Classification of multiwavelength transients with machine learning
ABSTRACT With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength transient astronomy that will lead to a dramatic increase in data volume. Machine learning techniques are well suited to address this data c...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 502; no. 1; pp. 206 - 224 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength transient astronomy that will lead to a dramatic increase in data volume. Machine learning techniques are well suited to address this data challenge and rapidly classify newly detected transients. We present a multiwavelength classification algorithm consisting of three steps: (1) interpolation and augmentation of the data using Gaussian processes; (2) feature extraction using wavelets; and (3) classification with random forests. Augmentation provides improved performance at test time by balancing the classes and adding diversity into the training set. In the first application of machine learning to the classification of real radio transient data, we apply our technique to the Green Bank Interferometer and other radio light curves. We find we are able to accurately classify most of the 11 classes of radio variables and transients after just eight hours of observations, achieving an overall test accuracy of 78 per cent. We fully investigate the impact of the small sample size of 82 publicly available light curves and use data augmentation techniques to mitigate the effect. We also show that on a significantly larger simulated representative training set that the algorithm achieves an overall accuracy of 97 per cent, illustrating that the method is likely to provide excellent performance on future surveys. Finally, we demonstrate the effectiveness of simultaneous multiwavelength observations by showing how incorporating just one optical data point into the analysis improves the accuracy of the worst performing class by 19 per cent. |
---|---|
AbstractList | ABSTRACT
With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength transient astronomy that will lead to a dramatic increase in data volume. Machine learning techniques are well suited to address this data challenge and rapidly classify newly detected transients. We present a multiwavelength classification algorithm consisting of three steps: (1) interpolation and augmentation of the data using Gaussian processes; (2) feature extraction using wavelets; and (3) classification with random forests. Augmentation provides improved performance at test time by balancing the classes and adding diversity into the training set. In the first application of machine learning to the classification of real radio transient data, we apply our technique to the Green Bank Interferometer and other radio light curves. We find we are able to accurately classify most of the 11 classes of radio variables and transients after just eight hours of observations, achieving an overall test accuracy of 78 per cent. We fully investigate the impact of the small sample size of 82 publicly available light curves and use data augmentation techniques to mitigate the effect. We also show that on a significantly larger simulated representative training set that the algorithm achieves an overall accuracy of 97 per cent, illustrating that the method is likely to provide excellent performance on future surveys. Finally, we demonstrate the effectiveness of simultaneous multiwavelength observations by showing how incorporating just one optical data point into the analysis improves the accuracy of the worst performing class by 19 per cent. With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength transient astronomy that will lead to a dramatic increase in data volume. Machine learning techniques are well suited to address this data challenge and rapidly classify newly detected transients. We present a multiwavelength classification algorithm consisting of three steps: (1) interpolation and augmentation of the data using Gaussian processes; (2) feature extraction using wavelets; and (3) classification with random forests. Augmentation provides improved performance at test time by balancing the classes and adding diversity into the training set. In the first application of machine learning to the classification of real radio transient data, we apply our technique to the Green Bank Interferometer and other radio light curves. We find we are able to accurately classify most of the 11 classes of radio variables and transients after just eight hours of observations, achieving an overall test accuracy of 78 per cent. We fully investigate the impact of the small sample size of 82 publicly available light curves and use data augmentation techniques to mitigate the effect. We also show that on a significantly larger simulated representative training set that the algorithm achieves an overall accuracy of 97 per cent, illustrating that the method is likely to provide excellent performance on future surveys. Finally, we demonstrate the effectiveness of simultaneous multiwavelength observations by showing how incorporating just one optical data point into the analysis improves the accuracy of the worst performing class by 19 per cent. |
Author | Peiris, H V Sooknunan, K Lochner, M Bassett, Bruce A Woudt, P A Lahav, O Pietka, M McEwen, J D Fender, R Stewart, A J |
Author_xml | – sequence: 1 givenname: K orcidid: 0000-0002-7650-6353 surname: Sooknunan fullname: Sooknunan, K email: k.sooknunan19@imperial.ac.uk – sequence: 2 givenname: M surname: Lochner fullname: Lochner, M – sequence: 3 givenname: Bruce A surname: Bassett fullname: Bassett, Bruce A – sequence: 4 givenname: H V surname: Peiris fullname: Peiris, H V – sequence: 5 givenname: R surname: Fender fullname: Fender, R – sequence: 6 givenname: A J orcidid: 0000-0001-8026-5903 surname: Stewart fullname: Stewart, A J – sequence: 7 givenname: M surname: Pietka fullname: Pietka, M – sequence: 8 givenname: P A orcidid: 0000-0002-6896-1655 surname: Woudt fullname: Woudt, P A – sequence: 9 givenname: J D surname: McEwen fullname: McEwen, J D – sequence: 10 givenname: O surname: Lahav fullname: Lahav, O |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-195438$$DView record from Swedish Publication Index |
BookMark | eNqFkD1PwzAQQC1UJNrCypwVibR2LnGdsZRPqRILsFqXcG6NEruyEyr-PYECK8udTnrvhjdhI-cdMXYu-EzwEuatCxjnsUMEtYAjNhYgizQrpRyxMedQpGohxAmbxPjGOc8hk2N2tWowRmtsjZ31LvEmafums3t8p4bcptsmXUAXLbkuJns73C3WW-soaQiDs25zyo4NNpHOfvaUPd_ePK3u0_Xj3cNquU5rKHiXypLKgiolF5xyBWigQlUOUxCYDBSpUghRVJkykswrkDJFjnlFILHOag5Tdnn4G_e06yu9C7bF8KE9Wn1tX5bah42OvRZlkYMa8NkBr4OPMZD5EwTXX8H0dzD9G2wQLg6C73f_sZ_yBHKs |
CitedBy_id | crossref_primary_10_1016_j_newast_2022_101846 crossref_primary_10_1093_mnras_stab320 crossref_primary_10_1140_epjs_s11734_021_00207_9 crossref_primary_10_1093_mnras_stac544 crossref_primary_10_3847_1538_4357_ac4508 crossref_primary_10_3847_1538_4365_ac3479 crossref_primary_10_1088_2632_2153_acfa63 crossref_primary_10_1016_j_ecoinf_2022_101822 crossref_primary_10_3847_1538_4357_aca80a |
Cites_doi | 10.1162/neco.1997.9.8.1735 10.1016/j.snb.2012.11.071 10.1017/S1743921312001196 10.1145/1143844.1143865 10.1093/mnras/stv599 10.1093/mnras/sts650 10.1086/519832 10.1038/s41550-017-0321-z 10.1111/j.1365-2966.2011.18514.x 10.1109/TPAMI.2015.2448083 10.3847/1538-3881/ab5182 10.1023/A:1010933404324 10.1093/mnras/stz3312 10.1017/pasa.2012.006 10.1007/978-3-642-97177-8_28 10.3847/0067-0049/225/2/31 10.7551/mitpress/3206.001.0001 10.3847/1538-4365/aab781 10.1093/mnras/stx2570 10.1093/mnras/stv2041 10.1093/mnras/sts412 10.1093/mnras/stu2335 10.3847/2041-8213/aac105 10.1038/s41524-019-0196-x 10.1080/14786440109462720 10.1093/mnras/sty1671 10.1088/0004-637X/813/1/28 10.1093/mnras/stw2672 10.1142/S0218271810017160 10.1088/0004-637X/733/1/10 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021 |
Copyright_xml | – notice: 2020 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021 |
DBID | AAYXX CITATION ADTPV AOWAS DG7 |
DOI | 10.1093/mnras/staa3873 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Stockholms universitet |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 224 |
ExternalDocumentID | oai_DiVA_org_su_195438 10_1093_mnras_staa3873 10.1093/mnras/staa3873 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX CITATION ADTPV AOWAS DG7 |
ID | FETCH-LOGICAL-c350t-69e95eb8670e483af3ba89f3b1e3f238e891115b28f6efd3e8f54a4be36ac2c03 |
IEDL.DBID | TOX |
ISSN | 0035-8711 1365-2966 |
IngestDate | Tue Oct 01 22:28:02 EDT 2024 Thu Sep 12 17:01:31 EDT 2024 Wed Aug 28 03:18:37 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | methods: data analysis |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-69e95eb8670e483af3ba89f3b1e3f238e891115b28f6efd3e8f54a4be36ac2c03 |
ORCID | 0000-0002-7650-6353 0000-0001-8026-5903 0000-0002-6896-1655 |
OpenAccessLink | https://arxiv.org/pdf/1811.08446 |
PageCount | 19 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_195438 crossref_primary_10_1093_mnras_staa3873 oup_primary_10_1093_mnras_staa3873 |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Chawla (2021012908551160200_bib10) 2011 Hoyle (2021012908551160200_bib21) 2015; 450 Kim (2021012908551160200_bib24) 2016; 464 Rasmussen (2021012908551160200_bib44) 2005 Quinlan (2021012908551160200_bib43) 1993 Ishida (2021012908551160200_bib22) 2013; 430 Bailer-Jones (2021012908551160200_bib3) 2002 Boone (2021012908551160200_bib7) 2019; 158 McInnes (2021012908551160200_bib1_194_1610397841640) 2018 Armstrong (2021012908551160200_bib2) 2018; MeerKAT2016 Karpenka (2021012908551160200_bib23) 2013; 429 Hochreiter (2021012908551160200_bib19) 1997; 9 Mitchell (2021012908551160200_bib32) 1997 Ball (2021012908551160200_bib5) 2010; 19 Naul (2021012908551160200_bib36) 2018; 2 Rebbapragada (2021012908551160200_bib45) 2012 Mallat (2021012908551160200_bib31) 2009 Ho (2021012908551160200_bib18) 1995 Romano (2021012908551160200_bib48) 2006; 665 Richards (2021012908551160200_bib47) 2011; 733 Lochner (2021012908551160200_bib27) 2016; 225 Mahabal (2021012908551160200_bib30) 2017 Perez (2021012908551160200_bib41) 2017 Farrell (2021012908551160200_bib15) 2015; 813 Fender (2021012908551160200_bib16) 2011; 39 Holschneider (2021012908551160200_bib20) 1989 Murphy (2021012908551160200_bib34) 2013; 30 Oviedo (2021012908551160200_bib38) 2019; 5 Caruana (2021012908551160200_bib9) 2006 van der Maaten (2021012908551160200_bib50) 2008; 9 Revsbech (2021012908551160200_bib46) 2018; 473 Dobie (2021012908551160200_bib13) 2018; 858 MacKay (2021012908551160200_bib29) 2003 Ambikasaran (2021012908551160200_bib1) 2014; 38 du Buisson (2021012908551160200_bib14) 2015; 454 Fender (2021012908551160200_bib17) 2015 Matheron (2021012908551160200_bib11) 1962 Li (2021012908551160200_bib25) 2016 Bailey (2021012908551160200_bib4) 2007; 665 LSST Science Collaboration (2021012908551160200_bib28) 2009 Pedregosa (2021012908551160200_bib40) 2011; 12 Cui (2021012908551160200_bib12) 2016 Narayan (2021012908551160200_bib35) 2018; 236 Vargas (2021012908551160200_bib51) 2017; 5 Möller (2021012908551160200_bib33) 2019; 491 Newling (2021012908551160200_bib37) 2011; 414 Pietka (2021012908551160200_bib42) 2015; 446 Pearson (2021012908551160200_bib39) 1901; 2 Liu (2021012908551160200_bib26) 2013; 177 Bloemen (2021012908551160200_bib6) 2016 Breiman (2021012908551160200_bib8) 2001; 45 Stewart (2021012908551160200_bib49) 2018; 479 |
References_xml | – year: 2018 ident: 2021012908551160200_bib1_194_1610397841640 contributor: fullname: McInnes – volume: MeerKAT2016 start-page: 013 year: 2018 ident: 2021012908551160200_bib2 publication-title: PoS contributor: fullname: Armstrong – volume: 9 start-page: 1735 year: 1997 ident: 2021012908551160200_bib19 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 contributor: fullname: Hochreiter – volume: 177 start-page: 970 year: 2013 ident: 2021012908551160200_bib26 publication-title: Sensors Actuators B doi: 10.1016/j.snb.2012.11.071 contributor: fullname: Liu – start-page: 397 volume-title: New Horizons in Time Domain Astronomy year: 2012 ident: 2021012908551160200_bib45 doi: 10.1017/S1743921312001196 contributor: fullname: Rebbapragada – year: 2016 ident: 2021012908551160200_bib25 contributor: fullname: Li – volume: 12 start-page: 2825 year: 2011 ident: 2021012908551160200_bib40 publication-title: J. Mach. Learn. Res. contributor: fullname: Pedregosa – start-page: 161 volume-title: Proceedings of the 23rd International Conference on Machine Learning year: 2006 ident: 2021012908551160200_bib9 doi: 10.1145/1143844.1143865 contributor: fullname: Caruana – volume: 5 start-page: 1 year: 2017 ident: 2021012908551160200_bib51 publication-title: Advances in Intelligent Systems and Computing contributor: fullname: Vargas – volume: 450 start-page: 305 year: 2015 ident: 2021012908551160200_bib21 publication-title: MNRAS doi: 10.1093/mnras/stv599 contributor: fullname: Hoyle – volume: 430 start-page: 509 year: 2013 ident: 2021012908551160200_bib22 publication-title: MNRAS doi: 10.1093/mnras/sts650 contributor: fullname: Ishida – year: 2009 ident: 2021012908551160200_bib31 publication-title: A Wavelet Tour of Signal Processing: The Sparse Way contributor: fullname: Mallat – volume: 665 start-page: 1246 year: 2007 ident: 2021012908551160200_bib4 publication-title: ApJ doi: 10.1086/519832 contributor: fullname: Bailey – volume: 2 start-page: 151 year: 2018 ident: 2021012908551160200_bib36 publication-title: Nat. Astron. doi: 10.1038/s41550-017-0321-z contributor: fullname: Naul – volume: 414 start-page: 1987 year: 2011 ident: 2021012908551160200_bib37 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18514.x contributor: fullname: Newling – volume: 9 start-page: 2579 year: 2008 ident: 2021012908551160200_bib50 publication-title: J. Mach. Learn. Res. contributor: fullname: van der Maaten – volume: 38 start-page: 252 year: 2014 ident: 2021012908551160200_bib1 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2015.2448083 contributor: fullname: Ambikasaran – volume: 158 start-page: 257 year: 2019 ident: 2021012908551160200_bib7 publication-title: AJ doi: 10.3847/1538-3881/ab5182 contributor: fullname: Boone – volume: 45 start-page: 5 year: 2001 ident: 2021012908551160200_bib8 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – volume: 39 start-page: 315 year: 2011 ident: 2021012908551160200_bib16 publication-title: Bull. Astron. Soc. India contributor: fullname: Fender – volume: 491 start-page: 4277 year: 2019 ident: 2021012908551160200_bib33 publication-title: MNRAS doi: 10.1093/mnras/stz3312 contributor: fullname: Möller – start-page: 278 year: 1995 ident: 2021012908551160200_bib18 publication-title: Proceedings of 3rd International Conference on Document Analysis and Recognition contributor: fullname: Ho – volume: 30 start-page: e006 year: 2013 ident: 2021012908551160200_bib34 publication-title: PASA doi: 10.1017/pasa.2012.006 contributor: fullname: Murphy – start-page: PoS(AASKA14)051 year: 2015 ident: 2021012908551160200_bib17 publication-title: Proc. Sci., The Transient Universe with the Square Kilometre Array contributor: fullname: Fender – start-page: 286 volume-title: Wavelets. Time-Frequency Methods and Phase Space year: 1989 ident: 2021012908551160200_bib20 doi: 10.1007/978-3-642-97177-8_28 contributor: fullname: Holschneider – volume-title: Machine Learning year: 1997 ident: 2021012908551160200_bib32 contributor: fullname: Mitchell – volume: 225 start-page: 31 year: 2016 ident: 2021012908551160200_bib27 publication-title: ApJS doi: 10.3847/0067-0049/225/2/31 contributor: fullname: Lochner – year: 2017 ident: 2021012908551160200_bib41 contributor: fullname: Perez – volume-title: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) year: 2005 ident: 2021012908551160200_bib44 doi: 10.7551/mitpress/3206.001.0001 contributor: fullname: Rasmussen – year: 2017 ident: 2021012908551160200_bib30 contributor: fullname: Mahabal – volume: 236 start-page: 9 year: 2018 ident: 2021012908551160200_bib35 publication-title: ApJS doi: 10.3847/1538-4365/aab781 contributor: fullname: Narayan – volume: 473 start-page: 3969 year: 2018 ident: 2021012908551160200_bib46 publication-title: MNRAS doi: 10.1093/mnras/stx2570 contributor: fullname: Revsbech – volume: 454 start-page: 2026 year: 2015 ident: 2021012908551160200_bib14 publication-title: MNRAS doi: 10.1093/mnras/stv2041 contributor: fullname: du Buisson – start-page: 990664 year: 2016 ident: 2021012908551160200_bib6 publication-title: Ground-based and Airborne Telescopes VI contributor: fullname: Bloemen – year: 2016 ident: 2021012908551160200_bib12 contributor: fullname: Cui – volume: 429 start-page: 1278 year: 2013 ident: 2021012908551160200_bib23 publication-title: MNRAS doi: 10.1093/mnras/sts412 contributor: fullname: Karpenka – volume: 446 start-page: 3687 year: 2015 ident: 2021012908551160200_bib42 publication-title: MNRAS doi: 10.1093/mnras/stu2335 contributor: fullname: Pietka – volume: 665 start-page: 1246 year: 2006 ident: 2021012908551160200_bib48 publication-title: ApJ contributor: fullname: Romano – volume: 858 start-page: L15 year: 2018 ident: 2021012908551160200_bib13 publication-title: ApJ doi: 10.3847/2041-8213/aac105 contributor: fullname: Dobie – year: 2009 ident: 2021012908551160200_bib28 contributor: fullname: LSST Science Collaboration – volume: 5 start-page: 60 year: 2019 ident: 2021012908551160200_bib38 publication-title: npj Comput. Math. doi: 10.1038/s41524-019-0196-x contributor: fullname: Oviedo – volume: 2 start-page: 559 year: 1901 ident: 2021012908551160200_bib39 publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science doi: 10.1080/14786440109462720 contributor: fullname: Pearson – volume-title: C4.5: Programs for Machine Learning year: 1993 ident: 2021012908551160200_bib43 contributor: fullname: Quinlan – start-page: 83 year: 2002 ident: 2021012908551160200_bib3 publication-title: Automated Data Analysis in Astronomy contributor: fullname: Bailer-Jones – volume: 479 start-page: 2481 year: 2018 ident: 2021012908551160200_bib49 publication-title: MNRAS doi: 10.1093/mnras/sty1671 contributor: fullname: Stewart – volume-title: Information Theory, Inference, and Learning Algorithms year: 2003 ident: 2021012908551160200_bib29 contributor: fullname: MacKay – volume: 813 start-page: 28 year: 2015 ident: 2021012908551160200_bib15 publication-title: ApJ doi: 10.1088/0004-637X/813/1/28 contributor: fullname: Farrell – volume: 464 start-page: 4463 year: 2016 ident: 2021012908551160200_bib24 publication-title: MNRAS doi: 10.1093/mnras/stw2672 contributor: fullname: Kim – volume: 19 start-page: 1049 year: 2010 ident: 2021012908551160200_bib5 publication-title: Int. J. Modern Phys. D doi: 10.1142/S0218271810017160 contributor: fullname: Ball – year: 2011 ident: 2021012908551160200_bib10 contributor: fullname: Chawla – start-page: 14 year: 1962 ident: 2021012908551160200_bib11 article-title: Traite de Geostatistique Appliquee contributor: fullname: Matheron – volume: 733 start-page: 10 year: 2011 ident: 2021012908551160200_bib47 publication-title: ApJ doi: 10.1088/0004-637X/733/1/10 contributor: fullname: Richards |
SSID | ssj0004326 |
Score | 2.4722462 |
Snippet | ABSTRACT
With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength... With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength... |
SourceID | swepub crossref oup |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 206 |
SubjectTerms | methods: data analysis |
Title | Classification of multiwavelength transients with machine learning |
URI | https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-195438 |
Volume | 502 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA6yJ19Ep7J5GUG8PJV1Tdqlj3M6hjAF2WRvJWlP5sC1snaI_96TtJtMBH0pvaR5-JL2fDk55zuEXHZVol0vwS-NJ6HDmRSOwnsOi0XIXeVKYbPSRo_BcMIfpv60EovOf9nCD1l7kS5l3kauJJnoGl1Po4mGM3f8NP3OgGS2sJoVYMQlQGcjz_jz9S3zU6a0bUmEWrMy2Cd7FR-kvXIAD8gOpHXS6OXGQ50tPuk1teelAyKvk-YIWW62tM5wfNh_myPltFeH5NZWuDSxPxZummlq4wU_pKkukc6KV1oY02RSIHNqPLB0YWMpgVbFI2ZHZDK4H_eHTlUjwYmZ7xZOEELogxJB1wUumNRMSRHisQNMozkGYf5mvvKEDkAnDIT2ueQKWCBjL3bZMamlWQoNQqX2dFcZRS7QHLgrY5_jegVHWQGPY79JbtbQRe-lFEZUbmGzyIIcrUFukgtE9s9GVyXwm3ZG6fpu_tKLcPSjfBUZMTomTv7T2SnZ9UywiQ0OOyO1YrmCc2QLhWohT372Wna6fAFklcJ4 |
link.rule.ids | 230,315,783,787,888,1607,27936,27937 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+multiwavelength+transients+with+machine+learning&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Sooknunan%2C+K&rft.au=Lochner%2C+M&rft.au=Bassett%2C+Bruce+A&rft.au=Peiris%2C+H+V&rft.date=2021-03-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=502&rft.issue=1&rft.spage=206&rft.epage=224&rft_id=info:doi/10.1093%2Fmnras%2Fstaa3873&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_staa3873 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |