
ID | FETCH-LOGICAL-c350t-9be6adc467549c2569e1442411b0965d33aae4fc51f5970c8f0f142f28b11f3f3 |
IEDL.DBID | U2A |
ISSN | 0890-5487 |
IngestDate | Thu May 29 03:55:51 EDT 2025 Wed Aug 13 10:40:26 EDT 2025 Tue Jul 01 01:29:48 EDT 2025 Thu Apr 24 23:02:44 EDT 2025 Fri Feb 21 02:44:33 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | offshore wind turbine glaze rime cold regions numerical simulation environmental parameters |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-9be6adc467549c2569e1442411b0965d33aae4fc51f5970c8f0f142f28b11f3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2735241567 |
PQPubID | 2043672 |
PageCount | 14 |
ParticipantIDs | wanfang_journals_zghygc_e202205009 proquest_journals_2735241567 crossref_citationtrail_10_1007_s13344_022_0068_x crossref_primary_10_1007_s13344_022_0068_x springer_journals_10_1007_s13344_022_0068_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | China ocean engineering |
PublicationTitleAbbrev | China Ocean Eng |
PublicationTitle_FL | China Ocean Engineering |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V School of Naval Architecture&Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China%The Department of Engineering,Lancaster University,Lancaster LA1 4YW,UK |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: School of Naval Architecture&Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China%The Department of Engineering,Lancaster University,Lancaster LA1 4YW,UK |
References | Makkonen, L., 1984. Atmospheric Icing on Sea Structures, CRREL report documentation number, 84–2. BaiXShenJXueYZShuYCNumerical forecasting of icing on structural components of offshore platforms in polar regionsChina Ocean Engineering202135458859710.1007/s13344-021-0053-9 OzcanYTuncerIHAerodynamic shape optimization of wind turbine blades for minimizing power production losses due to icingCold Regions Science and Technology202118510325010.1016/j.coldregions.2021.103250 ShiWTanXGaoZMoanTNumerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditionsCold Regions Science and Technology201612312113910.1016/j.coldregions.2015.12.007 VirkMSNicklassonPJHomolaMCAtmospheric icing on large wind turbine bladesInternational Journal of Energy and Environment20123118 EtemaddarMHansenMOLMoanTWind turbine aerodynamic response under atmospheric icing conditionsWind Energy201417224126510.1002/we.1573 Battisti, L., Fedrizzi, R., Brighenti, A. and Laakso, T., 2006. Sea ice and icing risk for offshore wind turbines, Owemes 2006, Citavecchia, Italy. ISOAtmospheric Icing of Structures2017SwitzerlandISO 12494:2017, ISO ShinJBondTHExperimental and Computational Ice Shapes and Resulting Drag Increase for a NACA 0012 Airfoil1992Cleveland, OhioNASA Lewis Research Center JasinskiWJNoeSCSeligMSBraggMBWind turbine performance under icing conditionsJournal of Solar Energy Engineering19981201606510.1115/1.2888048 Shin, J. and Bond, T.H., 1992a. Results of an icing test on a NACA 0012 airfoil in the NASA Lewis icing research tunnel, 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. Fortin, G. and Perron, J., 2009. Wind turbine icing and de-icing, 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, Florida. Whiteman, A., Akande, D., Elhassan, N., et al., 2021. Renewable Energy Capacity Statistics, International Renewable Energy Agency. YangXYBaiXCaoHQInfluence analysis of rime icing on aerodynamic performance and output power of offshore floating wind turbineOcean Engineering202225811172510.1016/j.oceaneng.2022.111725 Botta, G., Cavaliere, M. and Holttinen, H., 1998. Ice accretion at Acqua Spruzza and its effects on wind turbine operation and loss of energy production, Proceeding of the Boreas IV Conference, Hetta, Finland. DNVGLIcing of Wind Turbines2017OsloDNVGL-RP-0175, DNVGL VirkMSHomolaMCNicklassonPJEffect of rime ice accretion on aerodynamic characteristics of wind turbine blade profilesWind Engineering201034220721810.1260/0309-524X.34.2.207 HomolaMCVirkMSNicklassonPJSundsbøPAPerformance losses due to ice accretion for a 5 MW wind turbineWind Energy201215337938910.1002/we.477 JonkmanJMButterfieldSMusialWScottGDefinition of A 5-MW Reference Wind Turbine for Offshore System Development2009Golden, CO, USANational Renewable Energy Laboratory10.2172/947422 KostinskiACantrellWEntropic aspects of supercooled droplet freezingJournal of the Atmospheric Sciences20086592961297110.1175/2008JAS2503.1 LiYTagawaKFengFLiQHeQBA wind tunnel experimental study of icing on wind turbine blade airfoilEnergy Conversion and Management20148559159510.1016/j.enconman.2014.05.026 StoyanovDBNixonJDSarlakHAnalysis of derating and anti-icing strategies for wind turbines in cold climatesApplied Energy202128811661010.1016/j.apenergy.2021.116610 BattistiLWind Turbines in Cold Climates: Icing Impacts and Mitigation Systems2015SwitzerlandSpringer International Publishing10.1007/978-3-319-05191-8 BoseNIcing on a small horizontal-axis wind turbine—Part 1: Glaze ice profilesJournal of Wind Engineering and Industrial Aerodynamics1992451758510.1016/0167-6105(92)90006-V IngramGWind Turbine Blade Analysis using the Blade Element Momentum Method. Version 1.02005Durham, NC, USADurham University XieSMXueZHQuSHJiangDZZouBSummer arctic sea fogActa Oceanologica Sinica20012364050(in Chinese) FranchiJRMokhatabSEnergy: Technology and directions for the futureJournal of Energy Resources Technology200712917910.1115/1.2424966 MakkonenLLaaksoTMarjaniemiMFinstadKJModelling and prevention of ice accretion on wind turbinesWind Engineering200125132110.1260/0309524011495791 ChenZKWeiLXLiZQLiuKDingMHSea fog characteristics over the Arctic pack ice in summer 2017Marine Forecasts20193627787(in Chinese) Lu, B., Li, Y.Y. and Wu, Z.Z., 2009. A review of recent advances in wind turbine condition monitoring and fault diagnosis, 2009 IEEE Power Electronics and Machines in Wind Applications, Lincoln, NE, USA. IRENAOffshore Renewables: An Action Agenda for Deployment2021Abu DhabiInternational Renewable Energy Agency BarberSWangYJafariSChokaniNAbhariRSThe impact of ice formation on wind turbine performance and aerodynamicsJournal of Solar Energy Engineering2011133101100710.1115/1.4003187 BourgaultYBeaugendreHHabashiWGDevelopment of a shallow-water icing model in FENSAP-ICEJournal of Aircraft200037464064610.2514/2.2646 DebenedettiPGSupercooled and glassy waterJournal of Physics: Condensed Matter20031545R1669 GuoWFShenHLiYFengFTagawaKWind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbineRenewable Energy202117911613210.1016/j.renene.2021.07.033 ANSYS, Inc., 2020. ANSYS FENSAP-ICE User Manual, ANSYS 2020 R2, Canonsburg, PA. IbrahimGMPopeKMuzychkaYSEffects of blade design on ice accretion for horizontal axis wind turbinesJournal of Wind Engineering and Industrial Aerodynamics2018173395210.1016/j.jweia.2017.11.024 Morgan, C., Bossanyi, E. and Seifert, H., 1998. Assessment of safety risks arising from wind turbine icing, BOREAS IV, Hetta, Finland, 113–121. FronkBMNealRGarimellaSEvolution of the transition to a world driven by renewable energyJournal of Energy Resources Technology2010132202100910.1115/1.4001574 68_CR1 S Barber (68_CR3) 2011; 133 Y Bourgault (68_CR8) 2000; 37 ZK Chen (68_CR9) 2019; 36 L Makkonen (68_CR28) 2001; 25 WF Guo (68_CR16) 2021; 179 68_CR37 68_CR7 JR Franchi (68_CR14) 2007; 129 68_CR5 MC Homola (68_CR17) 2012; 15 68_CR32 L Battisti (68_CR4) 2015 68_CR13 SM Xie (68_CR38) 2001; 23 N Bose (68_CR6) 1992; 45 ISO (68_CR21) 2017 W Shi (68_CR31) 2016; 123 BM Fronk (68_CR15) 2010; 132 MS Virk (68_CR36) 2012; 3 PG Debenedetti (68_CR10) 2003; 15 Y Li (68_CR25) 2014; 85 J Shin (68_CR33) 1992 IRENA (68_CR20) 2021 XY Yang (68_CR39) 2022; 258 M Etemaddar (68_CR12) 2014; 17 WJ Jasinski (68_CR22) 1998; 120 68_CR29 MS Virk (68_CR35) 2010; 34 68_CR26 DNVGL (68_CR11) 2017 68_CR27 JM Jonkman (68_CR23) 2009 GM Ibrahim (68_CR18) 2018; 173 DB Stoyanov (68_CR34) 2021; 288 G Ingram (68_CR19) 2005 A Kostinski (68_CR24) 2008; 65 Y Ozcan (68_CR30) 2021; 185 X Bai (68_CR2) 2021; 35 |
References_xml | – reference: BoseNIcing on a small horizontal-axis wind turbine—Part 1: Glaze ice profilesJournal of Wind Engineering and Industrial Aerodynamics1992451758510.1016/0167-6105(92)90006-V – reference: ChenZKWeiLXLiZQLiuKDingMHSea fog characteristics over the Arctic pack ice in summer 2017Marine Forecasts20193627787(in Chinese) – reference: Whiteman, A., Akande, D., Elhassan, N., et al., 2021. Renewable Energy Capacity Statistics, International Renewable Energy Agency. – reference: ShiWTanXGaoZMoanTNumerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditionsCold Regions Science and Technology201612312113910.1016/j.coldregions.2015.12.007 – reference: FronkBMNealRGarimellaSEvolution of the transition to a world driven by renewable energyJournal of Energy Resources Technology2010132202100910.1115/1.4001574 – reference: Makkonen, L., 1984. Atmospheric Icing on Sea Structures, CRREL report documentation number, 84–2. – reference: Morgan, C., Bossanyi, E. and Seifert, H., 1998. Assessment of safety risks arising from wind turbine icing, BOREAS IV, Hetta, Finland, 113–121. – reference: IngramGWind Turbine Blade Analysis using the Blade Element Momentum Method. Version 1.02005Durham, NC, USADurham University – reference: BattistiLWind Turbines in Cold Climates: Icing Impacts and Mitigation Systems2015SwitzerlandSpringer International Publishing10.1007/978-3-319-05191-8 – reference: EtemaddarMHansenMOLMoanTWind turbine aerodynamic response under atmospheric icing conditionsWind Energy201417224126510.1002/we.1573 – reference: DNVGLIcing of Wind Turbines2017OsloDNVGL-RP-0175, DNVGL – reference: FranchiJRMokhatabSEnergy: Technology and directions for the futureJournal of Energy Resources Technology200712917910.1115/1.2424966 – reference: BourgaultYBeaugendreHHabashiWGDevelopment of a shallow-water icing model in FENSAP-ICEJournal of Aircraft200037464064610.2514/2.2646 – reference: IRENAOffshore Renewables: An Action Agenda for Deployment2021Abu DhabiInternational Renewable Energy Agency – reference: JasinskiWJNoeSCSeligMSBraggMBWind turbine performance under icing conditionsJournal of Solar Energy Engineering19981201606510.1115/1.2888048 – reference: Shin, J. and Bond, T.H., 1992a. Results of an icing test on a NACA 0012 airfoil in the NASA Lewis icing research tunnel, 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. – reference: KostinskiACantrellWEntropic aspects of supercooled droplet freezingJournal of the Atmospheric Sciences20086592961297110.1175/2008JAS2503.1 – reference: YangXYBaiXCaoHQInfluence analysis of rime icing on aerodynamic performance and output power of offshore floating wind turbineOcean Engineering202225811172510.1016/j.oceaneng.2022.111725 – reference: Battisti, L., Fedrizzi, R., Brighenti, A. and Laakso, T., 2006. Sea ice and icing risk for offshore wind turbines, Owemes 2006, Citavecchia, Italy. – reference: BarberSWangYJafariSChokaniNAbhariRSThe impact of ice formation on wind turbine performance and aerodynamicsJournal of Solar Energy Engineering2011133101100710.1115/1.4003187 – reference: OzcanYTuncerIHAerodynamic shape optimization of wind turbine blades for minimizing power production losses due to icingCold Regions Science and Technology202118510325010.1016/j.coldregions.2021.103250 – reference: GuoWFShenHLiYFengFTagawaKWind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbineRenewable Energy202117911613210.1016/j.renene.2021.07.033 – reference: HomolaMCVirkMSNicklassonPJSundsbøPAPerformance losses due to ice accretion for a 5 MW wind turbineWind Energy201215337938910.1002/we.477 – reference: VirkMSNicklassonPJHomolaMCAtmospheric icing on large wind turbine bladesInternational Journal of Energy and Environment20123118 – reference: DebenedettiPGSupercooled and glassy waterJournal of Physics: Condensed Matter20031545R1669 – reference: IbrahimGMPopeKMuzychkaYSEffects of blade design on ice accretion for horizontal axis wind turbinesJournal of Wind Engineering and Industrial Aerodynamics2018173395210.1016/j.jweia.2017.11.024 – reference: LiYTagawaKFengFLiQHeQBA wind tunnel experimental study of icing on wind turbine blade airfoilEnergy Conversion and Management20148559159510.1016/j.enconman.2014.05.026 – reference: MakkonenLLaaksoTMarjaniemiMFinstadKJModelling and prevention of ice accretion on wind turbinesWind Engineering200125132110.1260/0309524011495791 – reference: StoyanovDBNixonJDSarlakHAnalysis of derating and anti-icing strategies for wind turbines in cold climatesApplied Energy202128811661010.1016/j.apenergy.2021.116610 – reference: ISOAtmospheric Icing of Structures2017SwitzerlandISO 12494:2017, ISO – reference: Lu, B., Li, Y.Y. and Wu, Z.Z., 2009. A review of recent advances in wind turbine condition monitoring and fault diagnosis, 2009 IEEE Power Electronics and Machines in Wind Applications, Lincoln, NE, USA. – reference: Fortin, G. and Perron, J., 2009. Wind turbine icing and de-icing, 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, Florida. – reference: ANSYS, Inc., 2020. ANSYS FENSAP-ICE User Manual, ANSYS 2020 R2, Canonsburg, PA. – reference: XieSMXueZHQuSHJiangDZZouBSummer arctic sea fogActa Oceanologica Sinica20012364050(in Chinese) – reference: BaiXShenJXueYZShuYCNumerical forecasting of icing on structural components of offshore platforms in polar regionsChina Ocean Engineering202135458859710.1007/s13344-021-0053-9 – reference: VirkMSHomolaMCNicklassonPJEffect of rime ice accretion on aerodynamic characteristics of wind turbine blade profilesWind Engineering201034220721810.1260/0309-524X.34.2.207 – reference: ShinJBondTHExperimental and Computational Ice Shapes and Resulting Drag Increase for a NACA 0012 Airfoil1992Cleveland, OhioNASA Lewis Research Center – reference: Botta, G., Cavaliere, M. and Holttinen, H., 1998. Ice accretion at Acqua Spruzza and its effects on wind turbine operation and loss of energy production, Proceeding of the Boreas IV Conference, Hetta, Finland. – reference: JonkmanJMButterfieldSMusialWScottGDefinition of A 5-MW Reference Wind Turbine for Offshore System Development2009Golden, CO, USANational Renewable Energy Laboratory10.2172/947422 – volume: 129 start-page: 79 issue: 1 year: 2007 ident: 68_CR14 publication-title: Journal of Energy Resources Technology doi: 10.1115/1.2424966 – volume: 3 start-page: 1 issue: 1 year: 2012 ident: 68_CR36 publication-title: International Journal of Energy and Environment doi: 10.1186/2251-6832-3-1 – ident: 68_CR37 – volume: 23 start-page: 40 issue: 6 year: 2001 ident: 68_CR38 publication-title: Acta Oceanologica Sinica – volume: 133 start-page: 011007 issue: 1 year: 2011 ident: 68_CR3 publication-title: Journal of Solar Energy Engineering doi: 10.1115/1.4003187 – ident: 68_CR13 doi: 10.2514/6.2009-274 – volume: 85 start-page: 591 year: 2014 ident: 68_CR25 publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2014.05.026 – ident: 68_CR32 doi: 10.2514/6.1992-647 – volume: 37 start-page: 640 issue: 4 year: 2000 ident: 68_CR8 publication-title: Journal of Aircraft doi: 10.2514/2.2646 – volume: 179 start-page: 116 year: 2021 ident: 68_CR16 publication-title: Renewable Energy doi: 10.1016/j.renene.2021.07.033 – volume-title: Definition of A 5-MW Reference Wind Turbine for Offshore System Development year: 2009 ident: 68_CR23 doi: 10.2172/947422 – volume: 185 start-page: 103250 year: 2021 ident: 68_CR30 publication-title: Cold Regions Science and Technology doi: 10.1016/j.coldregions.2021.103250 – volume: 123 start-page: 121 year: 2016 ident: 68_CR31 publication-title: Cold Regions Science and Technology doi: 10.1016/j.coldregions.2015.12.007 – volume-title: Offshore Renewables: An Action Agenda for Deployment year: 2021 ident: 68_CR20 – volume: 258 start-page: 111725 year: 2022 ident: 68_CR39 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.111725 – ident: 68_CR1 – volume: 34 start-page: 207 issue: 2 year: 2010 ident: 68_CR35 publication-title: Wind Engineering doi: 10.1260/0309-524X.34.2.207 – volume: 173 start-page: 39 year: 2018 ident: 68_CR18 publication-title: Journal of Wind Engineering and Industrial Aerodynamics doi: 10.1016/j.jweia.2017.11.024 – ident: 68_CR26 doi: 10.1109/PEMWA.2009.5208325 – volume: 15 start-page: R1669 issue: 45 year: 2003 ident: 68_CR10 publication-title: Journal of Physics: Condensed Matter – ident: 68_CR7 – volume: 36 start-page: 77 issue: 2 year: 2019 ident: 68_CR9 publication-title: Marine Forecasts – volume: 65 start-page: 2961 issue: 9 year: 2008 ident: 68_CR24 publication-title: Journal of the Atmospheric Sciences doi: 10.1175/2008JAS2503.1 – volume: 288 start-page: 116610 year: 2021 ident: 68_CR34 publication-title: Applied Energy doi: 10.1016/j.apenergy.2021.116610 – volume: 17 start-page: 241 issue: 2 year: 2014 ident: 68_CR12 publication-title: Wind Energy doi: 10.1002/we.1573 – volume: 15 start-page: 379 issue: 3 year: 2012 ident: 68_CR17 publication-title: Wind Energy doi: 10.1002/we.477 – volume-title: Wind Turbines in Cold Climates: Icing Impacts and Mitigation Systems year: 2015 ident: 68_CR4 doi: 10.1007/978-3-319-05191-8 – ident: 68_CR5 – volume-title: Wind Turbine Blade Analysis using the Blade Element Momentum Method. Version 1.0 year: 2005 ident: 68_CR19 – volume-title: Atmospheric Icing of Structures year: 2017 ident: 68_CR21 – ident: 68_CR27 – volume-title: Icing of Wind Turbines year: 2017 ident: 68_CR11 – volume: 132 start-page: 021009 issue: 2 year: 2010 ident: 68_CR15 publication-title: Journal of Energy Resources Technology doi: 10.1115/1.4001574 – volume: 120 start-page: 60 issue: 1 year: 1998 ident: 68_CR22 publication-title: Journal of Solar Energy Engineering doi: 10.1115/1.2888048 – volume: 35 start-page: 588 issue: 4 year: 2021 ident: 68_CR2 publication-title: China Ocean Engineering doi: 10.1007/s13344-021-0053-9 – ident: 68_CR29 – volume: 25 start-page: 3 issue: 1 year: 2001 ident: 68_CR28 publication-title: Wind Engineering doi: 10.1260/0309524011495791 – volume-title: Experimental and Computational Ice Shapes and Resulting Drag Increase for a NACA 0012 Airfoil year: 1992 ident: 68_CR33 – volume: 45 start-page: 75 issue: 1 year: 1992 ident: 68_CR6 publication-title: Journal of Wind Engineering and Industrial Aerodynamics doi: 10.1016/0167-6105(92)90006-V |
SSID | ssj0051541 |
Score | 2.350236 |
Snippet | Offshore wind energy resources are operational in cold regions, while offshore wind turbines will face the threat of icing. Therefore, it is necessary to study... Offshore wind energy resources are operational in cold regions,while offshore wind turbines will face the threat of icing.Therefore,it is necessary to study... |
SourceID | wanfang proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 767 |
SubjectTerms | Air temperature Ambient temperature Angle of attack Coastal Sciences Cold regions Energy resources Energy sources Engineering Fluid- and Aerodynamics Ice Ice formation Icing Marine & Freshwater Sciences Moisture content Numerical and Computational Physics Oceanography Offshore Offshore energy sources Offshore Engineering Original Paper Rime Shape Simulation Turbine blades Turbine engines Turbines Water Water content Wind power Wind speed Wind turbines |
Title | Numerical Simulation of Icing on Nrel 5-MW Reference Offshore Wind Turbine Blades Under Different Icing Conditions |
URI | https://link.springer.com/article/10.1007/s13344-022-0068-x https://www.proquest.com/docview/2735241567 https://d.wanfangdata.com.cn/periodical/zghygc-e202205009 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MXNTEKGpEkTTGk6bJtq5jOyKCqBEOQsDTspYWTHCYAYn61_s6OoaJMfG2ZO077Ov6vi_vF0KX3GJKAO7E4cwirpA24R53iCdszx-BpLBVmuXb8dp992HIhqaOe55lu2chyfSmzovdKHVdorPPdV0DAeJYZCDddR5f36ln1y_453RcpeUHFtF0PAtl_mbipzPKGeY6KJqW8sQqiscbXqe1j_YMXcT1Fb4HaEvGJbSz0USwhHa7Qkax6Tx9iJLOchWEmeLn1zcznAvPFL4XsBzDcyeRU8zI0wCvu8zirlLzySyReAAaHfeWCQhmiW-m0UjOcTobCd-aUSoLY6kx09FufWqPUL_V7DXaxAxWIIIya0ECLr1oJOCOBHUogPQEEnQV-HKb62YwI0qjSLpKMAAqqFnCV5ayXUc5PrdtRRU9RoV4FssThCVnADUHlUIVcBEeccF4LXAE9YELRn4ZWdkXDoXpOq6HX0zDvF-yBiUEUEINSvhRRlfrLe-rlht_La5ksIXm75uHQMlYqkxrZXSdQZm__sPYhUE7X_w1nnyORSidtCQZGOnpv0yeoW29c5X-V0GFRbKU50BjFryKivW7l8dmNT2-38Mm6cU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5N5WEwiQ3GtPJrFuIJZJTEcZo8MgYrv8oDRbAnK3btMq1LUZpKwF-_c-I0gCYk3irFOaX22f4-3d13ANvS40bhutNAco-GSvtURjKgkfKjeICUwjdllm8v6l6FJzf8xtVxT-ps9zokWZ7UTbEbY2FIbfa5rWugCBznQqTgYQvm9n_-Oj2sD2C8ocuGlV6ceNQC8jqY-T8jz6-jBmPOwqJlMU9m0mz45N45-gj9-ourdJM_e9NC7qnHF2KOb_xLn2DR4VCyXznOErzT2TIsPFEnXIYPF0qnmZO0_gx5b1pFd0bk8vdf1_WLjA05Vjic4O9erkeE0_NrMpOvJRfGTG7HuSbXSP5Jf5ojE9fk-ygd6Akpmy6RH65HS-EsHYxtGN1uhxW4OjrsH3Sp69hAFeNeQROpo3Sg8PBF2qkQTSUaCRuCBF9alZkBY2mqQ6M4ekDS8VRsPOOHgQli6fuGGfYFWtk401-BaMnRhyTSH2YQ5MhUKi47SaBYjCAzjdvg1QsnlJMzt101RqIRYrazK3B2hZ1dcd-Gndkrd5WWx2uD12tvEG5bTwRiPV5S3k4bduslbR6_YmzLOVEz-HF4-zBUQgdlrTNC3dU3mfwG77v98zNxdtw7XYN5a6XKMVyHVpFP9QZipUJuur3xDxm-CDM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5NRZo2pP1gm-hgmzXxxGRI4jhNHvnVwdgK0kDAkxc7dkGUFKWpxPjrOSdOA9OENO0tUpxTYp_j73R33wewIj1uFK47DST3aKi0T2UkAxopP4ozDCl8U1X5DqLd4_DbKT91OqeTptq9SUnWPQ2WpSkv168zs942vjEWhtRWotseB4ogci603OwdmNv4era_0_yM8bSuxCu9OPGoBedNYvNvRh4eTS3enKVIq8ae3KT58N4Z1H8Jv5q3r0tPLtempVxTt38QO_7H572CFw6fko3aoV7DE50vwPN7rIULMH-gdJo7qus3UAymddZnRH5eXDk1MDI2ZE_hcILXg0KPCKc_TsiM1pYcGDM5HxeanFzkGTmaFhiha7I5SjM9IZUYE9l22i2ls7Q1tul1u03ewnF_52hrlzolB6oY90qaSB2lmcKfMoajClFWojGQQ_DgS8s-kzGWpjo0iqNnJD1PxcYzfhiYIJa-b5hh76CTj3O9CERLjr4lMSxiBsGPTKXispcEisUIPtO4C16ziEI5mnOrtjESLUGznV2Bsyvs7IqbLqzOHrmuOT4eG7zceIZw230iEAPyKhTudeFLs7zt7UeMfXYO1Q6-HZ7_Hiqhg6oHGiHw-38y-QmeHm73xfe9wf4SPLNG6tLDZeiUxVR_QAhVyo9um9wBkfcRFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Simulation+of+Icing+on+Nrel+5-MW+Reference+Offshore+Wind+Turbine+Blades+Under+Different+Icing+Conditions&rft.jtitle=China+ocean+engineering&rft.au=Hui-qing%2C+Cao&rft.au=Xu%2C+Bai&rft.au=Xian-dong%2C+Ma&rft.au=Yin+Qun&rft.date=2022-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0890-5487&rft.eissn=2191-8945&rft.volume=36&rft.issue=5&rft.spage=767&rft.epage=780&rft_id=info:doi/10.1007%2Fs13344-022-0068-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghygc-e%2Fzghygc-e.jpg |