NeRFPlayer: A Streamable Dynamic Scene Representation with Decomposed Neural Radiance Fields

Visually exploring in a real-world 4D spatiotemporal space freely in VR has been a long-term quest. The task is especially appealing when only a few or even single RGB cameras are used for capturing the dynamic scene. To this end, we present an efficient framework capable of fast reconstruction, com...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 29; no. 5; pp. 2732 - 2742
Main Authors Song, Liangchen, Chen, Anpei, Li, Zhong, Chen, Zhang, Chen, Lele, Yuan, Junsong, Xu, Yi, Geiger, Andreas
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Visually exploring in a real-world 4D spatiotemporal space freely in VR has been a long-term quest. The task is especially appealing when only a few or even single RGB cameras are used for capturing the dynamic scene. To this end, we present an efficient framework capable of fast reconstruction, compact modeling, and streamable rendering. First, we propose to decompose the 4D spatiotemporal space according to temporal characteristics. Points in the 4D space are associated with probabilities of belonging to three categories: static, deforming, and new areas. Each area is represented and regularized by a separate neural field. Second, we propose a hybrid representations based feature streaming scheme for efficiently modeling the neural fields. Our approach, coined NeRFPlayer, is evaluated on dynamic scenes captured by single hand-held cameras and multi-camera arrays, achieving comparable or superior rendering performance in terms of quality and speed comparable to recent state-of-the-art methods, achieving reconstruction in 10 seconds per frame and interactive rendering. Project website: https://bit.ly/nerfplayer.
AbstractList Visually exploring in a real-world 4D spatiotemporal space freely in VR has been a long-term quest. The task is especially appealing when only a few or even single RGB cameras are used for capturing the dynamic scene. To this end, we present an efficient framework capable of fast reconstruction, compact modeling, and streamable rendering. First, we propose to decompose the 4D spatiotemporal space according to temporal characteristics. Points in the 4D space are associated with probabilities of belonging to three categories: static, deforming, and new areas. Each area is represented and regularized by a separate neural field. Second, we propose a hybrid representations based feature streaming scheme for efficiently modeling the neural fields. Our approach, coined NeRFPlayer, is evaluated on dynamic scenes captured by single hand-held cameras and multi-camera arrays, achieving comparable or superior rendering performance in terms of quality and speed comparable to recent state-of-the-art methods, achieving reconstruction in 10 seconds per frame and interactive rendering. Project website: https://bit.ly/nerfplayer.
Visually exploring in a real-world 4D spatiotemporal space freely in VR has been a long-term quest. The task is especially appealing when only a few or even single RGB cameras are used for capturing the dynamic scene. To this end, we present an efficient framework capable of fast reconstruction, compact modeling, and streamable rendering. First, we propose to decompose the 4D spatiotemporal space according to temporal characteristics. Points in the 4D space are associated with probabilities of belonging to three categories: static, deforming, and new areas. Each area is represented and regularized by a separate neural field. Second, we propose a hybrid representations based feature streaming scheme for efficiently modeling the neural fields. Our approach, coined NeRFPlayer, is evaluated on dynamic scenes captured by single hand-held cameras and multi-camera arrays, achieving comparable or superior rendering performance in terms of quality and speed comparable to recent state-of-the-art methods, achieving reconstruction in 10 seconds per frame and interactive rendering. Project website: https://bit.ly/nerfplayer.Visually exploring in a real-world 4D spatiotemporal space freely in VR has been a long-term quest. The task is especially appealing when only a few or even single RGB cameras are used for capturing the dynamic scene. To this end, we present an efficient framework capable of fast reconstruction, compact modeling, and streamable rendering. First, we propose to decompose the 4D spatiotemporal space according to temporal characteristics. Points in the 4D space are associated with probabilities of belonging to three categories: static, deforming, and new areas. Each area is represented and regularized by a separate neural field. Second, we propose a hybrid representations based feature streaming scheme for efficiently modeling the neural fields. Our approach, coined NeRFPlayer, is evaluated on dynamic scenes captured by single hand-held cameras and multi-camera arrays, achieving comparable or superior rendering performance in terms of quality and speed comparable to recent state-of-the-art methods, achieving reconstruction in 10 seconds per frame and interactive rendering. Project website: https://bit.ly/nerfplayer.
Author Chen, Lele
Chen, Anpei
Geiger, Andreas
Li, Zhong
Song, Liangchen
Chen, Zhang
Yuan, Junsong
Xu, Yi
Author_xml – sequence: 1
  givenname: Liangchen
  orcidid: 0000-0002-8366-5088
  surname: Song
  fullname: Song, Liangchen
  email: lsong8@buffalo.edu
  organization: SUNY Buffalo, United States
– sequence: 2
  givenname: Anpei
  orcidid: 0000-0003-2150-2176
  surname: Chen
  fullname: Chen, Anpei
  organization: ETH Zürich and University of Tübingen, Germany
– sequence: 3
  givenname: Zhong
  orcidid: 0000-0002-7416-1216
  surname: Li
  fullname: Li, Zhong
  email: zhonglee323@gmail.com
  organization: OPPO US Research Center, InnoPeak Technology, United States
– sequence: 4
  givenname: Zhang
  orcidid: 0000-0001-8582-1024
  surname: Chen
  fullname: Chen, Zhang
  organization: OPPO US Research Center, InnoPeak Technology, United States
– sequence: 5
  givenname: Lele
  orcidid: 0000-0002-7073-0450
  surname: Chen
  fullname: Chen, Lele
  organization: OPPO US Research Center, InnoPeak Technology, United States
– sequence: 6
  givenname: Junsong
  orcidid: 0000-0002-7901-8793
  surname: Yuan
  fullname: Yuan, Junsong
  organization: SUNY Buffalo, United States
– sequence: 7
  givenname: Yi
  orcidid: 0000-0003-2126-6054
  surname: Xu
  fullname: Xu, Yi
  organization: OPPO US Research Center, InnoPeak Technology, United States
– sequence: 8
  givenname: Andreas
  orcidid: 0000-0002-8151-3726
  surname: Geiger
  fullname: Geiger, Andreas
  organization: University of Tübingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37027699$$D View this record in MEDLINE/PubMed
BookMark eNp9kctKAzEUhoMo3h9AEAm4cTM1tyYTd6VaFUSlXlZCyGROMTKTqckM0rd3SiuIC1fnLL7vcPj_PbQZmgAIHVEyoJTo8-fX8fWAEcYHnAlFcraBdqkWNCNDIjf7nSiVMcnkDtpL6YMQKkSut9EOV4QpqfUueruH6eSxsguIF3iEn9oItrZFBfhyEWztHX5yEABPYR4hQWht65uAv3z7ji_BNfW8SVDie-iirfDUlt4GB3jioSrTAdqa2SrB4Xruo5fJ1fP4Jrt7uL4dj-4yx4ekzZTlimnJihx4zqSalZwVLndE86GSnGvKheIFlNJSKzRXtCRSUs21FU47zffR2eruPDafHaTW1D45qCoboOmSYUrnqg-Dqh49_YN-NF0M_XdLilGai6HsqZM11RU1lGYefW3jwvzk1gNqBbjYpBRhZpxfRdNG6ytDiVk2ZJYNmWVDZt1Qb9I_5s_x_5zjleMB4BdPhJa55t-5f5js
CODEN ITVGEA
CitedBy_id crossref_primary_10_1111_cgf_15062
crossref_primary_10_1109_TASE_2024_3416533
crossref_primary_10_1088_1742_6596_2891_15_152010
crossref_primary_10_1109_TCSVT_2024_3439737
crossref_primary_10_1007_s11431_024_2714_4
crossref_primary_10_1109_LRA_2024_3511399
crossref_primary_10_1007_s41870_023_01470_w
crossref_primary_10_1016_j_cag_2024_103984
crossref_primary_10_1109_TMM_2024_3355639
crossref_primary_10_3390_sym16081010
crossref_primary_10_1111_cgf_15014
crossref_primary_10_1016_j_cag_2023_10_002
crossref_primary_10_1109_TVCG_2024_3367431
crossref_primary_10_1111_cgf_14911
crossref_primary_10_1145_3655618
crossref_primary_10_1007_s00371_024_03475_3
crossref_primary_10_1109_TPAMI_2024_3382198
crossref_primary_10_1145_3592455
crossref_primary_10_1109_TVCG_2024_3361502
crossref_primary_10_1109_TVCG_2024_3378692
crossref_primary_10_1145_3687926
crossref_primary_10_1109_TVCG_2024_3372037
crossref_primary_10_1007_s11263_024_02310_5
crossref_primary_10_1145_3687935
Cites_doi 10.1109/CVPR52688.2022.01572
10.1109/ICCV48922.2021.00570
10.1109/ICCV48922.2021.01406
10.1109/CVPR46437.2021.00930
10.1145/3450626.3459863
10.1109/CVPR46437.2021.00741
10.1145/3528233.3530727
10.1109/CVPR46437.2021.01294
10.1109/CVPR52688.2022.01571
10.1111/1467-8659.00509
10.1145/3306346.3322980
10.1109/CVPR46437.2021.01393
10.1145/3550469.3555383
10.1109/ICCV48922.2021.01407
10.1109/cvpr46437.2021.01018
10.1038/s42256-022-00530-3
10.1109/ICCV48922.2021.00582
10.1109/TVCG.2022.3203102
10.1109/3DV57658.2022.00056
10.1109/TIP.2003.819861
10.1109/CVPR46437.2021.00843
10.1109/CVPR52688.2022.00807
10.1145/3414685.3417827
10.1109/CVPR52688.2022.00544
10.1109/CVPR46437.2021.00643
10.1109/iccv48922.2021.01408
10.1145/3450626.3459756
10.1109/CVPR46437.2021.00288
10.1007/978-3-031-19824-3_20
10.1111/cgf.14340
10.1109/CVPR52688.2022.00542
10.1145/3478513.3480487
10.1145/1015706.1015766
10.1109/CVPR.2019.00459
10.1145/2766945
10.1145/237170.237199
10.1109/ICCV48922.2021.00581
10.1109/CVPR46437.2021.01120
10.1109/CVPR52688.2022.01316
10.1109/CVPR52688.2022.00537
10.1007/978-3-030-58452-8_24
10.1145/3386569.3392377
10.1145/3528223.3530127
10.1109/ICCV48922.2021.01352
10.1109/CVPR52729.2023.01594
10.1145/3306346.3323020
10.1109/3DV53792.2021.00099
10.1109/ICCV48922.2021.01272
10.1109/ICCV48922.2021.01245
10.1109/CVPR.2019.00025
10.1109/CVPR52688.2022.00094
10.1007/978-3-031-19790-1_16
10.1109/3DV53792.2021.00118
10.1109/CVPR42600.2020.00541
10.1109/cvpr46437.2021.00713
10.1109/CVPR52688.2022.00538
10.1111/cgf.14505
10.1109/CVPR46437.2021.01432
10.1109/CVPR46437.2021.00166
10.1145/3386569.3392485
10.1109/MMCS.1995.484925
10.1109/ICCV.2019.00548
10.1145/882262.882309
10.1109/93.580394
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2023.3247082
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 2742
ExternalDocumentID 37027699
10_1109_TVCG_2023_3247082
10049689
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c350t-7a372962b8e38267fd32bc8c09357633913473bed6a1a49371d0661939a4c9c93
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Fri Jul 11 08:28:41 EDT 2025
Mon Jun 30 05:34:05 EDT 2025
Sun Apr 06 01:21:17 EDT 2025
Tue Jul 01 02:12:17 EDT 2025
Thu Apr 24 23:00:38 EDT 2025
Wed Aug 27 02:18:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-7a372962b8e38267fd32bc8c09357633913473bed6a1a49371d0661939a4c9c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8366-5088
0000-0002-7901-8793
0000-0003-2126-6054
0000-0002-7073-0450
0000-0002-7416-1216
0000-0001-8582-1024
0000-0002-8151-3726
0000-0003-2150-2176
PMID 37027699
PQID 2792118456
PQPubID 75741
PageCount 11
ParticipantIDs proquest_miscellaneous_2798710717
crossref_citationtrail_10_1109_TVCG_2023_3247082
pubmed_primary_37027699
ieee_primary_10049689
proquest_journals_2792118456
crossref_primary_10_1109_TVCG_2023_3247082
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Bemana (ref3) 2020; 39
ref13
ref57
ref12
ref56
ref15
ref59
ref58
ref52
ref11
ref55
ref54
Yang (ref79) 2002
ref18
Wang (ref69) 2021
Jang (ref23) 2022
Gortler (ref19) 1996
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref7
ref9
Liu (ref35) 2022
ref4
ref6
Boss (ref5) 2021
ref82
ref81
ref40
ref84
ref83
ref80
ref34
ref78
ref37
Wu (ref75) 2022
ref31
ref74
Gan (ref16) 2022
ref77
ref32
ref76
Chibane (ref10) 2020
ref2
ref1
ref39
ref38
Liu (ref36) 2020
Kosiorek (ref27) 2021
ref71
Kobayashi (ref25) 2022
Paszke (ref53) 2019; 32
ref73
ref72
Sharma (ref60) 2022
Li (ref33) 2022
ref24
ref68
ref67
ref26
ref20
ref64
Chan (ref8) 2022
ref63
ref22
ref66
ref21
ref65
Gao (ref17) 2022
Li (ref30) 2022
ref28
Wang (ref70) 2022
ref29
Fang (ref14)
ref62
ref61
References_xml – start-page: 33
  year: 2020
  ident: ref10
  article-title: Neural unsigned distance fields for implicit function learning
  publication-title: Advances in Neural Information Processing Systems
– ident: ref74
  doi: 10.1109/CVPR52688.2022.01572
– ident: ref80
  doi: 10.1109/ICCV48922.2021.00570
– ident: ref13
  doi: 10.1109/ICCV48922.2021.01406
– ident: ref76
  doi: 10.1109/CVPR46437.2021.00930
– ident: ref39
  doi: 10.1145/3450626.3459863
– ident: ref61
  doi: 10.1109/CVPR46437.2021.00741
– ident: ref63
  doi: 10.1145/3528233.3530727
– ident: ref81
  doi: 10.1109/CVPR46437.2021.01294
– start-page: 43
  year: 1996
  ident: ref19
  article-title: The lumigraph
  publication-title: SIGGRAPH
– year: 2021
  ident: ref5
  article-title: Neural-pil: Neural pre-integrated lighting for reflectance decomposition
  publication-title: Advances in Neural Information Processing Systems
– year: 2022
  ident: ref60
  article-title: Seeing 3d objects in a single image via self-supervised static-dynamic disentanglement
  publication-title: arXiv preprint
– ident: ref43
  doi: 10.1109/CVPR52688.2022.01571
– volume-title: arXiv:2111.15552, 2021
  ident: ref14
  article-title: Neusample: Neural sample field for efficient view synthesis
– ident: ref59
  doi: 10.1111/1467-8659.00509
– ident: ref44
  doi: 10.1145/3306346.3322980
– ident: ref56
  doi: 10.1109/CVPR46437.2021.01393
– ident: ref15
  doi: 10.1145/3550469.3555383
– year: 2020
  ident: ref36
  article-title: Neural sparse voxel fields
  publication-title: Advances in Neural Information Processing Systems
– ident: ref57
  doi: 10.1109/ICCV48922.2021.01407
– volume-title: arXiv preprint
  year: 2022
  ident: ref16
  article-title: V4d: Voxel for 4d novel view synthesis
– year: 2022
  ident: ref17
  article-title: Monocular dynamic view synthesis: A reality check
  publication-title: Neural Information Processing Systems (Neurips)
– ident: ref55
  doi: 10.1109/cvpr46437.2021.01018
– ident: ref37
  doi: 10.1038/s42256-022-00530-3
– volume-title: ArXiv, abs/2212.00190
  year: 2022
  ident: ref70
  article-title: Mixed neural voxels for fast multi-view video synthesis
– ident: ref20
  doi: 10.1109/ICCV48922.2021.00582
– ident: ref12
  doi: 10.1109/TVCG.2022.3203102
– ident: ref67
  doi: 10.1109/3DV57658.2022.00056
– ident: ref72
  doi: 10.1109/TIP.2003.819861
– ident: ref73
  doi: 10.1109/CVPR46437.2021.00843
– ident: ref65
  doi: 10.1109/CVPR52688.2022.00807
– volume: 32
  start-page: 8026
  year: 2019
  ident: ref53
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Advances in neural information processing systems
– volume-title: arXiv preprint
  year: 2021
  ident: ref69
  article-title: Neural trajectory fields for dynamic novel view synthesis
– volume: 39
  start-page: 1
  issue: 6
  year: 2020
  ident: ref3
  article-title: X-fields: Im-plicit neural view-, light-and time-image interpolation
  publication-title: ACM Transactions on Graphics (TOG)
  doi: 10.1145/3414685.3417827
– ident: ref31
  doi: 10.1109/CVPR52688.2022.00544
– ident: ref32
  doi: 10.1109/CVPR46437.2021.00643
– year: 2022
  ident: ref75
  article-title: D2nerf: Self-supervised decoupling of dynamic and static objects from a monocular video
  publication-title: arXiv preprint
– ident: ref18
  doi: 10.1109/iccv48922.2021.01408
– year: 2022
  ident: ref23
  article-title: D-tensorf: Tensorial radiance fields for dynamic scenes
  publication-title: ArXiv, abs/2212.02375
– year: 2022
  ident: ref35
  article-title: Devrf: Fast deformable voxel radiance fields for dynamic scenes
  publication-title: arXiv preprint
– ident: ref82
  doi: 10.1145/3450626.3459756
– ident: ref49
  doi: 10.1109/CVPR46437.2021.00288
– ident: ref9
  doi: 10.1007/978-3-031-19824-3_20
– ident: ref47
  doi: 10.1111/cgf.14340
– ident: ref58
  doi: 10.1109/CVPR52688.2022.00542
– ident: ref52
  doi: 10.1145/3478513.3480487
– ident: ref84
  doi: 10.1145/1015706.1015766
– ident: ref42
  doi: 10.1109/CVPR.2019.00459
– start-page: 16123
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2022
  ident: ref8
  article-title: I
– ident: ref11
  doi: 10.1145/2766945
– ident: ref29
  doi: 10.1145/237170.237199
– ident: ref51
  doi: 10.1109/ICCV48922.2021.00581
– ident: ref64
  doi: 10.1109/CVPR46437.2021.01120
– ident: ref71
  doi: 10.1109/CVPR52688.2022.01316
– ident: ref83
  doi: 10.1109/CVPR52688.2022.00537
– ident: ref45
  doi: 10.1007/978-3-030-58452-8_24
– start-page: 5742
  volume-title: International Conference on Machine Learning
  year: 2021
  ident: ref27
  article-title: Nerf-vae: A geometry aware 3d scene generative model
– ident: ref40
  doi: 10.1145/3386569.3392377
– ident: ref46
  doi: 10.1145/3528223.3530127
– ident: ref78
  doi: 10.1109/ICCV48922.2021.01352
– ident: ref1
  doi: 10.1109/CVPR52729.2023.01594
– ident: ref38
  doi: 10.1145/3306346.3323020
– ident: ref68
  doi: 10.1109/3DV53792.2021.00099
– start-page: 77
  year: 2002
  ident: ref79
  article-title: A real-time distributed light field camera
  publication-title: Rendering Techniques
– volume-title: Neural Information Processing Systems (Neurips)
  year: 2022
  ident: ref30
  article-title: Streaming radiance fields for 3d video synthesis
– ident: ref66
  doi: 10.1109/ICCV48922.2021.01272
– ident: ref4
  doi: 10.1109/ICCV48922.2021.01245
– ident: ref50
  doi: 10.1109/CVPR.2019.00025
– ident: ref21
  doi: 10.1109/CVPR52688.2022.00094
– ident: ref28
  doi: 10.1007/978-3-031-19790-1_16
– ident: ref54
  doi: 10.1109/3DV53792.2021.00118
– ident: ref2
  doi: 10.1109/CVPR42600.2020.00541
– ident: ref41
  doi: 10.1109/cvpr46437.2021.00713
– ident: ref62
  doi: 10.1109/CVPR52688.2022.00538
– ident: ref77
  doi: 10.1111/cgf.14505
– year: 2022
  ident: ref25
  article-title: Decomposing nerf for editing via feature field distillation
  publication-title: arXiv
– ident: ref34
  doi: 10.1109/CVPR46437.2021.01432
– ident: ref26
  doi: 10.1109/CVPR46437.2021.00166
– ident: ref6
  doi: 10.1145/3386569.3392485
– ident: ref22
  doi: 10.1109/MMCS.1995.484925
– volume-title: Eurographics Symposium on Rendering
  year: 2022
  ident: ref33
  article-title: Neulf: Efficient novel view synthesis with neural 4d light field
– ident: ref48
  doi: 10.1109/ICCV.2019.00548
– ident: ref7
  doi: 10.1145/882262.882309
– ident: ref24
  doi: 10.1109/93.580394
SSID ssj0014489
Score 2.703165
Snippet Visually exploring in a real-world 4D spatiotemporal space freely in VR has been a long-term quest. The task is especially appealing when only a few or even...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2732
SubjectTerms Cameras
Decomposition
Dynamics
free-viewpoint video
Image reconstruction
immersive video
Modelling
NeRF
Neural rendering
Reconstruction
Rendering
Rendering (computer graphics)
Representations
Spatiotemporal phenomena
Streaming media
Three-dimensional displays
Websites
Title NeRFPlayer: A Streamable Dynamic Scene Representation with Decomposed Neural Radiance Fields
URI https://ieeexplore.ieee.org/document/10049689
https://www.ncbi.nlm.nih.gov/pubmed/37027699
https://www.proquest.com/docview/2792118456
https://www.proquest.com/docview/2798710717
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3oAyjMUKlfiVCkhG2fjmBuCLgiJVbWFikOlyHYmF7bZit298Os7Y2dXFAnUW6Q4z_Hj-zwz3wCcqJ6RuTMqbmRq4tzWeWxViWQQ1-jUNAYdbw3cDovr-_zmof_QJav7XBhE9MFnmPCh9-XXEzfnrbJTVjfTRalXYZWYW0jWWroMiGfoEGCo4oxgeufC7KX69O7nxVXCdcITgg8qLbN_FiFfVeVtgOkXmsEmDBevGOJLHpP5zCbu-ZV6439_wxZsdJBTnIc-8hFWsN2GDy-ECHfg1xBHg-9jQ_j7TJwLdlWb35xUJS5DxXrxw9GkKEY-brZLV2oFb-KKS-Sw9MkUa8FKH_Skkdc7cCgGHB433YX7wbe7i-u4q7sQO9lPZ7Ey7MsrMluiJPahmlpm1pWOfaY0HUl21itpsS5Mz-QsqFcTcCEkqE3utNNyD9baSYsHIArb9HWhHM0jmEtD6KNpbC0xU7Z0tC5GkC4MUblOlJxrY4wrT05SXbHtKrZd1dkugq_LS_4ERY73Gu-yCV40DH8_gqOFuatu0E4r1lIkvkWQMoIvy9M03NiHYlqczH0bophMgiPYD91keXOpiOMXWh--8dBPsM7vFsIlj2Bt9jTHY4I0M_vZd-W_ZDnvZw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5V5QAc-C0QKGAkuCAlzcbZOEbiUHVZtrRdoWWLeqgUbGciIdosYneFyrvwKjwbM042KkjlVolbpDhx4hmPv_HMfAZ4rnpGps6osJKxCVNbpqFVOZJAXKVjUxl0vDVwMM5Gh-m7o_7RGvzsamEQ0SefYcSXPpZfztySt8q2mN1MZ7lucyj38Ow7eWjz17sDEueLJBm-me6MwvYQgdDJfrwIleHAVJbYHCVBaVWVMrEudxwApLklOfKspMUyMz2TMjtcSaswwRptUqcdcy2Rhb9CQKOfNOVhXZCCPBvdpDSqMCHHoA2a9mK9Nf248zbik8kjAiwqzpM_lj1_jsvFkNYvbcOb8Gs1KE1Gy5doubCR-_EXX-R_O2q34EYLqsV2MwtuwxrWd-D6OarFu3A8xsnw_YkhD-OV2BYcjDenXDYmBme1Of3sxAdHZl9MfGZwW5BVC96mFgPkxPvZHEvBXCbU08QzOjgUQ04AnG_A4aX83j1Yr2c1PgCR2aqvM-XIUmIqDeGrqrKlxETZ3NHKH0C8EnzhWtp1Pv3jpPDuV6wL1pWCdaVodSWAl90jXxvOkX813mCRn2vYSDuAzZV6Fa1ZmhfMFkkeJYHmAJ51t8mgcJTI1Dhb-jbkRLObH8D9Ri27l0sVJyrT-uEFnT6Fq6PpwX6xvzveewTX-Dub5NBNWF98W-JjAnAL-8RPIwGfLlsDfwOTu0jn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NeRFPlayer%3A+A+Streamable+Dynamic+Scene+Representation+with+Decomposed+Neural+Radiance+Fields&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Song%2C+Liangchen&rft.au=Chen%2C+Anpei&rft.au=Li%2C+Zhong&rft.au=Chen%2C+Zhang&rft.date=2023-05-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=29&rft.issue=5&rft.spage=2732&rft.epage=2742&rft_id=info:doi/10.1109%2FTVCG.2023.3247082&rft.externalDocID=10049689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon