Motif-Aware miRNA-Disease Association Prediction via Hierarchical Attention Network
As post-transcriptional regulators of gene expression, micro-ribonucleic acids (miRNAs) are regarded as potential biomarkers for a variety of diseases. Hence, the prediction of miRNA-disease associations (MDAs) is of great significance for an in-depth understanding of disease pathogenesis and progre...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 28; no. 7; pp. 4281 - 4294 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2194 2168-2208 2168-2208 |
DOI | 10.1109/JBHI.2024.3383591 |
Cover
Loading…
Abstract | As post-transcriptional regulators of gene expression, micro-ribonucleic acids (miRNAs) are regarded as potential biomarkers for a variety of diseases. Hence, the prediction of miRNA-disease associations (MDAs) is of great significance for an in-depth understanding of disease pathogenesis and progression. Existing prediction models are mainly concentrated on incorporating different sources of biological information to perform the MDA prediction task while failing to consider the fully potential utility of MDA network information at the motif-level. To overcome this problem, we propose a novel motif-aware MDA prediction model, namely MotifMDA, by fusing a variety of high- and low-order structural information. In particular, we first design several motifs of interest considering their ability to characterize how miRNAs are associated with diseases through different network structural patterns. Then, MotifMDA adopts a two-layer hierarchical attention to identify novel MDAs. Specifically, the first attention layer learns high-order motif preferences based on their occurrences in the given MDA network, while the second one learns the final embeddings of miRNAs and diseases through coupling high- and low-order preferences. Experimental results on two benchmark datasets have demonstrated the superior performance of MotifMDA over several state-of-the-art prediction models. This strongly indicates that accurate MDA prediction can be achieved by relying solely on MDA network information. Furthermore, our case studies indicate that the incorporation of motif-level structure information allows MotifMDA to discover novel MDAs from different perspectives. |
---|---|
AbstractList | As post-transcriptional regulators of gene expression, micro-ribonucleic acids (miRNAs) are regarded as potential biomarkers for a variety of diseases. Hence, the prediction of miRNA-disease associations (MDAs) is of great significance for an in-depth understanding of disease pathogenesis and progression. Existing prediction models are mainly concentrated on incorporating different sources of biological information to perform the MDA prediction task while failing to consider the fully potential utility of MDA network information at the motif-level. To overcome this problem, we propose a novel motif-aware MDA prediction model, namely MotifMDA, by fusing a variety of high- and low-order structural information. In particular, we first design several motifs of interest considering their ability to characterize how miRNAs are associated with diseases through different network structural patterns. Then, MotifMDA adopts a two-layer hierarchical attention to identify novel MDAs. Specifically, the first attention layer learns high-order motif preferences based on their occurrences in the given MDA network, while the second one learns the final embeddings of miRNAs and diseases through coupling high- and low-order preferences. Experimental results on two benchmark datasets have demonstrated the superior performance of MotifMDA over several state-of-the-art prediction models. This strongly indicates that accurate MDA prediction can be achieved by relying solely on MDA network information. Furthermore, our case studies indicate that the incorporation of motif-level structure information allows MotifMDA to discover novel MDAs from different perspectives. As post-transcriptional regulators of gene expression, micro-ribonucleic acids (miRNAs) are regarded as potential biomarkers for a variety of diseases. Hence, the prediction of miRNA-disease associations (MDAs) is of great significance for an in-depth understanding of disease pathogenesis and progression. Existing prediction models are mainly concentrated on incorporating different sources of biological information to perform the MDA prediction task while failing to consider the fully potential utility of MDA network information at the motif-level. To overcome this problem, we propose a novel motif-aware MDA prediction model, namely MotifMDA, by fusing a variety of high- and low-order structural information. In particular, we first design several motifs of interest considering their ability to characterize how miRNAs are associated with diseases through different network structural patterns. Then, MotifMDA adopts a two-layer hierarchical attention to identify novel MDAs. Specifically, the first attention layer learns high-order motif preferences based on their occurrences in the given MDA network, while the second one learns the final embeddings of miRNAs and diseases through coupling high- and low-order preferences. Experimental results on two benchmark datasets have demonstrated the superior performance of MotifMDA over several state-of-the-art prediction models. This strongly indicates that accurate MDA prediction can be achieved by relying solely on MDA network information. Furthermore, our case studies indicate that the incorporation of motif-level structure information allows MotifMDA to discover novel MDAs from different perspectives.As post-transcriptional regulators of gene expression, micro-ribonucleic acids (miRNAs) are regarded as potential biomarkers for a variety of diseases. Hence, the prediction of miRNA-disease associations (MDAs) is of great significance for an in-depth understanding of disease pathogenesis and progression. Existing prediction models are mainly concentrated on incorporating different sources of biological information to perform the MDA prediction task while failing to consider the fully potential utility of MDA network information at the motif-level. To overcome this problem, we propose a novel motif-aware MDA prediction model, namely MotifMDA, by fusing a variety of high- and low-order structural information. In particular, we first design several motifs of interest considering their ability to characterize how miRNAs are associated with diseases through different network structural patterns. Then, MotifMDA adopts a two-layer hierarchical attention to identify novel MDAs. Specifically, the first attention layer learns high-order motif preferences based on their occurrences in the given MDA network, while the second one learns the final embeddings of miRNAs and diseases through coupling high- and low-order preferences. Experimental results on two benchmark datasets have demonstrated the superior performance of MotifMDA over several state-of-the-art prediction models. This strongly indicates that accurate MDA prediction can be achieved by relying solely on MDA network information. Furthermore, our case studies indicate that the incorporation of motif-level structure information allows MotifMDA to discover novel MDAs from different perspectives. |
Author | He, Yi-Zhou Zhao, Bo-Wei You, Zhu-Hong Su, Xiao-Rui Huang, Yu-An Hu, Lun Li, Guo-Dong Yang, Yue Hu, Peng-Wei |
Author_xml | – sequence: 1 givenname: Bo-Wei orcidid: 0000-0001-8200-6016 surname: Zhao fullname: Zhao, Bo-Wei email: zhaobowei19@mails.ucas.edu.cn organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China – sequence: 2 givenname: Yi-Zhou orcidid: 0000-0003-1455-7136 surname: He fullname: He, Yi-Zhou email: heyizhou97@whut.edu.cn organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China – sequence: 3 givenname: Xiao-Rui orcidid: 0000-0001-5468-6085 surname: Su fullname: Su, Xiao-Rui email: suxiaorui19@mails.ucas.ac.cn organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China – sequence: 4 givenname: Yue orcidid: 0000-0001-7729-595X surname: Yang fullname: Yang, Yue email: yangyue233@mails.ucas.ac.cn organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China – sequence: 5 givenname: Guo-Dong orcidid: 0009-0007-8980-0141 surname: Li fullname: Li, Guo-Dong email: liguodong22@mails.ucas.ac.cn organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China – sequence: 6 givenname: Yu-An orcidid: 0000-0002-5346-2394 surname: Huang fullname: Huang, Yu-An email: yuanhuang@nwpu.edu.cn organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China – sequence: 7 givenname: Peng-Wei orcidid: 0000-0001-5974-7932 surname: Hu fullname: Hu, Peng-Wei email: hpw@ms.xjb.ac.cn organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China – sequence: 8 givenname: Zhu-Hong orcidid: 0000-0003-1266-2696 surname: You fullname: You, Zhu-Hong email: zhuhongyou@nwpu.edu.cn organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China – sequence: 9 givenname: Lun orcidid: 0000-0002-1591-8549 surname: Hu fullname: Hu, Lun email: hulun@ms.xjb.ac.cn organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38557614$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1TAQhS1UREvpD0BCKBIbNrl4bMePZdoCt6gUxGMdOfZEuOTGxfZtxb8n91GEusAbjzzfGY_OeUoOpjghIc-BLgCoefPhdHmxYJSJBeeaNwYekSMGUteMUX1wX4MRh-Qk52s6Hz0_GfmEHHLdNEqCOCJfP8YShrq9swmrVfhy1dbnIaPNWLU5RxdsCXGqPif0wW3L22CrZcBkk_sRnB2rthSctq0rLHcx_XxGHg92zHiyv4_J93dvv50t68tP7y_O2sva8YaWWjPrvUItJKA0XFPhBVNoJECvpB6scdb0qpfSD8Y73zCL1g8I2vcUe8aPyevd3JsUf60xl24VssNxtBPGde445QBcMQUz-uoBeh3XaZq3mynVCFAKxEy93FPrfoW-u0lhZdPv7t6uGYAd4FLMOeHwFwHabVLpNql0m1S6fSqzRj3QuFC2rpZkw_hf5YudMiDiPz8JrShQ_gd7mZih |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1007_s12032_024_02579_z crossref_primary_10_1038_s41598_024_81866_1 crossref_primary_10_1093_bib_bbae573 crossref_primary_10_1186_s12911_024_02624_x crossref_primary_10_1038_s41598_024_69186_w crossref_primary_10_3390_biomedicines13030536 crossref_primary_10_1186_s12911_024_02564_6 crossref_primary_10_1109_JBHI_2024_3438439 crossref_primary_10_1016_j_ibmed_2024_100194 crossref_primary_10_1038_s41598_024_71922_1 crossref_primary_10_1186_s12915_024_01981_3 crossref_primary_10_1038_s41598_024_72748_7 crossref_primary_10_1186_s12859_024_05915_2 crossref_primary_10_1186_s12864_024_10499_5 crossref_primary_10_1186_s13065_024_01266_4 crossref_primary_10_3389_fmicb_2024_1421608 crossref_primary_10_1186_s12911_024_02646_5 |
Cites_doi | 10.1093/bioinformatics/btq241 10.1016/j.freeradbiomed.2020.11.029 10.1038/s41580-018-0045-7 10.1016/j.cell.2012.02.005 10.1109/TKDE.2022.3154792 10.1093/bioinformatics/btz297 10.1093/bioinformatics/btt426 10.1093/bib/bbac562 10.1093/bib/bbx130 10.1038/srep21106 10.1016/j.ymthe.2021.01.003 10.1093/bib/bbac140 10.3748/wjg.v23.i45.7965 10.3233/ICA-200645 10.1093/bioinformatics/btz965 10.1371/annotation/28592478-72f5-4937-919b-b2342d6ceda0 10.1093/nar/gkn714 10.1186/1752-0509-4-S1-S2 10.1109/TCBB.2021.3095947 10.1093/bib/bbac266 10.1038/nrg2102 10.1038/s41467-021-27138-2 10.1371/journal.pcbi.1005455 10.1093/bib/bbaa037 10.1109/TCBB.2020.3013837 10.1126/science.aad9029 10.1371/journal.pcbi.1006865 10.1093/bib/bbaa240 10.1093/nar/gkt1023 10.1038/s41576-020-00309-5 10.1109/jbhi.2024.3357979 10.1093/bib/bbac021 10.3390/cancers14092156 10.1016/j.gpb.2022.04.006 10.1109/tfuzz.2023.3338565 10.1109/TETC.2023.3239949 10.1016/j.jogoh.2021.102092 10.1016/j.tibs.2021.11.004 10.1016/j.ymthe.2022.01.041 10.1039/C6MB00853D 10.1093/bioinformatics/btaa775 10.1093/bib/bbac159 10.1016/j.cell.2010.09.050 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/JBHI.2024.3383591 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 4294 |
ExternalDocumentID | 38557614 10_1109_JBHI_2024_3383591 10487010 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region grantid: 2023D01E15 funderid: 10.13039/100009110 – fundername: Tianshan Talent Training Program grantid: 2023TSYCLJ0021 – fundername: National Natural Science Foundation of China grantid: 62373348; 62302495 funderid: 10.13039/501100001809 – fundername: Xinjiang Uygur Autonomous Region Department of Science and Technology Natural Science Foundation grantid: 2021D01B106 – fundername: Pioneer Hundred Talents Program of Chinese Academy of Sciences – fundername: CAS Light of the West Multidisciplinary Team project grantid: xbzg-zdsys-202114 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c350t-82add7e8461e693804d427e9611b768fa9ca9b7b66df9dcd52aeadfe18db0eb23 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri Jul 11 16:54:17 EDT 2025 Mon Jun 30 03:52:01 EDT 2025 Thu Apr 03 07:03:42 EDT 2025 Thu Apr 24 22:52:27 EDT 2025 Tue Jul 01 03:00:09 EDT 2025 Wed Aug 27 02:05:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-82add7e8461e693804d427e9611b768fa9ca9b7b66df9dcd52aeadfe18db0eb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1455-7136 0000-0001-5468-6085 0000-0002-5346-2394 0000-0002-1591-8549 0000-0001-8200-6016 0000-0003-1266-2696 0000-0001-7729-595X 0009-0007-8980-0141 0000-0001-5974-7932 |
PMID | 38557614 |
PQID | 3075417714 |
PQPubID | 85417 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_JBHI_2024_3383591 proquest_miscellaneous_3031137271 proquest_journals_3075417714 pubmed_primary_38557614 ieee_primary_10487010 crossref_citationtrail_10_1109_JBHI_2024_3383591 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref37 Hamilton (ref39) 2017 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 Velikovi (ref34) 2018 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Kipf (ref35) 2016 ref40 |
References_xml | – ident: ref25 doi: 10.1093/bioinformatics/btq241 – ident: ref42 doi: 10.1016/j.freeradbiomed.2020.11.029 – ident: ref2 doi: 10.1038/s41580-018-0045-7 – ident: ref27 doi: 10.1016/j.cell.2012.02.005 – ident: ref46 doi: 10.1109/TKDE.2022.3154792 – ident: ref15 doi: 10.1093/bioinformatics/btz297 – ident: ref30 doi: 10.1093/bioinformatics/btt426 – ident: ref5 doi: 10.1093/bib/bbac562 – ident: ref6 doi: 10.1093/bib/bbx130 – ident: ref7 doi: 10.1038/srep21106 – ident: ref13 doi: 10.1016/j.ymthe.2021.01.003 – ident: ref36 doi: 10.1093/bib/bbac140 – ident: ref41 doi: 10.3748/wjg.v23.i45.7965 – ident: ref21 doi: 10.3233/ICA-200645 – ident: ref16 doi: 10.1093/bioinformatics/btz965 – ident: ref29 doi: 10.1371/annotation/28592478-72f5-4937-919b-b2342d6ceda0 – ident: ref38 doi: 10.1093/nar/gkn714 – start-page: 1025 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2017 ident: ref39 article-title: Inductive representation learning on large graphs – ident: ref8 doi: 10.1186/1752-0509-4-S1-S2 – ident: ref44 doi: 10.1109/TCBB.2021.3095947 – ident: ref4 doi: 10.1093/bib/bbac266 – ident: ref26 doi: 10.1038/nrg2102 – ident: ref33 doi: 10.1038/s41467-021-27138-2 – ident: ref10 doi: 10.1371/journal.pcbi.1005455 – ident: ref28 doi: 10.1093/bib/bbaa037 – ident: ref11 doi: 10.1109/TCBB.2020.3013837 – ident: ref20 doi: 10.1126/science.aad9029 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations year: 2018 ident: ref34 article-title: Graph attention networks – ident: ref12 doi: 10.1371/journal.pcbi.1006865 – ident: ref19 doi: 10.1093/bib/bbaa240 – ident: ref37 doi: 10.1093/nar/gkt1023 – ident: ref1 doi: 10.1038/s41576-020-00309-5 – ident: ref32 doi: 10.1109/jbhi.2024.3357979 – ident: ref18 doi: 10.1093/bib/bbac021 – ident: ref43 doi: 10.3390/cancers14092156 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations year: 2016 ident: ref35 article-title: Semi-supervised classification with graph convolutional networks – ident: ref40 doi: 10.1016/j.gpb.2022.04.006 – ident: ref31 doi: 10.1109/tfuzz.2023.3338565 – ident: ref45 doi: 10.1109/TETC.2023.3239949 – ident: ref24 doi: 10.1016/j.jogoh.2021.102092 – ident: ref3 doi: 10.1016/j.tibs.2021.11.004 – ident: ref14 doi: 10.1016/j.ymthe.2022.01.041 – ident: ref9 doi: 10.1039/C6MB00853D – ident: ref23 doi: 10.1093/bioinformatics/btaa775 – ident: ref17 doi: 10.1093/bib/bbac159 – ident: ref22 doi: 10.1016/j.cell.2010.09.050 |
SSID | ssj0000816896 |
Score | 2.5022879 |
Snippet | As post-transcriptional regulators of gene expression, micro-ribonucleic acids (miRNAs) are regarded as potential biomarkers for a variety of diseases. Hence,... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4281 |
SubjectTerms | Algorithms Attention Bioinformatics Biological system modeling Biomarkers Computational Biology - methods Computational modeling Disease Diseases Feature extraction Gene expression Genetic Predisposition to Disease - genetics Heterogeneous networks Hierarchical attention network high-order structures Humans MDAs MicroRNAs MicroRNAs - genetics miRNA miRNA-disease association prediction motifs Pathogenesis Post-transcription Prediction models Predictive models |
Title | Motif-Aware miRNA-Disease Association Prediction via Hierarchical Attention Network |
URI | https://ieeexplore.ieee.org/document/10487010 https://www.ncbi.nlm.nih.gov/pubmed/38557614 https://www.proquest.com/docview/3075417714 https://www.proquest.com/docview/3031137271 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6B_HFz6nTKRV8EjKTNm3ax_nFHDhEHeytpPmAoW4yOwX_ei9JN1SY-BZokia5u-R3ubscQidUCUFNyLHWmmOWSYFFRAtMUlUkKiykUM7Lt5d0-qw7iAdVsLqLhYE2zvlMt2zR2fLVWE7tVRlIOMBrF1C1DJqbD9aaX6i4DBIuH1cIBQySyCorJiXZWfe8cwPaYMhaVieLM5shJkpjQNuU_TiSXI6VxXDTHTvX66g3G7D3NnlqTcuiJT9_veX47xltoLUKgAZtzzGbaEmPttDKbWVi30YPt-NyaHD7Q0x08DK877XxpTfiBN9IGdxNbAtXfB-KoDO0gcwurwr0XZbeiTLoeSfzOupfXz1edHCVeQHLKCYlTkPY9rgGbEJ1kkUpYYqFXGcJpQXoJ0YATbOCF0miTKakikMBHGk0BQoT0NWjHVQbjUd6DwVJSo2isZQqJIwbngqpACKYCBRXI2LSQGS2-LmsniW32TGec6eekCy3pMst6fKKdA10Om_y6t_k-Kty3S77t4p-xRuoOSNxXontWw4bXswo55Q10PH8MwictaKIkR5PbZ2I0ghgH3S961lj3vmMo_YX_PQArdqxeXffJqqVk6k-BFBTFkeOmb8AzrzvrA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB-kgvZFq7Z6WnUFnwq5JrvJZvfx2lq2tbdIP6BvSzYfcNjeyblnoX-9k2TvqIUW3wKbZJPMTPKbzEwG4CszSjGXSmKtlYSXWhGVsZbQwrS5SVutTPDyrfPqgh9fiss-WD3EwmCb4Hxmh74YbPlmphf-qgwlHOF1CKh6ige_YDFca3WlEnJIhIxcKRYIyiLv7ZiMlrvHe9UR6oMpH3qtTJQ-R0xWCMTbjP9zKIUsKw8DznDwHL6Eejnk6G_yc7jo2qG-vfea43_PaQNe9BA0GUWeeQVP7PQ1PBv3RvY3cDaedRNHRjdqbpPryWk9IgfRjJPcIWbyY-5bhOKfiUqqiQ9lDplVsO-ui26USR3dzDfh4vDb-X5F-twLRGeCdqRIceOTFtEJs3mZFZQbnkpb5oy1qKE4hVQtW9nmuXGl0UakCnnSWYY0pqitZ1uwNp1N7TtI8oI5w4TWJqVcOlkobRAkuAxVV6cEHQBdLn6j-4fJfX6MqyYoKLRsPOkaT7qmJ90AdlZNfsVXOR6rvOmX_U7FuOID2F6SuOkF93eDW57gTErGB_Bl9RlFzttR1NTOFr5OxliGwA-7fhtZY9X5kqPeP_DTz_C8Oh-fNCdH9fcPsO7HGZ1_t2Gtmy_sR4Q4XfspMPZfeUry9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motif-Aware+miRNA-Disease+Association+Prediction+via+Hierarchical+Attention+Network&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zhao%2C+Bo-Wei&rft.au=He%2C+Yi-Zhou&rft.au=Su%2C+Xiao-Rui&rft.au=Yang%2C+Yue&rft.date=2024-07-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=28&rft.issue=7&rft.spage=4281&rft.epage=4294&rft_id=info:doi/10.1109%2FJBHI.2024.3383591&rft_id=info%3Apmid%2F38557614&rft.externalDocID=10487010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |