Strain hardening in biaxially stretched elastomers undergoing strain-induced crystallization

We reveal strain hardening due to strain-induced crystallization (SIC) in both cross-linked natural rubber (NR) and its synthetic analogue (IR) under planar extension, a type of biaxial stretching where the rubber is stretched in one direction while maintaining the dimension in the other direction u...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 13; no. 49; pp. 3463 - 34636
Main Authors Hiraiwa, Soichiro, Mai, Thanh-Tam, Tsunoda, Katsuhiko, Urayama, Kenji
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 22.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We reveal strain hardening due to strain-induced crystallization (SIC) in both cross-linked natural rubber (NR) and its synthetic analogue (IR) under planar extension, a type of biaxial stretching where the rubber is stretched in one direction while maintaining the dimension in the other direction unchanged. Utilizing a bespoke biaxial tensile tester, planar extension tests were conducted on geometrically designed and optimally shaped sheet specimens to achieve a uniform and highly strained field. Evident strain hardening due to SIC was observed in both stretching ( x ) and constrained ( y ) directions when the stretch ( λ x ) exceeded a critical value λ x ,c . The λ x ,c value aligned with the onset stretch of SIC in planar extension, as determined by wide-angle X-ray scattering measurements. Interestingly, the nominal stress ratio between the constrained ( σ y ) and stretching ( σ x ) axes as a function of λ x exhibited a distinct minimum near λ x ,c . This minimum signifies that the increment of σ x induced by an increase in λ x surpasses that of σ y before strain hardening ( λ x < λ x ,c ), while the relationship is reversed in the strain hardening region ( λ x > λ x ,c ). The λ x ,c value in planar extension (4.7 for IR and 4.5 for NR) was slightly lower than that in uniaxial extension (5.7 for IR and 5.2 for NR). This difference in λ x ,c values can be explained by considering a single mechanical work required for strain hardening, owing to the relatively small dissimilarities between the two stretching modes. This investigation contributes significantly to the understanding of SIC phenomena in biaxial stretching, and provides valuable insights for predicting the mechanical response of SIC rubber under various deformation conditions. Pronounced strain hardening due to partial crystallization in natural rubber induced by unequal biaxial stretching is observed using geometrically tailored sheet specimens, measured with a bespoke biaxial tensile tester.
AbstractList We reveal strain hardening due to strain-induced crystallization (SIC) in both cross-linked natural rubber (NR) and its synthetic analogue (IR) under planar extension, a type of biaxial stretching where the rubber is stretched in one direction while maintaining the dimension in the other direction unchanged. Utilizing a bespoke biaxial tensile tester, planar extension tests were conducted on geometrically designed and optimally shaped sheet specimens to achieve a uniform and highly strained field. Evident strain hardening due to SIC was observed in both stretching ( x ) and constrained ( y ) directions when the stretch ( λ x ) exceeded a critical value λ x ,c . The λ x ,c value aligned with the onset stretch of SIC in planar extension, as determined by wide-angle X-ray scattering measurements. Interestingly, the nominal stress ratio between the constrained ( σ y ) and stretching ( σ x ) axes as a function of λ x exhibited a distinct minimum near λ x ,c . This minimum signifies that the increment of σ x induced by an increase in λ x surpasses that of σ y before strain hardening ( λ x < λ x ,c ), while the relationship is reversed in the strain hardening region ( λ x > λ x ,c ). The λ x ,c value in planar extension (4.7 for IR and 4.5 for NR) was slightly lower than that in uniaxial extension (5.7 for IR and 5.2 for NR). This difference in λ x ,c values can be explained by considering a single mechanical work required for strain hardening, owing to the relatively small dissimilarities between the two stretching modes. This investigation contributes significantly to the understanding of SIC phenomena in biaxial stretching, and provides valuable insights for predicting the mechanical response of SIC rubber under various deformation conditions.
We reveal strain hardening due to strain-induced crystallization (SIC) in both cross-linked natural rubber (NR) and its synthetic analogue (IR) under planar extension, a type of biaxial stretching where the rubber is stretched in one direction while maintaining the dimension in the other direction unchanged. Utilizing a bespoke biaxial tensile tester, planar extension tests were conducted on geometrically designed and optimally shaped sheet specimens to achieve a uniform and highly strained field. Evident strain hardening due to SIC was observed in both stretching (x) and constrained (y) directions when the stretch (λx) exceeded a critical value λx,c. The λx,c value aligned with the onset stretch of SIC in planar extension, as determined by wide-angle X-ray scattering measurements. Interestingly, the nominal stress ratio between the constrained (σy) and stretching (σx) axes as a function of λx exhibited a distinct minimum near λx,c. This minimum signifies that the increment of σx induced by an increase in λx surpasses that of σy before strain hardening (λx < λx,c), while the relationship is reversed in the strain hardening region (λx > λx,c). The λx,c value in planar extension (4.7 for IR and 4.5 for NR) was slightly lower than that in uniaxial extension (5.7 for IR and 5.2 for NR). This difference in λx,c values can be explained by considering a single mechanical work required for strain hardening, owing to the relatively small dissimilarities between the two stretching modes. This investigation contributes significantly to the understanding of SIC phenomena in biaxial stretching, and provides valuable insights for predicting the mechanical response of SIC rubber under various deformation conditions.
We reveal strain hardening due to strain-induced crystallization (SIC) in both cross-linked natural rubber (NR) and its synthetic analogue (IR) under planar extension, a type of biaxial stretching where the rubber is stretched in one direction while maintaining the dimension in the other direction unchanged. Utilizing a bespoke biaxial tensile tester, planar extension tests were conducted on geometrically designed and optimally shaped sheet specimens to achieve a uniform and highly strained field. Evident strain hardening due to SIC was observed in both stretching ( x ) and constrained ( y ) directions when the stretch ( λ x ) exceeded a critical value λ x ,c . The λ x ,c value aligned with the onset stretch of SIC in planar extension, as determined by wide-angle X-ray scattering measurements. Interestingly, the nominal stress ratio between the constrained ( σ y ) and stretching ( σ x ) axes as a function of λ x exhibited a distinct minimum near λ x ,c . This minimum signifies that the increment of σ x induced by an increase in λ x surpasses that of σ y before strain hardening ( λ x < λ x ,c ), while the relationship is reversed in the strain hardening region ( λ x > λ x ,c ). The λ x ,c value in planar extension (4.7 for IR and 4.5 for NR) was slightly lower than that in uniaxial extension (5.7 for IR and 5.2 for NR). This difference in λ x ,c values can be explained by considering a single mechanical work required for strain hardening, owing to the relatively small dissimilarities between the two stretching modes. This investigation contributes significantly to the understanding of SIC phenomena in biaxial stretching, and provides valuable insights for predicting the mechanical response of SIC rubber under various deformation conditions. Pronounced strain hardening due to partial crystallization in natural rubber induced by unequal biaxial stretching is observed using geometrically tailored sheet specimens, measured with a bespoke biaxial tensile tester.
Author Tsunoda, Katsuhiko
Urayama, Kenji
Mai, Thanh-Tam
Hiraiwa, Soichiro
AuthorAffiliation Kyoto University
Department of Material Chemistry
Bridgestone Corporation
Sustainable and Advanced Materials Division
AuthorAffiliation_xml – name: Department of Material Chemistry
– name: Kyoto University
– name: Sustainable and Advanced Materials Division
– name: Bridgestone Corporation
Author_xml – sequence: 1
  givenname: Soichiro
  surname: Hiraiwa
  fullname: Hiraiwa, Soichiro
– sequence: 2
  givenname: Thanh-Tam
  surname: Mai
  fullname: Mai, Thanh-Tam
– sequence: 3
  givenname: Katsuhiko
  surname: Tsunoda
  fullname: Tsunoda, Katsuhiko
– sequence: 4
  givenname: Kenji
  surname: Urayama
  fullname: Urayama, Kenji
BookMark eNpd0UtLAzEQAOAgFazai3dhwYsIq8lmk3SPpT5BEHzchGU2jzZlm61JFqy_3tSKirkkk3wzDJN9NHCd0wgdEXxOMK0uFPWABREUdtCwwCXPC8yrwZ_zHhqFsMBpcUYKTobo9Sl6sC6bg1faWTfLUtBYeLfQtussRK-jnGuV6RZC7Jbah6x3SvtZt8HhKzu3TvUyIenXIaZE-wHRdu4Q7Rpogx597wfo5frqeXqb3z_c3E0n97mkDMdcMFUJTE0jGkKxIaCa0kgJppLUCA0Gl1izMW3SU1Fpwo0EAMqbUqVL0tADdLqtu_LdW69DrJc2SN224HTXh7oYV0xgTEqW6Mk_uuh671J3G8UFo2zMkzrbKum7ELw29crbJfh1TXC9mXV9SR8nX7OeJHy8xT7IH_f7F_QT9bN_RA
CitedBy_id crossref_primary_10_3390_polym16070961
Cites_doi 10.1063/1.1746537
10.1007/978-3-319-06907-4
10.1016/B978-0-12-394584-6.00014-5
10.1021/acsami.9b15865
10.1021/ma50002a032
10.1002/pi.5153
10.1021/acs.macromol.1c00757
10.1021/ma034729e
10.1021/acsapm.2c00147
10.1016/B978-012464786-2/50011-0
10.1016/j.polymer.2021.123708
10.1016/j.engfracmech.2018.07.001
10.1016/j.polymer.2021.123520
10.1295/polymj.PJ2007059
10.1021/acs.macromol.8b01033
10.1016/j.progpolymsci.2023.101676
10.1021/acs.macromol.2c01038
10.1002/pat.4284
10.1201/b18701-46
10.1021/acsmacrolett.2c00241
10.1016/j.compscitech.2014.05.011
10.1021/ma002165y
10.1021/ma021106c
10.1039/D3SM00060E
10.1021/acs.macromol.0c00515
10.1021/acs.biomac.3c00355
10.1016/j.polymer.2022.125120
10.1021/jp100920g
10.1039/C6SM02833K
10.1039/C4RA13504K
10.1016/j.jmps.2021.104701
10.1016/j.actamat.2009.07.007
10.1016/j.engfracmech.2014.04.003
10.1021/acsmacrolett.9b00896
10.5254/1.3601131
10.1016/j.polymer.2013.08.045
10.1021/acs.macromol.5b02688
10.1016/j.jmps.2021.104617
10.1021/acs.macromol.0c02737
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1039/d3ra07173a
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 34636
ExternalDocumentID 10_1039_D3RA07173A
d3ra07173a
GroupedDBID -JG
0-7
0R~
53G
AAFWJ
AAGNR
AAIWI
AAXHV
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFPKN
AFVBQ
AGRSR
AGSTE
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
GROUPED_DOAJ
HZ~
H~N
J3I
M~E
O9-
OK1
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
AAHBH
AAJAE
AARTK
AAWGC
AAYXX
ABEMK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AGEGJ
AHGCF
APEMP
CITATION
H13
PGMZT
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c350t-75d9703fb7b130f1adb4fccaf9c3f7eaf040e583bf1a29e16fcaaa36b4d83b1b3
ISSN 2046-2069
IngestDate Fri Oct 25 08:33:13 EDT 2024
Thu Oct 10 17:03:35 EDT 2024
Fri Aug 23 01:52:34 EDT 2024
Fri Feb 09 04:38:24 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c350t-75d9703fb7b130f1adb4fccaf9c3f7eaf040e583bf1a29e16fcaaa36b4d83b1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6190-1142
0000-0002-2823-6344
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2023/ra/d3ra07173a
PQID 2896753586
PQPubID 2047525
PageCount 7
ParticipantIDs proquest_miscellaneous_2895700145
proquest_journals_2896753586
crossref_primary_10_1039_D3RA07173A
rsc_primary_d3ra07173a
PublicationCentury 2000
PublicationDate 2023-11-22
PublicationDateYYYYMMDD 2023-11-22
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-22
  day: 22
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle RSC advances
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Huneau (D3RA07173A/cit3/1) 2011; 84
Khiêm (D3RA07173A/cit6/1) 2022; 159
Urayama (D3RA07173A/cit40/1) 2017; 66
Arunachala (D3RA07173A/cit19/1) 2021; 157
Fujikawa (D3RA07173A/cit33/1) 2015
Mai (D3RA07173A/cit36/1) 2017; 13
Plagge (D3RA07173A/cit10/1) 2021; 54
Chen (D3RA07173A/cit7/1) 2022; 4
Kawabata (D3RA07173A/cit35/1) 1981; 14
Osumi (D3RA07173A/cit20/1) 2022; 11
Xing (D3RA07173A/cit42/1) 2014; 99
Dixit (D3RA07173A/cit9/1) 2023; 24
Weng (D3RA07173A/cit14/1) 2010; 114
Xiang (D3RA07173A/cit21/1) 2022; 55
Kimura (D3RA07173A/cit38/1) 2020; 9
Chen (D3RA07173A/cit25/1) 2019; 11
Brüning (D3RA07173A/cit2/1) 2014
Trabelsi (D3RA07173A/cit22/1) 2002; 35
Sotta (D3RA07173A/cit8/1) 2020; 53
Brüning (D3RA07173A/cit15/1) 2013; 54
Candau (D3RA07173A/cit30/1) 2021; 223
Cao (D3RA07173A/cit43/1) 2018; 29
Ruellan (D3RA07173A/cit17/1) 2018; 201
Treloar (D3RA07173A/cit24/1) 1975
Kawamura (D3RA07173A/cit34/1) 2001; 34
Tosaka (D3RA07173A/cit4/1) 2007; 39
Seibert (D3RA07173A/cit32/1) 2014; 34
Toki (D3RA07173A/cit12/1) 2003; 36
Sainumsai (D3RA07173A/cit28/1) 2019; 17
Zhang (D3RA07173A/cit29/1) 2021; 219
Xu (D3RA07173A/cit1/1) 2023; 140
Ren (D3RA07173A/cit31/1) 2015; 5
Aoyama (D3RA07173A/cit39/1) 2021; 54
Tsunoda (D3RA07173A/cit5/1) 2023; 19
Demassieux (D3RA07173A/cit18/1) 2020; 286
Rodgers (D3RA07173A/cit23/1) 2013
Qu (D3RA07173A/cit13/1) 2009; 57
Donnet (D3RA07173A/cit41/1) 2005
Mai (D3RA07173A/cit37/1) 2018; 51
Flory (D3RA07173A/cit26/1) 1947; 15
Rublon (D3RA07173A/cit16/1) 2014; 123
Le Cam (D3RA07173A/cit11/1) 2022; 255
Wang (D3RA07173A/cit27/1) 2016; 49
References_xml – issn: 2013
  end-page: p 653-695
  publication-title: The Science and Technology of Rubber
  doi: Rodgers Waddell
– issn: 2005
  end-page: p 367-400
  publication-title: Science and Technology of Rubber
  doi: Donnet Custodero
– issn: 2014
  publication-title: In situ Structure Characterization of Elastomer during Deformation and Fracture
  doi: Brüning
– issn: 2020
  issue: vol. 286
  end-page: p 467-491
  publication-title: Advances in Polymer Science
  doi: Demassieux Berghezan Creton
– issn: 1975
  publication-title: The Physics of Rubber Elasticity
  doi: Treloar
– issn: 2015
  end-page: p 257-263
  publication-title: Constitutive Models for Rubbers IX
  doi: Fujikawa Maeda Yamabe Kodama Koishi
– volume: 15
  start-page: 397
  year: 1947
  ident: D3RA07173A/cit26/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1746537
  contributor:
    fullname: Flory
– volume-title: In situ Structure Characterization of Elastomer during Deformation and Fracture
  year: 2014
  ident: D3RA07173A/cit2/1
  doi: 10.1007/978-3-319-06907-4
  contributor:
    fullname: Brüning
– start-page: 653
  volume-title: The Science and Technology of Rubber
  year: 2013
  ident: D3RA07173A/cit23/1
  doi: 10.1016/B978-0-12-394584-6.00014-5
  contributor:
    fullname: Rodgers
– volume: 11
  start-page: 47535
  year: 2019
  ident: D3RA07173A/cit25/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b15865
  contributor:
    fullname: Chen
– volume: 14
  start-page: 154
  year: 1981
  ident: D3RA07173A/cit35/1
  publication-title: Macromolecules
  doi: 10.1021/ma50002a032
  contributor:
    fullname: Kawabata
– volume: 66
  start-page: 195
  year: 2017
  ident: D3RA07173A/cit40/1
  publication-title: Polym. Int.
  doi: 10.1002/pi.5153
  contributor:
    fullname: Urayama
– volume: 54
  start-page: 5629
  year: 2021
  ident: D3RA07173A/cit10/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.1c00757
  contributor:
    fullname: Plagge
– volume: 36
  start-page: 5915
  year: 2003
  ident: D3RA07173A/cit12/1
  publication-title: Macromolecules
  doi: 10.1021/ma034729e
  contributor:
    fullname: Toki
– volume: 4
  start-page: 3575
  year: 2022
  ident: D3RA07173A/cit7/1
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.2c00147
  contributor:
    fullname: Chen
– start-page: 367
  volume-title: Science and Technology of Rubber
  year: 2005
  ident: D3RA07173A/cit41/1
  doi: 10.1016/B978-012464786-2/50011-0
  contributor:
    fullname: Donnet
– volume-title: The Physics of Rubber Elasticity
  year: 1975
  ident: D3RA07173A/cit24/1
  contributor:
    fullname: Treloar
– volume: 223
  start-page: 123708
  year: 2021
  ident: D3RA07173A/cit30/1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2021.123708
  contributor:
    fullname: Candau
– volume: 201
  start-page: 353
  year: 2018
  ident: D3RA07173A/cit17/1
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.07.001
  contributor:
    fullname: Ruellan
– volume: 219
  start-page: 123520
  year: 2021
  ident: D3RA07173A/cit29/1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2021.123520
  contributor:
    fullname: Zhang
– volume: 39
  start-page: 1207
  year: 2007
  ident: D3RA07173A/cit4/1
  publication-title: Polym. J.
  doi: 10.1295/polymj.PJ2007059
  contributor:
    fullname: Tosaka
– volume: 51
  start-page: 5245
  year: 2018
  ident: D3RA07173A/cit37/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b01033
  contributor:
    fullname: Mai
– volume: 140
  start-page: 101676
  year: 2023
  ident: D3RA07173A/cit1/1
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2023.101676
  contributor:
    fullname: Xu
– volume: 55
  start-page: 10682
  year: 2022
  ident: D3RA07173A/cit21/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.2c01038
  contributor:
    fullname: Xiang
– volume: 29
  start-page: 1779
  year: 2018
  ident: D3RA07173A/cit43/1
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.4284
  contributor:
    fullname: Cao
– volume: 34
  start-page: 72
  year: 2014
  ident: D3RA07173A/cit32/1
  publication-title: Tech. Mech.
  contributor:
    fullname: Seibert
– start-page: 257
  volume-title: Constitutive Models for Rubbers IX
  year: 2015
  ident: D3RA07173A/cit33/1
  doi: 10.1201/b18701-46
  contributor:
    fullname: Fujikawa
– volume: 11
  start-page: 747
  year: 2022
  ident: D3RA07173A/cit20/1
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.2c00241
  contributor:
    fullname: Osumi
– volume: 99
  start-page: 67
  year: 2014
  ident: D3RA07173A/cit42/1
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2014.05.011
  contributor:
    fullname: Xing
– volume: 34
  start-page: 8252
  year: 2001
  ident: D3RA07173A/cit34/1
  publication-title: Macromolecules
  doi: 10.1021/ma002165y
  contributor:
    fullname: Kawamura
– volume: 35
  start-page: 10054
  year: 2002
  ident: D3RA07173A/cit22/1
  publication-title: Macromolecules
  doi: 10.1021/ma021106c
  contributor:
    fullname: Trabelsi
– volume: 19
  start-page: 1966
  year: 2023
  ident: D3RA07173A/cit5/1
  publication-title: Soft Matter
  doi: 10.1039/D3SM00060E
  contributor:
    fullname: Tsunoda
– volume: 53
  start-page: 3097
  year: 2020
  ident: D3RA07173A/cit8/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c00515
  contributor:
    fullname: Sotta
– volume: 24
  start-page: 3589
  year: 2023
  ident: D3RA07173A/cit9/1
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.3c00355
  contributor:
    fullname: Dixit
– volume: 255
  start-page: 125120
  year: 2022
  ident: D3RA07173A/cit11/1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2022.125120
  contributor:
    fullname: Le Cam
– volume: 114
  start-page: 7179
  year: 2010
  ident: D3RA07173A/cit14/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp100920g
  contributor:
    fullname: Weng
– volume: 286
  start-page: 467
  volume-title: Advances in Polymer Science
  year: 2020
  ident: D3RA07173A/cit18/1
  contributor:
    fullname: Demassieux
– volume: 13
  start-page: 1966
  year: 2017
  ident: D3RA07173A/cit36/1
  publication-title: Soft Matter
  doi: 10.1039/C6SM02833K
  contributor:
    fullname: Mai
– volume: 17
  start-page: 1539
  year: 2019
  ident: D3RA07173A/cit28/1
  publication-title: Mater. Today: Proc.
  contributor:
    fullname: Sainumsai
– volume: 5
  start-page: 11317
  year: 2015
  ident: D3RA07173A/cit31/1
  publication-title: RSC Adv.
  doi: 10.1039/C4RA13504K
  contributor:
    fullname: Ren
– volume: 159
  start-page: 104701
  year: 2022
  ident: D3RA07173A/cit6/1
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2021.104701
  contributor:
    fullname: Khiêm
– volume: 57
  start-page: 5053
  year: 2009
  ident: D3RA07173A/cit13/1
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.07.007
  contributor:
    fullname: Qu
– volume: 123
  start-page: 59
  year: 2014
  ident: D3RA07173A/cit16/1
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2014.04.003
  contributor:
    fullname: Rublon
– volume: 9
  start-page: 1
  year: 2020
  ident: D3RA07173A/cit38/1
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.9b00896
  contributor:
    fullname: Kimura
– volume: 84
  start-page: 425
  year: 2011
  ident: D3RA07173A/cit3/1
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3601131
  contributor:
    fullname: Huneau
– volume: 54
  start-page: 6200
  year: 2013
  ident: D3RA07173A/cit15/1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2013.08.045
  contributor:
    fullname: Brüning
– volume: 49
  start-page: 1505
  year: 2016
  ident: D3RA07173A/cit27/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b02688
  contributor:
    fullname: Wang
– volume: 157
  start-page: 104617
  year: 2021
  ident: D3RA07173A/cit19/1
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2021.104617
  contributor:
    fullname: Arunachala
– volume: 54
  start-page: 2353
  year: 2021
  ident: D3RA07173A/cit39/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c02737
  contributor:
    fullname: Aoyama
SSID ssj0000651261
Score 2.443702
Snippet We reveal strain hardening due to strain-induced crystallization (SIC) in both cross-linked natural rubber (NR) and its synthetic analogue (IR) under planar...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 3463
SubjectTerms Crystallization
Elastomers
Mechanical analysis
Natural rubber
Strain hardening
Stress ratio
Stretching
X-ray scattering
Title Strain hardening in biaxially stretched elastomers undergoing strain-induced crystallization
URI https://www.proquest.com/docview/2896753586
https://search.proquest.com/docview/2895700145
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXY7gEuiK8VhWUVBLdVlk0cJ_GxKqCKA4d-oCIhRbZj00A3QWkiKL-eseM4XbRIwCVq4rqRPC_TN5N5HoRepkmqcgVBDpdU-FFCQp9SkfqSCAg-Eqa39NbVFu_j2Sp6tybrod2RUZc0_EL8vFFX8j9WhWtgV62S_QfLuh-FC_AZ7AtHsDAc_8rGC9Pg4VwLp2RpxSm8YD_gztu9kYFom-TnEihyU-kMtWl7W3-uuiyCnu1DUN7qIgBR74EpbrdWmHnIWueLaV8s4Cj4rIDZ3w31XFSF2BR1NWS3i672iJUbf8muXHZg15ZVbjVoza7dFF_dnFXN9uyKWanQl-IwGxFiLcvrhMUX0nitEAJuMFLXf8W5WHwApW6LUuswcWT9m3Sn8Y2e_RLrjVFzXDNTOHDw_-WqCofBI3QcJpSQETqef1itP7qsGxCuAGLGfp9aTF8Nk64zkyHcOKr7XjCGcyzvobs2WPAmneXvo1uyfIBuT_sefQ_Rpw4BnkOABycOAZ5DgDcgwBsQ4F1HgPcbAh6h1ds3y-nMt_0yfIHJZeMnJKfgwBVPODATFbCcRwqeUEUFVolkChy2JCnmMBRSGcRKMMZwzKMcLgYcn6BRWZXyMfICIngOZDERAQVCLXjEcBqLREVSvyeWY_SiX6vsW7ctSmbKGTDNXuP5xKzoZIxO-2XM7GOzyyDChyAVkzQeo-duGNZNv6lipaxa8x3ddyGIyBidwPK7ewzWevKngafozgDMUzRq6lY-A-LY8DOTcDmzmPgF-PB4mA
link.rule.ids 315,786,790,870,27955,27956
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+hardening+in+biaxially+stretched+elastomers+undergoing+strain-induced+crystallization&rft.jtitle=RSC+advances&rft.au=Hiraiwa%2C+Soichiro&rft.au=Mai%2C+Thanh-Tam&rft.au=Tsunoda%2C+Katsuhiko&rft.au=Urayama%2C+Kenji&rft.date=2023-11-22&rft.eissn=2046-2069&rft.volume=13&rft.issue=49&rft.spage=3463&rft.epage=34636&rft_id=info:doi/10.1039%2Fd3ra07173a&rft.externalDocID=d3ra07173a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon