Experimental Study on Interference Effect of Three Risers Arranged in Tandem with Variable Spacing Ratios

Taking the three-riser group arranged in tandem as the research subject, an experimental study was carried out on the risers arranged in tandem. The purpose is to explore the sensitivity of the dynamic response of each riser to spacing ratio and reveal the physical mechanism of riser groups under th...

Full description

Saved in:
Bibliographic Details
Published inChina ocean engineering Vol. 37; no. 3; pp. 408 - 419
Main Authors Zhang, Peng, Liu, Li-hua, Liu, Ming, Ren, Xiao-hui, Wang, Yu
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation,Qingdao 266590,China%School of Petroleum Engineering,China University of Petroleum(East China),Qingdao 266580,China
School of Civil Engineering,Qingdao University of Technology,Qingdao 266520,China%College of Civil Engineering and Architecture,Shandong University of Science and Technology,Qingdao 266590,China
Subjects
Online AccessGet full text
ISSN0890-5487
2191-8945
DOI10.1007/s13344-023-0034-2

Cover

Loading…
Abstract Taking the three-riser group arranged in tandem as the research subject, an experimental study was carried out on the risers arranged in tandem. The purpose is to explore the sensitivity of the dynamic response of each riser to spacing ratio and reveal the physical mechanism of riser groups under the interference effect. The spacing ratios of the adjacent risers are 4.0, 5.0, 6.0, and 8.0. At the spacing between the risers of 4.0 D , the strong feedback effect increases the cross-flow (CF) displacement amplitude of the upstream riser. The shielding effect is the key factor affecting the interference effect on the midstream and downstream risers. At low reduced velocities, the shielding area initially appears, the displacement amplitude of the midstream and downstream risers varies greatly, the vibration of the two risers is still dominated by the first-order mode, and the transition between adjacent vibration modes is restrained. The multi-frequency superposition phenomenon is very significant at high reduced velocities. The most sensitive interference spacing under the test conditions is obtained. Due to the separation of the incoming flow and the double shielding effect of the upstream and midstream risers, the regular vortex-induced vibration in the wake area of the downstream riser is broken, and the vibration in the two directions is weakened. In general, the interference effect is more significant for the CF vibration of the three-riser groups than the in-line (IL) vibration.
AbstractList Taking the three-riser group arranged in tandem as the research subject,an experimental study was carried out on the risers arranged in tandem.The purpose is to explore the sensitivity of the dynamic response of each riser to spacing ratio and reveal the physical mechanism of riser groups under the interference effect.The spacing ratios of the adjacent risers are 4.0,5.0,6.0,and 8.0.At the spacing between the risers of 4.0D,the strong feedback effect increases the cross-flow(CF)displacement amplitude of the upstream riser.The shielding effect is the key factor affecting the interference effect on the midstream and downstream risers.At low reduced velocities,the shielding area initially appears,the displacement amplitude of the midstream and downstream risers varies greatly,the vibration of the two risers is still dominated by the first-order mode,and the transition between adjacent vibration modes is restrained.The multi-frequency superposition phenomenon is very significant at high reduced velocities.The most sensitive interference spacing under the test conditions is obtained.Due to the separation of the incoming flow and the double shielding effect of the upstream and midstream risers,the regular vortex-induced vibration in the wake area of the downstream riser is broken,and the vibration in the two directions is weakened.In general,the interference effect is more significant for the CF vibration of the three-riser groups than the in-line(IL)vibration.
Taking the three-riser group arranged in tandem as the research subject, an experimental study was carried out on the risers arranged in tandem. The purpose is to explore the sensitivity of the dynamic response of each riser to spacing ratio and reveal the physical mechanism of riser groups under the interference effect. The spacing ratios of the adjacent risers are 4.0, 5.0, 6.0, and 8.0. At the spacing between the risers of 4.0 D , the strong feedback effect increases the cross-flow (CF) displacement amplitude of the upstream riser. The shielding effect is the key factor affecting the interference effect on the midstream and downstream risers. At low reduced velocities, the shielding area initially appears, the displacement amplitude of the midstream and downstream risers varies greatly, the vibration of the two risers is still dominated by the first-order mode, and the transition between adjacent vibration modes is restrained. The multi-frequency superposition phenomenon is very significant at high reduced velocities. The most sensitive interference spacing under the test conditions is obtained. Due to the separation of the incoming flow and the double shielding effect of the upstream and midstream risers, the regular vortex-induced vibration in the wake area of the downstream riser is broken, and the vibration in the two directions is weakened. In general, the interference effect is more significant for the CF vibration of the three-riser groups than the in-line (IL) vibration.
Author Zhang, Peng
Liu, Ming
Ren, Xiao-hui
Liu, Li-hua
Wang, Yu
AuthorAffiliation School of Civil Engineering,Qingdao University of Technology,Qingdao 266520,China%College of Civil Engineering and Architecture,Shandong University of Science and Technology,Qingdao 266590,China;Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation,Qingdao 266590,China%School of Petroleum Engineering,China University of Petroleum(East China),Qingdao 266580,China
AuthorAffiliation_xml – name: School of Civil Engineering,Qingdao University of Technology,Qingdao 266520,China%College of Civil Engineering and Architecture,Shandong University of Science and Technology,Qingdao 266590,China;Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation,Qingdao 266590,China%School of Petroleum Engineering,China University of Petroleum(East China),Qingdao 266580,China
Author_xml – sequence: 1
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: School of Civil Engineering, Qingdao University of Technology
– sequence: 2
  givenname: Li-hua
  surname: Liu
  fullname: Liu, Li-hua
  email: sdustllh2018@163.com
  organization: College of Civil Engineering and Architecture, Shandong University of Science and Technology, Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation
– sequence: 3
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
  organization: School of Civil Engineering, Qingdao University of Technology
– sequence: 4
  givenname: Xiao-hui
  surname: Ren
  fullname: Ren, Xiao-hui
  organization: College of Civil Engineering and Architecture, Shandong University of Science and Technology, Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation
– sequence: 5
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
  organization: School of Petroleum Engineering, China University of Petroleum (East China)
BookMark eNp9kE1LJDEURcOgMK0zP2B2AVcuSl-S-lyKtKMgCNrONrxKvXRH2lSbpHHaX2-aEoQBZ_U299x3OUfswI-eGPsl4EwANOdRKFWWBUhVAKiykN_YTIpOFG1XVgdsBm0HRVW2zXd2FOMTQCWqUsyYm__dUHDP5BOu-UPaDjs-en7jEwVLgbwhPreWTOKj5YtVIOL3LlKI_CIE9EsauPN8gX6gZ_7q0or_weCwXxN_2KBxfsnvMbkx_mCHFteRfn7cY_Z4NV9cXhe3d79vLi9uC6MqSHmvaAD7vuylaahu0AqoZD8ognKoaSCJWPd2MGboe7R1rTpLFoxs2qpDa9UxO516X9HbPFA_jdvg80f9tlztlkaTzJZAZQU5ezJlN2F82VJMn2HZqrZRKq_JKTGlTBhjDGT1JhvDsNMC9N6-nuzr3Kv39rXMTPMPY1zae_ApoFv_l5QTGfOX7Dd8bvoaegedBpwy
CitedBy_id crossref_primary_10_1016_j_oceaneng_2024_118971
Cites_doi 10.1006/jfls.2000.0364
10.1016/j.jfluidstructs.2017.10.007
10.1016/j.oceaneng.2011.05.020
10.1016/j.jfluidstructs.2005.07.014
10.1016/j.jfluidstructs.2009.03.007
10.1016/j.oceaneng.2020.107878
10.1063/1.5020828
10.1016/j.oceaneng.2019.02.053
10.1103/PhysRevLett.99.144503
10.1016/j.ijmecsci.2020.106132
10.1017/S0022112010003095
10.1016/j.jfluidstructs.2019.102810
10.1016/j.ijmecsci.2020.105600
10.1016/j.jfluidstructs.2017.08.001
10.1017/jfm.2012.606
10.1017/S0022112008004850
10.1016/j.jfluidstructs.2011.04.003
10.1016/j.marstruc.2020.102893
10.1016/0022-460X(76)90601-5
10.1007/s11071-021-06527-8
10.1016/j.jfluidstructs.2015.10.005
10.1016/j.jfluidstructs.2017.12.017
10.1016/j.apor.2009.12.001
10.1007/s13344-016-0003-0
10.1016/0167-6105(87)90005-5
10.1016/j.ijheatfluidflow.2016.08.008
10.1016/j.jfluidstructs.2005.04.010
10.1016/j.jfluidstructs.2011.02.006
10.1016/j.jfluidstructs.2011.01.001
10.1016/j.jfluidstructs.2015.11.004
10.1016/j.jfluidstructs.2010.11.004
10.1016/j.oceaneng.2018.07.042
10.1016/j.jfluidstructs.2014.02.006
10.1016/j.marstruc.2017.10.009
10.1016/j.oceaneng.2019.02.012
10.1007/s13344-020-0045-1
10.1016/j.ijmecsci.2022.107764
ContentType Journal Article
Copyright Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023
Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023
– notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7TN
F1W
H96
L.G
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s13344-023-0034-2
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 2191-8945
EndPage 419
ExternalDocumentID zghygc_e202303005
10_1007_s13344_023_0034_2
GroupedDBID -01
-0A
-EM
-SA
-S~
06D
0R~
0VY
188
29B
29~
2B.
2C.
2KG
2KM
30V
4.4
406
408
5GY
5VR
5XA
5XB
8RM
92E
92I
92M
92Q
93N
96X
9D9
9DA
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BGNMA
CAJEA
CCEZO
CCVFK
CHBEP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JUIAU
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PT4
Q--
Q-0
R-A
R9I
RLLFE
ROL
RSV
RT1
S..
S1Z
S27
S3B
SCL
SEG
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T8Q
TCJ
TGP
TSG
U1F
U1G
U2A
U5A
U5K
UG4
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z7R
ZMTXR
~A9
~LH
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7TN
ABRTQ
F1W
H96
L.G
4A8
PSX
ID FETCH-LOGICAL-c350t-89170abb4b2c7e67af1052bd3e04d6ede2aa6bfdccdbbaf6639fef0c27859aff3
IEDL.DBID U2A
ISSN 0890-5487
IngestDate Thu May 29 03:55:51 EDT 2025
Wed Aug 13 11:31:35 EDT 2025
Tue Jul 01 01:29:49 EDT 2025
Thu Apr 24 22:51:22 EDT 2025
Fri Feb 21 02:41:59 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords three-riser group
wake interference
vortex-induced vibration
variable spacing ratios
tandem arrangement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-89170abb4b2c7e67af1052bd3e04d6ede2aa6bfdccdbbaf6639fef0c27859aff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2838733917
PQPubID 2043672
PageCount 12
ParticipantIDs wanfang_journals_zghygc_e202303005
proquest_journals_2838733917
crossref_primary_10_1007_s13344_023_0034_2
crossref_citationtrail_10_1007_s13344_023_0034_2
springer_journals_10_1007_s13344_023_0034_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle China ocean engineering
PublicationTitleAbbrev China Ocean Eng
PublicationTitle_FL China Ocean Engineering
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation,Qingdao 266590,China%School of Petroleum Engineering,China University of Petroleum(East China),Qingdao 266580,China
School of Civil Engineering,Qingdao University of Technology,Qingdao 266520,China%College of Civil Engineering and Architecture,Shandong University of Science and Technology,Qingdao 266590,China
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: School of Civil Engineering,Qingdao University of Technology,Qingdao 266520,China%College of Civil Engineering and Architecture,Shandong University of Science and Technology,Qingdao 266590,China
– name: Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation,Qingdao 266590,China%School of Petroleum Engineering,China University of Petroleum(East China),Qingdao 266580,China
References CarmoBSSherwinSJBearmanPWWilldenRHJFlow-induced vibration of a circular cylinder subjected to wake interference at low Reynolds numberJournal of Fluids and Structures201127450352210.1016/j.jfluidstructs.2011.04.003
TrimADBraatenHLieHTognarelliMAExperimental investigation of vortex-induced vibration of long marine risersJournal of Fluids and Structures200521333536110.1016/j.jfluidstructs.2005.07.014
HoverFSTriantafyllouMSGalloping response of a cylinder with upstream wake interferenceJournal of Fluids and Structures2001153–450351210.1006/jfls.2000.0364
LiXTZhangWWGaoCQProximity-interference wake-induced vibration at subcritical Re: Mechanism analysis using a linear dynamic modelPhysics of Fluids201830303360610.1063/1.5020828
AssiGRSBearmanPWCarmoBSMeneghiniJRSherwinSJWilldenRHJThe role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pairJournal of Fluid Mechanics20137182102451284.7611210.1017/jfm.2012.606
MysaRCLawYZJaimanRKInteraction dynamics of upstream vortex with vibrating tandem circular cylinder at sub-critical Reynolds numberJournal of Fluids and Structures201775274410.1016/j.jfluidstructs.2017.08.001
APILine Pipe2018Washington, USAAmerican Petroleum Institute
JanochaMJOngMCNystrømPRTuZGEndalGStokholmHFlow around two elastically-mounted cylinders with different diameters in tandem and staggered configurations in the subcritical Reynolds number regimeMarine Structures20217610289310.1016/j.marstruc.2020.102893
ChaplinJRBearmanPWHuera-HuarteFJPattendenRJLaboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped currentJournal of Fluids and Structures200521132410.1016/j.jfluidstructs.2005.04.010
LiuYLiPWangYGuoHYZhangXTExperimental investigation on the vortex-induced vibration of the vertical riser fitted with the water jetting active vibration suppression deviceInternational Journal of Mechanical Sciences202017710560010.1016/j.ijmecsci.2020.105600
MysaRCKaboudianAJaimanRKOn the origin of wake-induced vibration in two tandem circular cylinders at low Reynolds numberJournal of Fluids and Structures201661769810.1016/j.jfluidstructs.2015.11.004
BorazjaniISotiropoulosFVortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference regionJournal of Fluid Mechanics200962132136424815471171.7635110.1017/S0022112008004850
ZhouYAlamMWake of two interacting circular cylinders: A reviewInternational Journal of Heat and Fluid Flow20166251053710.1016/j.ijheatfluidflow.2016.08.008
SongJNLuLTengBParkHITangGQWuHLaboratory tests of vortex-induced vibrations of a long flexible riser pipe subjected to uniform flowOcean Engineering20113811–121308132210.1016/j.oceaneng.2011.05.020
ShaabanMMohanyAFlow-induced vibration of three unevenly spaced in-line cylinders in cross-flowJournal of Fluids and Structures20187636738310.1016/j.jfluidstructs.2017.10.007
Huera-HuarteFJBearmanPWWake structures and vortex-induced vibrations of a long flexible cylinder-part 1: dynamic responseJournal of Fluids and Structures200925696999010.1016/j.jfluidstructs.2009.03.007
ZhangBSMaoZYSongBWTianWLDingWJNumerical investigation on VIV energy harvesting of four cylinders in close staggered formationOcean Engineering2018165556810.1016/j.oceaneng.2018.07.042
LiuHZWangFJiangGSGuoHYLiXMLaboratory measurements of vortex- and wake-induced vibrations of a tandem arrangement of two flexible risersChina Ocean Engineering2016301475610.1007/s13344-016-0003-0
Huera-HuarteFJGharibMVortex- and wake-induced vibrations of a tandem arrangement of two flexible circular cylinders with far wake interferenceJournal of Fluids and Structures2011275–682482810.1016/j.jfluidstructs.2011.02.006
SaathoffPJMelbourneWHFreestream turbulence and wind tunnel blockage effects on streamwise surface pressuresJournal of Wind Engineering & Industrial Aerodynamics198726335337010.1016/0167-6105(87)90005-5
ChenWLJiCNWilliamsJXuDYangLHCuiYTVortex-induced vibrations of three tandem cylinders in laminar cross-flow: Vibration response and galloping mechanismJournal of Fluids and Structures20187821523810.1016/j.jfluidstructs.2017.12.017
LiuYLiPWangYLiuLHWangFGuoHYFuQAn experimental study on dynamics features of three side-by-side flexible risers undergoing vortex-induced vibrations in a uniform flowChina Ocean Engineering202034450051210.1007/s13344-020-0045-1
GaoYYYangKZhangBFChengKYChenXPNumerical investigation on vortex-induced vibrations of four circular cylinders in a square configurationOcean Engineering201917522324010.1016/j.oceaneng.2019.02.012
KhanHHIslamMFattYYJanajrehIAlamMMEffect of three tandem cylinder diameter difference on flow-induced vibrations and heat transferInternational Journal of Mechanical Sciences202223610776410.1016/j.ijmecsci.2022.107764
LiPLiuLHWangYLiuYJiangZXFengLPGuoHYLiXMWangFFuQThe dynamic evolution of fluid Strouhal number under flow fields around flexible vertical pipe groupsOcean Engineering202021510787810.1016/j.oceaneng.2020.107878
Huera-HuarteFJBangashZAGonzálezLMTowing tank experiments on the vortex-induced vibrations of low mass ratio long flexible cylindersJournal of Fluids and Structures201448819210.1016/j.jfluidstructs.2014.02.006
FanXTWangZCWangYTanWThe effect of vortices structures on the flow-induced vibration of three flexible tandem cylindersInternational Journal of Mechanical Sciences202119210613210.1016/j.ijmecsci.2020.106132
AssiGRSBearmanPWMeneghiniJROn the wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanismJournal of Fluid Mechanics20106613654011205.7600410.1017/S0022112010003095
LiPLiQLiuYWangYGuoHYZhangYBExperimental study on dynamic response of smooth and straked risers in tandem arrangement coupling interference effectJournal of Fluids and Structures20209210281010.1016/j.jfluidstructs.2019.102810
Huera-HuarteFJGharibMFlow-induced vibrations of a side-by-side arrangement of two flexible circular cylindersJournal of Fluids and Structures201127335436610.1016/j.jfluidstructs.2011.01.001
DNVRiser Interference2009NorwayDet Norske Veritas
HuangSInstability of a vertical riser in the wake of an upstream vertical riserApplied Ocean Research201032335135710.1016/j.apor.2009.12.001
Huera-HuarteFJBearmanPWVortex and wake-induced vibrations of a tandem arrangement of two flexible circular cylinders with near wake interferenceJournal of Fluids and Structures201127219321110.1016/j.jfluidstructs.2010.11.004
YuKRÉtienneSScolanYMHayAFontaineEPelletierDFlow-induced vibrations of in-line cylinder arrangements at low Reynolds numbersJournal of Fluids and Structures201660376110.1016/j.jfluidstructs.2015.10.005
ArminMDaySKarimiradMKhorasanchiMOn the development of a nonlinear time-domain numerical method for describing vortex-induced vibration and wake interference of two cylinders using experimental resultsNonlinear Dynamics202110443517353110.1007/s11071-021-06527-8
DNVSubmarine Pipeline Systems2001NorwayDet Norske Veritas
XuWHChengAKMaYXGaoXFMulti-mode flow-induced vibrations of two side-by-side slender flexible cylinders in a uniform flowMarine Structures20185721923610.1016/j.marstruc.2017.10.009
APISpecification for Casing and Tubing2011Washington, USAAmerican Petroleum Institute
KingRJohnsDJWake interaction experiments with two flexible circular cylinders in flowing waterJournal of Sound and Vibration197645225928310.1016/0022-460X(76)90601-5
WangEHXuWHYuYZhouLDIncecikAFlow-induced vibrations of three and four long flexible cylinders in tandem arrangement: An experimental studyOcean Engineering201917817018410.1016/j.oceaneng.2019.02.053
DahlJMHoverFSTriantafyllouMSDongSKarniadakisGEResonant vibrations of bluff bodies cause multivortex shedding and high frequency forcesPhysical Review Letters2007991414450310.1103/PhysRevLett.99.144503
BS Carmo (34_CR7) 2011; 27
KR Yu (34_CR39) 2016; 60
API (34_CR1) 2011
P Li (34_CR26) 2020; 215
FJ Huera-Huarte (34_CR17) 2009; 25
Y Zhou (34_CR41) 2016; 62
HH Khan (34_CR23) 2022; 236
FS Hover (34_CR15) 2001; 15
FJ Huera-Huarte (34_CR20) 2011; 27
WL Chen (34_CR9) 2018; 78
FJ Huera-Huarte (34_CR21) 2011; 27
DNV (34_CR12) 2009
JN Song (34_CR35) 2011; 38
RC Mysa (34_CR32) 2017; 75
M Shaaban (34_CR34) 2018; 76
YY Gao (34_CR14) 2019; 175
FJ Huera-Huarte (34_CR19) 2014; 48
MJ Janocha (34_CR22) 2021; 76
XT Fan (34_CR13) 2021; 192
R King (34_CR24) 1976; 45
GRS Assi (34_CR5) 2010; 661
HZ Liu (34_CR28) 2016; 30
GRS Assi (34_CR4) 2013; 718
JR Chaplin (34_CR8) 2005; 21
API (34_CR2) 2018
M Armin (34_CR3) 2021; 104
I Borazjani (34_CR6) 2009; 621
FJ Huera-Huarte (34_CR18) 2011; 27
DNV (34_CR11) 2001
Y Liu (34_CR29) 2020; 177
PJ Saathoff (34_CR33) 1987; 26
WH Xu (34_CR38) 2018; 57
S Huang (34_CR16) 2010; 32
XT Li (34_CR27) 2018; 30
EH Wang (34_CR37) 2019; 178
BS Zhang (34_CR40) 2018; 165
AD Trim (34_CR36) 2005; 21
JM Dahl (34_CR10) 2007; 99
P Li (34_CR25) 2020; 92
Y Liu (34_CR30) 2020; 34
RC Mysa (34_CR31) 2016; 61
References_xml – reference: LiPLiuLHWangYLiuYJiangZXFengLPGuoHYLiXMWangFFuQThe dynamic evolution of fluid Strouhal number under flow fields around flexible vertical pipe groupsOcean Engineering202021510787810.1016/j.oceaneng.2020.107878
– reference: ChaplinJRBearmanPWHuera-HuarteFJPattendenRJLaboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped currentJournal of Fluids and Structures200521132410.1016/j.jfluidstructs.2005.04.010
– reference: WangEHXuWHYuYZhouLDIncecikAFlow-induced vibrations of three and four long flexible cylinders in tandem arrangement: An experimental studyOcean Engineering201917817018410.1016/j.oceaneng.2019.02.053
– reference: JanochaMJOngMCNystrømPRTuZGEndalGStokholmHFlow around two elastically-mounted cylinders with different diameters in tandem and staggered configurations in the subcritical Reynolds number regimeMarine Structures20217610289310.1016/j.marstruc.2020.102893
– reference: AssiGRSBearmanPWCarmoBSMeneghiniJRSherwinSJWilldenRHJThe role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pairJournal of Fluid Mechanics20137182102451284.7611210.1017/jfm.2012.606
– reference: CarmoBSSherwinSJBearmanPWWilldenRHJFlow-induced vibration of a circular cylinder subjected to wake interference at low Reynolds numberJournal of Fluids and Structures201127450352210.1016/j.jfluidstructs.2011.04.003
– reference: GaoYYYangKZhangBFChengKYChenXPNumerical investigation on vortex-induced vibrations of four circular cylinders in a square configurationOcean Engineering201917522324010.1016/j.oceaneng.2019.02.012
– reference: Huera-HuarteFJBangashZAGonzálezLMTowing tank experiments on the vortex-induced vibrations of low mass ratio long flexible cylindersJournal of Fluids and Structures201448819210.1016/j.jfluidstructs.2014.02.006
– reference: APISpecification for Casing and Tubing2011Washington, USAAmerican Petroleum Institute
– reference: MysaRCLawYZJaimanRKInteraction dynamics of upstream vortex with vibrating tandem circular cylinder at sub-critical Reynolds numberJournal of Fluids and Structures201775274410.1016/j.jfluidstructs.2017.08.001
– reference: FanXTWangZCWangYTanWThe effect of vortices structures on the flow-induced vibration of three flexible tandem cylindersInternational Journal of Mechanical Sciences202119210613210.1016/j.ijmecsci.2020.106132
– reference: BorazjaniISotiropoulosFVortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference regionJournal of Fluid Mechanics200962132136424815471171.7635110.1017/S0022112008004850
– reference: ArminMDaySKarimiradMKhorasanchiMOn the development of a nonlinear time-domain numerical method for describing vortex-induced vibration and wake interference of two cylinders using experimental resultsNonlinear Dynamics202110443517353110.1007/s11071-021-06527-8
– reference: DNVSubmarine Pipeline Systems2001NorwayDet Norske Veritas
– reference: Huera-HuarteFJBearmanPWWake structures and vortex-induced vibrations of a long flexible cylinder-part 1: dynamic responseJournal of Fluids and Structures200925696999010.1016/j.jfluidstructs.2009.03.007
– reference: KhanHHIslamMFattYYJanajrehIAlamMMEffect of three tandem cylinder diameter difference on flow-induced vibrations and heat transferInternational Journal of Mechanical Sciences202223610776410.1016/j.ijmecsci.2022.107764
– reference: Huera-HuarteFJBearmanPWVortex and wake-induced vibrations of a tandem arrangement of two flexible circular cylinders with near wake interferenceJournal of Fluids and Structures201127219321110.1016/j.jfluidstructs.2010.11.004
– reference: ShaabanMMohanyAFlow-induced vibration of three unevenly spaced in-line cylinders in cross-flowJournal of Fluids and Structures20187636738310.1016/j.jfluidstructs.2017.10.007
– reference: ChenWLJiCNWilliamsJXuDYangLHCuiYTVortex-induced vibrations of three tandem cylinders in laminar cross-flow: Vibration response and galloping mechanismJournal of Fluids and Structures20187821523810.1016/j.jfluidstructs.2017.12.017
– reference: TrimADBraatenHLieHTognarelliMAExperimental investigation of vortex-induced vibration of long marine risersJournal of Fluids and Structures200521333536110.1016/j.jfluidstructs.2005.07.014
– reference: LiXTZhangWWGaoCQProximity-interference wake-induced vibration at subcritical Re: Mechanism analysis using a linear dynamic modelPhysics of Fluids201830303360610.1063/1.5020828
– reference: LiuYLiPWangYLiuLHWangFGuoHYFuQAn experimental study on dynamics features of three side-by-side flexible risers undergoing vortex-induced vibrations in a uniform flowChina Ocean Engineering202034450051210.1007/s13344-020-0045-1
– reference: AssiGRSBearmanPWMeneghiniJROn the wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanismJournal of Fluid Mechanics20106613654011205.7600410.1017/S0022112010003095
– reference: LiuHZWangFJiangGSGuoHYLiXMLaboratory measurements of vortex- and wake-induced vibrations of a tandem arrangement of two flexible risersChina Ocean Engineering2016301475610.1007/s13344-016-0003-0
– reference: Huera-HuarteFJGharibMFlow-induced vibrations of a side-by-side arrangement of two flexible circular cylindersJournal of Fluids and Structures201127335436610.1016/j.jfluidstructs.2011.01.001
– reference: Huera-HuarteFJGharibMVortex- and wake-induced vibrations of a tandem arrangement of two flexible circular cylinders with far wake interferenceJournal of Fluids and Structures2011275–682482810.1016/j.jfluidstructs.2011.02.006
– reference: KingRJohnsDJWake interaction experiments with two flexible circular cylinders in flowing waterJournal of Sound and Vibration197645225928310.1016/0022-460X(76)90601-5
– reference: MysaRCKaboudianAJaimanRKOn the origin of wake-induced vibration in two tandem circular cylinders at low Reynolds numberJournal of Fluids and Structures201661769810.1016/j.jfluidstructs.2015.11.004
– reference: ZhouYAlamMWake of two interacting circular cylinders: A reviewInternational Journal of Heat and Fluid Flow20166251053710.1016/j.ijheatfluidflow.2016.08.008
– reference: YuKRÉtienneSScolanYMHayAFontaineEPelletierDFlow-induced vibrations of in-line cylinder arrangements at low Reynolds numbersJournal of Fluids and Structures201660376110.1016/j.jfluidstructs.2015.10.005
– reference: APILine Pipe2018Washington, USAAmerican Petroleum Institute
– reference: SaathoffPJMelbourneWHFreestream turbulence and wind tunnel blockage effects on streamwise surface pressuresJournal of Wind Engineering & Industrial Aerodynamics198726335337010.1016/0167-6105(87)90005-5
– reference: HoverFSTriantafyllouMSGalloping response of a cylinder with upstream wake interferenceJournal of Fluids and Structures2001153–450351210.1006/jfls.2000.0364
– reference: ZhangBSMaoZYSongBWTianWLDingWJNumerical investigation on VIV energy harvesting of four cylinders in close staggered formationOcean Engineering2018165556810.1016/j.oceaneng.2018.07.042
– reference: LiPLiQLiuYWangYGuoHYZhangYBExperimental study on dynamic response of smooth and straked risers in tandem arrangement coupling interference effectJournal of Fluids and Structures20209210281010.1016/j.jfluidstructs.2019.102810
– reference: XuWHChengAKMaYXGaoXFMulti-mode flow-induced vibrations of two side-by-side slender flexible cylinders in a uniform flowMarine Structures20185721923610.1016/j.marstruc.2017.10.009
– reference: DahlJMHoverFSTriantafyllouMSDongSKarniadakisGEResonant vibrations of bluff bodies cause multivortex shedding and high frequency forcesPhysical Review Letters2007991414450310.1103/PhysRevLett.99.144503
– reference: DNVRiser Interference2009NorwayDet Norske Veritas
– reference: HuangSInstability of a vertical riser in the wake of an upstream vertical riserApplied Ocean Research201032335135710.1016/j.apor.2009.12.001
– reference: LiuYLiPWangYGuoHYZhangXTExperimental investigation on the vortex-induced vibration of the vertical riser fitted with the water jetting active vibration suppression deviceInternational Journal of Mechanical Sciences202017710560010.1016/j.ijmecsci.2020.105600
– reference: SongJNLuLTengBParkHITangGQWuHLaboratory tests of vortex-induced vibrations of a long flexible riser pipe subjected to uniform flowOcean Engineering20113811–121308132210.1016/j.oceaneng.2011.05.020
– volume: 15
  start-page: 503
  issue: 3–4
  year: 2001
  ident: 34_CR15
  publication-title: Journal of Fluids and Structures
  doi: 10.1006/jfls.2000.0364
– volume: 76
  start-page: 367
  year: 2018
  ident: 34_CR34
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2017.10.007
– volume: 38
  start-page: 1308
  issue: 11–12
  year: 2011
  ident: 34_CR35
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2011.05.020
– volume: 21
  start-page: 335
  issue: 3
  year: 2005
  ident: 34_CR36
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2005.07.014
– volume: 25
  start-page: 969
  issue: 6
  year: 2009
  ident: 34_CR17
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2009.03.007
– volume: 215
  start-page: 107878
  year: 2020
  ident: 34_CR26
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2020.107878
– volume-title: Riser Interference
  year: 2009
  ident: 34_CR12
– volume: 30
  start-page: 033606
  issue: 3
  year: 2018
  ident: 34_CR27
  publication-title: Physics of Fluids
  doi: 10.1063/1.5020828
– volume: 178
  start-page: 170
  year: 2019
  ident: 34_CR37
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2019.02.053
– volume: 99
  start-page: 144503
  issue: 14
  year: 2007
  ident: 34_CR10
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.99.144503
– volume: 192
  start-page: 106132
  year: 2021
  ident: 34_CR13
  publication-title: International Journal of Mechanical Sciences
  doi: 10.1016/j.ijmecsci.2020.106132
– volume: 661
  start-page: 365
  year: 2010
  ident: 34_CR5
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112010003095
– volume: 92
  start-page: 102810
  year: 2020
  ident: 34_CR25
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2019.102810
– volume: 177
  start-page: 105600
  year: 2020
  ident: 34_CR29
  publication-title: International Journal of Mechanical Sciences
  doi: 10.1016/j.ijmecsci.2020.105600
– volume: 75
  start-page: 27
  year: 2017
  ident: 34_CR32
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2017.08.001
– volume: 718
  start-page: 210
  year: 2013
  ident: 34_CR4
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2012.606
– volume: 621
  start-page: 321
  year: 2009
  ident: 34_CR6
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112008004850
– volume: 27
  start-page: 503
  issue: 4
  year: 2011
  ident: 34_CR7
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2011.04.003
– volume: 76
  start-page: 102893
  year: 2021
  ident: 34_CR22
  publication-title: Marine Structures
  doi: 10.1016/j.marstruc.2020.102893
– volume: 45
  start-page: 259
  issue: 2
  year: 1976
  ident: 34_CR24
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/0022-460X(76)90601-5
– volume: 104
  start-page: 3517
  issue: 4
  year: 2021
  ident: 34_CR3
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-021-06527-8
– volume: 60
  start-page: 37
  year: 2016
  ident: 34_CR39
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2015.10.005
– volume: 78
  start-page: 215
  year: 2018
  ident: 34_CR9
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2017.12.017
– volume: 32
  start-page: 351
  issue: 3
  year: 2010
  ident: 34_CR16
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2009.12.001
– volume-title: Specification for Casing and Tubing
  year: 2011
  ident: 34_CR1
– volume-title: Submarine Pipeline Systems
  year: 2001
  ident: 34_CR11
– volume: 30
  start-page: 47
  issue: 1
  year: 2016
  ident: 34_CR28
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-016-0003-0
– volume: 26
  start-page: 353
  issue: 3
  year: 1987
  ident: 34_CR33
  publication-title: Journal of Wind Engineering & Industrial Aerodynamics
  doi: 10.1016/0167-6105(87)90005-5
– volume: 62
  start-page: 510
  year: 2016
  ident: 34_CR41
  publication-title: International Journal of Heat and Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2016.08.008
– volume: 21
  start-page: 3
  issue: 1
  year: 2005
  ident: 34_CR8
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2005.04.010
– volume: 27
  start-page: 824
  issue: 5–6
  year: 2011
  ident: 34_CR21
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2011.02.006
– volume: 27
  start-page: 354
  issue: 3
  year: 2011
  ident: 34_CR20
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2011.01.001
– volume: 61
  start-page: 76
  year: 2016
  ident: 34_CR31
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2015.11.004
– volume: 27
  start-page: 193
  issue: 2
  year: 2011
  ident: 34_CR18
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2010.11.004
– volume: 165
  start-page: 55
  year: 2018
  ident: 34_CR40
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2018.07.042
– volume: 48
  start-page: 81
  year: 2014
  ident: 34_CR19
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2014.02.006
– volume: 57
  start-page: 219
  year: 2018
  ident: 34_CR38
  publication-title: Marine Structures
  doi: 10.1016/j.marstruc.2017.10.009
– volume: 175
  start-page: 223
  year: 2019
  ident: 34_CR14
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2019.02.012
– volume: 34
  start-page: 500
  issue: 4
  year: 2020
  ident: 34_CR30
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-020-0045-1
– volume-title: Line Pipe
  year: 2018
  ident: 34_CR2
– volume: 236
  start-page: 107764
  year: 2022
  ident: 34_CR23
  publication-title: International Journal of Mechanical Sciences
  doi: 10.1016/j.ijmecsci.2022.107764
SSID ssj0051541
Score 2.2754397
Snippet Taking the three-riser group arranged in tandem as the research subject, an experimental study was carried out on the risers arranged in tandem. The purpose is...
Taking the three-riser group arranged in tandem as the research subject,an experimental study was carried out on the risers arranged in tandem.The purpose is...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 408
SubjectTerms Amplitude
Amplitudes
Coastal Sciences
Cross flow
Dynamic response
Engineering
Fluid- and Aerodynamics
Interference
Marine & Freshwater Sciences
Numerical and Computational Physics
Oceanography
Offshore Engineering
Original Paper
Risers
Shielding
Simulation
Upstream
Vibration
Vibration mode
Vortex-induced vibrations
Title Experimental Study on Interference Effect of Three Risers Arranged in Tandem with Variable Spacing Ratios
URI https://link.springer.com/article/10.1007/s13344-023-0034-2
https://www.proquest.com/docview/2838733917
https://d.wanfangdata.com.cn/periodical/zghygc-e202303005
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7iXlQQn7i-COJJCYQkfR0X2VUUFXRX9FTyXAXtirse9Nc7023tCiJ4bpvQfunMN5PMN4QccufQ8xmmbeqZkokGOxhrZgWw58RKoMhYKHx5FZ8N1Pl9dF_VcY_r0-71lmRpqZtiNymVYuBjGIqqMLC7rQhCd1zWA9GpzS_457JdJU8zzpCO11uZvw3x0xk1DPN7U7Qs5SmCLoYzXqe3QpYrukg7U3xXyZwv1sjijIjgGlm6tl4XlfL0Onnqzmj2Uzwm-EFHBS0zf1VtH51KFtNRoH2A0tMbbMg8hlnesNTA0aeC9jG5_EIxTUvvIJ7GCit6CwE2zElvEM7xBhn0uv2TM1b1U2BWRnzCUgjNuDZGGWETHyc6ALkSxknPlYu980Lr2ARnrTNGB-AiWfCBW5GkUaZDkJtkvhgVfovQzAnlszSEKAtKBJ0ak9go8hBcOeCAqk14_WFzW4mNY8-L57yRSUYscsAC5UlVLtrk6PuR16nSxl8379Zo5dVPN86BKaWJlPCWbXJcI9hc_mOwgwrk5ubP4ePH0OYeu8tzlPTf_teQO2RBlMsM0zW7ZH7y9u73gL1MzD5pdU4fLrr75ar9AhG3594
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6h5dAWiba0iC2PWlVPrYws23kdEVq6PCvRUNFT5OcWFbIVuxzg1zPOOmSpKiTOcezEHs98M_Z8A_CZWRssn6bK5I5KkSnUg6mihiN6zoxAiBwShY9P0uGZPDhPzmMe96S97d4eSTaaukt2E0JKijaGBlIVinp3UaILnvRgcefbr8NBq4DRQjcFK1leMBoAeXuY-b9OHpujDmM-HIs2yTy1V_Vozu7svYay_eLZdZM_2zdTvW3u_iFzfOYvvYHliEPJzkxw3sKCq1fg1Rw74QosfTdO1ZHS-h1cDOaKAZBw__CWjGvShBRj0iCZcSGTsSclyogjp6HS8wRHuQ45DJZc1KQMUesrEuK_5Cc66iF1i_xAzx3HJKdBTibv4WxvUO4OaSzUQI1I2JTm6PMxpbXU3GQuzZRH1Ma1FY5JmzrruFKp9tYYq7XyCHIK7zwzPMuTQnkvVqFXj2u3BqSwXLoi9z4pvORe5VpnJkkcem0WwaXsA2vXqzKRxTwU07isOv7lMKkVTmrgPZUV78OXh1f-zig8nmq80QpBFXfzpEIIlmdC4F_24Wu7kt3jJzr7FGWna3w3-n07MpULZetZqBXw4VldfoQXw_L4qDraPzlch5e8kZ0QE9qA3vT6xm0iRJrqrbgl7gF5fgYA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA-iIK0galu81o9QfFKCMcl-PYp6qG1V9E58W_J5CjYn3vVB_3pn9nbdE0To8-4m7P6yM7-ZZH5DyBZ3Dj2fYdrmnimZabCDqWZWAHvOrASKjIXCf87S4746vUlu6j6no-a0e7MlOalpQJWmON59cGG3LXyTUikG_oahwAoDGzwH1ngPz3T1xX5jisFXV60reV5whtS82dZ8b4i3jqllm68bpFVZTww6DqY8UHeJLNbUke5PsF4mMz6ukM9TgoIrZOHceh1rFeov5O5oSr-f4pHBJzqMtMoC1nV-dCJfTIeB9gBWTy-xOfMIZnnEsgNH7yLtYaL5L8WULb2G2BqrregVBNswJ71EaEdfSb971Ds4ZnVvBWZlwscshzCNa2OUETbzaaYDEC1hnPRcudQ7L7ROTXDWOmN0AF5SBB-4FVmeFDoE-Y3MxmH0q4QWTihf5CEkRVAi6NyYzCaJh0DLAR9UHcKbD1vaWngc-1_cl61kMmJRAhYoVapK0SHbr488TFQ3Prp5rUGrrH_AUQmsKc-khLfskJ0GwfbyB4P9rEFub34e3D4NbOmx0zxHef_v_zXkJpm_OOyWv0_Ofv0gn0S14jCLs0Zmx4___DqQmrHZqBbuC1D17Xk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+Study+on+Interference+Effect+of+Three+Risers+Arranged+in+Tandem+with+Variable+Spacing+Ratios&rft.jtitle=China+ocean+engineering&rft.au=Zhang%2C+Peng&rft.au=Liu%2C+Li-hua&rft.au=Liu%2C+Ming&rft.au=Ren%2C+Xiao-hui&rft.date=2023-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0890-5487&rft.eissn=2191-8945&rft.volume=37&rft.issue=3&rft.spage=408&rft.epage=419&rft_id=info:doi/10.1007%2Fs13344-023-0034-2&rft.externalDocID=10_1007_s13344_023_0034_2
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghygc-e%2Fzghygc-e.jpg