Motif-Aware miRNA-Disease Association Prediction via Hierarchical Attention Network

As post-transcriptional regulators of gene expression, micro-ribonucleic acids (miRNAs) are regarded as potential biomarkers for a variety of diseases. Hence, the prediction of miRNA-disease associations (MDAs) is of great significance for an in-depth understanding of disease pathogenesis and progre...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 28; no. 7; pp. 4281 - 4294
Main Authors Zhao, Bo-Wei, He, Yi-Zhou, Su, Xiao-Rui, Yang, Yue, Li, Guo-Dong, Huang, Yu-An, Hu, Peng-Wei, You, Zhu-Hong, Hu, Lun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2024.3383591

Cover

Loading…
Abstract As post-transcriptional regulators of gene expression, micro-ribonucleic acids (miRNAs) are regarded as potential biomarkers for a variety of diseases. Hence, the prediction of miRNA-disease associations (MDAs) is of great significance for an in-depth understanding of disease pathogenesis and progression. Existing prediction models are mainly concentrated on incorporating different sources of biological information to perform the MDA prediction task while failing to consider the fully potential utility of MDA network information at the motif-level. To overcome this problem, we propose a novel motif-aware MDA prediction model, namely MotifMDA, by fusing a variety of high- and low-order structural information. In particular, we first design several motifs of interest considering their ability to characterize how miRNAs are associated with diseases through different network structural patterns. Then, MotifMDA adopts a two-layer hierarchical attention to identify novel MDAs. Specifically, the first attention layer learns high-order motif preferences based on their occurrences in the given MDA network, while the second one learns the final embeddings of miRNAs and diseases through coupling high- and low-order preferences. Experimental results on two benchmark datasets have demonstrated the superior performance of MotifMDA over several state-of-the-art prediction models. This strongly indicates that accurate MDA prediction can be achieved by relying solely on MDA network information. Furthermore, our case studies indicate that the incorporation of motif-level structure information allows MotifMDA to discover novel MDAs from different perspectives.
AbstractList As post-transcriptional regulators of gene expression, micro-ribonucleic acids (miRNAs) are regarded as potential biomarkers for a variety of diseases. Hence, the prediction of miRNA-disease associations (MDAs) is of great significance for an in-depth understanding of disease pathogenesis and progression. Existing prediction models are mainly concentrated on incorporating different sources of biological information to perform the MDA prediction task while failing to consider the fully potential utility of MDA network information at the motif-level. To overcome this problem, we propose a novel motif-aware MDA prediction model, namely MotifMDA, by fusing a variety of high- and low-order structural information. In particular, we first design several motifs of interest considering their ability to characterize how miRNAs are associated with diseases through different network structural patterns. Then, MotifMDA adopts a two-layer hierarchical attention to identify novel MDAs. Specifically, the first attention layer learns high-order motif preferences based on their occurrences in the given MDA network, while the second one learns the final embeddings of miRNAs and diseases through coupling high- and low-order preferences. Experimental results on two benchmark datasets have demonstrated the superior performance of MotifMDA over several state-of-the-art prediction models. This strongly indicates that accurate MDA prediction can be achieved by relying solely on MDA network information. Furthermore, our case studies indicate that the incorporation of motif-level structure information allows MotifMDA to discover novel MDAs from different perspectives.
As post-transcriptional regulators of gene expression, micro-ribonucleic acids (miRNAs) are regarded as potential biomarkers for a variety of diseases. Hence, the prediction of miRNA-disease associations (MDAs) is of great significance for an in-depth understanding of disease pathogenesis and progression. Existing prediction models are mainly concentrated on incorporating different sources of biological information to perform the MDA prediction task while failing to consider the fully potential utility of MDA network information at the motif-level. To overcome this problem, we propose a novel motif-aware MDA prediction model, namely MotifMDA, by fusing a variety of high- and low-order structural information. In particular, we first design several motifs of interest considering their ability to characterize how miRNAs are associated with diseases through different network structural patterns. Then, MotifMDA adopts a two-layer hierarchical attention to identify novel MDAs. Specifically, the first attention layer learns high-order motif preferences based on their occurrences in the given MDA network, while the second one learns the final embeddings of miRNAs and diseases through coupling high- and low-order preferences. Experimental results on two benchmark datasets have demonstrated the superior performance of MotifMDA over several state-of-the-art prediction models. This strongly indicates that accurate MDA prediction can be achieved by relying solely on MDA network information. Furthermore, our case studies indicate that the incorporation of motif-level structure information allows MotifMDA to discover novel MDAs from different perspectives.As post-transcriptional regulators of gene expression, micro-ribonucleic acids (miRNAs) are regarded as potential biomarkers for a variety of diseases. Hence, the prediction of miRNA-disease associations (MDAs) is of great significance for an in-depth understanding of disease pathogenesis and progression. Existing prediction models are mainly concentrated on incorporating different sources of biological information to perform the MDA prediction task while failing to consider the fully potential utility of MDA network information at the motif-level. To overcome this problem, we propose a novel motif-aware MDA prediction model, namely MotifMDA, by fusing a variety of high- and low-order structural information. In particular, we first design several motifs of interest considering their ability to characterize how miRNAs are associated with diseases through different network structural patterns. Then, MotifMDA adopts a two-layer hierarchical attention to identify novel MDAs. Specifically, the first attention layer learns high-order motif preferences based on their occurrences in the given MDA network, while the second one learns the final embeddings of miRNAs and diseases through coupling high- and low-order preferences. Experimental results on two benchmark datasets have demonstrated the superior performance of MotifMDA over several state-of-the-art prediction models. This strongly indicates that accurate MDA prediction can be achieved by relying solely on MDA network information. Furthermore, our case studies indicate that the incorporation of motif-level structure information allows MotifMDA to discover novel MDAs from different perspectives.
Author He, Yi-Zhou
Zhao, Bo-Wei
You, Zhu-Hong
Su, Xiao-Rui
Huang, Yu-An
Hu, Lun
Li, Guo-Dong
Yang, Yue
Hu, Peng-Wei
Author_xml – sequence: 1
  givenname: Bo-Wei
  orcidid: 0000-0001-8200-6016
  surname: Zhao
  fullname: Zhao, Bo-Wei
  email: zhaobowei19@mails.ucas.edu.cn
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
– sequence: 2
  givenname: Yi-Zhou
  orcidid: 0000-0003-1455-7136
  surname: He
  fullname: He, Yi-Zhou
  email: heyizhou97@whut.edu.cn
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
– sequence: 3
  givenname: Xiao-Rui
  orcidid: 0000-0001-5468-6085
  surname: Su
  fullname: Su, Xiao-Rui
  email: suxiaorui19@mails.ucas.ac.cn
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
– sequence: 4
  givenname: Yue
  orcidid: 0000-0001-7729-595X
  surname: Yang
  fullname: Yang, Yue
  email: yangyue233@mails.ucas.ac.cn
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
– sequence: 5
  givenname: Guo-Dong
  orcidid: 0009-0007-8980-0141
  surname: Li
  fullname: Li, Guo-Dong
  email: liguodong22@mails.ucas.ac.cn
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
– sequence: 6
  givenname: Yu-An
  orcidid: 0000-0002-5346-2394
  surname: Huang
  fullname: Huang, Yu-An
  email: yuanhuang@nwpu.edu.cn
  organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 7
  givenname: Peng-Wei
  orcidid: 0000-0001-5974-7932
  surname: Hu
  fullname: Hu, Peng-Wei
  email: hpw@ms.xjb.ac.cn
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
– sequence: 8
  givenname: Zhu-Hong
  orcidid: 0000-0003-1266-2696
  surname: You
  fullname: You, Zhu-Hong
  email: zhuhongyou@nwpu.edu.cn
  organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 9
  givenname: Lun
  orcidid: 0000-0002-1591-8549
  surname: Hu
  fullname: Hu, Lun
  email: hulun@ms.xjb.ac.cn
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38557614$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1UREvpD0BCKBIbNrl4bMePZdoCt6gUxGMdOfZEuOTGxfZtxb8n91GEusAbjzzfGY_OeUoOpjghIc-BLgCoefPhdHmxYJSJBeeaNwYekSMGUteMUX1wX4MRh-Qk52s6Hz0_GfmEHHLdNEqCOCJfP8YShrq9swmrVfhy1dbnIaPNWLU5RxdsCXGqPif0wW3L22CrZcBkk_sRnB2rthSctq0rLHcx_XxGHg92zHiyv4_J93dvv50t68tP7y_O2sva8YaWWjPrvUItJKA0XFPhBVNoJECvpB6scdb0qpfSD8Y73zCL1g8I2vcUe8aPyevd3JsUf60xl24VssNxtBPGde445QBcMQUz-uoBeh3XaZq3mynVCFAKxEy93FPrfoW-u0lhZdPv7t6uGYAd4FLMOeHwFwHabVLpNql0m1S6fSqzRj3QuFC2rpZkw_hf5YudMiDiPz8JrShQ_gd7mZih
CODEN IJBHA9
CitedBy_id crossref_primary_10_1007_s12032_024_02579_z
crossref_primary_10_1038_s41598_024_81866_1
crossref_primary_10_1093_bib_bbae573
crossref_primary_10_1186_s12911_024_02624_x
crossref_primary_10_1038_s41598_024_69186_w
crossref_primary_10_3390_biomedicines13030536
crossref_primary_10_1186_s12911_024_02564_6
crossref_primary_10_1109_JBHI_2024_3438439
crossref_primary_10_1016_j_ibmed_2024_100194
crossref_primary_10_1038_s41598_024_71922_1
crossref_primary_10_1186_s12915_024_01981_3
crossref_primary_10_1038_s41598_024_72748_7
crossref_primary_10_1186_s12859_024_05915_2
crossref_primary_10_1186_s12864_024_10499_5
crossref_primary_10_1186_s13065_024_01266_4
crossref_primary_10_3389_fmicb_2024_1421608
crossref_primary_10_1186_s12911_024_02646_5
Cites_doi 10.1093/bioinformatics/btq241
10.1016/j.freeradbiomed.2020.11.029
10.1038/s41580-018-0045-7
10.1016/j.cell.2012.02.005
10.1109/TKDE.2022.3154792
10.1093/bioinformatics/btz297
10.1093/bioinformatics/btt426
10.1093/bib/bbac562
10.1093/bib/bbx130
10.1038/srep21106
10.1016/j.ymthe.2021.01.003
10.1093/bib/bbac140
10.3748/wjg.v23.i45.7965
10.3233/ICA-200645
10.1093/bioinformatics/btz965
10.1371/annotation/28592478-72f5-4937-919b-b2342d6ceda0
10.1093/nar/gkn714
10.1186/1752-0509-4-S1-S2
10.1109/TCBB.2021.3095947
10.1093/bib/bbac266
10.1038/nrg2102
10.1038/s41467-021-27138-2
10.1371/journal.pcbi.1005455
10.1093/bib/bbaa037
10.1109/TCBB.2020.3013837
10.1126/science.aad9029
10.1371/journal.pcbi.1006865
10.1093/bib/bbaa240
10.1093/nar/gkt1023
10.1038/s41576-020-00309-5
10.1109/jbhi.2024.3357979
10.1093/bib/bbac021
10.3390/cancers14092156
10.1016/j.gpb.2022.04.006
10.1109/tfuzz.2023.3338565
10.1109/TETC.2023.3239949
10.1016/j.jogoh.2021.102092
10.1016/j.tibs.2021.11.004
10.1016/j.ymthe.2022.01.041
10.1039/C6MB00853D
10.1093/bioinformatics/btaa775
10.1093/bib/bbac159
10.1016/j.cell.2010.09.050
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2024.3383591
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 4294
ExternalDocumentID 38557614
10_1109_JBHI_2024_3383591
10487010
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region
  grantid: 2023D01E15
  funderid: 10.13039/100009110
– fundername: Tianshan Talent Training Program
  grantid: 2023TSYCLJ0021
– fundername: National Natural Science Foundation of China
  grantid: 62373348; 62302495
  funderid: 10.13039/501100001809
– fundername: Xinjiang Uygur Autonomous Region Department of Science and Technology Natural Science Foundation
  grantid: 2021D01B106
– fundername: Pioneer Hundred Talents Program of Chinese Academy of Sciences
– fundername: CAS Light of the West Multidisciplinary Team project
  grantid: xbzg-zdsys-202114
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c350t-82add7e8461e693804d427e9611b768fa9ca9b7b66df9dcd52aeadfe18db0eb23
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 16:54:17 EDT 2025
Mon Jun 30 03:52:01 EDT 2025
Thu Apr 03 07:03:42 EDT 2025
Thu Apr 24 22:52:27 EDT 2025
Tue Jul 01 03:00:09 EDT 2025
Wed Aug 27 02:05:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-82add7e8461e693804d427e9611b768fa9ca9b7b66df9dcd52aeadfe18db0eb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1455-7136
0000-0001-5468-6085
0000-0002-5346-2394
0000-0002-1591-8549
0000-0001-8200-6016
0000-0003-1266-2696
0000-0001-7729-595X
0009-0007-8980-0141
0000-0001-5974-7932
PMID 38557614
PQID 3075417714
PQPubID 85417
PageCount 14
ParticipantIDs crossref_primary_10_1109_JBHI_2024_3383591
proquest_miscellaneous_3031137271
proquest_journals_3075417714
pubmed_primary_38557614
ieee_primary_10487010
crossref_citationtrail_10_1109_JBHI_2024_3383591
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref37
Hamilton (ref39) 2017
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
Velikovi (ref34) 2018
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Kipf (ref35) 2016
ref40
References_xml – ident: ref25
  doi: 10.1093/bioinformatics/btq241
– ident: ref42
  doi: 10.1016/j.freeradbiomed.2020.11.029
– ident: ref2
  doi: 10.1038/s41580-018-0045-7
– ident: ref27
  doi: 10.1016/j.cell.2012.02.005
– ident: ref46
  doi: 10.1109/TKDE.2022.3154792
– ident: ref15
  doi: 10.1093/bioinformatics/btz297
– ident: ref30
  doi: 10.1093/bioinformatics/btt426
– ident: ref5
  doi: 10.1093/bib/bbac562
– ident: ref6
  doi: 10.1093/bib/bbx130
– ident: ref7
  doi: 10.1038/srep21106
– ident: ref13
  doi: 10.1016/j.ymthe.2021.01.003
– ident: ref36
  doi: 10.1093/bib/bbac140
– ident: ref41
  doi: 10.3748/wjg.v23.i45.7965
– ident: ref21
  doi: 10.3233/ICA-200645
– ident: ref16
  doi: 10.1093/bioinformatics/btz965
– ident: ref29
  doi: 10.1371/annotation/28592478-72f5-4937-919b-b2342d6ceda0
– ident: ref38
  doi: 10.1093/nar/gkn714
– start-page: 1025
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref39
  article-title: Inductive representation learning on large graphs
– ident: ref8
  doi: 10.1186/1752-0509-4-S1-S2
– ident: ref44
  doi: 10.1109/TCBB.2021.3095947
– ident: ref4
  doi: 10.1093/bib/bbac266
– ident: ref26
  doi: 10.1038/nrg2102
– ident: ref33
  doi: 10.1038/s41467-021-27138-2
– ident: ref10
  doi: 10.1371/journal.pcbi.1005455
– ident: ref28
  doi: 10.1093/bib/bbaa037
– ident: ref11
  doi: 10.1109/TCBB.2020.3013837
– ident: ref20
  doi: 10.1126/science.aad9029
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2018
  ident: ref34
  article-title: Graph attention networks
– ident: ref12
  doi: 10.1371/journal.pcbi.1006865
– ident: ref19
  doi: 10.1093/bib/bbaa240
– ident: ref37
  doi: 10.1093/nar/gkt1023
– ident: ref1
  doi: 10.1038/s41576-020-00309-5
– ident: ref32
  doi: 10.1109/jbhi.2024.3357979
– ident: ref18
  doi: 10.1093/bib/bbac021
– ident: ref43
  doi: 10.3390/cancers14092156
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2016
  ident: ref35
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref40
  doi: 10.1016/j.gpb.2022.04.006
– ident: ref31
  doi: 10.1109/tfuzz.2023.3338565
– ident: ref45
  doi: 10.1109/TETC.2023.3239949
– ident: ref24
  doi: 10.1016/j.jogoh.2021.102092
– ident: ref3
  doi: 10.1016/j.tibs.2021.11.004
– ident: ref14
  doi: 10.1016/j.ymthe.2022.01.041
– ident: ref9
  doi: 10.1039/C6MB00853D
– ident: ref23
  doi: 10.1093/bioinformatics/btaa775
– ident: ref17
  doi: 10.1093/bib/bbac159
– ident: ref22
  doi: 10.1016/j.cell.2010.09.050
SSID ssj0000816896
Score 2.5022879
Snippet As post-transcriptional regulators of gene expression, micro-ribonucleic acids (miRNAs) are regarded as potential biomarkers for a variety of diseases. Hence,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4281
SubjectTerms Algorithms
Attention
Bioinformatics
Biological system modeling
Biomarkers
Computational Biology - methods
Computational modeling
Disease
Diseases
Feature extraction
Gene expression
Genetic Predisposition to Disease - genetics
Heterogeneous networks
Hierarchical attention network
high-order structures
Humans
MDAs
MicroRNAs
MicroRNAs - genetics
miRNA
miRNA-disease association prediction
motifs
Pathogenesis
Post-transcription
Prediction models
Predictive models
Title Motif-Aware miRNA-Disease Association Prediction via Hierarchical Attention Network
URI https://ieeexplore.ieee.org/document/10487010
https://www.ncbi.nlm.nih.gov/pubmed/38557614
https://www.proquest.com/docview/3075417714
https://www.proquest.com/docview/3031137271
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6B_HFz6nTKRV8EjKTNm3ax_nFHDhEHeytpPmAoW4yOwX_ei9JN1SY-BZokia5u-R3ubscQidUCUFNyLHWmmOWSYFFRAtMUlUkKiykUM7Lt5d0-qw7iAdVsLqLhYE2zvlMt2zR2fLVWE7tVRlIOMBrF1C1DJqbD9aaX6i4DBIuH1cIBQySyCorJiXZWfe8cwPaYMhaVieLM5shJkpjQNuU_TiSXI6VxXDTHTvX66g3G7D3NnlqTcuiJT9_veX47xltoLUKgAZtzzGbaEmPttDKbWVi30YPt-NyaHD7Q0x08DK877XxpTfiBN9IGdxNbAtXfB-KoDO0gcwurwr0XZbeiTLoeSfzOupfXz1edHCVeQHLKCYlTkPY9rgGbEJ1kkUpYYqFXGcJpQXoJ0YATbOCF0miTKakikMBHGk0BQoT0NWjHVQbjUd6DwVJSo2isZQqJIwbngqpACKYCBRXI2LSQGS2-LmsniW32TGec6eekCy3pMst6fKKdA10Om_y6t_k-Kty3S77t4p-xRuoOSNxXontWw4bXswo55Q10PH8MwictaKIkR5PbZ2I0ghgH3S961lj3vmMo_YX_PQArdqxeXffJqqVk6k-BFBTFkeOmb8AzrzvrA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB-kgvZFq7Z6WnUFnwq5JrvJZvfx2lq2tbdIP6BvSzYfcNjeyblnoX-9k2TvqIUW3wKbZJPMTPKbzEwG4CszSjGXSmKtlYSXWhGVsZbQwrS5SVutTPDyrfPqgh9fiss-WD3EwmCb4Hxmh74YbPlmphf-qgwlHOF1CKh6ige_YDFca3WlEnJIhIxcKRYIyiLv7ZiMlrvHe9UR6oMpH3qtTJQ-R0xWCMTbjP9zKIUsKw8DznDwHL6Eejnk6G_yc7jo2qG-vfea43_PaQNe9BA0GUWeeQVP7PQ1PBv3RvY3cDaedRNHRjdqbpPryWk9IgfRjJPcIWbyY-5bhOKfiUqqiQ9lDplVsO-ui26USR3dzDfh4vDb-X5F-twLRGeCdqRIceOTFtEJs3mZFZQbnkpb5oy1qKE4hVQtW9nmuXGl0UakCnnSWYY0pqitZ1uwNp1N7TtI8oI5w4TWJqVcOlkobRAkuAxVV6cEHQBdLn6j-4fJfX6MqyYoKLRsPOkaT7qmJ90AdlZNfsVXOR6rvOmX_U7FuOID2F6SuOkF93eDW57gTErGB_Bl9RlFzttR1NTOFr5OxliGwA-7fhtZY9X5kqPeP_DTz_C8Oh-fNCdH9fcPsO7HGZ1_t2Gtmy_sR4Q4XfspMPZfeUry9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motif-Aware+miRNA-Disease+Association+Prediction+via+Hierarchical+Attention+Network&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zhao%2C+Bo-Wei&rft.au=He%2C+Yi-Zhou&rft.au=Su%2C+Xiao-Rui&rft.au=Yang%2C+Yue&rft.date=2024-07-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=28&rft.issue=7&rft.spage=4281&rft.epage=4294&rft_id=info:doi/10.1109%2FJBHI.2024.3383591&rft_id=info%3Apmid%2F38557614&rft.externalDocID=10487010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon