Numerical Simulation of Icing on Nrel 5-MW Reference Offshore Wind Turbine Blades Under Different Icing Conditions

Offshore wind energy resources are operational in cold regions, while offshore wind turbines will face the threat of icing. Therefore, it is necessary to study icing of offshore wind turbines under different icing conditions. In this study, icing sensitivity of offshore wind turbine blades are perfo...

Full description

Saved in:
Bibliographic Details
Published inChina ocean engineering Vol. 36; no. 5; pp. 767 - 780
Main Authors Cao, Hui-qing, Bai, Xu, Ma, Xian-dong, Yin, Qun, Yang, Xiang-yu
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2022
Springer Nature B.V
School of Naval Architecture&Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China%The Department of Engineering,Lancaster University,Lancaster LA1 4YW,UK
Subjects
Online AccessGet full text
ISSN0890-5487
2191-8945
DOI10.1007/s13344-022-0068-x

Cover

Loading…
Abstract Offshore wind energy resources are operational in cold regions, while offshore wind turbines will face the threat of icing. Therefore, it is necessary to study icing of offshore wind turbines under different icing conditions. In this study, icing sensitivity of offshore wind turbine blades are performed using a combination of FLUENT and FENSAP-ICE software, and the effects of liquid water content (LWC), medium volume diameter (MVD), wind speed and air temperature on blade icing shape are analyzed by two types of ice, namely rime ice and glaze ice. The results show that the increase of LWC and MVD will increase the amount of ice that forms on the blade surface for either glaze ice or rime ice, and an increase of MVD will expand the adhesion surface between ice and blade. Before reaching the rated wind speed of 11.4 m/s, it does not directly affect the icing shape. However, after reaching the rated wind speed, the attack angle of the incoming flow decreases obviously, and the amount of ice increases markedly. When the ambient air temperature meets the icing conditions of glaze ice (i.e., −5°C to 0°C), the lower the temperature, the more glaze ice freezes, whereas air temperature has no impact on the icing of rime ice. Compared with onshore wind turbines, offshore wind turbines might face extreme meteorological conditions, and the wind speed has no impact on the amount of ice that forms on the blade surface for most wind speeds
AbstractList Offshore wind energy resources are operational in cold regions, while offshore wind turbines will face the threat of icing. Therefore, it is necessary to study icing of offshore wind turbines under different icing conditions. In this study, icing sensitivity of offshore wind turbine blades are performed using a combination of FLUENT and FENSAP-ICE software, and the effects of liquid water content (LWC), medium volume diameter (MVD), wind speed and air temperature on blade icing shape are analyzed by two types of ice, namely rime ice and glaze ice. The results show that the increase of LWC and MVD will increase the amount of ice that forms on the blade surface for either glaze ice or rime ice, and an increase of MVD will expand the adhesion surface between ice and blade. Before reaching the rated wind speed of 11.4 m/s, it does not directly affect the icing shape. However, after reaching the rated wind speed, the attack angle of the incoming flow decreases obviously, and the amount of ice increases markedly. When the ambient air temperature meets the icing conditions of glaze ice (i.e., −5°C to 0°C), the lower the temperature, the more glaze ice freezes, whereas air temperature has no impact on the icing of rime ice. Compared with onshore wind turbines, offshore wind turbines might face extreme meteorological conditions, and the wind speed has no impact on the amount of ice that forms on the blade surface for most wind speeds
Offshore wind energy resources are operational in cold regions,while offshore wind turbines will face the threat of icing.Therefore,it is necessary to study icing of offshore wind turbines under different icing conditions.In this study,icing sensitivity of offshore wind turbine blades are performed using a combination of FLUENT and FENSAP-ICE software,and the effects of liquid water content(LWC),medium volume diameter(MVD),wind speed and air tem-perature on blade icing shape are analyzed by two types of ice,namely rime ice and glaze ice.The results show that the increase of LWC and MVD will increase the amount of ice that forms on the blade surface for either glaze ice or rime ice,and an increase of MVD will expand the adhesion surface between ice and blade.Before reaching the rated wind speed of 11.4 m/s,it does not directly affect the icing shape.However,after reaching the rated wind speed,the attack angle of the incoming flow decreases obviously,and the amount of ice increases markedly.When the ambient air temperature meets the icing conditions of glaze ice(i.e.,-5℃to 0℃),the lower the temperature,the more glaze ice freezes,whereas air temperature has no impact on the icing of rime ice.Compared with onshore wind turbines,offshore wind turbines might face extreme meteorological conditions,and the wind speed has no impact on the amount of ice that forms on the blade surface for most wind speeds
Author Ma, Xian-dong
Yang, Xiang-yu
Cao, Hui-qing
Bai, Xu
Yin, Qun
AuthorAffiliation School of Naval Architecture&Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China%The Department of Engineering,Lancaster University,Lancaster LA1 4YW,UK
AuthorAffiliation_xml – name: School of Naval Architecture&Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China%The Department of Engineering,Lancaster University,Lancaster LA1 4YW,UK
Author_xml – sequence: 1
  givenname: Hui-qing
  surname: Cao
  fullname: Cao, Hui-qing
  organization: School of Naval Architecture & Ocean Engineering, Jiangsu University of Science and Technology
– sequence: 2
  givenname: Xu
  surname: Bai
  fullname: Bai, Xu
  email: baixu@just.edu.cn
  organization: School of Naval Architecture & Ocean Engineering, Jiangsu University of Science and Technology
– sequence: 3
  givenname: Xian-dong
  surname: Ma
  fullname: Ma, Xian-dong
  organization: The Department of Engineering, Lancaster University
– sequence: 4
  givenname: Qun
  surname: Yin
  fullname: Yin, Qun
  organization: School of Naval Architecture & Ocean Engineering, Jiangsu University of Science and Technology
– sequence: 5
  givenname: Xiang-yu
  surname: Yang
  fullname: Yang, Xiang-yu
  organization: School of Naval Architecture & Ocean Engineering, Jiangsu University of Science and Technology
BookMark eNp9kcFOFTEUhhsCCRf0Adw1ceWietppZ6ZLvaKSICQKYdn0dk6HkrkdbGci-PT2MiQkJrLqWXzff5rzH5H9OEYk5A2H9xyg-ZB5VUnJQAgGULfsfo-sBNectVqqfbKCVgNTsm0OyVHOtwCKK8lXJJ3PW0zB2YH-DNt5sFMYIx09PXUh9rTM5wkHqtj3a_oDPSaMDumF9_lmTEivQ-zo5Zw2ISL9NNgOM72KHSb6OfhHenpKWo-xC7vw_IoceDtkfP30HpOrLyeX62_s7OLr6frjGXOVgonpDda2c7JulNROqFojl1JIzjega9VVlbUovVPcK92Aaz14LoUX7YZzX_nqmLxbcn_b6G3sze04p1g2mj_9zUPvDIpyLlAAurBvF_Yujb9mzNMzLJpKla2qbgrVLJRLY84JvXFherzYlGwYDAezK8MsZZiSbnZlmPti8n_MuxS2Nj286IjFyYWNPabnP_1f-gst1p2k
CitedBy_id crossref_primary_10_1007_s13344_024_0045_7
crossref_primary_10_1016_j_oceaneng_2024_117726
crossref_primary_10_3390_coatings14020155
crossref_primary_10_3390_app14052109
crossref_primary_10_3390_en15238998
crossref_primary_10_1016_j_heliyon_2024_e31859
crossref_primary_10_1016_j_apor_2024_104234
crossref_primary_10_3390_en17225785
crossref_primary_10_3390_en17122805
crossref_primary_10_1007_s13344_023_0039_x
crossref_primary_10_1016_j_oceaneng_2025_120803
Cites_doi 10.1115/1.2424966
10.1186/2251-6832-3-1
10.1115/1.4003187
10.2514/6.2009-274
10.1016/j.enconman.2014.05.026
10.2514/6.1992-647
10.2514/2.2646
10.1016/j.renene.2021.07.033
10.2172/947422
10.1016/j.coldregions.2021.103250
10.1016/j.coldregions.2015.12.007
10.1016/j.oceaneng.2022.111725
10.1260/0309-524X.34.2.207
10.1016/j.jweia.2017.11.024
10.1109/PEMWA.2009.5208325
10.1175/2008JAS2503.1
10.1016/j.apenergy.2021.116610
10.1002/we.1573
10.1002/we.477
10.1007/978-3-319-05191-8
10.1115/1.4001574
10.1115/1.2888048
10.1007/s13344-021-0053-9
10.1260/0309524011495791
10.1016/0167-6105(92)90006-V
ContentType Journal Article
Copyright Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2022
Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7TN
F1W
H96
L.G
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s13344-022-0068-x
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 2191-8945
EndPage 780
ExternalDocumentID zghygc_e202205009
10_1007_s13344_022_0068_x
GroupedDBID -01
-0A
-EM
-SA
-S~
06D
0R~
0VY
188
29B
29~
2B.
2C.
2KG
2KM
30V
4.4
406
408
5GY
5VR
5XA
5XB
8RM
92E
92I
92M
92Q
93N
96X
9D9
9DA
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BGNMA
CAJEA
CCEZO
CCVFK
CHBEP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JUIAU
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PT4
Q--
Q-0
R-A
R9I
RLLFE
ROL
RSV
RT1
S..
S1Z
S27
S3B
SCL
SEG
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T8Q
TCJ
TGP
TSG
U1F
U1G
U2A
U5A
U5K
UG4
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z7R
ZMTXR
~A9
~LH
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7TN
ABRTQ
F1W
H96
L.G
4A8
PSX
ID FETCH-LOGICAL-c350t-9be6adc467549c2569e1442411b0965d33aae4fc51f5970c8f0f142f28b11f3f3
IEDL.DBID U2A
ISSN 0890-5487
IngestDate Thu May 29 03:55:51 EDT 2025
Wed Aug 13 10:40:26 EDT 2025
Tue Jul 01 01:29:48 EDT 2025
Thu Apr 24 23:02:44 EDT 2025
Fri Feb 21 02:44:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords offshore wind turbine
glaze
rime
cold regions
numerical simulation
environmental parameters
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-9be6adc467549c2569e1442411b0965d33aae4fc51f5970c8f0f142f28b11f3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2735241567
PQPubID 2043672
PageCount 14
ParticipantIDs wanfang_journals_zghygc_e202205009
proquest_journals_2735241567
crossref_citationtrail_10_1007_s13344_022_0068_x
crossref_primary_10_1007_s13344_022_0068_x
springer_journals_10_1007_s13344_022_0068_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle China ocean engineering
PublicationTitleAbbrev China Ocean Eng
PublicationTitle_FL China Ocean Engineering
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
School of Naval Architecture&Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China%The Department of Engineering,Lancaster University,Lancaster LA1 4YW,UK
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: School of Naval Architecture&Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China%The Department of Engineering,Lancaster University,Lancaster LA1 4YW,UK
References Makkonen, L., 1984. Atmospheric Icing on Sea Structures, CRREL report documentation number, 84–2.
BaiXShenJXueYZShuYCNumerical forecasting of icing on structural components of offshore platforms in polar regionsChina Ocean Engineering202135458859710.1007/s13344-021-0053-9
OzcanYTuncerIHAerodynamic shape optimization of wind turbine blades for minimizing power production losses due to icingCold Regions Science and Technology202118510325010.1016/j.coldregions.2021.103250
ShiWTanXGaoZMoanTNumerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditionsCold Regions Science and Technology201612312113910.1016/j.coldregions.2015.12.007
VirkMSNicklassonPJHomolaMCAtmospheric icing on large wind turbine bladesInternational Journal of Energy and Environment20123118
EtemaddarMHansenMOLMoanTWind turbine aerodynamic response under atmospheric icing conditionsWind Energy201417224126510.1002/we.1573
Battisti, L., Fedrizzi, R., Brighenti, A. and Laakso, T., 2006. Sea ice and icing risk for offshore wind turbines, Owemes 2006, Citavecchia, Italy.
ISOAtmospheric Icing of Structures2017SwitzerlandISO 12494:2017, ISO
ShinJBondTHExperimental and Computational Ice Shapes and Resulting Drag Increase for a NACA 0012 Airfoil1992Cleveland, OhioNASA Lewis Research Center
JasinskiWJNoeSCSeligMSBraggMBWind turbine performance under icing conditionsJournal of Solar Energy Engineering19981201606510.1115/1.2888048
Shin, J. and Bond, T.H., 1992a. Results of an icing test on a NACA 0012 airfoil in the NASA Lewis icing research tunnel, 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA.
Fortin, G. and Perron, J., 2009. Wind turbine icing and de-icing, 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, Florida.
Whiteman, A., Akande, D., Elhassan, N., et al., 2021. Renewable Energy Capacity Statistics, International Renewable Energy Agency.
YangXYBaiXCaoHQInfluence analysis of rime icing on aerodynamic performance and output power of offshore floating wind turbineOcean Engineering202225811172510.1016/j.oceaneng.2022.111725
Botta, G., Cavaliere, M. and Holttinen, H., 1998. Ice accretion at Acqua Spruzza and its effects on wind turbine operation and loss of energy production, Proceeding of the Boreas IV Conference, Hetta, Finland.
DNVGLIcing of Wind Turbines2017OsloDNVGL-RP-0175, DNVGL
VirkMSHomolaMCNicklassonPJEffect of rime ice accretion on aerodynamic characteristics of wind turbine blade profilesWind Engineering201034220721810.1260/0309-524X.34.2.207
HomolaMCVirkMSNicklassonPJSundsbøPAPerformance losses due to ice accretion for a 5 MW wind turbineWind Energy201215337938910.1002/we.477
JonkmanJMButterfieldSMusialWScottGDefinition of A 5-MW Reference Wind Turbine for Offshore System Development2009Golden, CO, USANational Renewable Energy Laboratory10.2172/947422
KostinskiACantrellWEntropic aspects of supercooled droplet freezingJournal of the Atmospheric Sciences20086592961297110.1175/2008JAS2503.1
LiYTagawaKFengFLiQHeQBA wind tunnel experimental study of icing on wind turbine blade airfoilEnergy Conversion and Management20148559159510.1016/j.enconman.2014.05.026
StoyanovDBNixonJDSarlakHAnalysis of derating and anti-icing strategies for wind turbines in cold climatesApplied Energy202128811661010.1016/j.apenergy.2021.116610
BattistiLWind Turbines in Cold Climates: Icing Impacts and Mitigation Systems2015SwitzerlandSpringer International Publishing10.1007/978-3-319-05191-8
BoseNIcing on a small horizontal-axis wind turbine—Part 1: Glaze ice profilesJournal of Wind Engineering and Industrial Aerodynamics1992451758510.1016/0167-6105(92)90006-V
IngramGWind Turbine Blade Analysis using the Blade Element Momentum Method. Version 1.02005Durham, NC, USADurham University
XieSMXueZHQuSHJiangDZZouBSummer arctic sea fogActa Oceanologica Sinica20012364050(in Chinese)
FranchiJRMokhatabSEnergy: Technology and directions for the futureJournal of Energy Resources Technology200712917910.1115/1.2424966
MakkonenLLaaksoTMarjaniemiMFinstadKJModelling and prevention of ice accretion on wind turbinesWind Engineering200125132110.1260/0309524011495791
ChenZKWeiLXLiZQLiuKDingMHSea fog characteristics over the Arctic pack ice in summer 2017Marine Forecasts20193627787(in Chinese)
Lu, B., Li, Y.Y. and Wu, Z.Z., 2009. A review of recent advances in wind turbine condition monitoring and fault diagnosis, 2009 IEEE Power Electronics and Machines in Wind Applications, Lincoln, NE, USA.
IRENAOffshore Renewables: An Action Agenda for Deployment2021Abu DhabiInternational Renewable Energy Agency
BarberSWangYJafariSChokaniNAbhariRSThe impact of ice formation on wind turbine performance and aerodynamicsJournal of Solar Energy Engineering2011133101100710.1115/1.4003187
BourgaultYBeaugendreHHabashiWGDevelopment of a shallow-water icing model in FENSAP-ICEJournal of Aircraft200037464064610.2514/2.2646
DebenedettiPGSupercooled and glassy waterJournal of Physics: Condensed Matter20031545R1669
GuoWFShenHLiYFengFTagawaKWind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbineRenewable Energy202117911613210.1016/j.renene.2021.07.033
ANSYS, Inc., 2020. ANSYS FENSAP-ICE User Manual, ANSYS 2020 R2, Canonsburg, PA.
IbrahimGMPopeKMuzychkaYSEffects of blade design on ice accretion for horizontal axis wind turbinesJournal of Wind Engineering and Industrial Aerodynamics2018173395210.1016/j.jweia.2017.11.024
Morgan, C., Bossanyi, E. and Seifert, H., 1998. Assessment of safety risks arising from wind turbine icing, BOREAS IV, Hetta, Finland, 113–121.
FronkBMNealRGarimellaSEvolution of the transition to a world driven by renewable energyJournal of Energy Resources Technology2010132202100910.1115/1.4001574
68_CR1
S Barber (68_CR3) 2011; 133
Y Bourgault (68_CR8) 2000; 37
ZK Chen (68_CR9) 2019; 36
L Makkonen (68_CR28) 2001; 25
WF Guo (68_CR16) 2021; 179
68_CR37
68_CR7
JR Franchi (68_CR14) 2007; 129
68_CR5
MC Homola (68_CR17) 2012; 15
68_CR32
L Battisti (68_CR4) 2015
68_CR13
SM Xie (68_CR38) 2001; 23
N Bose (68_CR6) 1992; 45
ISO (68_CR21) 2017
W Shi (68_CR31) 2016; 123
BM Fronk (68_CR15) 2010; 132
MS Virk (68_CR36) 2012; 3
PG Debenedetti (68_CR10) 2003; 15
Y Li (68_CR25) 2014; 85
J Shin (68_CR33) 1992
IRENA (68_CR20) 2021
XY Yang (68_CR39) 2022; 258
M Etemaddar (68_CR12) 2014; 17
WJ Jasinski (68_CR22) 1998; 120
68_CR29
MS Virk (68_CR35) 2010; 34
68_CR26
DNVGL (68_CR11) 2017
68_CR27
JM Jonkman (68_CR23) 2009
GM Ibrahim (68_CR18) 2018; 173
DB Stoyanov (68_CR34) 2021; 288
G Ingram (68_CR19) 2005
A Kostinski (68_CR24) 2008; 65
Y Ozcan (68_CR30) 2021; 185
X Bai (68_CR2) 2021; 35
References_xml – reference: BoseNIcing on a small horizontal-axis wind turbine—Part 1: Glaze ice profilesJournal of Wind Engineering and Industrial Aerodynamics1992451758510.1016/0167-6105(92)90006-V
– reference: ChenZKWeiLXLiZQLiuKDingMHSea fog characteristics over the Arctic pack ice in summer 2017Marine Forecasts20193627787(in Chinese)
– reference: Whiteman, A., Akande, D., Elhassan, N., et al., 2021. Renewable Energy Capacity Statistics, International Renewable Energy Agency.
– reference: ShiWTanXGaoZMoanTNumerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditionsCold Regions Science and Technology201612312113910.1016/j.coldregions.2015.12.007
– reference: FronkBMNealRGarimellaSEvolution of the transition to a world driven by renewable energyJournal of Energy Resources Technology2010132202100910.1115/1.4001574
– reference: Makkonen, L., 1984. Atmospheric Icing on Sea Structures, CRREL report documentation number, 84–2.
– reference: Morgan, C., Bossanyi, E. and Seifert, H., 1998. Assessment of safety risks arising from wind turbine icing, BOREAS IV, Hetta, Finland, 113–121.
– reference: IngramGWind Turbine Blade Analysis using the Blade Element Momentum Method. Version 1.02005Durham, NC, USADurham University
– reference: BattistiLWind Turbines in Cold Climates: Icing Impacts and Mitigation Systems2015SwitzerlandSpringer International Publishing10.1007/978-3-319-05191-8
– reference: EtemaddarMHansenMOLMoanTWind turbine aerodynamic response under atmospheric icing conditionsWind Energy201417224126510.1002/we.1573
– reference: DNVGLIcing of Wind Turbines2017OsloDNVGL-RP-0175, DNVGL
– reference: FranchiJRMokhatabSEnergy: Technology and directions for the futureJournal of Energy Resources Technology200712917910.1115/1.2424966
– reference: BourgaultYBeaugendreHHabashiWGDevelopment of a shallow-water icing model in FENSAP-ICEJournal of Aircraft200037464064610.2514/2.2646
– reference: IRENAOffshore Renewables: An Action Agenda for Deployment2021Abu DhabiInternational Renewable Energy Agency
– reference: JasinskiWJNoeSCSeligMSBraggMBWind turbine performance under icing conditionsJournal of Solar Energy Engineering19981201606510.1115/1.2888048
– reference: Shin, J. and Bond, T.H., 1992a. Results of an icing test on a NACA 0012 airfoil in the NASA Lewis icing research tunnel, 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA.
– reference: KostinskiACantrellWEntropic aspects of supercooled droplet freezingJournal of the Atmospheric Sciences20086592961297110.1175/2008JAS2503.1
– reference: YangXYBaiXCaoHQInfluence analysis of rime icing on aerodynamic performance and output power of offshore floating wind turbineOcean Engineering202225811172510.1016/j.oceaneng.2022.111725
– reference: Battisti, L., Fedrizzi, R., Brighenti, A. and Laakso, T., 2006. Sea ice and icing risk for offshore wind turbines, Owemes 2006, Citavecchia, Italy.
– reference: BarberSWangYJafariSChokaniNAbhariRSThe impact of ice formation on wind turbine performance and aerodynamicsJournal of Solar Energy Engineering2011133101100710.1115/1.4003187
– reference: OzcanYTuncerIHAerodynamic shape optimization of wind turbine blades for minimizing power production losses due to icingCold Regions Science and Technology202118510325010.1016/j.coldregions.2021.103250
– reference: GuoWFShenHLiYFengFTagawaKWind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbineRenewable Energy202117911613210.1016/j.renene.2021.07.033
– reference: HomolaMCVirkMSNicklassonPJSundsbøPAPerformance losses due to ice accretion for a 5 MW wind turbineWind Energy201215337938910.1002/we.477
– reference: VirkMSNicklassonPJHomolaMCAtmospheric icing on large wind turbine bladesInternational Journal of Energy and Environment20123118
– reference: DebenedettiPGSupercooled and glassy waterJournal of Physics: Condensed Matter20031545R1669
– reference: IbrahimGMPopeKMuzychkaYSEffects of blade design on ice accretion for horizontal axis wind turbinesJournal of Wind Engineering and Industrial Aerodynamics2018173395210.1016/j.jweia.2017.11.024
– reference: LiYTagawaKFengFLiQHeQBA wind tunnel experimental study of icing on wind turbine blade airfoilEnergy Conversion and Management20148559159510.1016/j.enconman.2014.05.026
– reference: MakkonenLLaaksoTMarjaniemiMFinstadKJModelling and prevention of ice accretion on wind turbinesWind Engineering200125132110.1260/0309524011495791
– reference: StoyanovDBNixonJDSarlakHAnalysis of derating and anti-icing strategies for wind turbines in cold climatesApplied Energy202128811661010.1016/j.apenergy.2021.116610
– reference: ISOAtmospheric Icing of Structures2017SwitzerlandISO 12494:2017, ISO
– reference: Lu, B., Li, Y.Y. and Wu, Z.Z., 2009. A review of recent advances in wind turbine condition monitoring and fault diagnosis, 2009 IEEE Power Electronics and Machines in Wind Applications, Lincoln, NE, USA.
– reference: Fortin, G. and Perron, J., 2009. Wind turbine icing and de-icing, 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, Florida.
– reference: ANSYS, Inc., 2020. ANSYS FENSAP-ICE User Manual, ANSYS 2020 R2, Canonsburg, PA.
– reference: XieSMXueZHQuSHJiangDZZouBSummer arctic sea fogActa Oceanologica Sinica20012364050(in Chinese)
– reference: BaiXShenJXueYZShuYCNumerical forecasting of icing on structural components of offshore platforms in polar regionsChina Ocean Engineering202135458859710.1007/s13344-021-0053-9
– reference: VirkMSHomolaMCNicklassonPJEffect of rime ice accretion on aerodynamic characteristics of wind turbine blade profilesWind Engineering201034220721810.1260/0309-524X.34.2.207
– reference: ShinJBondTHExperimental and Computational Ice Shapes and Resulting Drag Increase for a NACA 0012 Airfoil1992Cleveland, OhioNASA Lewis Research Center
– reference: Botta, G., Cavaliere, M. and Holttinen, H., 1998. Ice accretion at Acqua Spruzza and its effects on wind turbine operation and loss of energy production, Proceeding of the Boreas IV Conference, Hetta, Finland.
– reference: JonkmanJMButterfieldSMusialWScottGDefinition of A 5-MW Reference Wind Turbine for Offshore System Development2009Golden, CO, USANational Renewable Energy Laboratory10.2172/947422
– volume: 129
  start-page: 79
  issue: 1
  year: 2007
  ident: 68_CR14
  publication-title: Journal of Energy Resources Technology
  doi: 10.1115/1.2424966
– volume: 3
  start-page: 1
  issue: 1
  year: 2012
  ident: 68_CR36
  publication-title: International Journal of Energy and Environment
  doi: 10.1186/2251-6832-3-1
– ident: 68_CR37
– volume: 23
  start-page: 40
  issue: 6
  year: 2001
  ident: 68_CR38
  publication-title: Acta Oceanologica Sinica
– volume: 133
  start-page: 011007
  issue: 1
  year: 2011
  ident: 68_CR3
  publication-title: Journal of Solar Energy Engineering
  doi: 10.1115/1.4003187
– ident: 68_CR13
  doi: 10.2514/6.2009-274
– volume: 85
  start-page: 591
  year: 2014
  ident: 68_CR25
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2014.05.026
– ident: 68_CR32
  doi: 10.2514/6.1992-647
– volume: 37
  start-page: 640
  issue: 4
  year: 2000
  ident: 68_CR8
  publication-title: Journal of Aircraft
  doi: 10.2514/2.2646
– volume: 179
  start-page: 116
  year: 2021
  ident: 68_CR16
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2021.07.033
– volume-title: Definition of A 5-MW Reference Wind Turbine for Offshore System Development
  year: 2009
  ident: 68_CR23
  doi: 10.2172/947422
– volume: 185
  start-page: 103250
  year: 2021
  ident: 68_CR30
  publication-title: Cold Regions Science and Technology
  doi: 10.1016/j.coldregions.2021.103250
– volume: 123
  start-page: 121
  year: 2016
  ident: 68_CR31
  publication-title: Cold Regions Science and Technology
  doi: 10.1016/j.coldregions.2015.12.007
– volume-title: Offshore Renewables: An Action Agenda for Deployment
  year: 2021
  ident: 68_CR20
– volume: 258
  start-page: 111725
  year: 2022
  ident: 68_CR39
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.111725
– ident: 68_CR1
– volume: 34
  start-page: 207
  issue: 2
  year: 2010
  ident: 68_CR35
  publication-title: Wind Engineering
  doi: 10.1260/0309-524X.34.2.207
– volume: 173
  start-page: 39
  year: 2018
  ident: 68_CR18
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
  doi: 10.1016/j.jweia.2017.11.024
– ident: 68_CR26
  doi: 10.1109/PEMWA.2009.5208325
– volume: 15
  start-page: R1669
  issue: 45
  year: 2003
  ident: 68_CR10
  publication-title: Journal of Physics: Condensed Matter
– ident: 68_CR7
– volume: 36
  start-page: 77
  issue: 2
  year: 2019
  ident: 68_CR9
  publication-title: Marine Forecasts
– volume: 65
  start-page: 2961
  issue: 9
  year: 2008
  ident: 68_CR24
  publication-title: Journal of the Atmospheric Sciences
  doi: 10.1175/2008JAS2503.1
– volume: 288
  start-page: 116610
  year: 2021
  ident: 68_CR34
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2021.116610
– volume: 17
  start-page: 241
  issue: 2
  year: 2014
  ident: 68_CR12
  publication-title: Wind Energy
  doi: 10.1002/we.1573
– volume: 15
  start-page: 379
  issue: 3
  year: 2012
  ident: 68_CR17
  publication-title: Wind Energy
  doi: 10.1002/we.477
– volume-title: Wind Turbines in Cold Climates: Icing Impacts and Mitigation Systems
  year: 2015
  ident: 68_CR4
  doi: 10.1007/978-3-319-05191-8
– ident: 68_CR5
– volume-title: Wind Turbine Blade Analysis using the Blade Element Momentum Method. Version 1.0
  year: 2005
  ident: 68_CR19
– volume-title: Atmospheric Icing of Structures
  year: 2017
  ident: 68_CR21
– ident: 68_CR27
– volume-title: Icing of Wind Turbines
  year: 2017
  ident: 68_CR11
– volume: 132
  start-page: 021009
  issue: 2
  year: 2010
  ident: 68_CR15
  publication-title: Journal of Energy Resources Technology
  doi: 10.1115/1.4001574
– volume: 120
  start-page: 60
  issue: 1
  year: 1998
  ident: 68_CR22
  publication-title: Journal of Solar Energy Engineering
  doi: 10.1115/1.2888048
– volume: 35
  start-page: 588
  issue: 4
  year: 2021
  ident: 68_CR2
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-021-0053-9
– ident: 68_CR29
– volume: 25
  start-page: 3
  issue: 1
  year: 2001
  ident: 68_CR28
  publication-title: Wind Engineering
  doi: 10.1260/0309524011495791
– volume-title: Experimental and Computational Ice Shapes and Resulting Drag Increase for a NACA 0012 Airfoil
  year: 1992
  ident: 68_CR33
– volume: 45
  start-page: 75
  issue: 1
  year: 1992
  ident: 68_CR6
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
  doi: 10.1016/0167-6105(92)90006-V
SSID ssj0051541
Score 2.350236
Snippet Offshore wind energy resources are operational in cold regions, while offshore wind turbines will face the threat of icing. Therefore, it is necessary to study...
Offshore wind energy resources are operational in cold regions,while offshore wind turbines will face the threat of icing.Therefore,it is necessary to study...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 767
SubjectTerms Air temperature
Ambient temperature
Angle of attack
Coastal Sciences
Cold regions
Energy resources
Energy sources
Engineering
Fluid- and Aerodynamics
Ice
Ice formation
Icing
Marine & Freshwater Sciences
Moisture content
Numerical and Computational Physics
Oceanography
Offshore
Offshore energy sources
Offshore Engineering
Original Paper
Rime
Shape
Simulation
Turbine blades
Turbine engines
Turbines
Water
Water content
Wind power
Wind speed
Wind turbines
Title Numerical Simulation of Icing on Nrel 5-MW Reference Offshore Wind Turbine Blades Under Different Icing Conditions
URI https://link.springer.com/article/10.1007/s13344-022-0068-x
https://www.proquest.com/docview/2735241567
https://d.wanfangdata.com.cn/periodical/zghygc-e202205009
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MXNTEKGpEkTTGk6bJtq5jOyKCqBEOQsDTspYWTHCYAYn61_s6OoaJMfG2ZO077Ov6vi_vF0KX3GJKAO7E4cwirpA24R53iCdszx-BpLBVmuXb8dp992HIhqaOe55lu2chyfSmzovdKHVdorPPdV0DAeJYZCDddR5f36ln1y_453RcpeUHFtF0PAtl_mbipzPKGeY6KJqW8sQqiscbXqe1j_YMXcT1Fb4HaEvGJbSz0USwhHa7Qkax6Tx9iJLOchWEmeLn1zcznAvPFL4XsBzDcyeRU8zI0wCvu8zirlLzySyReAAaHfeWCQhmiW-m0UjOcTobCd-aUSoLY6kx09FufWqPUL_V7DXaxAxWIIIya0ECLr1oJOCOBHUogPQEEnQV-HKb62YwI0qjSLpKMAAqqFnCV5ayXUc5PrdtRRU9RoV4FssThCVnADUHlUIVcBEeccF4LXAE9YELRn4ZWdkXDoXpOq6HX0zDvF-yBiUEUEINSvhRRlfrLe-rlht_La5ksIXm75uHQMlYqkxrZXSdQZm__sPYhUE7X_w1nnyORSidtCQZGOnpv0yeoW29c5X-V0GFRbKU50BjFryKivW7l8dmNT2-38Mm6cU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5N5WEwiQ3GtPJrFuIJZJTEcZo8MgYrv8oDRbAnK3btMq1LUZpKwF-_c-I0gCYk3irFOaX22f4-3d13ANvS40bhutNAco-GSvtURjKgkfKjeICUwjdllm8v6l6FJzf8xtVxT-ps9zokWZ7UTbEbY2FIbfa5rWugCBznQqTgYQvm9n_-Oj2sD2C8ocuGlV6ceNQC8jqY-T8jz6-jBmPOwqJlMU9m0mz45N45-gj9-ourdJM_e9NC7qnHF2KOb_xLn2DR4VCyXznOErzT2TIsPFEnXIYPF0qnmZO0_gx5b1pFd0bk8vdf1_WLjA05Vjic4O9erkeE0_NrMpOvJRfGTG7HuSbXSP5Jf5ojE9fk-ygd6Akpmy6RH65HS-EsHYxtGN1uhxW4OjrsH3Sp69hAFeNeQROpo3Sg8PBF2qkQTSUaCRuCBF9alZkBY2mqQ6M4ekDS8VRsPOOHgQli6fuGGfYFWtk401-BaMnRhyTSH2YQ5MhUKi47SaBYjCAzjdvg1QsnlJMzt101RqIRYrazK3B2hZ1dcd-Gndkrd5WWx2uD12tvEG5bTwRiPV5S3k4bduslbR6_YmzLOVEz-HF4-zBUQgdlrTNC3dU3mfwG77v98zNxdtw7XYN5a6XKMVyHVpFP9QZipUJuur3xDxm-CDM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5NRZo2pP1gm-hgmzXxxGRI4jhNHvnVwdgK0kDAkxc7dkGUFKWpxPjrOSdOA9OENO0tUpxTYp_j73R33wewIj1uFK47DST3aKi0T2UkAxopP4ozDCl8U1X5DqLd4_DbKT91OqeTptq9SUnWPQ2WpSkv168zs942vjEWhtRWotseB4ogci603OwdmNv4era_0_yM8bSuxCu9OPGoBedNYvNvRh4eTS3enKVIq8ae3KT58N4Z1H8Jv5q3r0tPLtempVxTt38QO_7H572CFw6fko3aoV7DE50vwPN7rIULMH-gdJo7qus3UAymddZnRH5eXDk1MDI2ZE_hcILXg0KPCKc_TsiM1pYcGDM5HxeanFzkGTmaFhiha7I5SjM9IZUYE9l22i2ls7Q1tul1u03ewnF_52hrlzolB6oY90qaSB2lmcKfMoajClFWojGQQ_DgS8s-kzGWpjo0iqNnJD1PxcYzfhiYIJa-b5hh76CTj3O9CERLjr4lMSxiBsGPTKXispcEisUIPtO4C16ziEI5mnOrtjESLUGznV2Bsyvs7IqbLqzOHrmuOT4eG7zceIZw230iEAPyKhTudeFLs7zt7UeMfXYO1Q6-HZ7_Hiqhg6oHGiHw-38y-QmeHm73xfe9wf4SPLNG6tLDZeiUxVR_QAhVyo9um9wBkfcRFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Simulation+of+Icing+on+Nrel+5-MW+Reference+Offshore+Wind+Turbine+Blades+Under+Different+Icing+Conditions&rft.jtitle=China+ocean+engineering&rft.au=Hui-qing%2C+Cao&rft.au=Xu%2C+Bai&rft.au=Xian-dong%2C+Ma&rft.au=Yin+Qun&rft.date=2022-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0890-5487&rft.eissn=2191-8945&rft.volume=36&rft.issue=5&rft.spage=767&rft.epage=780&rft_id=info:doi/10.1007%2Fs13344-022-0068-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghygc-e%2Fzghygc-e.jpg