Friction Stir-Based Techniques: An Overview
Friction stir-based techniques (FSTs), originating from friction stir welding (FSW), represent a solid-state processing method catering to the demands of various industrial sectors for lightweight components with exceptional properties. These techniques have gained much more attraction by providing...
Saved in:
Published in | Welding in the world Vol. 69; no. 2; pp. 327 - 361 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Friction stir-based techniques (FSTs), originating from friction stir welding (FSW), represent a solid-state processing method catering to the demands of various industrial sectors for lightweight components with exceptional properties. These techniques have gained much more attraction by providing an opportunity to tailor the microstructure and enhance the performance and quality of produced welds and surfaces. While significant attention has historically been directed towards the FSW process, this review delves into the working principles of FSTs, exploring their influence on mechanical properties and microstructural characteristics of various materials. Additionally, emphasis is placed on elucidating the advancement of hybrid FSW processes for both similar and dissimilar metal components, aimed at enhancing welding quality through meticulous control of grain textures, structures, precipitation, and phase transformations. Finally, the review identifies current knowledge gaps and suggests future research directions. This review paper synthesises academic literature sourced from the Web of Science (WoS) and Scopus databases, supplemented by additional sources such as books from the last 15 years. |
---|---|
AbstractList | Friction stir-based techniques (FSTs), originating from friction stir welding (FSW), represent a solid-state processing method catering to the demands of various industrial sectors for lightweight components with exceptional properties. These techniques have gained much more attraction by providing an opportunity to tailor the microstructure and enhance the performance and quality of produced welds and surfaces. While significant attention has historically been directed towards the FSW process, this review delves into the working principles of FSTs, exploring their influence on mechanical properties and microstructural characteristics of various materials. Additionally, emphasis is placed on elucidating the advancement of hybrid FSW processes for both similar and dissimilar metal components, aimed at enhancing welding quality through meticulous control of grain textures, structures, precipitation, and phase transformations. Finally, the review identifies current knowledge gaps and suggests future research directions. This review paper synthesises academic literature sourced from the Web of Science (WoS) and Scopus databases, supplemented by additional sources such as books from the last 15 years. Friction stir-based techniques (FSTs), originating from friction stir welding (FSW), represent a solid-state processing method catering to the demands of various industrial sectors for lightweight components with exceptional properties. These techniques have gained much more attraction by providing an opportunity to tailor the microstructure and enhance the performance and quality of produced welds and surfaces. While significant attention has historically been directed towards the FSW process, this review delves into the working principles of FSTs, exploring their influence on mechanical properties and microstructural characteristics of various materials. Additionally, emphasis is placed on elucidating the advancement of hybrid FSW processes for both similar and dissimilar metal components, aimed at enhancing welding quality through meticulous control of grain textures, structures, precipitation, and phase transformations. Finally, the review identifies current knowledge gaps and suggests future research directions. This review paper synthesises academic literature sourced from the Web of Science (WoS) and Scopus databases, supplemented by additional sources such as books from the last 15 years. Friction stir-based techniques (FSTs), originating from friction stir welding (FSW), represent a solid-state processing method catering to the demands of various industrial sectors for lightweight components with exceptional properties. These techniques have gained much more attraction by providing an opportunity to tailor the microstructure and enhance the performance and quality of produced welds and surfaces. While significant attention has historically been directed towards the FSW process, this review delves into the working principles of FSTs, exploring their influence on mechanical properties and microstructural characteristics of various materials. Additionally, emphasis is placed on elucidating the advancement of hybrid FSW processes for both similar and dissimilar metal components, aimed at enhancing welding quality through meticulous control of grain textures, structures, precipitation, and phase transformations. Finally, the review identifies current knowledge gaps and suggests future research directions. This review paper synthesises academic literature sourced from the Web of Science (WoS) and Scopus databases, supplemented by additional sources such as books from the last 15 years. |
Author | Woo, Wai Lok Akinlabi, Stephen Mahamood, Rasheedat M. El-Zathry, Noah E. Patel, Vivek |
Author_xml | – sequence: 1 givenname: Noah E. orcidid: 0000-0001-8148-8105 surname: El-Zathry fullname: El-Zathry, Noah E. email: noah.elzathry@northumbria.ac.uk organization: Department of Mechanical and Construction Engineering, Northumbria University, Mechanical Engineering Department, Benha University – sequence: 2 givenname: Stephen surname: Akinlabi fullname: Akinlabi, Stephen organization: Department of Mechanical and Construction Engineering, Northumbria University – sequence: 3 givenname: Wai Lok surname: Woo fullname: Woo, Wai Lok organization: Department of Mechanical and Construction Engineering, Northumbria University – sequence: 4 givenname: Vivek surname: Patel fullname: Patel, Vivek organization: Department of Engineering Science, University West – sequence: 5 givenname: Rasheedat M. surname: Mahamood fullname: Mahamood, Rasheedat M. organization: Department of Mechanical and Construction Engineering, Northumbria University |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-22600$$DView record from Swedish Publication Index |
BookMark | eNp9kEtLAzEUhYNUsK3-AVcDLiV6k8nk4a5Wq0KhC6vbkM4kbYrO1KTt4L83faA7F4fLhe8cDqeHOnVTW4QuCdwQAHEbGRDFMNAkIpnA7QnqEikk5pyrDuoCsBxTKuUZ6sW4BACV1EXXo-DLtW_q7HXtA7430VbZ1JaL2n9tbLzLBnU22dqw9bY9R6fOfER7cbx99DZ6nA6f8Xjy9DIcjHGZF7DGilvOjJNGiiJXpFTg1IzPCmuMS49wlhJXCEkogUI4njNacVZVpbClqqjN-6nVPje2drWZ6VXwnyZ868Z4_eDfB7oJc73Yako5QKKvDvQqNLvKa71sNqFOBXVOCsUl44Inih6oMjQxBut-Uwno3YT6MKFOE-r9hLpNpvxYJMH13Ia_6H9cP5A1dOo |
Cites_doi | 10.1016/j.jmatprotec.2023.118116 10.3390/ma13081937 10.1016/j.vacuum.2022.111264 10.3390/ma14010170 10.1016/j.wear.2021.204138 10.1080/10408436.2017.1358145 10.1007/s12666-019-01566-7 10.1080/10408436.2018.1490250 10.1016/j.jmrt.2021.03.021 10.3390/ma14112782 10.1016/j.ijfatigue.2020.105951 10.1186/s10033-021-00655-3 10.1007/s00170-020-05106-2 10.1016/j.msea.2019.138540 10.1016/j.jmatprotec.2021.117443 10.1016/j.jmapro.2020.08.007 10.1115/1.4052357 10.1155/2019/3832873 10.1080/10426914.2015.1025971 10.1007/s00170-019-03917-6 10.1016/j.jallcom.2019.01.170 10.1080/10426914.2021.1942911 10.1155/2014/724590 10.1016/j.matdes.2013.12.002 10.1016/j.surfcoat.2020.126040 10.1016/j.pmatsci.2020.100706 10.1007/s11665-014-1170-x 10.1080/14786430500267745 10.1016/j.jallcom.2019.152823 10.1016/j.triboint.2022.108033 10.1016/j.jmapro.2022.02.007 10.1155/2014/697170 10.1007/s00170-018-2234-0 10.1016/j.mtcomm.2022.104217 10.1016/j.jmatprotec.2014.07.005 10.1016/j.msea.2022.143303 10.1016/j.matdes.2017.12.033 10.3390/technologies10060118 10.1007/s40194-014-0148-5 10.4028/www.scientific.net/AMM.766-767.695 10.1016/j.jmapro.2020.02.002 10.1080/01694243.2020.1780716 10.1007/s40195-019-00945-9 10.1016/j.matchar.2020.110761 10.1016/j.jmatprotec.2021.117045 10.1016/j.jmapro.2021.04.036 10.1007/s00170-022-09982-8 10.3390/app13031563 10.1016/j.coco.2018.12.011 10.1590/1980-5373-mr-2021-0508 10.1007/s00170-022-10349-2 10.1201/9781032703046-5 10.1007/s13369-018-3312-1 10.1016/j.jmst.2022.07.001 10.1016/j.jajp.2020.100011 10.1179/1362171815Y.0000000021 10.3390/ma16052031 10.1016/j.jmrt.2022.02.059 10.1016/j.jmapro.2018.09.030 10.1007/s13632-016-0285-x 10.1007/s00170-021-06852-7 10.1016/S1003-6326(19)65033-8 10.1179/1362171815Y.0000000048 10.1016/j.msea.2022.144388 10.1016/j.matchar.2022.112473 10.3390/met10060799 10.3390/met12030408 10.1016/j.matdes.2014.09.082 10.1016/j.mtcomm.2021.102132 10.3390/ma15072428 10.3390/ma14164754 10.1016/j.jmapro.2021.10.031 10.1007/s00170-018-2003-0 10.1016/j.matdes.2020.108850 10.1016/j.jmrt.2023.05.184 10.1016/j.cirpj.2021.05.009 10.1016/j.msea.2016.10.113 10.1016/j.matlet.2021.130031 10.3390/aerospace9100565 10.1007/s40194-021-01228-7 10.1016/j.jmapro.2021.06.021 10.1007/s11661-023-07047-3 10.3390/met9030270 10.1016/j.ultras.2011.02.003 10.1016/j.jmatprotec.2016.09.009 10.1115/1.4050924 10.3390/met9060624 10.1016/j.jallcom.2019.152557 10.1080/01694243.2023.2219367 10.1007/s11665-023-09047-1 10.1016/j.matchar.2021.111079 10.1016/S1003-6326(20)65336-5 10.1080/10426914.2013.763956 10.1016/j.jallcom.2018.12.083 10.1007/s00170-021-07953-z 10.1016/j.jmatprotec.2020.117005 10.1016/j.jmapro.2019.02.011 10.1016/j.compositesb.2019.107061 10.1080/10426914.2018.1544716 10.1016/j.cirpj.2022.12.014 10.1016/j.jmapro.2020.12.028 10.1016/j.jallcom.2017.04.309 10.1007/s00170-019-03631-3 10.1016/j.coco.2018.04.007 10.2355/isijinternational.ISIJINT-2019-394 10.1080/13621718.2019.1570682 10.3390/met11111680 10.1016/j.surfcoat.2020.126170 10.1016/j.jmatprotec.2020.116684 10.1016/j.mseb.2020.114832 10.1080/10408436.2018.1490251 10.3390/met9040479 10.1016/j.jallcom.2020.154343 10.1080/01694243.2021.1917868 10.1080/10408436.2019.1671799 10.1007/s00170-015-8071-5 10.1016/j.jmatprotec.2020.116706 10.1016/j.jmst.2017.11.029 10.3390/ma14185208 10.1179/1879139512Y.0000000015 10.1016/j.jmapro.2017.02.027 10.1016/j.cirpj.2021.03.015 10.1016/j.rinp.2019.01.025 10.1007/s11665-022-07433-9 10.1007/s13369-023-07725-9 10.1016/j.jmst.2019.12.007 10.1016/j.jmapro.2021.03.057 10.1179/174328009X411136 10.1016/j.surfcoat.2019.05.048 10.1007/s00170-017-0985-7 10.1115/1.4043067 10.1016/S1003-6326(18)64675-8 10.1016/j.scriptamat.2021.114113 10.3390/met10070947 10.3390/coatings10111062 10.1177/16878132221107812 10.1016/j.engappai.2023.105961 10.1016/j.jallcom.2019.05.269 10.1177/09544062221101754 10.1016/j.acme.2016.03.002 10.1016/j.jmatprotec.2016.08.025 10.1016/j.msea.2021.140975 10.1177/0021998319856679 10.1007/s40964-021-00175-5 10.1016/j.measurement.2019.04.061 10.1007/s10853-020-04963-2 10.3390/ma15228187 10.1080/13621718.2017.1399545 10.1016/j.jmapro.2019.05.049 10.1007/s00170-022-10366-1 10.1016/j.measurement.2019.07.019 10.3390/met11010068 10.1016/j.matchar.2016.07.010 10.1016/j.pmatsci.2014.03.003 10.1007/s42452-020-2330-2 10.1007/s40194-021-01131-1 10.1002/adem.201900250 10.3390/met11050805 10.30880/ijie.2022.14.01.001 10.1016/j.jmrt.2021.09.037 10.1016/j.matchar.2019.110115 10.1080/14484846.2018.1432089 10.1109/ICCE50343.2020.9290650 10.1016/j.matdes.2015.07.071 10.1016/j.cirpj.2020.12.004 10.1016/j.jmatprotec.2014.03.012 10.1016/j.mtla.2019.100387 10.3390/ma6125923 10.1016/j.vacuum.2020.109515 10.3390/met10060806 10.1016/j.jmrt.2022.08.034 10.1016/j.jmapro.2019.07.034 10.1007/s42243-018-0066-7 10.3390/met12010055 10.1007/s12666-022-02624-3 10.1080/01694243.2022.2142366 10.1016/j.matdes.2011.12.018 10.1088/2631-8695/abfe1d 10.1016/j.jmatprotec.2022.117812 10.1016/j.pmatsci.2020.100752 10.3390/met12030453 10.1016/j.msea.2019.138261 10.1007/s11661-020-05716-1 10.1007/s12008-023-01324-6 10.3390/ma14123244 10.1007/s40194-017-0447-8 10.1016/j.jmatprotec.2022.117773 10.1007/s11837-014-1271-x 10.1016/j.jmatprotec.2020.116648 10.1016/j.jmatprotec.2019.116366 10.1080/10408436.2021.1886042 10.1179/136217109X12489665059429 10.1016/j.jmapro.2018.09.017 10.1016/j.ijmachtools.2023.104004 10.1080/13621718.2019.1706259 10.1016/j.ijmecsci.2020.106039 10.1088/1757-899X/954/1/012007 10.1016/j.cirpj.2021.02.002 10.1016/j.msea.2022.144423 10.1016/j.compositesb.2019.107057 10.3390/app9173486 10.1002/mdp2.41 10.1007/s12206-022-0120-z 10.1007/s11665-021-06488-4 10.1016/j.ijmachtools.2022.103858 10.1016/j.ijplas.2021.103184 10.1016/j.jma.2018.06.001 10.1016/j.jmrt.2022.07.172 10.1080/13621718.2022.2027663 10.1016/j.matlet.2019.01.078 10.1016/j.jmrt.2023.10.115 10.1007/s13369-021-05574-y 10.1007/s00170-021-06978-8 10.1007/978-81-322-2355-9_17 10.1016/j.jmst.2018.02.022 10.3390/met12061015 10.1016/j.jmapro.2020.05.047 10.3390/met13050970 10.1016/j.jmapro.2021.01.024 10.1016/j.tws.2020.107086 10.1080/10408436.2017.1358146 10.1016/j.ijpvp.2022.104731 10.1016/j.ijmecsci.2022.107089 10.1007/978-3-319-56099-1_5 10.1080/21663831.2020.1847211 10.1016/j.jmst.2017.10.022 10.1016/j.optlastec.2022.108149 10.1016/j.jmapro.2019.05.011 10.1080/01694243.2022.2028073 10.1007/s00170-014-5813-8 10.1016/j.jmatprotec.2015.03.002 10.1016/j.jmapro.2020.01.021 10.1016/j.jmapro.2021.09.031 10.3390/met12020183 10.3390/ma15165520 10.1016/j.surfcoat.2019.124914 10.1016/j.matchar.2021.111141 10.1007/s00170-024-13890-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. 2025 |
DBID | C6C AAYXX CITATION ADTPV AICEO AOWAS D8T DF5 ZZAVC |
DOI | 10.1007/s40194-024-01847-w |
DatabaseName | Springer Nature OA Free Journals CrossRef SwePub SWEPUB Högskolan Väst full text SwePub Articles SWEPUB Freely available online SWEPUB Högskolan Väst SwePub Articles full text |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-6669 |
EndPage | 361 |
ExternalDocumentID | oai_DiVA_org_hv_22600 10_1007_s40194_024_01847_w |
GroupedDBID | --K -EM 06D 0R~ 1B1 203 2LR 30V 4.4 406 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGWZB AGYKE AHAVH AHBYD AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AXYYD AYJHY BGNMA C6C CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 HMJXF HRMNR HZ~ IHE IKXTQ ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M41 M4Y NPVJJ NQ- NQJWS NU0 O9- O93 O9J P2P PT4 RIG ROL RPZ RSV SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 XPP Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z85 ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ ADTPV AICEO AOWAS D8T DF5 ZZAVC |
ID | FETCH-LOGICAL-c350t-96e64af8a875391c90f9b6b5eaafc907fe21f578121057f6342d64ddc7ec9d2e3 |
IEDL.DBID | AGYKE |
ISSN | 0043-2288 1878-6669 |
IngestDate | Thu Aug 21 06:48:30 EDT 2025 Fri Jul 25 10:58:04 EDT 2025 Tue Jul 01 04:25:41 EDT 2025 Fri Feb 21 02:37:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Solid-State Processing Friction Stir welding Additive manufacturing And Hybrid FSW Processes Friction Stir-Based Techniques Solid-state processing High temperature operations Textures Stir welding process Microstructural evolution Friction stir Processing method Friction stir-based technique Hot stamping Industrial sector Friction-stir-welding Property And hybrid friction stir welding process Dissimilar metals |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-96e64af8a875391c90f9b6b5eaafc907fe21f578121057f6342d64ddc7ec9d2e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8148-8105 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s40194-024-01847-w |
PQID | 3159684676 |
PQPubID | 2043671 |
PageCount | 35 |
ParticipantIDs | swepub_primary_oai_DiVA_org_hv_22600 proquest_journals_3159684676 crossref_primary_10_1007_s40194_024_01847_w springer_journals_10_1007_s40194_024_01847_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | The International Journal of Materials Joining |
PublicationTitle | Welding in the world |
PublicationTitleAbbrev | Weld World |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | A Janeczek (1847_CR96) 2021; 14 H Deore (1847_CR169) 2019; 374 L Sandnes (1847_CR110) 2018; 98 NA Muhammad (1847_CR55) 2019; 785 V Chitturi (1847_CR76) 2020; 10 OS Salih (1847_CR100) 2020; 275 F Baratzadeh (1847_CR75) 2020; 1 DK Yaduwanshi (1847_CR211) 2014; 23 M Vakili-Azghandi (1847_CR157) 2020; 816 J You (1847_CR260) 2023; 311 Z Shen (1847_CR8) 2020; 45 MM Ahmed (1847_CR85) 2020; 11 Y Han (1847_CR232) 2021; 176 SM Bararpour (1847_CR186) 2020; 818 HA Derazkola (1847_CR197) 2020; 157 K Bandil (1847_CR136) 2019; 53 H Dong (1847_CR16) 2022; 9 W Zhang (1847_CR30) 2019; 764 VKS Jain (1847_CR176) 2019; 44 VV Patel (1847_CR158) 2017; 240 F He (1847_CR42) 2023; 27 L Sandnes (1847_CR112) 2021; 809 S Raj (1847_CR216) 2023; 41 X Meng (1847_CR83) 2021; 115 HZ Yu (1847_CR200) 2021; 9 TG Santos (1847_CR227) 2014; 214 A Rusinko (1847_CR241) 2011; 51 B Fu (1847_CR121) 2021; 203 TS Kumar (1847_CR170) 2019; 72 L Ruilin (1847_CR251) 2014; 73 ME Özcan (1847_CR177) 2022; 36 S Palanivel (1847_CR124) 2015; 67 KV Reddy (1847_CR131) 2021; 298 V Patel (1847_CR171) 2019; 9 DK Sharma (1847_CR166) 2019; 141 AH Elsheikh (1847_CR70) 2023; 121 V Mathur (1847_CR156) 2019; 5 S Gupta (1847_CR105) 2022; 846 AS Khan (1847_CR93) 2023; 32 1847_CR99 S Kumar (1847_CR249) 2020; 827 K Kalashnikov (1847_CR144) 2021; 12 Z Kallien (1847_CR180) 2020; 397 P Pankaj (1847_CR239) 2021; 46 MM Ahmed (1847_CR97) 2023; 16 AM Ralls (1847_CR160) 2023; 178 I Dinaharan (1847_CR54) 2018; 9 M Selvaraj (1847_CR213) 2013; 28 S Shankar (1847_CR219) 2021 B Wu (1847_CR72) 2022; 20 S Rathee (1847_CR10) 2018; 43 L Cui (1847_CR39) 2018; 25 A Kalinenko (1847_CR102) 2022; 194 F Leoni (1847_CR108) 2020; 14 S Memon (1847_CR67) 2021; 14 R Anand (1847_CR57) 2020; 27 PN Banjare (1847_CR63) 2020; 10 A Thakur (1847_CR68) 2021; 35 Z Zhang (1847_CR125) 2020; 33 MK Gupta (1847_CR15) 2020; 2 J Dong (1847_CR106) 2023; 862 AK Singh (1847_CR148) 2021; 72 T Dursun (1847_CR2) 2014; 1980–2015 P Geng (1847_CR73) 2022; 174 C Zhang (1847_CR6) 2020; 179 K Gangwar (1847_CR7) 2018; 141 1847_CR191 S Kumar (1847_CR248) 2016; 16 A Vairis (1847_CR65) 2022; 15 S Zhang (1847_CR174) 2019; 798 SY Tarasov (1847_CR154) 2017; 61 T Yi (1847_CR238) 2022; 310 A Mukhopadhyay (1847_CR198) 2020; 281 T Kalashnikova (1847_CR33) 2022; 12 P Pirhayati (1847_CR185) 2020; 30 WD Hartley (1847_CR202) 2021; 291 MA Sahali (1847_CR95) 2023; 124 A Zykova (1847_CR153) 2021; 14 V Patel (1847_CR161) 2019; 34 DG Mohan (1847_CR38) 2021; 3 1847_CR188 Y Sun (1847_CR35) 2022; 33 S Shankar (1847_CR47) 2019; 146 T Bergh (1847_CR114) 2023; 54 A Eivani (1847_CR151) 2021; 12 E Seidi (1847_CR178) 2021; 143 K Singh (1847_CR4) 2018; 6 T Kalashnikova (1847_CR34) 2020; 10 SMM Zamani (1847_CR88) 2021; 113 RJ Griffiths (1847_CR204) 2019; 9 A Zykova (1847_CR145) 2022; 488 NA Muhammad (1847_CR261) 2019; 39 H Li (1847_CR107) 2018; 94 N Gangil (1847_CR143) 2017; 715 S Raj (1847_CR215) 2022; 144 J Zhao (1847_CR257) 2021; 65 A Heidarzadeh (1847_CR20) 2021; 117 G Padhy (1847_CR206) 2015; 20 X Wang (1847_CR92) 2023; 25 S Chen (1847_CR231) 2021; 71 OS Salih (1847_CR22) 2015; 86 J Zhao (1847_CR262) 2022; 17 R Saha (1847_CR214) 2022; 199 SL Campanelli (1847_CR208) 2013; 6 Y Sun (1847_CR89) 2022; 12 T Huang (1847_CR45) 2022; 15 H Venkit (1847_CR190) 2022; 236 RS Mishra (1847_CR126) 2022; 27 S Mabuwa (1847_CR165) 2023; 37 NA Muhammad (1847_CR244) 2023; 186 L Zhou (1847_CR184) 2020; 9 W Zhao (1847_CR265) 2021; 190 A Orozco-Caballero (1847_CR134) 2017; 680 R Chandana (1847_CR90) 2023; 76 Z Ma (1847_CR1) 2018; 43 DAP Prabhakar (1847_CR13) 2022; 20 Y Han (1847_CR225) 2019; 43 X Bai (1847_CR163) 2023 A Amirov (1847_CR147) 2020; 10 DK Rajak (1847_CR19) 2020; 34 F Khodabakhshi (1847_CR139) 2020; 55 V Karami (1847_CR37) 2021; 32 Z Wang (1847_CR120) 2020; 25 A Tognan (1847_CR109) 2022; 218 T Sathish (1847_CR175) 2021; 14 X Meng (1847_CR259) 2018; 34 Q Chu (1847_CR118) 2021; 12 I Esther (1847_CR179) 2019; 29 K Silva (1847_CR182) 2020; 399 S Kumar (1847_CR245) 2022; 14 D Jacquin (1847_CR172) 2021; 288 P Kaushik (1847_CR64) 2021; 68 A Zykova (1847_CR146) 2022; 15 C Elanchezhian (1847_CR236) 2015; 766 VM Khojastehnezhad (1847_CR48) 2018; 28 MM Khalilabad (1847_CR103) 2022; 36 S Kumar (1847_CR250) 2020; 51 I Vysotskiy (1847_CR32) 2020; 770 T Thankachan (1847_CR24) 2019; 174 P Agrawal (1847_CR192) 2021; 47 KP Mehta (1847_CR27) 2016; 31 J Xiaoqing (1847_CR230) 2022; 76 N Ethiraj (1847_CR61) 2020; 33 Q Liu (1847_CR101) 2021; 114 S Kumar (1847_CR212) 2017; 26 MME-S Seleman (1847_CR78) 2022; 14 AK Singh (1847_CR149) 2022; 150 T Bergh (1847_CR113) 2021; 173 L Shi (1847_CR243) 2020; 53 YB Zhong (1847_CR58) 2017; 239 1847_CR40 H Zhang (1847_CR159) 2019; 242 HA Derazkola (1847_CR80) 2021; 33 BA Rutherford (1847_CR196) 2020; 10 K Li (1847_CR222) 2022; 152 LR Lindamood (1847_CR246) 2023 HM Sabbar (1847_CR201) 2021; 11 1847_CR210 J Zhao (1847_CR263) 2021; 62 SJ Abraham (1847_CR52) 2019; 12 K Anderson-Wedge (1847_CR193) 2021; 142 K Sengupta (1847_CR229) 2022; 60 B Snyder (1847_CR49) 2021; 68 S Yaknesh (1847_CR66) 2022; 25 PL Threadgill (1847_CR21) 2009; 54 G Çam (1847_CR122) 2023; 37 Ø Grong (1847_CR115) 2019; 1 1847_CR11 RA Kumar (1847_CR142) 2019; 16 M Ebrahimi (1847_CR26) 2019; 781 X Li (1847_CR237) 2020; 51 MK Kulekci (1847_CR140) 2016; 85 N Xu (1847_CR50) 2023; 23 YN Zhang (1847_CR91) 2012; 51 V Patel (1847_CR138) 2019; 44 R Suryanarayanan (1847_CR117) 2021; 37 I Polmear (1847_CR3) 2017 J Blindheim (1847_CR111) 2020; 282 Y Wang (1847_CR87) 2021; 65 KP Mehta (1847_CR12) 2022; 47 P Vilaça (1847_CR17) 2014; 58 1847_CR23 L Jiang (1847_CR135) 2019; 12 X Liu (1847_CR255) 2015; 20 DG Mohan (1847_CR36) 2021; 34 1847_CR207 J Ramon (1847_CR217) 2023; 48 IK Lu (1847_CR127) 2021; 6 1847_CR203 H Bang (1847_CR235) 2012; 37 S Kumar (1847_CR247) 2018; 97 H Taheri (1847_CR14) 2019; 9 1847_CR234 C He (1847_CR162) 2023; 133 K Kalashnikov (1847_CR152) 2019; 103 K Kurabayashi (1847_CR25) 2022; 12 M Barati (1847_CR167) 2019; 45 S Du (1847_CR28) 2022; 123 Y Su (1847_CR79) 2022; 37 H Agiwal (1847_CR183) 2022; 122 M Srivastava (1847_CR9) 2019; 44 F Khodabakhshi (1847_CR205) 2018; 36 RP Mahto (1847_CR74) 2020; 160 A Rabiezadeh (1847_CR94) 2024; 38 V Patel (1847_CR150) 2022; 17 J Luo (1847_CR228) 2009; 14 M Yu (1847_CR181) 2021; 291 J-Q Su (1847_CR137) 2006; 86 F Lambiase (1847_CR69) 2020; 107 GK Padhy (1847_CR18) 2018; 34 H Li (1847_CR187) 2019; 9 Y Yan (1847_CR119) 2021; 66 1847_CR86 A Samanta (1847_CR141) 2022; 861 B Ahmad (1847_CR221) 2019; 24 1847_CR224 B Phillips (1847_CR195) 2019; 7 J Yang (1847_CR218) 2022; 301 M Nazari (1847_CR51) 2019; 377 Y Zhao (1847_CR77) 2021; 26 M-N Avettand-Fènoël (1847_CR84) 2016; 120 X Yang (1847_CR123) 2014; 2014 M Sajed (1847_CR209) 2023; 13 Z Zhang (1847_CR252) 2020; 43 T Wada (1847_CR220) 2020; 60 T Machniewicz (1847_CR62) 2020; 13 Z Zhang (1847_CR128) 2019; 104 VS Gadakh (1847_CR43) 2021; 235 R Saha (1847_CR82) 2022; 66 1847_CR56 C Sharma (1847_CR116) 2021; 102 VV Patel (1847_CR155) 2016; 5 O Grong (1847_CR81) 2021 J Wei (1847_CR5) 2022; 203 L Shi (1847_CR242) 2017; 23 W Huang (1847_CR132) 2019; 21 ET Akinlabi (1847_CR173) 2014; 2014 V Gopan (1847_CR189) 2021; 32 M Amatullah (1847_CR60) 2022; 62 JB Jordon (1847_CR199) 2020; 193 S Chen (1847_CR233) 2019; 44 1847_CR59 W Zhao (1847_CR264) 2020; 56 H Deng (1847_CR44) 2021; 64 J Luo (1847_CR226) 2014; 214 RD Bourkhani (1847_CR53) 2019; 174 S Palanivel (1847_CR129) 2015; 1980–2015 A Chumaevskii (1847_CR29) 2023; 13 MSM Isa (1847_CR41) 2021; 15 AK Srivastava (1847_CR130) 2021; 263 X He (1847_CR98) 2014; 65 T Kalashnikova (1847_CR164) 2022; 12 D Garcia (1847_CR194) 2020; 34 I Bunaziv (1847_CR223) 2021; 11 B Strass (1847_CR253) 2014 H Tripathi (1847_CR133) 2022; 8 Y Wang (1847_CR104) 2023; 24 M Thomä (1847_CR254) 2018; 34 P Chen (1847_CR71) 2021; 176 S Tarasov (1847_CR31) 2022; 10 A Kumar (1847_CR240) 2022; 75 L Zhou (1847_CR46) 2018; 36 MS Prabhu (1847_CR168) 2019; 142 X Liu (1847_CR256) 2013; 22 L Shi (1847_CR258) 2015; 222 |
References_xml | – ident: 1847_CR59 doi: 10.1016/j.jmatprotec.2023.118116 – volume: 13 start-page: 1937 year: 2020 ident: 1847_CR62 publication-title: Materials doi: 10.3390/ma13081937 – volume: 203 year: 2022 ident: 1847_CR5 publication-title: Vacuum doi: 10.1016/j.vacuum.2022.111264 – volume: 14 start-page: 170 year: 2020 ident: 1847_CR108 publication-title: Materials doi: 10.3390/ma14010170 – volume: 488 year: 2022 ident: 1847_CR145 publication-title: Wear doi: 10.1016/j.wear.2021.204138 – volume: 43 start-page: 269 year: 2018 ident: 1847_CR1 publication-title: Crit Rev Solid State Mater Sci doi: 10.1080/10408436.2017.1358145 – volume: 72 start-page: 1593 year: 2019 ident: 1847_CR170 publication-title: Trans Indian Inst Met doi: 10.1007/s12666-019-01566-7 – volume: 44 start-page: 345 year: 2019 ident: 1847_CR9 publication-title: Crit Rev Solid State Mater Sci doi: 10.1080/10408436.2018.1490250 – volume: 12 start-page: 1946 year: 2021 ident: 1847_CR151 publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2021.03.021 – volume: 14 start-page: 2782 year: 2021 ident: 1847_CR175 publication-title: Materials doi: 10.3390/ma14112782 – volume: 142 year: 2021 ident: 1847_CR193 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2020.105951 – volume: 34 start-page: 1 year: 2021 ident: 1847_CR36 publication-title: Chin J Mech Eng doi: 10.1186/s10033-021-00655-3 – volume: 107 start-page: 489 year: 2020 ident: 1847_CR69 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05106-2 – volume: 770 year: 2020 ident: 1847_CR32 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2019.138540 – volume: 301 year: 2022 ident: 1847_CR218 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2021.117443 – volume: 68 start-page: 198 year: 2021 ident: 1847_CR64 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2020.08.007 – volume: 144 year: 2022 ident: 1847_CR215 publication-title: J Manuf Sci Eng doi: 10.1115/1.4052357 – ident: 1847_CR86 doi: 10.1155/2019/3832873 – volume: 31 start-page: 233 year: 2016 ident: 1847_CR27 publication-title: Mater Manuf Processes doi: 10.1080/10426914.2015.1025971 – volume: 104 start-page: 767 year: 2019 ident: 1847_CR128 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-019-03917-6 – volume: 785 start-page: 512 year: 2019 ident: 1847_CR55 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2019.01.170 – volume: 37 start-page: 25 year: 2022 ident: 1847_CR79 publication-title: Mater Manuf Process doi: 10.1080/10426914.2021.1942911 – volume: 2014 start-page: 724590 year: 2014 ident: 1847_CR173 publication-title: Adv Mater Sci Eng doi: 10.1155/2014/724590 – volume: 1980–2015 start-page: 862 issue: 56 year: 2014 ident: 1847_CR2 publication-title: Mater Des doi: 10.1016/j.matdes.2013.12.002 – volume: 397 year: 2020 ident: 1847_CR180 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2020.126040 – volume: 115 year: 2021 ident: 1847_CR83 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2020.100706 – volume: 23 start-page: 3794 year: 2014 ident: 1847_CR211 publication-title: J Mater Eng Perform doi: 10.1007/s11665-014-1170-x – volume: 86 start-page: 1 year: 2006 ident: 1847_CR137 publication-title: Phil Mag doi: 10.1080/14786430500267745 – volume: 818 year: 2020 ident: 1847_CR186 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2019.152823 – volume: 178 year: 2023 ident: 1847_CR160 publication-title: Tribol Int doi: 10.1016/j.triboint.2022.108033 – volume: 76 start-page: 123 year: 2022 ident: 1847_CR230 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2022.02.007 – volume: 37 start-page: 2695 year: 2021 ident: 1847_CR117 publication-title: Mater Today: Proc – volume: 2014 year: 2014 ident: 1847_CR123 publication-title: Adv Mater Sci Eng doi: 10.1155/2014/697170 – volume: 98 start-page: 1059 year: 2018 ident: 1847_CR110 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-2234-0 – volume: 33 year: 2022 ident: 1847_CR35 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2022.104217 – volume: 214 start-page: 3002 year: 2014 ident: 1847_CR226 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2014.07.005 – volume: 846 year: 2022 ident: 1847_CR105 publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2022.143303 – volume: 141 start-page: 230 year: 2018 ident: 1847_CR7 publication-title: Mater Des doi: 10.1016/j.matdes.2017.12.033 – volume: 10 start-page: 118 year: 2022 ident: 1847_CR31 publication-title: Technologies doi: 10.3390/technologies10060118 – volume: 58 start-page: 661 year: 2014 ident: 1847_CR17 publication-title: Weld World doi: 10.1007/s40194-014-0148-5 – volume: 766 start-page: 695 year: 2015 ident: 1847_CR236 publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.766-767.695 – volume: 53 start-page: 69 year: 2020 ident: 1847_CR243 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2020.02.002 – volume: 34 start-page: 2613 year: 2020 ident: 1847_CR19 publication-title: J Adhes Sci Technol doi: 10.1080/01694243.2020.1780716 – volume: 33 start-page: 75 year: 2020 ident: 1847_CR125 publication-title: Acta Metall Sin (English Letters) doi: 10.1007/s40195-019-00945-9 – volume: 173 year: 2021 ident: 1847_CR113 publication-title: Mater Charact doi: 10.1016/j.matchar.2020.110761 – volume: 291 year: 2021 ident: 1847_CR202 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2021.117045 – volume: 66 start-page: 521 year: 2021 ident: 1847_CR119 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.04.036 – volume: 122 start-page: 1641 year: 2022 ident: 1847_CR183 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-09982-8 – volume: 13 start-page: 1563 year: 2023 ident: 1847_CR209 publication-title: Appl Sci doi: 10.3390/app13031563 – volume: 12 start-page: 54 year: 2019 ident: 1847_CR52 publication-title: Compos Commun doi: 10.1016/j.coco.2018.12.011 – volume: 25 start-page: e20210508 year: 2022 ident: 1847_CR66 publication-title: Mater Res doi: 10.1590/1980-5373-mr-2021-0508 – volume: 124 start-page: 1229 year: 2023 ident: 1847_CR95 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-10349-2 – ident: 1847_CR210 doi: 10.1201/9781032703046-5 – volume: 44 start-page: 949 year: 2019 ident: 1847_CR176 publication-title: Arab J Sci Eng doi: 10.1007/s13369-018-3312-1 – volume: 133 start-page: 183 year: 2023 ident: 1847_CR162 publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2022.07.001 – volume: 1 year: 2020 ident: 1847_CR75 publication-title: J Adv Join Process doi: 10.1016/j.jajp.2020.100011 – volume: 20 start-page: 345 year: 2015 ident: 1847_CR255 publication-title: Sci Technol Weld Join doi: 10.1179/1362171815Y.0000000021 – volume: 16 start-page: 2031 year: 2023 ident: 1847_CR97 publication-title: Materials doi: 10.3390/ma16052031 – volume: 17 start-page: 3150 year: 2022 ident: 1847_CR150 publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2022.02.059 – volume: 62 start-page: 245 year: 2022 ident: 1847_CR60 publication-title: Mater Today: Proc – volume: 36 start-page: 77 year: 2018 ident: 1847_CR205 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2018.09.030 – volume: 5 start-page: 278 year: 2016 ident: 1847_CR155 publication-title: Metallogr Microstruct Anal doi: 10.1007/s13632-016-0285-x – volume: 113 start-page: 3629 year: 2021 ident: 1847_CR88 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-021-06852-7 – volume: 29 start-page: 1263 year: 2019 ident: 1847_CR179 publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(19)65033-8 – volume: 20 start-page: 631 year: 2015 ident: 1847_CR206 publication-title: Sci Technol Weld Join doi: 10.1179/1362171815Y.0000000048 – volume: 861 year: 2022 ident: 1847_CR141 publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2022.144388 – volume: 194 year: 2022 ident: 1847_CR102 publication-title: Mater Charact doi: 10.1016/j.matchar.2022.112473 – volume: 10 start-page: 799 year: 2020 ident: 1847_CR147 publication-title: Metals doi: 10.3390/met10060799 – volume: 12 start-page: 408 year: 2022 ident: 1847_CR89 publication-title: Metals doi: 10.3390/met12030408 – volume: 1980–2015 start-page: 934 issue: 65 year: 2015 ident: 1847_CR129 publication-title: Mater Des doi: 10.1016/j.matdes.2014.09.082 – volume: 26 year: 2021 ident: 1847_CR77 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2021.102132 – volume: 60 start-page: 2093 year: 2022 ident: 1847_CR229 publication-title: Mater Today: Proc – volume: 15 start-page: 2428 year: 2022 ident: 1847_CR146 publication-title: Materials doi: 10.3390/ma15072428 – volume: 14 start-page: 4754 year: 2021 ident: 1847_CR67 publication-title: Materials doi: 10.3390/ma14164754 – volume: 72 start-page: 400 year: 2021 ident: 1847_CR148 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.10.031 – volume: 97 start-page: 1269 year: 2018 ident: 1847_CR247 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-2003-0 – volume: 193 year: 2020 ident: 1847_CR199 publication-title: Mater Des doi: 10.1016/j.matdes.2020.108850 – volume: 25 start-page: 38 year: 2023 ident: 1847_CR92 publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2023.05.184 – volume: 35 start-page: 132 year: 2021 ident: 1847_CR68 publication-title: CIRP J Manuf Sci Technol doi: 10.1016/j.cirpj.2021.05.009 – volume: 680 start-page: 329 year: 2017 ident: 1847_CR134 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2016.10.113 – volume: 298 year: 2021 ident: 1847_CR131 publication-title: Mater Lett doi: 10.1016/j.matlet.2021.130031 – volume: 9 start-page: 565 year: 2022 ident: 1847_CR16 publication-title: Aerospace doi: 10.3390/aerospace9100565 – volume: 66 start-page: 577 year: 2022 ident: 1847_CR82 publication-title: Weld World doi: 10.1007/s40194-021-01228-7 – volume: 68 start-page: 1004 year: 2021 ident: 1847_CR49 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.06.021 – volume: 54 start-page: 2689 year: 2023 ident: 1847_CR114 publication-title: Metall Mater Trans A doi: 10.1007/s11661-023-07047-3 – volume: 9 start-page: 270 year: 2019 ident: 1847_CR171 publication-title: Metals doi: 10.3390/met9030270 – volume: 51 start-page: 709 year: 2011 ident: 1847_CR241 publication-title: Ultrasonics doi: 10.1016/j.ultras.2011.02.003 – volume: 240 start-page: 68 year: 2017 ident: 1847_CR158 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2016.09.009 – volume: 143 year: 2021 ident: 1847_CR178 publication-title: J Manuf Sci Eng doi: 10.1115/1.4050924 – volume: 9 start-page: 624 year: 2019 ident: 1847_CR14 publication-title: Metals doi: 10.3390/met9060624 – volume: 816 year: 2020 ident: 1847_CR157 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2019.152557 – volume: 38 start-page: 70 year: 2024 ident: 1847_CR94 publication-title: J Adhes Sci Technol doi: 10.1080/01694243.2023.2219367 – year: 2023 ident: 1847_CR163 publication-title: J Mater Eng Perform doi: 10.1007/s11665-023-09047-1 – volume: 176 year: 2021 ident: 1847_CR71 publication-title: Mater Charact doi: 10.1016/j.matchar.2021.111079 – start-page: 237 volume-title: Handbook of Welding: Processes year: 2021 ident: 1847_CR81 – volume: 30 start-page: 1756 year: 2020 ident: 1847_CR185 publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(20)65336-5 – volume: 28 start-page: 595 year: 2013 ident: 1847_CR213 publication-title: Mater Manuf Process doi: 10.1080/10426914.2013.763956 – volume: 781 start-page: 1074 year: 2019 ident: 1847_CR26 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2018.12.083 – volume: 8 start-page: 1543 year: 2022 ident: 1847_CR133 publication-title: Adv Mater Process Technol – ident: 1847_CR203 doi: 10.1007/s00170-021-07953-z – volume: 291 year: 2021 ident: 1847_CR181 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2020.117005 – volume: 39 start-page: 114 year: 2019 ident: 1847_CR261 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2019.02.011 – volume: 174 year: 2019 ident: 1847_CR53 publication-title: Compos B Eng doi: 10.1016/j.compositesb.2019.107061 – volume: 34 start-page: 177 year: 2019 ident: 1847_CR161 publication-title: Mater Manuf Process doi: 10.1080/10426914.2018.1544716 – volume: 41 start-page: 160 year: 2023 ident: 1847_CR216 publication-title: CIRP J Manuf Sci Technol doi: 10.1016/j.cirpj.2022.12.014 – volume: 62 start-page: 388 year: 2021 ident: 1847_CR263 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2020.12.028 – volume: 715 start-page: 91 year: 2017 ident: 1847_CR143 publication-title: J Alloys Comp doi: 10.1016/j.jallcom.2017.04.309 – volume: 33 start-page: 141 year: 2020 ident: 1847_CR61 publication-title: Int J Eng – volume: 103 start-page: 2121 year: 2019 ident: 1847_CR152 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-019-03631-3 – volume: 47 year: 2021 ident: 1847_CR192 publication-title: Addit Manuf – volume: 9 start-page: 22 year: 2018 ident: 1847_CR54 publication-title: Compos Commun doi: 10.1016/j.coco.2018.04.007 – volume: 60 start-page: 153 year: 2020 ident: 1847_CR220 publication-title: ISIJ Int doi: 10.2355/isijinternational.ISIJINT-2019-394 – volume: 24 start-page: 548 year: 2019 ident: 1847_CR221 publication-title: Sci Technol Weld Joining doi: 10.1080/13621718.2019.1570682 – volume: 11 start-page: 1680 year: 2021 ident: 1847_CR223 publication-title: Metals doi: 10.3390/met11111680 – ident: 1847_CR40 – volume: 399 year: 2020 ident: 1847_CR182 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2020.126170 – volume: 282 year: 2020 ident: 1847_CR111 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2020.116684 – volume: 263 year: 2021 ident: 1847_CR130 publication-title: Mater Sci Eng B doi: 10.1016/j.mseb.2020.114832 – volume: 44 start-page: 378 year: 2019 ident: 1847_CR138 publication-title: Crit Rev Solid State Mater Sci doi: 10.1080/10408436.2018.1490251 – volume: 9 start-page: 479 year: 2019 ident: 1847_CR187 publication-title: Metals doi: 10.3390/met9040479 – volume: 827 start-page: 154343 year: 2020 ident: 1847_CR249 publication-title: J Alloys Comp doi: 10.1016/j.jallcom.2020.154343 – volume: 36 start-page: 221 year: 2022 ident: 1847_CR103 publication-title: J Adhes Sci Technol doi: 10.1080/01694243.2021.1917868 – volume: 45 start-page: 457 year: 2020 ident: 1847_CR8 publication-title: Crit Rev Solid State Mater Sci doi: 10.1080/10408436.2019.1671799 – volume: 16 start-page: 1048 year: 2019 ident: 1847_CR142 publication-title: Mater Today: Proc – volume: 85 start-page: 1687 year: 2016 ident: 1847_CR140 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-8071-5 – volume: 288 year: 2021 ident: 1847_CR172 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2020.116706 – volume: 34 start-page: 1 year: 2018 ident: 1847_CR18 publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2017.11.029 – volume: 14 start-page: 5208 year: 2021 ident: 1847_CR153 publication-title: Materials doi: 10.3390/ma14185208 – volume: 51 start-page: 250 year: 2012 ident: 1847_CR91 publication-title: Can Metall Q doi: 10.1179/1879139512Y.0000000015 – volume: 26 start-page: 295 year: 2017 ident: 1847_CR212 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2017.02.027 – volume: 33 start-page: 264 year: 2021 ident: 1847_CR80 publication-title: CIRP J Manuf Sci Technol doi: 10.1016/j.cirpj.2021.03.015 – volume: 12 start-page: 1276 year: 2019 ident: 1847_CR135 publication-title: Results Phys doi: 10.1016/j.rinp.2019.01.025 – volume: 32 start-page: 4787 year: 2023 ident: 1847_CR93 publication-title: J Mater Eng Perform doi: 10.1007/s11665-022-07433-9 – volume: 17 start-page: 1 year: 2022 ident: 1847_CR262 publication-title: J Market Res – volume: 48 start-page: 12291 issue: 9 year: 2023 ident: 1847_CR217 publication-title: Arab J Sci Eng doi: 10.1007/s13369-023-07725-9 – volume: 9 start-page: 212 year: 2020 ident: 1847_CR184 publication-title: J Market Res – volume: 43 start-page: 1 year: 2020 ident: 1847_CR252 publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2019.12.007 – volume: 65 start-page: 328 year: 2021 ident: 1847_CR257 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.03.057 – volume: 54 start-page: 49 year: 2009 ident: 1847_CR21 publication-title: Int Mater Rev doi: 10.1179/174328009X411136 – volume: 374 start-page: 52 year: 2019 ident: 1847_CR169 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.05.048 – volume: 94 start-page: 1925 year: 2018 ident: 1847_CR107 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-0985-7 – volume: 141 year: 2019 ident: 1847_CR166 publication-title: J Tribol doi: 10.1115/1.4043067 – volume: 28 start-page: 415 year: 2018 ident: 1847_CR48 publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(18)64675-8 – volume: 203 year: 2021 ident: 1847_CR121 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2021.114113 – volume: 10 start-page: 947 year: 2020 ident: 1847_CR196 publication-title: Metals doi: 10.3390/met10070947 – volume: 34 year: 2020 ident: 1847_CR194 publication-title: Addit Manuf – volume: 10 start-page: 1062 year: 2020 ident: 1847_CR76 publication-title: Coatings doi: 10.3390/coatings10111062 – volume: 14 start-page: 168781322211078 year: 2022 ident: 1847_CR245 publication-title: Adv Mech Eng doi: 10.1177/16878132221107812 – volume: 22 start-page: 8 year: 2013 ident: 1847_CR256 publication-title: China Weldng – volume: 121 start-page: 105961 year: 2023 ident: 1847_CR70 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.105961 – volume: 798 start-page: 523 year: 2019 ident: 1847_CR174 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2019.05.269 – volume: 236 start-page: 10090 year: 2022 ident: 1847_CR190 publication-title: Proc Inst Mech Eng C J Mech Eng Sci doi: 10.1177/09544062221101754 – volume: 16 start-page: 473 year: 2016 ident: 1847_CR248 publication-title: Arch Civil Mech Eng doi: 10.1016/j.acme.2016.03.002 – volume: 239 start-page: 273 year: 2017 ident: 1847_CR58 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2016.08.025 – volume: 809 year: 2021 ident: 1847_CR112 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2021.140975 – volume: 53 start-page: 4215 year: 2019 ident: 1847_CR136 publication-title: J Compos Mater doi: 10.1177/0021998319856679 – volume: 12 start-page: 2042 year: 2021 ident: 1847_CR118 publication-title: J Market Res – volume: 6 start-page: 471 year: 2021 ident: 1847_CR127 publication-title: Progress in Additive Manufacturing doi: 10.1007/s40964-021-00175-5 – volume: 142 start-page: 10 year: 2019 ident: 1847_CR168 publication-title: Measurement doi: 10.1016/j.measurement.2019.04.061 – volume: 55 start-page: 13438 year: 2020 ident: 1847_CR139 publication-title: J Mater Sci doi: 10.1007/s10853-020-04963-2 – volume: 15 start-page: 8187 year: 2022 ident: 1847_CR65 publication-title: Materials doi: 10.3390/ma15228187 – volume: 23 start-page: 365 year: 2017 ident: 1847_CR242 publication-title: Sci Technol Weld Join doi: 10.1080/13621718.2017.1399545 – volume: 44 start-page: 197 year: 2019 ident: 1847_CR233 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2019.05.049 – volume: 123 start-page: 2531 year: 2022 ident: 1847_CR28 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-10366-1 – volume: 146 start-page: 892 year: 2019 ident: 1847_CR47 publication-title: Measurement doi: 10.1016/j.measurement.2019.07.019 – volume: 11 start-page: 68 year: 2020 ident: 1847_CR85 publication-title: Metals doi: 10.3390/met11010068 – volume: 120 start-page: 1 year: 2016 ident: 1847_CR84 publication-title: Mater Charact doi: 10.1016/j.matchar.2016.07.010 – volume: 65 start-page: 1 year: 2014 ident: 1847_CR98 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2014.03.003 – volume: 2 start-page: 1 year: 2020 ident: 1847_CR15 publication-title: SN Appl Sci doi: 10.1007/s42452-020-2330-2 – volume: 10 start-page: 215 year: 2020 ident: 1847_CR63 publication-title: Int J Mech Prod Eng Res Dev – volume: 65 start-page: 1483 year: 2021 ident: 1847_CR87 publication-title: Weld World doi: 10.1007/s40194-021-01131-1 – volume: 21 start-page: 1900250 year: 2019 ident: 1847_CR132 publication-title: Adv Eng Mater doi: 10.1002/adem.201900250 – volume: 11 start-page: 805 year: 2021 ident: 1847_CR201 publication-title: Metals doi: 10.3390/met11050805 – volume: 14 start-page: 1 year: 2022 ident: 1847_CR78 publication-title: Int J Integr Eng doi: 10.30880/ijie.2022.14.01.001 – volume: 15 start-page: 2735 year: 2021 ident: 1847_CR41 publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2021.09.037 – volume: 160 year: 2020 ident: 1847_CR74 publication-title: Mater Charact doi: 10.1016/j.matchar.2019.110115 – ident: 1847_CR207 doi: 10.1080/14484846.2018.1432089 – ident: 1847_CR224 doi: 10.1109/ICCE50343.2020.9290650 – volume: 86 start-page: 61 year: 2015 ident: 1847_CR22 publication-title: Mater Des doi: 10.1016/j.matdes.2015.07.071 – volume: 32 start-page: 228 year: 2021 ident: 1847_CR189 publication-title: CIRP J Manuf Sci Technol doi: 10.1016/j.cirpj.2020.12.004 – volume: 214 start-page: 2127 year: 2014 ident: 1847_CR227 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2014.03.012 – volume: 7 year: 2019 ident: 1847_CR195 publication-title: Materialia doi: 10.1016/j.mtla.2019.100387 – volume: 6 start-page: 5923 year: 2013 ident: 1847_CR208 publication-title: Materials doi: 10.3390/ma6125923 – volume: 102 start-page: 549 issue: 2 year: 2021 ident: 1847_CR116 publication-title: J Inst Eng (India): Ser D – volume: 179 year: 2020 ident: 1847_CR6 publication-title: Vacuum doi: 10.1016/j.vacuum.2020.109515 – volume: 5 start-page: 329 year: 2019 ident: 1847_CR156 publication-title: Adv Mater Process Technol – volume: 10 start-page: 806 year: 2020 ident: 1847_CR34 publication-title: Metals doi: 10.3390/met10060806 – volume: 20 start-page: 3025 year: 2022 ident: 1847_CR13 publication-title: J Market Res doi: 10.1016/j.jmrt.2022.08.034 – volume: 45 start-page: 491 year: 2019 ident: 1847_CR167 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2019.07.034 – volume: 25 start-page: 477 year: 2018 ident: 1847_CR39 publication-title: J Iron Steel Res Int doi: 10.1007/s42243-018-0066-7 – volume: 12 start-page: 55 year: 2021 ident: 1847_CR144 publication-title: Metals doi: 10.3390/met12010055 – volume: 75 start-page: 2559 year: 2022 ident: 1847_CR240 publication-title: Trans Indian Inst Met doi: 10.1007/s12666-022-02624-3 – volume: 37 start-page: 2484 year: 2023 ident: 1847_CR165 publication-title: J Adhes Sci Technol doi: 10.1080/01694243.2022.2142366 – volume: 37 start-page: 48 year: 2012 ident: 1847_CR235 publication-title: Mater Des doi: 10.1016/j.matdes.2011.12.018 – volume: 3 year: 2021 ident: 1847_CR38 publication-title: Eng Res Exp doi: 10.1088/2631-8695/abfe1d – volume: 311 year: 2023 ident: 1847_CR260 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2022.117812 – volume: 117 year: 2021 ident: 1847_CR20 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2020.100752 – volume: 12 start-page: 453 year: 2022 ident: 1847_CR25 publication-title: Metals doi: 10.3390/met12030453 – volume: 764 year: 2019 ident: 1847_CR30 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2019.138261 – volume: 51 start-page: 2863 year: 2020 ident: 1847_CR250 publication-title: Metall and Mater Trans A doi: 10.1007/s11661-020-05716-1 – ident: 1847_CR99 doi: 10.1007/s12008-023-01324-6 – volume: 14 start-page: 3244 year: 2021 ident: 1847_CR96 publication-title: Materials doi: 10.3390/ma14123244 – ident: 1847_CR234 – volume: 61 start-page: 679 year: 2017 ident: 1847_CR154 publication-title: Weld World doi: 10.1007/s40194-017-0447-8 – volume: 310 year: 2022 ident: 1847_CR238 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2022.117773 – volume: 67 start-page: 616 year: 2015 ident: 1847_CR124 publication-title: Jom doi: 10.1007/s11837-014-1271-x – volume: 281 year: 2020 ident: 1847_CR198 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2020.116648 – volume: 275 year: 2020 ident: 1847_CR100 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2019.116366 – volume: 47 start-page: 1 year: 2022 ident: 1847_CR12 publication-title: Crit Rev Solid State Mater Sci doi: 10.1080/10408436.2021.1886042 – volume: 14 start-page: 650 year: 2009 ident: 1847_CR228 publication-title: Sci Technol Weld Joining doi: 10.1179/136217109X12489665059429 – volume-title: Light alloys: metallurgy of the light metals year: 2017 ident: 1847_CR3 – volume: 36 start-page: 1 year: 2018 ident: 1847_CR46 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2018.09.017 – volume: 186 year: 2023 ident: 1847_CR244 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2023.104004 – volume: 25 start-page: 336 year: 2020 ident: 1847_CR120 publication-title: Sci Technol Weld Joining doi: 10.1080/13621718.2019.1706259 – volume: 190 year: 2021 ident: 1847_CR265 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2020.106039 – ident: 1847_CR23 doi: 10.1088/1757-899X/954/1/012007 – volume: 235 start-page: 1757 year: 2021 ident: 1847_CR43 publication-title: Proc Inst Mech Eng Part L: J Mater: Des Appl – start-page: 231 volume-title: Paulo Davim J year: 2021 ident: 1847_CR219 – volume: 32 start-page: 437 year: 2021 ident: 1847_CR37 publication-title: CIRP J Manuf Sci Technol doi: 10.1016/j.cirpj.2021.02.002 – volume: 862 year: 2023 ident: 1847_CR106 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2022.144423 – volume: 174 year: 2019 ident: 1847_CR24 publication-title: Compos B Eng doi: 10.1016/j.compositesb.2019.107057 – volume: 9 start-page: 3486 year: 2019 ident: 1847_CR204 publication-title: Appl Sci doi: 10.3390/app9173486 – volume: 1 year: 2019 ident: 1847_CR115 publication-title: Mater Des Process Commun doi: 10.1002/mdp2.41 – volume: 36 start-page: 723 year: 2022 ident: 1847_CR177 publication-title: J Mech Sci Technol doi: 10.1007/s12206-022-0120-z – ident: 1847_CR188 doi: 10.1007/s11665-021-06488-4 – volume: 174 year: 2022 ident: 1847_CR73 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2022.103858 – volume: 76 start-page: 602 year: 2023 ident: 1847_CR90 publication-title: Mater Today: Proc – volume: 150 year: 2022 ident: 1847_CR149 publication-title: Int J Plast doi: 10.1016/j.ijplas.2021.103184 – volume: 6 start-page: 399 year: 2018 ident: 1847_CR4 publication-title: J Magnes Alloy doi: 10.1016/j.jma.2018.06.001 – volume: 20 start-page: 1940 year: 2022 ident: 1847_CR72 publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2022.07.172 – volume: 27 start-page: 141 year: 2022 ident: 1847_CR126 publication-title: Sci Technol Weld Join doi: 10.1080/13621718.2022.2027663 – volume: 242 start-page: 91 year: 2019 ident: 1847_CR159 publication-title: Mater Lett doi: 10.1016/j.matlet.2019.01.078 – volume: 27 start-page: 2670 year: 2023 ident: 1847_CR42 publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2023.10.115 – volume: 46 start-page: 7929 year: 2021 ident: 1847_CR239 publication-title: Arab J Sci Eng doi: 10.1007/s13369-021-05574-y – volume: 114 start-page: 2457 year: 2021 ident: 1847_CR101 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-021-06978-8 – volume: 27 start-page: 576 year: 2020 ident: 1847_CR57 publication-title: Mater Today: Proc – ident: 1847_CR56 doi: 10.1007/978-81-322-2355-9_17 – volume: 34 start-page: 1817 year: 2018 ident: 1847_CR259 publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2018.02.022 – volume: 12 start-page: 1015 year: 2022 ident: 1847_CR33 publication-title: Metals doi: 10.3390/met12061015 – volume: 56 start-page: 967 year: 2020 ident: 1847_CR264 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2020.05.047 – volume: 13 start-page: 970 year: 2023 ident: 1847_CR29 publication-title: Metals doi: 10.3390/met13050970 – volume: 64 start-page: 379 year: 2021 ident: 1847_CR44 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.01.024 – volume: 157 year: 2020 ident: 1847_CR197 publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2020.107086 – volume: 43 start-page: 334 year: 2018 ident: 1847_CR10 publication-title: Crit Rev Solid State Mater Sci doi: 10.1080/10408436.2017.1358146 – volume: 199 year: 2022 ident: 1847_CR214 publication-title: Int J Press Vessels Pip doi: 10.1016/j.ijpvp.2022.104731 – volume: 218 year: 2022 ident: 1847_CR109 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2022.107089 – ident: 1847_CR11 doi: 10.1007/978-3-319-56099-1_5 – volume: 9 start-page: 71 year: 2021 ident: 1847_CR200 publication-title: Mater Res Lett doi: 10.1080/21663831.2020.1847211 – volume: 34 start-page: 163 year: 2018 ident: 1847_CR254 publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2017.10.022 – volume: 24 start-page: 8098 year: 2023 ident: 1847_CR104 publication-title: J Market Res – start-page: 1814 volume-title: Realization of Al/Mg-hybrid-joints by ultrasound supported friction stir welding year: 2014 ident: 1847_CR253 – volume: 152 year: 2022 ident: 1847_CR222 publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2022.108149 – volume: 43 start-page: 26 year: 2019 ident: 1847_CR225 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2019.05.011 – volume: 37 start-page: 162 year: 2023 ident: 1847_CR122 publication-title: J Adhes Sci Technol doi: 10.1080/01694243.2022.2028073 – volume: 73 start-page: 321 year: 2014 ident: 1847_CR251 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-5813-8 – volume: 222 start-page: 91 year: 2015 ident: 1847_CR258 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2015.03.002 – volume: 51 start-page: 10 year: 2020 ident: 1847_CR237 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2020.01.021 – start-page: 163 volume-title: Gallego-Juárez JA year: 2023 ident: 1847_CR246 – volume: 71 start-page: 317 year: 2021 ident: 1847_CR231 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.09.031 – volume: 12 start-page: 183 year: 2022 ident: 1847_CR164 publication-title: Metals doi: 10.3390/met12020183 – volume: 15 start-page: 5520 year: 2022 ident: 1847_CR45 publication-title: Materials doi: 10.3390/ma15165520 – volume: 377 year: 2019 ident: 1847_CR51 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.124914 – volume: 23 start-page: 4444 year: 2023 ident: 1847_CR50 publication-title: J Market Res – volume: 176 year: 2021 ident: 1847_CR232 publication-title: Mater Charact doi: 10.1016/j.matchar.2021.111141 – ident: 1847_CR191 doi: 10.1007/s00170-024-13890-4 |
SSID | ssj0009000 |
Score | 2.4188654 |
SecondaryResourceType | review_article |
Snippet | Friction stir-based techniques (FSTs), originating from friction stir welding (FSW), represent a solid-state processing method catering to the demands of... |
SourceID | swepub proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 327 |
SubjectTerms | Chemistry and Materials Science Dissimilar material joining Dissimilar metals Friction stir processing Friction stir welding Materials Science Mechanical properties Metallic Materials Microstructure Phase transitions Production Technology Produktionsteknik Review Article Solid Mechanics Theoretical and Applied Mechanics |
Title | Friction Stir-Based Techniques: An Overview |
URI | https://link.springer.com/article/10.1007/s40194-024-01847-w https://www.proquest.com/docview/3159684676 https://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-22600 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0oXPTgtxFF0gM3LSnb7bb1BggSjXgQDJ427XZXiQkYKJD4650tLSgxJhybJrPt7M7Mm8zMW4Cy6zueQBhsKmFjgkJUiCZlSdPRXDdKhBENdUX3scPaPXrfd_rpUNgk63bPSpKJp14Ou2EmoGlsie6aQJ9qzrchj_jDojnI1-5eH5orsl0rGz2xTUI8Lx2W-VvK74C0QpnLwugaiWgSeFr70Ms-edFv8lGZxmFFfK2xOW76TwewlyJRo7Y4OoewJYdHsPuDn_AYENYOkrkH4zkejM06RrzI6Gasr5MbozY0nmba28j5CfRazW6jbaa3K5jCdqzY9JlkNFBeoDMWvyp8S_khCx0ZBAofXCVJVaE9a4Yxx1XMpiRiNIqEK4UfEWmfQm44GsozMISPSYx0qpK4DnVl4KHTpDISSiAY9akowFWmYv65INHgS7rkRAUcVcATFfB5AYrZLvDUoCbcRtjFNFZiBbjOdLl6_Z-08mL3litrQu3bwUuNj8Zv_H3GieboP99M6gXsEH0RcNK-XYRcPJ7KS0QncVjCw9iq1zul9FCWYLvBGt9Xb9xr |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0oHtSD8TOiqD1w042w3W673hAlqIAHwXDbtNvdyKUaqPD3nS0tKDEmHpsm0-R1duZNZuYtQNUXXqCQBhOjXCxQqInwSNU08azWjVFRzCLb0e32eHvAHofeMJfJsbswK_376wnyfyteS-2sBEZSMluHDYaVsh3fa_LmUmC3VqybuITSIMgXZH638TMJLZnlohm6IhyaJZvWLuzkLNFpzH_rHqzpZB-2v2kHHgBSzlG2k-C8pKMxucVsFDv9QpF1cuM0Eud5aiOBnh3CoHXfb7ZJfvMBUa5XS4ngmrPQBKGtJkRdiZoREY88HYYGH3yjad3gWbPqX55vuMtozFkcK18rEVPtHkEpeU_0MThKYIGhvbqmvsd8HQYY0JiOlVFIFAVTZbgsoJAfc4ELuZAyzoCTCJzMgJOzMlQKtGTu7BPpIiXilsfwMlwVCC5f_2WtOkd58WUrdn03em1I9AH5NpXU6uef_M_qBWy2-92O7Dz0nk5hi9oLe7Mx6wqU0vGnPkMWkUbnmft8AckHu6U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oJkYPxmdEUXvgpg2w3d12vSFI8IUmguG2afehXAqBCn_f3e0DNMbEY9NkNvnamfkmM_MtAFWf4oBrGuwq7ukCBapIu1Rdutho3SgeCRSZju5Tj3QH6H6Ihytb_HbaPW9JpjsNRqUpTmoToWrF4puuCoykLTQTFDq-uot1sKErFduobZHWUna3ni-heC6EQZCtzfxu43tqWvLNokX6Q07UpqDOLtjJuKPTTD_2HliT8T7YXlEUPACaiI7spoLzmoym7o3OUcLp5zqts2unGTvPcxMf5OIQDDq3_VbXze5DcLmH64lLiSQoVEFoagza4LSuaEQiLMNQ6QdfSdhQ2gONJhj2FfEQFAQJwX3JqYDSOwKleBzLY-BwqssOiRsS-hj5Mgx0mENScMU1faSIl8FlDgWbpLIXrBA4tsAxDRyzwLFFGVRytFjmAjPmaaJEDLshZXCVI7h8_Ze1aopycbKRwG6P3ppsPH1nH3MGjar-yf-sXoDNl3aHPd71Hk7BFjS3-NrZ6wooJdNPeaapRRKd27_nC7wtw-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Friction+Stir-Based+Techniques%3A+An+Overview&rft.jtitle=Welding+in+the+world&rft.date=2025-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0043-2288&rft.eissn=1878-6669&rft.volume=69&rft.issue=2&rft.spage=327&rft.epage=361&rft_id=info:doi/10.1007%2Fs40194-024-01847-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-2288&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-2288&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-2288&client=summon |