Two-Stream Approximation to the Radiative Transfer Equation: A New Improvement and Comparative Accuracy with Existing Methods

Mathematical modeling of the interaction between solar radiation and the Earth’s atmosphere is formalized by the radiative transfer equation (RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the develop...

Full description

Saved in:
Bibliographic Details
Published inAdvances in atmospheric sciences Vol. 41; no. 2; pp. 278 - 292
Main Authors Temgoua, F. Momo, Nguimdo, L. Akana, Njomo, D.
Format Journal Article
LanguageEnglish
Published Heidelberg Science Press 01.02.2024
Springer Nature B.V
Department of Electrical and Electronic Engineering,Faculty of Engineering and Technology,University of Buea,PO Box 63 Buea,Cameroon
Environmental Energy Technologies Laboratory (EETL),Faculty of Sciences,University of Yaoundé,PO Box 812 Yaoundé,Cameroon%Environmental Energy Technologies Laboratory (EETL),Faculty of Sciences,University of Yaoundé,PO Box 812 Yaoundé,Cameroon
Subjects
Online AccessGet full text
ISSN0256-1530
1861-9533
DOI10.1007/s00376-023-2257-9

Cover

Abstract Mathematical modeling of the interaction between solar radiation and the Earth’s atmosphere is formalized by the radiative transfer equation (RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the development of the phase function and the intensity into a third-order series of Legendre polynomials. This new approach, which adds one more term in the expression of the intensity and the phase function, allows in the conditions of a plane parallel atmosphere a new mathematical formulation of γ parameters. It is then compared to the Eddington, Hemispheric Constant, Quadrature, Combined Delta Function and Modified Eddington, and second-order approximation methods with reference to the Discrete Ordinate (Disort) method ( δ –128 streams), considered as the most precise. This work also determines the conversion function of the proposed New Method using the fundamental definition of two-stream approximation (F-TSA) developed in a previous work. Notably, New Method has generally better precision compared to the second-order approximation and Hemispheric Constant methods. Compared to the Quadrature and Eddington methods, New Method shows very good precision for wide domains of the zenith angle μ 0 , but tends to deviate from the Disort method with the zenith angle, especially for high values of optical thickness. In spite of this divergence in reflectance for high values of optical thickness, very strong correlation with the Disort method ( R ≈ 1) was obtained for most cases of optical thickness in this study. An analysis of the Legendre polynomial series for simple functions shows that the high precision is due to the fact that the approximated functions ameliorate the accuracy when the order of approximation increases, although it has been proven that there is a limit order depending on the function from which the precision is lost. This observation indicates that increasing the order of approximation of the phase function of the RTE leads to a better precision in flux calculations. However, this approach may be limited to a certain order that has not been studied in this paper.
AbstractList Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation (RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the development of the phase function and the intensity into a third-order series of Legendre polynomials. This new approach, which adds one more term in the expression of the intensity and the phase function, allows in the conditions of a plane parallel atmosphere a new mathematical formulation of γ parameters. It is then compared to the Eddington, Hemispheric Constant, Quadrature, Combined Delta Function and Modified Eddington, and second-order approximation methods with reference to the Discrete Ordinate (Disort) method (δ–128 streams), considered as the most precise. This work also determines the conversion function of the proposed New Method using the fundamental definition of two-stream approximation (F-TSA) developed in a previous work. Notably, New Method has generally better precision compared to the second-order approximation and Hemispheric Constant methods. Compared to the Quadrature and Eddington methods, New Method shows very good precision for wide domains of the zenith angle μ0, but tends to deviate from the Disort method with the zenith angle, especially for high values of optical thickness. In spite of this divergence in reflectance for high values of optical thickness, very strong correlation with the Disort method (R≈1) was obtained for most cases of optical thickness in this study. An analysis of the Legendre polynomial series for simple functions shows that the high precision is due to the fact that the approximated functions ameliorate the accuracy when the order of approximation increases, although it has been proven that there is a limit order depending on the function from which the precision is lost. This observation indicates that increasing the order of approximation of the phase function of the RTE leads to a better precision in flux calculations. However, this approach may be limited to a certain order that has not been studied in this paper.
Mathematical modeling of the interaction between solar radiation and the Earth’s atmosphere is formalized by the radiative transfer equation (RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the development of the phase function and the intensity into a third-order series of Legendre polynomials. This new approach, which adds one more term in the expression of the intensity and the phase function, allows in the conditions of a plane parallel atmosphere a new mathematical formulation of γ parameters. It is then compared to the Eddington, Hemispheric Constant, Quadrature, Combined Delta Function and Modified Eddington, and second-order approximation methods with reference to the Discrete Ordinate (Disort) method ( δ –128 streams), considered as the most precise. This work also determines the conversion function of the proposed New Method using the fundamental definition of two-stream approximation (F-TSA) developed in a previous work. Notably, New Method has generally better precision compared to the second-order approximation and Hemispheric Constant methods. Compared to the Quadrature and Eddington methods, New Method shows very good precision for wide domains of the zenith angle μ 0 , but tends to deviate from the Disort method with the zenith angle, especially for high values of optical thickness. In spite of this divergence in reflectance for high values of optical thickness, very strong correlation with the Disort method ( R ≈ 1) was obtained for most cases of optical thickness in this study. An analysis of the Legendre polynomial series for simple functions shows that the high precision is due to the fact that the approximated functions ameliorate the accuracy when the order of approximation increases, although it has been proven that there is a limit order depending on the function from which the precision is lost. This observation indicates that increasing the order of approximation of the phase function of the RTE leads to a better precision in flux calculations. However, this approach may be limited to a certain order that has not been studied in this paper.
Mathematical modeling of the interaction between solar radiation and the Earth’s atmosphere is formalized by the radiative transfer equation (RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the development of the phase function and the intensity into a third-order series of Legendre polynomials. This new approach, which adds one more term in the expression of the intensity and the phase function, allows in the conditions of a plane parallel atmosphere a new mathematical formulation of γ parameters. It is then compared to the Eddington, Hemispheric Constant, Quadrature, Combined Delta Function and Modified Eddington, and second-order approximation methods with reference to the Discrete Ordinate (Disort) method (δ–128 streams), considered as the most precise. This work also determines the conversion function of the proposed New Method using the fundamental definition of two-stream approximation (F-TSA) developed in a previous work. Notably, New Method has generally better precision compared to the second-order approximation and Hemispheric Constant methods. Compared to the Quadrature and Eddington methods, New Method shows very good precision for wide domains of the zenith angle μ0, but tends to deviate from the Disort method with the zenith angle, especially for high values of optical thickness. In spite of this divergence in reflectance for high values of optical thickness, very strong correlation with the Disort method (R ≈ 1) was obtained for most cases of optical thickness in this study. An analysis of the Legendre polynomial series for simple functions shows that the high precision is due to the fact that the approximated functions ameliorate the accuracy when the order of approximation increases, although it has been proven that there is a limit order depending on the function from which the precision is lost. This observation indicates that increasing the order of approximation of the phase function of the RTE leads to a better precision in flux calculations. However, this approach may be limited to a certain order that has not been studied in this paper.
Author Nguimdo, L. Akana
Njomo, D.
Temgoua, F. Momo
AuthorAffiliation Environmental Energy Technologies Laboratory (EETL),Faculty of Sciences,University of Yaoundé,PO Box 812 Yaoundé,Cameroon%Environmental Energy Technologies Laboratory (EETL),Faculty of Sciences,University of Yaoundé,PO Box 812 Yaoundé,Cameroon;Department of Electrical and Electronic Engineering,Faculty of Engineering and Technology,University of Buea,PO Box 63 Buea,Cameroon
AuthorAffiliation_xml – name: Environmental Energy Technologies Laboratory (EETL),Faculty of Sciences,University of Yaoundé,PO Box 812 Yaoundé,Cameroon%Environmental Energy Technologies Laboratory (EETL),Faculty of Sciences,University of Yaoundé,PO Box 812 Yaoundé,Cameroon;Department of Electrical and Electronic Engineering,Faculty of Engineering and Technology,University of Buea,PO Box 63 Buea,Cameroon
Author_xml – sequence: 1
  givenname: F. Momo
  surname: Temgoua
  fullname: Temgoua, F. Momo
  organization: Environmental Energy Technologies Laboratory (EETL), Faculty of Sciences, University of Yaoundé
– sequence: 2
  givenname: L. Akana
  surname: Nguimdo
  fullname: Nguimdo, L. Akana
  email: languimdo@yahoo.fr
  organization: Environmental Energy Technologies Laboratory (EETL), Faculty of Sciences, University of Yaoundé, Department of Electrical and Electronic Engineering, Faculty of Engineering and Technology, University of Buea
– sequence: 3
  givenname: D.
  surname: Njomo
  fullname: Njomo, D.
  organization: Environmental Energy Technologies Laboratory (EETL), Faculty of Sciences, University of Yaoundé
BookMark eNp9kU2LUzEUhoOMYGf0B7gLuHJx9eSrSdyVUnVgVNC6Dmlubnvr3KRN0mlH8L-bzhUGBN0kEJ7nnJPzXqKLEINH6CWBNwRAvs0ATE4boKyhVMhGP0EToqak0YKxCzQBKqYNEQyeocuct5XWTJEJ-rU8xuZbSd4OeLbbpXjqB1v6GHCJuGw8_mrbvj7cebxMNuTOJ7zYHx6Qd3iGP_sjvh6qd-cHHwq2ocXzOOxsGqWZc4dk3T0-9mWDF6c-lz6s8SdfNrHNz9HTzt5m_-LPfYW-v18s5x-bmy8fruezm8YxAaXRWk8115YLyhm39ZSUEsUpp61gK-kdrIiTreMrTuxKAdeSMNJJRkGBUOwKvR7rHm3obFibbTykUDuadv_jtP1pPAXKgQKc2VcjWz-1P_hcHmGqtOKCMHWm5Ei5FHNOvjOuLw9bKcn2t4aAOedixlxMzcWcczG6muQvc5fqztP9fx06OrmyYe3T40z_ln4DJzSgrw
CitedBy_id crossref_primary_10_3390_math12243904
Cites_doi 10.1175/1520-0442(1995)008<2213:ISOCSS>2.0.CO;2
10.1029/JD092iD01p01009
10.1016/j.jqsrt.2008.09.009
10.1007/s10470-011-9625-6
10.1109/TGRS.2021.3129209
10.5194/acp-13-2347-2013
10.1029/JD094iD13p16287
10.1175/1520-0469(1986)043<0784:CAOSMS>2.0.CO;2
10.1007/BF00696577
10.1175/1520-0469(1981)038<0387:ANLATD>2.0.CO;2
10.1016/j.jqsrt.2011.06.014
10.1364/OE.417153
10.1029/2021JE006889
10.1175/1520-0469(1980)037<0630:TSATRT>2.0.CO;2
10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2
10.1002/2017MS000994
10.1088/0067-0049/215/1/4
10.1016/S0022-4073(99)00137-5
10.1109/IGARSS.2010.5652681
10.1007/978-3-662-49538-4_1
ContentType Journal Article
Copyright Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press 2024
Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press 2024.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press 2024
– notice: Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press 2024.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7TG
F1W
H96
KL.
L.G
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s00376-023-2257-9
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1861-9533
EndPage 292
ExternalDocumentID dqkxjz_e202402008
10_1007_s00376_023_2257_9
GroupedDBID -5A
-5G
-5~
-BR
-EM
-SA
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
2.D
23M
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VR
5VS
5XA
5XB
67M
6J9
6NX
7XC
88I
8FE
8FH
8TC
8UJ
92E
92I
92Q
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
C1A
CAG
CAJEA
CCEZO
CCPQU
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
D1K
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
I~X
I~Z
J-C
JBSCW
JZLTJ
K6-
KOV
L8X
LAS
LK5
LLZTM
M1Q
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q--
Q2X
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCL
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGP
TSG
TUC
U1G
U2A
U5K
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z7R
Z8M
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TG
ABRTQ
F1W
H96
KL.
L.G
4A8
PMFND
PSX
ID FETCH-LOGICAL-c350t-9996949a452434a524722184242d53b7ec0b1c7dc4b41ab80497131f732080583
IEDL.DBID AGYKE
ISSN 0256-1530
IngestDate Thu May 29 04:02:40 EDT 2025
Tue Sep 09 13:50:49 EDT 2025
Thu Apr 24 23:13:07 EDT 2025
Tue Jul 01 02:41:03 EDT 2025
Fri Feb 21 02:41:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 勒让德多项式
透过率
moments of specific intensity
conversion function
reflectance
二流方法
transmittance
two-stream method
Legendre polynomial
Radiative Transfer Equation
反射率
转换函数
辐射传输方程
比强度矩
光学厚度
optical thickness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-9996949a452434a524722184242d53b7ec0b1c7dc4b41ab80497131f732080583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2898451388
PQPubID 54452
PageCount 15
ParticipantIDs wanfang_journals_dqkxjz_e202402008
proquest_journals_2898451388
crossref_citationtrail_10_1007_s00376_023_2257_9
crossref_primary_10_1007_s00376_023_2257_9
springer_journals_10_1007_s00376_023_2257_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
– name: Dordrecht
PublicationTitle Advances in atmospheric sciences
PublicationTitleAbbrev Adv. Atmos. Sci
PublicationTitle_FL Advances in Atmospheric Sciences
PublicationYear 2024
Publisher Science Press
Springer Nature B.V
Department of Electrical and Electronic Engineering,Faculty of Engineering and Technology,University of Buea,PO Box 63 Buea,Cameroon
Environmental Energy Technologies Laboratory (EETL),Faculty of Sciences,University of Yaoundé,PO Box 812 Yaoundé,Cameroon%Environmental Energy Technologies Laboratory (EETL),Faculty of Sciences,University of Yaoundé,PO Box 812 Yaoundé,Cameroon
Publisher_xml – name: Science Press
– name: Springer Nature B.V
– name: Department of Electrical and Electronic Engineering,Faculty of Engineering and Technology,University of Buea,PO Box 63 Buea,Cameroon
– name: Environmental Energy Technologies Laboratory (EETL),Faculty of Sciences,University of Yaoundé,PO Box 812 Yaoundé,Cameroon%Environmental Energy Technologies Laboratory (EETL),Faculty of Sciences,University of Yaoundé,PO Box 812 Yaoundé,Cameroon
References Spurr, Natraj (CR20) 2011; 112
King (CR10) 1986; 43
Heng, Mendonça, Lee (CR6) 2014; 215
Baek (CR1) 2017; 9
Matagne (CR15) 2011; 69
Toon, Mckay, Ackerman, Santhanam (CR22) 1989; 94
Barker, Li (CR2) 1995; 8
Joseph, Wiscombe, Weinman (CR9) 1976; 33
CR13
CR12
Kylling, Stamnes, Tsay (CR11) 1995; 21
Stamnes, Swanson (CR21) 1980; 38
Randles (CR17) 2013; 13
Shi, Yang, Weng (CR19) 2021; 29
Lu, Zhang, Li (CR14) 2009; 110
Harshvardhan, Randall, Corsetti (CR5) 1987; 92
Jiménez-Aquinto, Varela (CR8) 2005; 51
Gabriel, Stephens, Wittmeyer (CR4) 2000; 65
Meador, Weaver (CR16) 1980; 37
Yin, Song (CR23) 2022; 60
Chen-Chen, Pérez-Hoyos, Sánchez-Lavega (CR3) 2021; 126
Hou, Yin, Xu, Li, Chen (CR7) 2010
Raut (CR18) 2008
Q Yin (2257_CR23) 2022; 60
S Baek (2257_CR1) 2017; 9
R Spurr (2257_CR20) 2011; 112
J I Jiménez-Aquinto (2257_CR8) 2005; 51
K Heng (2257_CR6) 2014; 215
M D King (2257_CR10) 1986; 43
C A Randles (2257_CR17) 2013; 13
W E Meador (2257_CR16) 1980; 37
J C Raut (2257_CR18) 2008
K Stamnes (2257_CR21) 1980; 38
R D Harshvardhan (2257_CR5) 1987; 92
W Z Hou (2257_CR7) 2010
Y-N Shi (2257_CR19) 2021; 29
J H Joseph (2257_CR9) 1976; 33
E Matagne (2257_CR15) 2011; 69
P Lu (2257_CR14) 2009; 110
H Chen-Chen (2257_CR3) 2021; 126
P Gabriel (2257_CR4) 2000; 65
O B Toon (2257_CR22) 1989; 94
2257_CR13
2257_CR12
H W Barker (2257_CR2) 1995; 8
A Kylling (2257_CR11) 1995; 21
References_xml – volume: 8
  start-page: 2213
  issue: 9
  year: 1995
  end-page: 2223
  ident: CR2
  article-title: Improved simulation of clear-sky shortwave radiative transfer in the CCC-GCM
  publication-title: J. Climate
  doi: 10.1175/1520-0442(1995)008<2213:ISOCSS>2.0.CO;2
– volume: 92
  start-page: 1009
  issue: D1
  year: 1987
  end-page: 1016
  ident: CR5
  article-title: A fast radiation parameterization for atmospheric circulation models
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/JD092iD01p01009
– volume: 110
  start-page: 129
  year: 2009
  end-page: 138
  ident: CR14
  article-title: A comparison of two-stream DISORT and Eddington radiative transfer schemes in a real atmospheric profile
  publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer
  doi: 10.1016/j.jqsrt.2008.09.009
– volume: 69
  start-page: 59
  issue: 1
  year: 2011
  end-page: 65
  ident: CR15
  article-title: Enhanced δ-two-stream approximation model of diffuse solar radiation and its application to computation of solar irradiation on tilted surfaces
  publication-title: Analog Integrated Circuits and Signal Processing
  doi: 10.1007/s10470-011-9625-6
– volume: 60
  start-page: 2003614
  year: 2022
  ident: CR23
  article-title: Fundamental definition of two-stream approximation for radiative transfer in scattering atmosphere
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2021.3129209
– volume: 13
  start-page: 2347
  issue: 5
  year: 2013
  end-page: 2379
  ident: CR17
  article-title: Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the AeroCom radiative transfer experiment
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-13-2347-2013
– volume: 94
  start-page: 16 287
  issue: D13
  year: 1989
  end-page: 16 301
  ident: CR22
  article-title: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/JD094iD13p16287
– ident: CR12
– volume: 43
  start-page: 784
  issue: 8
  year: 1986
  end-page: 801
  ident: CR10
  article-title: Comparative accuracy of selected multiple scattering approximations
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1986)043<0784:CAOSMS>2.0.CO;2
– volume: 21
  start-page: 115
  year: 1995
  end-page: 150
  ident: CR11
  article-title: A reliable and efficient two-stream algorithm for spherical radiative transfer: Documentation of accuracy in realistic layered media
  publication-title: Journal of Atmospheric Chemistry
  doi: 10.1007/BF00696577
– ident: CR13
– volume: 38
  start-page: 387
  year: 1980
  end-page: 399
  ident: CR21
  article-title: A new look of the discrete ordinate method for radiative transfer calculations in anisotropically scattering atmospheres
  publication-title: Journal of Atmospheric Science
  doi: 10.1175/1520-0469(1981)038<0387:ANLATD>2.0.CO;2
– volume: 112
  start-page: 2630
  issue: 16
  year: 2011
  end-page: 2637
  ident: CR20
  article-title: A linearized two-stream radiative transfer code for fast approximation of multiple-scatter fields
  publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer
  doi: 10.1016/j.jqsrt.2011.06.014
– start-page: 3580
  year: 2010
  end-page: 3583
  ident: CR7
  publication-title: A comparison of two stream approximation for the discrete ordinate method and the SOS method. Preprints
– volume: 51
  start-page: 82
  issue: 1
  year: 2005
  end-page: 86
  ident: CR8
  article-title: Two stream approximation to radiative transfer equation: An alternative method of solution
  publication-title: Revista Mexicana De Física
– year: 2008
  ident: CR18
  publication-title: Synergie expérimentale impliquant la mesure lidar pour la caractérisation optique et microphysique de l’ aérosol: Applications à la qualité de l’air et au transfert radiatif
– volume: 29
  start-page: 4700
  issue: 3
  year: 2021
  end-page: 4720
  ident: CR19
  article-title: Discrete Ordinate Adding Method (DOAM), a new solver for Advanced Radiative transfer Modeling System (ARMS)
  publication-title: Optics Express
  doi: 10.1364/OE.417153
– volume: 126
  start-page: e2021JE006889
  issue: 10
  year: 2021
  ident: CR3
  article-title: Assessing multi-stream radiative transfer schemes for the calculation of aerosol radiative forcing in the martian atmosphere
  publication-title: J. Geophys. Res.: Planets
  doi: 10.1029/2021JE006889
– volume: 37
  start-page: 630
  issue: 3
  year: 1980
  end-page: 643
  ident: CR16
  article-title: Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1980)037<0630:TSATRT>2.0.CO;2
– volume: 33
  start-page: 2452
  issue: 12
  year: 1976
  end-page: 2459
  ident: CR9
  article-title: The delta-eddington approximation for radiative flux transfer
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2
– volume: 9
  start-page: 1628
  issue: 3
  year: 2017
  end-page: 1640
  ident: CR1
  article-title: A revised radiation package of G-packed McICA and two-stream approximation: Performance evaluation in a global weather forecasting model
  publication-title: Journal of Advances in Modeling Earth Systems
  doi: 10.1002/2017MS000994
– volume: 215
  start-page: 4
  issue: 1
  year: 2014
  ident: CR6
  article-title: Analytical models of exoplanetary atmospheres. II. Radiative transfer via the two-stream approximation
  publication-title: The Astrophysical Journal Supplement Series
  doi: 10.1088/0067-0049/215/1/4
– volume: 65
  start-page: 693
  issue: 5
  year: 2000
  end-page: 728
  ident: CR4
  article-title: Adjoint perturbation and selection rule methods for solar broadband two-stream fluxes in multi-layer media
  publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer
  doi: 10.1016/S0022-4073(99)00137-5
– volume: 8
  start-page: 2213
  issue: 9
  year: 1995
  ident: 2257_CR2
  publication-title: J. Climate
  doi: 10.1175/1520-0442(1995)008<2213:ISOCSS>2.0.CO;2
– volume: 60
  start-page: 2003614
  year: 2022
  ident: 2257_CR23
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2021.3129209
– volume: 37
  start-page: 630
  issue: 3
  year: 1980
  ident: 2257_CR16
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1980)037<0630:TSATRT>2.0.CO;2
– start-page: 3580
  volume-title: A comparison of two stream approximation for the discrete ordinate method and the SOS method. Preprints
  year: 2010
  ident: 2257_CR7
  doi: 10.1109/IGARSS.2010.5652681
– volume: 9
  start-page: 1628
  issue: 3
  year: 2017
  ident: 2257_CR1
  publication-title: Journal of Advances in Modeling Earth Systems
  doi: 10.1002/2017MS000994
– volume: 126
  start-page: e2021JE006889
  issue: 10
  year: 2021
  ident: 2257_CR3
  publication-title: J. Geophys. Res.: Planets
  doi: 10.1029/2021JE006889
– volume: 43
  start-page: 784
  issue: 8
  year: 1986
  ident: 2257_CR10
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1986)043<0784:CAOSMS>2.0.CO;2
– volume: 112
  start-page: 2630
  issue: 16
  year: 2011
  ident: 2257_CR20
  publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer
  doi: 10.1016/j.jqsrt.2011.06.014
– volume: 215
  start-page: 4
  issue: 1
  year: 2014
  ident: 2257_CR6
  publication-title: The Astrophysical Journal Supplement Series
  doi: 10.1088/0067-0049/215/1/4
– volume: 38
  start-page: 387
  year: 1980
  ident: 2257_CR21
  publication-title: Journal of Atmospheric Science
  doi: 10.1175/1520-0469(1981)038<0387:ANLATD>2.0.CO;2
– volume: 65
  start-page: 693
  issue: 5
  year: 2000
  ident: 2257_CR4
  publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer
  doi: 10.1016/S0022-4073(99)00137-5
– volume: 51
  start-page: 82
  issue: 1
  year: 2005
  ident: 2257_CR8
  publication-title: Revista Mexicana De Física
– ident: 2257_CR13
  doi: 10.1007/978-3-662-49538-4_1
– volume: 69
  start-page: 59
  issue: 1
  year: 2011
  ident: 2257_CR15
  publication-title: Analog Integrated Circuits and Signal Processing
  doi: 10.1007/s10470-011-9625-6
– volume: 92
  start-page: 1009
  issue: D1
  year: 1987
  ident: 2257_CR5
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/JD092iD01p01009
– volume: 110
  start-page: 129
  year: 2009
  ident: 2257_CR14
  publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer
  doi: 10.1016/j.jqsrt.2008.09.009
– volume-title: Synergie expérimentale impliquant la mesure lidar pour la caractérisation optique et microphysique de l’ aérosol: Applications à la qualité de l’air et au transfert radiatif
  year: 2008
  ident: 2257_CR18
– ident: 2257_CR12
– volume: 33
  start-page: 2452
  issue: 12
  year: 1976
  ident: 2257_CR9
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2
– volume: 21
  start-page: 115
  year: 1995
  ident: 2257_CR11
  publication-title: Journal of Atmospheric Chemistry
  doi: 10.1007/BF00696577
– volume: 29
  start-page: 4700
  issue: 3
  year: 2021
  ident: 2257_CR19
  publication-title: Optics Express
  doi: 10.1364/OE.417153
– volume: 94
  start-page: 16 287
  issue: D13
  year: 1989
  ident: 2257_CR22
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/JD094iD13p16287
– volume: 13
  start-page: 2347
  issue: 5
  year: 2013
  ident: 2257_CR17
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-13-2347-2013
SSID ssj0039381
Score 2.3607907
Snippet Mathematical modeling of the interaction between solar radiation and the Earth’s atmosphere is formalized by the radiative transfer equation (RTE), whose...
Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation (RTE), whose...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 278
SubjectTerms Accuracy
Approximation
Atmosphere
Atmospheric Sciences
Delta function
Divergence
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Mathematical models
Meteorology
Methods
Optical thickness
Original Paper
Polynomials
Quadratures
Radiative transfer
Reflectance
Rivers
Solar radiation
Zenith
Title Two-Stream Approximation to the Radiative Transfer Equation: A New Improvement and Comparative Accuracy with Existing Methods
URI https://link.springer.com/article/10.1007/s00376-023-2257-9
https://www.proquest.com/docview/2898451388
https://d.wanfangdata.com.cn/periodical/dqkxjz-e202402008
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZY98ILY1xEd6mOEOIB5CmxnTnhLataJlD3gFppPEW240xjI93aVJRJ_Hd8nEsBoUl7SRTFthJfjr9z-0zIm2MeWGa4oYXDslQYhf7dSFJmWZEopoxVmI08OTs-nYlP59F5k8e9bKPdW5ekl9RdshtSpWDALKduDkqabJHtKIyTuEe2049fP49aAcwT7s8mxd2cugXdOTP_18jf29EGY3ZuUZ_MUxaqvPhj3xnvkGn7xXW4ydXRqtJH5u4fMscH_tJT8qTBoZDWE2eXPLLlM9KfOAg9X3hLO7yF4fWlw7P-6Tn5Nf0xp-jDVt8hRSLy9WWd9QjVHByKhC_IcoDCE_z-V9gFjG5rIvEPkIKTplBbMLxBElSZw3BDPQ6pMauFMj8BLcMwWqPsKS9g4k-4Xr4gs_FoOjylzdkN1PAoqCjqUYlIlIiY4EK5q2SoTTpEkEdcS2sCHRqZG6FFqHTsFBWnLoeF5Mxh2CjmL0mvnJf2FYEgdxq8krm7G1EESRwbJLELAq215Lnsk6Adwsw0xOZ4vsZ11lEy-37OXD9n2M9Z0ifvuio3NavHfYUP2nmRNQt8mTk9NRZRyOO4T963g7t5fU9jr5vptCmc316tv91lliHfHMaj7D2oyX3yGGvWoeQHpFctVvbQIaVKD9zKGJ-cnA2aFTIgWzOW_gbAmgqn
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELege4CXjU9RNuCEEA8gT27szAlvUdVR2LoH1EnjybIdZxrbUtamokzif8fnfBQQmrSXRFESK_HH3e98d78j5M0eZy6y3NLCY1kqrEb_bixp5KIi1ZG2TmM28uRob3wsPp_EJ00e96KNdm9dkkFSd8luSJWCAbOc-jkoaXqXbAhvgrMe2cg-fj0YtQKYpzzUJkVtTv2C7pyZ_2vkb3W0xpidWzQk85SFLk__0Dv7W2TafnEdbnK-u6zMrr3-h8zxlr_0gGw2OBSyeuI8JHdc-Yj0Jx5Cz-Zhpx3ewvDizOPZcPWY_Jr-mFH0YetLyJCIfHVWZz1CNQOPIuELshyg8ISg_wo3h9FVTST-ATLw0hTqHYywIQm6zGG4ph6HzNrlXNufgDvDMFqh7ClPYRIqXC-ekOP90XQ4pk3tBmp5zCqKdlQqUi3iSHCh_VFGaE16RJDH3EhnmRlYmVthxECbxBsq3lweFJJHHsPGCX9KeuWsdM8IsNxb8Frm_mxFwdIksUhix5gxRvJc9glrh1DZhtgc62tcqI6SOfSz8v2ssJ9V2ifvule-16weNz28084L1SzwhfJ2aiLiAU-SPnnfDu769g2NvW6m0_rh_Op89e1auQj55jAe5fmtmnxF7o2nk0N1-OnoYJvcx1bqsPId0qvmS_fCo6bKvGxWyW-W6wsf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-0gvgi9QvPVh1EfFCWJrubbuJbOO-oH1dEetC3ZbPZlNaaa-9SPAX_d2c2H6cgBV8SQjbzkNmd7_kNYy_3ZeSFk45XaMty5SzldxPNhRdVZoV13lI38uxw_2CuPhwnx92c01Vf7d6nJNueBkJpqpu9i7LaGxrfCDaFimclx_2oeXaT3UJpHNNGn4u8F8Uyk2FKKel1jkd7SGv-i8TfimljbQ4J0tDWU1e2PvlDA0232d3OdIS85fU9dsPX99lohlbvYhmC4_AKxuenaIKGpwfs19H3Bae0s_0GOWGHr0_bRkVoFoCGH3whYAKSdxBUVuWXMLlssb_fQg4oAKENOoQYIti6hPEGLRxy566W1v0ACubCZE3ioj6BWRhKvXrI5tPJ0fiAd-MWuJNJ1HByfTKVWZUIJZXFqxbkAKISLxNZaO-iIna6dKpQsS1S9C3Qw40rLQWanUkqH7GtelH7xwyiEp1uq0u8O1VFWZo6wp2LoqIotCz1iEX9vzauwyKnkRjnZkBRDuwxyB5D7DHZiL0ePrlogTiuW7zbM9B0Z3Jl0LVMVRLLNB2xNz1TN6-vIfai4_tmcXn5dX3203hBEHFUQvLkv0g-Z7c_v5uaT-8PP-6wO0SkLQTfZVvN8so_RTunKZ6FvfwbRx7yhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stream+Approximation+to+the+Radiative+Transfer+Equation%3A+A+New+Improvement+and+Comparative+Accuracy+with+Existing+Methods&rft.jtitle=Advances+in+atmospheric+sciences&rft.au=Temgoua%2C+F.+Momo&rft.au=Nguimdo%2C+L.+Akana&rft.au=Njomo%2C+D.&rft.date=2024-02-01&rft.pub=Science+Press&rft.issn=0256-1530&rft.eissn=1861-9533&rft.volume=41&rft.issue=2&rft.spage=278&rft.epage=292&rft_id=info:doi/10.1007%2Fs00376-023-2257-9&rft.externalDocID=10_1007_s00376_023_2257_9
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdqkxjz-e%2Fdqkxjz-e.jpg