Strain hardening in biaxially stretched elastomers undergoing strain-induced crystallization
We reveal strain hardening due to strain-induced crystallization (SIC) in both cross-linked natural rubber (NR) and its synthetic analogue (IR) under planar extension, a type of biaxial stretching where the rubber is stretched in one direction while maintaining the dimension in the other direction u...
Saved in:
Published in | RSC advances Vol. 13; no. 49; pp. 3463 - 34636 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
22.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We reveal strain hardening due to strain-induced crystallization (SIC) in both cross-linked natural rubber (NR) and its synthetic analogue (IR) under planar extension, a type of biaxial stretching where the rubber is stretched in one direction while maintaining the dimension in the other direction unchanged. Utilizing a bespoke biaxial tensile tester, planar extension tests were conducted on geometrically designed and optimally shaped sheet specimens to achieve a uniform and highly strained field. Evident strain hardening due to SIC was observed in both stretching (
x
) and constrained (
y
) directions when the stretch (
λ
x
) exceeded a critical value
λ
x
,c
. The
λ
x
,c
value aligned with the onset stretch of SIC in planar extension, as determined by wide-angle X-ray scattering measurements. Interestingly, the nominal stress ratio between the constrained (
σ
y
) and stretching (
σ
x
) axes as a function of
λ
x
exhibited a distinct minimum near
λ
x
,c
. This minimum signifies that the increment of
σ
x
induced by an increase in
λ
x
surpasses that of
σ
y
before strain hardening (
λ
x
<
λ
x
,c
), while the relationship is reversed in the strain hardening region (
λ
x
>
λ
x
,c
). The
λ
x
,c
value in planar extension (4.7 for IR and 4.5 for NR) was slightly lower than that in uniaxial extension (5.7 for IR and 5.2 for NR). This difference in
λ
x
,c
values can be explained by considering a single mechanical work required for strain hardening, owing to the relatively small dissimilarities between the two stretching modes. This investigation contributes significantly to the understanding of SIC phenomena in biaxial stretching, and provides valuable insights for predicting the mechanical response of SIC rubber under various deformation conditions.
Pronounced strain hardening due to partial crystallization in natural rubber induced by unequal biaxial stretching is observed using geometrically tailored sheet specimens, measured with a bespoke biaxial tensile tester. |
---|---|
AbstractList | We reveal strain hardening due to strain-induced crystallization (SIC) in both cross-linked natural rubber (NR) and its synthetic analogue (IR) under planar extension, a type of biaxial stretching where the rubber is stretched in one direction while maintaining the dimension in the other direction unchanged. Utilizing a bespoke biaxial tensile tester, planar extension tests were conducted on geometrically designed and optimally shaped sheet specimens to achieve a uniform and highly strained field. Evident strain hardening due to SIC was observed in both stretching (
x
) and constrained (
y
) directions when the stretch (
λ
x
) exceeded a critical value
λ
x
,c
. The
λ
x
,c
value aligned with the onset stretch of SIC in planar extension, as determined by wide-angle X-ray scattering measurements. Interestingly, the nominal stress ratio between the constrained (
σ
y
) and stretching (
σ
x
) axes as a function of
λ
x
exhibited a distinct minimum near
λ
x
,c
. This minimum signifies that the increment of
σ
x
induced by an increase in
λ
x
surpasses that of
σ
y
before strain hardening (
λ
x
<
λ
x
,c
), while the relationship is reversed in the strain hardening region (
λ
x
>
λ
x
,c
). The
λ
x
,c
value in planar extension (4.7 for IR and 4.5 for NR) was slightly lower than that in uniaxial extension (5.7 for IR and 5.2 for NR). This difference in
λ
x
,c
values can be explained by considering a single mechanical work required for strain hardening, owing to the relatively small dissimilarities between the two stretching modes. This investigation contributes significantly to the understanding of SIC phenomena in biaxial stretching, and provides valuable insights for predicting the mechanical response of SIC rubber under various deformation conditions. We reveal strain hardening due to strain-induced crystallization (SIC) in both cross-linked natural rubber (NR) and its synthetic analogue (IR) under planar extension, a type of biaxial stretching where the rubber is stretched in one direction while maintaining the dimension in the other direction unchanged. Utilizing a bespoke biaxial tensile tester, planar extension tests were conducted on geometrically designed and optimally shaped sheet specimens to achieve a uniform and highly strained field. Evident strain hardening due to SIC was observed in both stretching (x) and constrained (y) directions when the stretch (λx) exceeded a critical value λx,c. The λx,c value aligned with the onset stretch of SIC in planar extension, as determined by wide-angle X-ray scattering measurements. Interestingly, the nominal stress ratio between the constrained (σy) and stretching (σx) axes as a function of λx exhibited a distinct minimum near λx,c. This minimum signifies that the increment of σx induced by an increase in λx surpasses that of σy before strain hardening (λx < λx,c), while the relationship is reversed in the strain hardening region (λx > λx,c). The λx,c value in planar extension (4.7 for IR and 4.5 for NR) was slightly lower than that in uniaxial extension (5.7 for IR and 5.2 for NR). This difference in λx,c values can be explained by considering a single mechanical work required for strain hardening, owing to the relatively small dissimilarities between the two stretching modes. This investigation contributes significantly to the understanding of SIC phenomena in biaxial stretching, and provides valuable insights for predicting the mechanical response of SIC rubber under various deformation conditions. We reveal strain hardening due to strain-induced crystallization (SIC) in both cross-linked natural rubber (NR) and its synthetic analogue (IR) under planar extension, a type of biaxial stretching where the rubber is stretched in one direction while maintaining the dimension in the other direction unchanged. Utilizing a bespoke biaxial tensile tester, planar extension tests were conducted on geometrically designed and optimally shaped sheet specimens to achieve a uniform and highly strained field. Evident strain hardening due to SIC was observed in both stretching ( x ) and constrained ( y ) directions when the stretch ( λ x ) exceeded a critical value λ x ,c . The λ x ,c value aligned with the onset stretch of SIC in planar extension, as determined by wide-angle X-ray scattering measurements. Interestingly, the nominal stress ratio between the constrained ( σ y ) and stretching ( σ x ) axes as a function of λ x exhibited a distinct minimum near λ x ,c . This minimum signifies that the increment of σ x induced by an increase in λ x surpasses that of σ y before strain hardening ( λ x < λ x ,c ), while the relationship is reversed in the strain hardening region ( λ x > λ x ,c ). The λ x ,c value in planar extension (4.7 for IR and 4.5 for NR) was slightly lower than that in uniaxial extension (5.7 for IR and 5.2 for NR). This difference in λ x ,c values can be explained by considering a single mechanical work required for strain hardening, owing to the relatively small dissimilarities between the two stretching modes. This investigation contributes significantly to the understanding of SIC phenomena in biaxial stretching, and provides valuable insights for predicting the mechanical response of SIC rubber under various deformation conditions. Pronounced strain hardening due to partial crystallization in natural rubber induced by unequal biaxial stretching is observed using geometrically tailored sheet specimens, measured with a bespoke biaxial tensile tester. |
Author | Tsunoda, Katsuhiko Urayama, Kenji Mai, Thanh-Tam Hiraiwa, Soichiro |
AuthorAffiliation | Kyoto University Department of Material Chemistry Bridgestone Corporation Sustainable and Advanced Materials Division |
AuthorAffiliation_xml | – name: Department of Material Chemistry – name: Kyoto University – name: Sustainable and Advanced Materials Division – name: Bridgestone Corporation |
Author_xml | – sequence: 1 givenname: Soichiro surname: Hiraiwa fullname: Hiraiwa, Soichiro – sequence: 2 givenname: Thanh-Tam surname: Mai fullname: Mai, Thanh-Tam – sequence: 3 givenname: Katsuhiko surname: Tsunoda fullname: Tsunoda, Katsuhiko – sequence: 4 givenname: Kenji surname: Urayama fullname: Urayama, Kenji |
BookMark | eNpd0UtLAzEQAOAgFazai3dhwYsIq8lmk3SPpT5BEHzchGU2jzZlm61JFqy_3tSKirkkk3wzDJN9NHCd0wgdEXxOMK0uFPWABREUdtCwwCXPC8yrwZ_zHhqFsMBpcUYKTobo9Sl6sC6bg1faWTfLUtBYeLfQtussRK-jnGuV6RZC7Jbah6x3SvtZt8HhKzu3TvUyIenXIaZE-wHRdu4Q7Rpogx597wfo5frqeXqb3z_c3E0n97mkDMdcMFUJTE0jGkKxIaCa0kgJppLUCA0Gl1izMW3SU1Fpwo0EAMqbUqVL0tADdLqtu_LdW69DrJc2SN224HTXh7oYV0xgTEqW6Mk_uuh671J3G8UFo2zMkzrbKum7ELw29crbJfh1TXC9mXV9SR8nX7OeJHy8xT7IH_f7F_QT9bN_RA |
CitedBy_id | crossref_primary_10_3390_polym16070961 |
Cites_doi | 10.1063/1.1746537 10.1007/978-3-319-06907-4 10.1016/B978-0-12-394584-6.00014-5 10.1021/acsami.9b15865 10.1021/ma50002a032 10.1002/pi.5153 10.1021/acs.macromol.1c00757 10.1021/ma034729e 10.1021/acsapm.2c00147 10.1016/B978-012464786-2/50011-0 10.1016/j.polymer.2021.123708 10.1016/j.engfracmech.2018.07.001 10.1016/j.polymer.2021.123520 10.1295/polymj.PJ2007059 10.1021/acs.macromol.8b01033 10.1016/j.progpolymsci.2023.101676 10.1021/acs.macromol.2c01038 10.1002/pat.4284 10.1201/b18701-46 10.1021/acsmacrolett.2c00241 10.1016/j.compscitech.2014.05.011 10.1021/ma002165y 10.1021/ma021106c 10.1039/D3SM00060E 10.1021/acs.macromol.0c00515 10.1021/acs.biomac.3c00355 10.1016/j.polymer.2022.125120 10.1021/jp100920g 10.1039/C6SM02833K 10.1039/C4RA13504K 10.1016/j.jmps.2021.104701 10.1016/j.actamat.2009.07.007 10.1016/j.engfracmech.2014.04.003 10.1021/acsmacrolett.9b00896 10.5254/1.3601131 10.1016/j.polymer.2013.08.045 10.1021/acs.macromol.5b02688 10.1016/j.jmps.2021.104617 10.1021/acs.macromol.0c02737 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1039/d3ra07173a |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 34636 |
ExternalDocumentID | 10_1039_D3RA07173A d3ra07173a |
GroupedDBID | -JG 0-7 0R~ 53G AAFWJ AAGNR AAIWI AAXHV ABGFH ACGFS ADBBV ADMRA AENEX AFPKN AFVBQ AGRSR AGSTE AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BCNDV BLAPV BSQNT C6K EBS EE0 EF- GROUPED_DOAJ HZ~ H~N J3I M~E O9- OK1 R7C R7G RCNCU RPM RPMJG RRC RSCEA RVUXY SLH SMJ ZCN AAHBH AAJAE AARTK AAWGC AAYXX ABEMK ABPDG ABXOH AEFDR AESAV AFLYV AGEGJ AHGCF APEMP CITATION H13 PGMZT 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c350t-75d9703fb7b130f1adb4fccaf9c3f7eaf040e583bf1a29e16fcaaa36b4d83b1b3 |
ISSN | 2046-2069 |
IngestDate | Fri Oct 25 08:33:13 EDT 2024 Thu Oct 10 17:03:35 EDT 2024 Fri Aug 23 01:52:34 EDT 2024 Fri Feb 09 04:38:24 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c350t-75d9703fb7b130f1adb4fccaf9c3f7eaf040e583bf1a29e16fcaaa36b4d83b1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6190-1142 0000-0002-2823-6344 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2023/ra/d3ra07173a |
PQID | 2896753586 |
PQPubID | 2047525 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2895700145 proquest_journals_2896753586 crossref_primary_10_1039_D3RA07173A rsc_primary_d3ra07173a |
PublicationCentury | 2000 |
PublicationDate | 2023-11-22 |
PublicationDateYYYYMMDD | 2023-11-22 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | RSC advances |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Huneau (D3RA07173A/cit3/1) 2011; 84 Khiêm (D3RA07173A/cit6/1) 2022; 159 Urayama (D3RA07173A/cit40/1) 2017; 66 Arunachala (D3RA07173A/cit19/1) 2021; 157 Fujikawa (D3RA07173A/cit33/1) 2015 Mai (D3RA07173A/cit36/1) 2017; 13 Plagge (D3RA07173A/cit10/1) 2021; 54 Chen (D3RA07173A/cit7/1) 2022; 4 Kawabata (D3RA07173A/cit35/1) 1981; 14 Osumi (D3RA07173A/cit20/1) 2022; 11 Xing (D3RA07173A/cit42/1) 2014; 99 Dixit (D3RA07173A/cit9/1) 2023; 24 Weng (D3RA07173A/cit14/1) 2010; 114 Xiang (D3RA07173A/cit21/1) 2022; 55 Kimura (D3RA07173A/cit38/1) 2020; 9 Chen (D3RA07173A/cit25/1) 2019; 11 Brüning (D3RA07173A/cit2/1) 2014 Trabelsi (D3RA07173A/cit22/1) 2002; 35 Sotta (D3RA07173A/cit8/1) 2020; 53 Brüning (D3RA07173A/cit15/1) 2013; 54 Candau (D3RA07173A/cit30/1) 2021; 223 Cao (D3RA07173A/cit43/1) 2018; 29 Ruellan (D3RA07173A/cit17/1) 2018; 201 Treloar (D3RA07173A/cit24/1) 1975 Kawamura (D3RA07173A/cit34/1) 2001; 34 Tosaka (D3RA07173A/cit4/1) 2007; 39 Seibert (D3RA07173A/cit32/1) 2014; 34 Toki (D3RA07173A/cit12/1) 2003; 36 Sainumsai (D3RA07173A/cit28/1) 2019; 17 Zhang (D3RA07173A/cit29/1) 2021; 219 Xu (D3RA07173A/cit1/1) 2023; 140 Ren (D3RA07173A/cit31/1) 2015; 5 Aoyama (D3RA07173A/cit39/1) 2021; 54 Tsunoda (D3RA07173A/cit5/1) 2023; 19 Demassieux (D3RA07173A/cit18/1) 2020; 286 Rodgers (D3RA07173A/cit23/1) 2013 Qu (D3RA07173A/cit13/1) 2009; 57 Donnet (D3RA07173A/cit41/1) 2005 Mai (D3RA07173A/cit37/1) 2018; 51 Flory (D3RA07173A/cit26/1) 1947; 15 Rublon (D3RA07173A/cit16/1) 2014; 123 Le Cam (D3RA07173A/cit11/1) 2022; 255 Wang (D3RA07173A/cit27/1) 2016; 49 |
References_xml | – issn: 2013 end-page: p 653-695 publication-title: The Science and Technology of Rubber doi: Rodgers Waddell – issn: 2005 end-page: p 367-400 publication-title: Science and Technology of Rubber doi: Donnet Custodero – issn: 2014 publication-title: In situ Structure Characterization of Elastomer during Deformation and Fracture doi: Brüning – issn: 2020 issue: vol. 286 end-page: p 467-491 publication-title: Advances in Polymer Science doi: Demassieux Berghezan Creton – issn: 1975 publication-title: The Physics of Rubber Elasticity doi: Treloar – issn: 2015 end-page: p 257-263 publication-title: Constitutive Models for Rubbers IX doi: Fujikawa Maeda Yamabe Kodama Koishi – volume: 15 start-page: 397 year: 1947 ident: D3RA07173A/cit26/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1746537 contributor: fullname: Flory – volume-title: In situ Structure Characterization of Elastomer during Deformation and Fracture year: 2014 ident: D3RA07173A/cit2/1 doi: 10.1007/978-3-319-06907-4 contributor: fullname: Brüning – start-page: 653 volume-title: The Science and Technology of Rubber year: 2013 ident: D3RA07173A/cit23/1 doi: 10.1016/B978-0-12-394584-6.00014-5 contributor: fullname: Rodgers – volume: 11 start-page: 47535 year: 2019 ident: D3RA07173A/cit25/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b15865 contributor: fullname: Chen – volume: 14 start-page: 154 year: 1981 ident: D3RA07173A/cit35/1 publication-title: Macromolecules doi: 10.1021/ma50002a032 contributor: fullname: Kawabata – volume: 66 start-page: 195 year: 2017 ident: D3RA07173A/cit40/1 publication-title: Polym. Int. doi: 10.1002/pi.5153 contributor: fullname: Urayama – volume: 54 start-page: 5629 year: 2021 ident: D3RA07173A/cit10/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.1c00757 contributor: fullname: Plagge – volume: 36 start-page: 5915 year: 2003 ident: D3RA07173A/cit12/1 publication-title: Macromolecules doi: 10.1021/ma034729e contributor: fullname: Toki – volume: 4 start-page: 3575 year: 2022 ident: D3RA07173A/cit7/1 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.2c00147 contributor: fullname: Chen – start-page: 367 volume-title: Science and Technology of Rubber year: 2005 ident: D3RA07173A/cit41/1 doi: 10.1016/B978-012464786-2/50011-0 contributor: fullname: Donnet – volume-title: The Physics of Rubber Elasticity year: 1975 ident: D3RA07173A/cit24/1 contributor: fullname: Treloar – volume: 223 start-page: 123708 year: 2021 ident: D3RA07173A/cit30/1 publication-title: Polymer doi: 10.1016/j.polymer.2021.123708 contributor: fullname: Candau – volume: 201 start-page: 353 year: 2018 ident: D3RA07173A/cit17/1 publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2018.07.001 contributor: fullname: Ruellan – volume: 219 start-page: 123520 year: 2021 ident: D3RA07173A/cit29/1 publication-title: Polymer doi: 10.1016/j.polymer.2021.123520 contributor: fullname: Zhang – volume: 39 start-page: 1207 year: 2007 ident: D3RA07173A/cit4/1 publication-title: Polym. J. doi: 10.1295/polymj.PJ2007059 contributor: fullname: Tosaka – volume: 51 start-page: 5245 year: 2018 ident: D3RA07173A/cit37/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.8b01033 contributor: fullname: Mai – volume: 140 start-page: 101676 year: 2023 ident: D3RA07173A/cit1/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2023.101676 contributor: fullname: Xu – volume: 55 start-page: 10682 year: 2022 ident: D3RA07173A/cit21/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.2c01038 contributor: fullname: Xiang – volume: 29 start-page: 1779 year: 2018 ident: D3RA07173A/cit43/1 publication-title: Polym. Adv. Technol. doi: 10.1002/pat.4284 contributor: fullname: Cao – volume: 34 start-page: 72 year: 2014 ident: D3RA07173A/cit32/1 publication-title: Tech. Mech. contributor: fullname: Seibert – start-page: 257 volume-title: Constitutive Models for Rubbers IX year: 2015 ident: D3RA07173A/cit33/1 doi: 10.1201/b18701-46 contributor: fullname: Fujikawa – volume: 11 start-page: 747 year: 2022 ident: D3RA07173A/cit20/1 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.2c00241 contributor: fullname: Osumi – volume: 99 start-page: 67 year: 2014 ident: D3RA07173A/cit42/1 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2014.05.011 contributor: fullname: Xing – volume: 34 start-page: 8252 year: 2001 ident: D3RA07173A/cit34/1 publication-title: Macromolecules doi: 10.1021/ma002165y contributor: fullname: Kawamura – volume: 35 start-page: 10054 year: 2002 ident: D3RA07173A/cit22/1 publication-title: Macromolecules doi: 10.1021/ma021106c contributor: fullname: Trabelsi – volume: 19 start-page: 1966 year: 2023 ident: D3RA07173A/cit5/1 publication-title: Soft Matter doi: 10.1039/D3SM00060E contributor: fullname: Tsunoda – volume: 53 start-page: 3097 year: 2020 ident: D3RA07173A/cit8/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.0c00515 contributor: fullname: Sotta – volume: 24 start-page: 3589 year: 2023 ident: D3RA07173A/cit9/1 publication-title: Biomacromolecules doi: 10.1021/acs.biomac.3c00355 contributor: fullname: Dixit – volume: 255 start-page: 125120 year: 2022 ident: D3RA07173A/cit11/1 publication-title: Polymer doi: 10.1016/j.polymer.2022.125120 contributor: fullname: Le Cam – volume: 114 start-page: 7179 year: 2010 ident: D3RA07173A/cit14/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp100920g contributor: fullname: Weng – volume: 286 start-page: 467 volume-title: Advances in Polymer Science year: 2020 ident: D3RA07173A/cit18/1 contributor: fullname: Demassieux – volume: 13 start-page: 1966 year: 2017 ident: D3RA07173A/cit36/1 publication-title: Soft Matter doi: 10.1039/C6SM02833K contributor: fullname: Mai – volume: 17 start-page: 1539 year: 2019 ident: D3RA07173A/cit28/1 publication-title: Mater. Today: Proc. contributor: fullname: Sainumsai – volume: 5 start-page: 11317 year: 2015 ident: D3RA07173A/cit31/1 publication-title: RSC Adv. doi: 10.1039/C4RA13504K contributor: fullname: Ren – volume: 159 start-page: 104701 year: 2022 ident: D3RA07173A/cit6/1 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2021.104701 contributor: fullname: Khiêm – volume: 57 start-page: 5053 year: 2009 ident: D3RA07173A/cit13/1 publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.07.007 contributor: fullname: Qu – volume: 123 start-page: 59 year: 2014 ident: D3RA07173A/cit16/1 publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2014.04.003 contributor: fullname: Rublon – volume: 9 start-page: 1 year: 2020 ident: D3RA07173A/cit38/1 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.9b00896 contributor: fullname: Kimura – volume: 84 start-page: 425 year: 2011 ident: D3RA07173A/cit3/1 publication-title: Rubber Chem. Technol. doi: 10.5254/1.3601131 contributor: fullname: Huneau – volume: 54 start-page: 6200 year: 2013 ident: D3RA07173A/cit15/1 publication-title: Polymer doi: 10.1016/j.polymer.2013.08.045 contributor: fullname: Brüning – volume: 49 start-page: 1505 year: 2016 ident: D3RA07173A/cit27/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.5b02688 contributor: fullname: Wang – volume: 157 start-page: 104617 year: 2021 ident: D3RA07173A/cit19/1 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2021.104617 contributor: fullname: Arunachala – volume: 54 start-page: 2353 year: 2021 ident: D3RA07173A/cit39/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.0c02737 contributor: fullname: Aoyama |
SSID | ssj0000651261 |
Score | 2.443702 |
Snippet | We reveal strain hardening due to strain-induced crystallization (SIC) in both cross-linked natural rubber (NR) and its synthetic analogue (IR) under planar... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Publisher |
StartPage | 3463 |
SubjectTerms | Crystallization Elastomers Mechanical analysis Natural rubber Strain hardening Stress ratio Stretching X-ray scattering |
Title | Strain hardening in biaxially stretched elastomers undergoing strain-induced crystallization |
URI | https://www.proquest.com/docview/2896753586 https://search.proquest.com/docview/2895700145 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXY7gEuiK8VhWUVBLdVlk0cJ_GxKqCKA4d-oCIhRbZj00A3QWkiKL-eseM4XbRIwCVq4rqRPC_TN5N5HoRepkmqcgVBDpdU-FFCQp9SkfqSCAg-Eqa39NbVFu_j2Sp6tybrod2RUZc0_EL8vFFX8j9WhWtgV62S_QfLuh-FC_AZ7AtHsDAc_8rGC9Pg4VwLp2RpxSm8YD_gztu9kYFom-TnEihyU-kMtWl7W3-uuiyCnu1DUN7qIgBR74EpbrdWmHnIWueLaV8s4Cj4rIDZ3w31XFSF2BR1NWS3i672iJUbf8muXHZg15ZVbjVoza7dFF_dnFXN9uyKWanQl-IwGxFiLcvrhMUX0nitEAJuMFLXf8W5WHwApW6LUuswcWT9m3Sn8Y2e_RLrjVFzXDNTOHDw_-WqCofBI3QcJpSQETqef1itP7qsGxCuAGLGfp9aTF8Nk64zkyHcOKr7XjCGcyzvobs2WPAmneXvo1uyfIBuT_sefQ_Rpw4BnkOABycOAZ5DgDcgwBsQ4F1HgPcbAh6h1ds3y-nMt_0yfIHJZeMnJKfgwBVPODATFbCcRwqeUEUFVolkChy2JCnmMBRSGcRKMMZwzKMcLgYcn6BRWZXyMfICIngOZDERAQVCLXjEcBqLREVSvyeWY_SiX6vsW7ctSmbKGTDNXuP5xKzoZIxO-2XM7GOzyyDChyAVkzQeo-duGNZNv6lipaxa8x3ddyGIyBidwPK7ewzWevKngafozgDMUzRq6lY-A-LY8DOTcDmzmPgF-PB4mA |
link.rule.ids | 315,786,790,870,27955,27956 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+hardening+in+biaxially+stretched+elastomers+undergoing+strain-induced+crystallization&rft.jtitle=RSC+advances&rft.au=Hiraiwa%2C+Soichiro&rft.au=Mai%2C+Thanh-Tam&rft.au=Tsunoda%2C+Katsuhiko&rft.au=Urayama%2C+Kenji&rft.date=2023-11-22&rft.eissn=2046-2069&rft.volume=13&rft.issue=49&rft.spage=3463&rft.epage=34636&rft_id=info:doi/10.1039%2Fd3ra07173a&rft.externalDocID=d3ra07173a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |