Classification of multiwavelength transients with machine learning

ABSTRACT With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength transient astronomy that will lead to a dramatic increase in data volume. Machine learning techniques are well suited to address this data c...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 502; no. 1; pp. 206 - 224
Main Authors Sooknunan, K, Lochner, M, Bassett, Bruce A, Peiris, H V, Fender, R, Stewart, A J, Pietka, M, Woudt, P A, McEwen, J D, Lahav, O
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength transient astronomy that will lead to a dramatic increase in data volume. Machine learning techniques are well suited to address this data challenge and rapidly classify newly detected transients. We present a multiwavelength classification algorithm consisting of three steps: (1) interpolation and augmentation of the data using Gaussian processes; (2) feature extraction using wavelets; and (3) classification with random forests. Augmentation provides improved performance at test time by balancing the classes and adding diversity into the training set. In the first application of machine learning to the classification of real radio transient data, we apply our technique to the Green Bank Interferometer and other radio light curves. We find we are able to accurately classify most of the 11 classes of radio variables and transients after just eight hours of observations, achieving an overall test accuracy of 78 per cent. We fully investigate the impact of the small sample size of 82 publicly available light curves and use data augmentation techniques to mitigate the effect. We also show that on a significantly larger simulated representative training set that the algorithm achieves an overall accuracy of 97 per cent, illustrating that the method is likely to provide excellent performance on future surveys. Finally, we demonstrate the effectiveness of simultaneous multiwavelength observations by showing how incorporating just one optical data point into the analysis improves the accuracy of the worst performing class by 19 per cent.
AbstractList ABSTRACT With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength transient astronomy that will lead to a dramatic increase in data volume. Machine learning techniques are well suited to address this data challenge and rapidly classify newly detected transients. We present a multiwavelength classification algorithm consisting of three steps: (1) interpolation and augmentation of the data using Gaussian processes; (2) feature extraction using wavelets; and (3) classification with random forests. Augmentation provides improved performance at test time by balancing the classes and adding diversity into the training set. In the first application of machine learning to the classification of real radio transient data, we apply our technique to the Green Bank Interferometer and other radio light curves. We find we are able to accurately classify most of the 11 classes of radio variables and transients after just eight hours of observations, achieving an overall test accuracy of 78 per cent. We fully investigate the impact of the small sample size of 82 publicly available light curves and use data augmentation techniques to mitigate the effect. We also show that on a significantly larger simulated representative training set that the algorithm achieves an overall accuracy of 97 per cent, illustrating that the method is likely to provide excellent performance on future surveys. Finally, we demonstrate the effectiveness of simultaneous multiwavelength observations by showing how incorporating just one optical data point into the analysis improves the accuracy of the worst performing class by 19 per cent.
With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength transient astronomy that will lead to a dramatic increase in data volume. Machine learning techniques are well suited to address this data challenge and rapidly classify newly detected transients. We present a multiwavelength classification algorithm consisting of three steps: (1) interpolation and augmentation of the data using Gaussian processes; (2) feature extraction using wavelets; and (3) classification with random forests. Augmentation provides improved performance at test time by balancing the classes and adding diversity into the training set. In the first application of machine learning to the classification of real radio transient data, we apply our technique to the Green Bank Interferometer and other radio light curves. We find we are able to accurately classify most of the 11 classes of radio variables and transients after just eight hours of observations, achieving an overall test accuracy of 78 per cent. We fully investigate the impact of the small sample size of 82 publicly available light curves and use data augmentation techniques to mitigate the effect. We also show that on a significantly larger simulated representative training set that the algorithm achieves an overall accuracy of 97 per cent, illustrating that the method is likely to provide excellent performance on future surveys. Finally, we demonstrate the effectiveness of simultaneous multiwavelength observations by showing how incorporating just one optical data point into the analysis improves the accuracy of the worst performing class by 19 per cent.
Author Peiris, H V
Sooknunan, K
Lochner, M
Bassett, Bruce A
Woudt, P A
Lahav, O
Pietka, M
McEwen, J D
Fender, R
Stewart, A J
Author_xml – sequence: 1
  givenname: K
  orcidid: 0000-0002-7650-6353
  surname: Sooknunan
  fullname: Sooknunan, K
  email: k.sooknunan19@imperial.ac.uk
– sequence: 2
  givenname: M
  surname: Lochner
  fullname: Lochner, M
– sequence: 3
  givenname: Bruce A
  surname: Bassett
  fullname: Bassett, Bruce A
– sequence: 4
  givenname: H V
  surname: Peiris
  fullname: Peiris, H V
– sequence: 5
  givenname: R
  surname: Fender
  fullname: Fender, R
– sequence: 6
  givenname: A J
  orcidid: 0000-0001-8026-5903
  surname: Stewart
  fullname: Stewart, A J
– sequence: 7
  givenname: M
  surname: Pietka
  fullname: Pietka, M
– sequence: 8
  givenname: P A
  orcidid: 0000-0002-6896-1655
  surname: Woudt
  fullname: Woudt, P A
– sequence: 9
  givenname: J D
  surname: McEwen
  fullname: McEwen, J D
– sequence: 10
  givenname: O
  surname: Lahav
  fullname: Lahav, O
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-195438$$DView record from Swedish Publication Index
BookMark eNqFkD1PwzAQQC1UJNrCypwVibR2LnGdsZRPqRILsFqXcG6NEruyEyr-PYECK8udTnrvhjdhI-cdMXYu-EzwEuatCxjnsUMEtYAjNhYgizQrpRyxMedQpGohxAmbxPjGOc8hk2N2tWowRmtsjZ31LvEmafums3t8p4bcptsmXUAXLbkuJns73C3WW-soaQiDs25zyo4NNpHOfvaUPd_ePK3u0_Xj3cNquU5rKHiXypLKgiolF5xyBWigQlUOUxCYDBSpUghRVJkykswrkDJFjnlFILHOag5Tdnn4G_e06yu9C7bF8KE9Wn1tX5bah42OvRZlkYMa8NkBr4OPMZD5EwTXX8H0dzD9G2wQLg6C73f_sZ_yBHKs
CitedBy_id crossref_primary_10_1016_j_newast_2022_101846
crossref_primary_10_1093_mnras_stab320
crossref_primary_10_1140_epjs_s11734_021_00207_9
crossref_primary_10_1093_mnras_stac544
crossref_primary_10_3847_1538_4357_ac4508
crossref_primary_10_3847_1538_4365_ac3479
crossref_primary_10_1088_2632_2153_acfa63
crossref_primary_10_1016_j_ecoinf_2022_101822
crossref_primary_10_3847_1538_4357_aca80a
Cites_doi 10.1162/neco.1997.9.8.1735
10.1016/j.snb.2012.11.071
10.1017/S1743921312001196
10.1145/1143844.1143865
10.1093/mnras/stv599
10.1093/mnras/sts650
10.1086/519832
10.1038/s41550-017-0321-z
10.1111/j.1365-2966.2011.18514.x
10.1109/TPAMI.2015.2448083
10.3847/1538-3881/ab5182
10.1023/A:1010933404324
10.1093/mnras/stz3312
10.1017/pasa.2012.006
10.1007/978-3-642-97177-8_28
10.3847/0067-0049/225/2/31
10.7551/mitpress/3206.001.0001
10.3847/1538-4365/aab781
10.1093/mnras/stx2570
10.1093/mnras/stv2041
10.1093/mnras/sts412
10.1093/mnras/stu2335
10.3847/2041-8213/aac105
10.1038/s41524-019-0196-x
10.1080/14786440109462720
10.1093/mnras/sty1671
10.1088/0004-637X/813/1/28
10.1093/mnras/stw2672
10.1142/S0218271810017160
10.1088/0004-637X/733/1/10
ContentType Journal Article
Copyright 2020 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021
Copyright_xml – notice: 2020 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021
DBID AAYXX
CITATION
ADTPV
AOWAS
DG7
DOI 10.1093/mnras/staa3873
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 224
ExternalDocumentID oai_DiVA_org_su_195438
10_1093_mnras_staa3873
10.1093/mnras/staa3873
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
CITATION
ADTPV
AOWAS
DG7
ID FETCH-LOGICAL-c350t-69e95eb8670e483af3ba89f3b1e3f238e891115b28f6efd3e8f54a4be36ac2c03
IEDL.DBID TOX
ISSN 0035-8711
1365-2966
IngestDate Tue Oct 01 22:28:02 EDT 2024
Thu Sep 12 17:01:31 EDT 2024
Wed Aug 28 03:18:37 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords methods: data analysis
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-69e95eb8670e483af3ba89f3b1e3f238e891115b28f6efd3e8f54a4be36ac2c03
ORCID 0000-0002-7650-6353
0000-0001-8026-5903
0000-0002-6896-1655
OpenAccessLink https://arxiv.org/pdf/1811.08446
PageCount 19
ParticipantIDs swepub_primary_oai_DiVA_org_su_195438
crossref_primary_10_1093_mnras_staa3873
oup_primary_10_1093_mnras_staa3873
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Chawla (2021012908551160200_bib10) 2011
Hoyle (2021012908551160200_bib21) 2015; 450
Kim (2021012908551160200_bib24) 2016; 464
Rasmussen (2021012908551160200_bib44) 2005
Quinlan (2021012908551160200_bib43) 1993
Ishida (2021012908551160200_bib22) 2013; 430
Bailer-Jones (2021012908551160200_bib3) 2002
Boone (2021012908551160200_bib7) 2019; 158
McInnes (2021012908551160200_bib1_194_1610397841640) 2018
Armstrong (2021012908551160200_bib2) 2018; MeerKAT2016
Karpenka (2021012908551160200_bib23) 2013; 429
Hochreiter (2021012908551160200_bib19) 1997; 9
Mitchell (2021012908551160200_bib32) 1997
Ball (2021012908551160200_bib5) 2010; 19
Naul (2021012908551160200_bib36) 2018; 2
Rebbapragada (2021012908551160200_bib45) 2012
Mallat (2021012908551160200_bib31) 2009
Ho (2021012908551160200_bib18) 1995
Romano (2021012908551160200_bib48) 2006; 665
Richards (2021012908551160200_bib47) 2011; 733
Lochner (2021012908551160200_bib27) 2016; 225
Mahabal (2021012908551160200_bib30) 2017
Perez (2021012908551160200_bib41) 2017
Farrell (2021012908551160200_bib15) 2015; 813
Fender (2021012908551160200_bib16) 2011; 39
Holschneider (2021012908551160200_bib20) 1989
Murphy (2021012908551160200_bib34) 2013; 30
Oviedo (2021012908551160200_bib38) 2019; 5
Caruana (2021012908551160200_bib9) 2006
van der Maaten (2021012908551160200_bib50) 2008; 9
Revsbech (2021012908551160200_bib46) 2018; 473
Dobie (2021012908551160200_bib13) 2018; 858
MacKay (2021012908551160200_bib29) 2003
Ambikasaran (2021012908551160200_bib1) 2014; 38
du Buisson (2021012908551160200_bib14) 2015; 454
Fender (2021012908551160200_bib17) 2015
Matheron (2021012908551160200_bib11) 1962
Li (2021012908551160200_bib25) 2016
Bailey (2021012908551160200_bib4) 2007; 665
LSST Science Collaboration (2021012908551160200_bib28) 2009
Pedregosa (2021012908551160200_bib40) 2011; 12
Cui (2021012908551160200_bib12) 2016
Narayan (2021012908551160200_bib35) 2018; 236
Vargas (2021012908551160200_bib51) 2017; 5
Möller (2021012908551160200_bib33) 2019; 491
Newling (2021012908551160200_bib37) 2011; 414
Pietka (2021012908551160200_bib42) 2015; 446
Pearson (2021012908551160200_bib39) 1901; 2
Liu (2021012908551160200_bib26) 2013; 177
Bloemen (2021012908551160200_bib6) 2016
Breiman (2021012908551160200_bib8) 2001; 45
Stewart (2021012908551160200_bib49) 2018; 479
References_xml – year: 2018
  ident: 2021012908551160200_bib1_194_1610397841640
  contributor:
    fullname: McInnes
– volume: MeerKAT2016
  start-page: 013
  year: 2018
  ident: 2021012908551160200_bib2
  publication-title: PoS
  contributor:
    fullname: Armstrong
– volume: 9
  start-page: 1735
  year: 1997
  ident: 2021012908551160200_bib19
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
  contributor:
    fullname: Hochreiter
– volume: 177
  start-page: 970
  year: 2013
  ident: 2021012908551160200_bib26
  publication-title: Sensors Actuators B
  doi: 10.1016/j.snb.2012.11.071
  contributor:
    fullname: Liu
– start-page: 397
  volume-title: New Horizons in Time Domain Astronomy
  year: 2012
  ident: 2021012908551160200_bib45
  doi: 10.1017/S1743921312001196
  contributor:
    fullname: Rebbapragada
– year: 2016
  ident: 2021012908551160200_bib25
  contributor:
    fullname: Li
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2021012908551160200_bib40
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Pedregosa
– start-page: 161
  volume-title: Proceedings of the 23rd International Conference on Machine Learning
  year: 2006
  ident: 2021012908551160200_bib9
  doi: 10.1145/1143844.1143865
  contributor:
    fullname: Caruana
– volume: 5
  start-page: 1
  year: 2017
  ident: 2021012908551160200_bib51
  publication-title: Advances in Intelligent Systems and Computing
  contributor:
    fullname: Vargas
– volume: 450
  start-page: 305
  year: 2015
  ident: 2021012908551160200_bib21
  publication-title: MNRAS
  doi: 10.1093/mnras/stv599
  contributor:
    fullname: Hoyle
– volume: 430
  start-page: 509
  year: 2013
  ident: 2021012908551160200_bib22
  publication-title: MNRAS
  doi: 10.1093/mnras/sts650
  contributor:
    fullname: Ishida
– year: 2009
  ident: 2021012908551160200_bib31
  publication-title: A Wavelet Tour of Signal Processing: The Sparse Way
  contributor:
    fullname: Mallat
– volume: 665
  start-page: 1246
  year: 2007
  ident: 2021012908551160200_bib4
  publication-title: ApJ
  doi: 10.1086/519832
  contributor:
    fullname: Bailey
– volume: 2
  start-page: 151
  year: 2018
  ident: 2021012908551160200_bib36
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-017-0321-z
  contributor:
    fullname: Naul
– volume: 414
  start-page: 1987
  year: 2011
  ident: 2021012908551160200_bib37
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18514.x
  contributor:
    fullname: Newling
– volume: 9
  start-page: 2579
  year: 2008
  ident: 2021012908551160200_bib50
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: van der Maaten
– volume: 38
  start-page: 252
  year: 2014
  ident: 2021012908551160200_bib1
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2015.2448083
  contributor:
    fullname: Ambikasaran
– volume: 158
  start-page: 257
  year: 2019
  ident: 2021012908551160200_bib7
  publication-title: AJ
  doi: 10.3847/1538-3881/ab5182
  contributor:
    fullname: Boone
– volume: 45
  start-page: 5
  year: 2001
  ident: 2021012908551160200_bib8
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– volume: 39
  start-page: 315
  year: 2011
  ident: 2021012908551160200_bib16
  publication-title: Bull. Astron. Soc. India
  contributor:
    fullname: Fender
– volume: 491
  start-page: 4277
  year: 2019
  ident: 2021012908551160200_bib33
  publication-title: MNRAS
  doi: 10.1093/mnras/stz3312
  contributor:
    fullname: Möller
– start-page: 278
  year: 1995
  ident: 2021012908551160200_bib18
  publication-title: Proceedings of 3rd International Conference on Document Analysis and Recognition
  contributor:
    fullname: Ho
– volume: 30
  start-page: e006
  year: 2013
  ident: 2021012908551160200_bib34
  publication-title: PASA
  doi: 10.1017/pasa.2012.006
  contributor:
    fullname: Murphy
– start-page: PoS(AASKA14)051
  year: 2015
  ident: 2021012908551160200_bib17
  publication-title: Proc. Sci., The Transient Universe with the Square Kilometre Array
  contributor:
    fullname: Fender
– start-page: 286
  volume-title: Wavelets. Time-Frequency Methods and Phase Space
  year: 1989
  ident: 2021012908551160200_bib20
  doi: 10.1007/978-3-642-97177-8_28
  contributor:
    fullname: Holschneider
– volume-title: Machine Learning
  year: 1997
  ident: 2021012908551160200_bib32
  contributor:
    fullname: Mitchell
– volume: 225
  start-page: 31
  year: 2016
  ident: 2021012908551160200_bib27
  publication-title: ApJS
  doi: 10.3847/0067-0049/225/2/31
  contributor:
    fullname: Lochner
– year: 2017
  ident: 2021012908551160200_bib41
  contributor:
    fullname: Perez
– volume-title: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)
  year: 2005
  ident: 2021012908551160200_bib44
  doi: 10.7551/mitpress/3206.001.0001
  contributor:
    fullname: Rasmussen
– year: 2017
  ident: 2021012908551160200_bib30
  contributor:
    fullname: Mahabal
– volume: 236
  start-page: 9
  year: 2018
  ident: 2021012908551160200_bib35
  publication-title: ApJS
  doi: 10.3847/1538-4365/aab781
  contributor:
    fullname: Narayan
– volume: 473
  start-page: 3969
  year: 2018
  ident: 2021012908551160200_bib46
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2570
  contributor:
    fullname: Revsbech
– volume: 454
  start-page: 2026
  year: 2015
  ident: 2021012908551160200_bib14
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2041
  contributor:
    fullname: du Buisson
– start-page: 990664
  year: 2016
  ident: 2021012908551160200_bib6
  publication-title: Ground-based and Airborne Telescopes VI
  contributor:
    fullname: Bloemen
– year: 2016
  ident: 2021012908551160200_bib12
  contributor:
    fullname: Cui
– volume: 429
  start-page: 1278
  year: 2013
  ident: 2021012908551160200_bib23
  publication-title: MNRAS
  doi: 10.1093/mnras/sts412
  contributor:
    fullname: Karpenka
– volume: 446
  start-page: 3687
  year: 2015
  ident: 2021012908551160200_bib42
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2335
  contributor:
    fullname: Pietka
– volume: 665
  start-page: 1246
  year: 2006
  ident: 2021012908551160200_bib48
  publication-title: ApJ
  contributor:
    fullname: Romano
– volume: 858
  start-page: L15
  year: 2018
  ident: 2021012908551160200_bib13
  publication-title: ApJ
  doi: 10.3847/2041-8213/aac105
  contributor:
    fullname: Dobie
– year: 2009
  ident: 2021012908551160200_bib28
  contributor:
    fullname: LSST Science Collaboration
– volume: 5
  start-page: 60
  year: 2019
  ident: 2021012908551160200_bib38
  publication-title: npj Comput. Math.
  doi: 10.1038/s41524-019-0196-x
  contributor:
    fullname: Oviedo
– volume: 2
  start-page: 559
  year: 1901
  ident: 2021012908551160200_bib39
  publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
  doi: 10.1080/14786440109462720
  contributor:
    fullname: Pearson
– volume-title: C4.5: Programs for Machine Learning
  year: 1993
  ident: 2021012908551160200_bib43
  contributor:
    fullname: Quinlan
– start-page: 83
  year: 2002
  ident: 2021012908551160200_bib3
  publication-title: Automated Data Analysis in Astronomy
  contributor:
    fullname: Bailer-Jones
– volume: 479
  start-page: 2481
  year: 2018
  ident: 2021012908551160200_bib49
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1671
  contributor:
    fullname: Stewart
– volume-title: Information Theory, Inference, and Learning Algorithms
  year: 2003
  ident: 2021012908551160200_bib29
  contributor:
    fullname: MacKay
– volume: 813
  start-page: 28
  year: 2015
  ident: 2021012908551160200_bib15
  publication-title: ApJ
  doi: 10.1088/0004-637X/813/1/28
  contributor:
    fullname: Farrell
– volume: 464
  start-page: 4463
  year: 2016
  ident: 2021012908551160200_bib24
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2672
  contributor:
    fullname: Kim
– volume: 19
  start-page: 1049
  year: 2010
  ident: 2021012908551160200_bib5
  publication-title: Int. J. Modern Phys. D
  doi: 10.1142/S0218271810017160
  contributor:
    fullname: Ball
– year: 2011
  ident: 2021012908551160200_bib10
  contributor:
    fullname: Chawla
– start-page: 14
  year: 1962
  ident: 2021012908551160200_bib11
  article-title: Traite de Geostatistique Appliquee
  contributor:
    fullname: Matheron
– volume: 733
  start-page: 10
  year: 2011
  ident: 2021012908551160200_bib47
  publication-title: ApJ
  doi: 10.1088/0004-637X/733/1/10
  contributor:
    fullname: Richards
SSID ssj0004326
Score 2.4722462
Snippet ABSTRACT With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength...
With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength...
SourceID swepub
crossref
oup
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 206
SubjectTerms methods: data analysis
Title Classification of multiwavelength transients with machine learning
URI https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-195438
Volume 502
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA6yJ19Ep7J5GUG8PJV1Tdqlj3M6hjAF2WRvJWlP5sC1snaI_96TtJtMBH0pvaR5-JL2fDk55zuEXHZVol0vwS-NJ6HDmRSOwnsOi0XIXeVKYbPSRo_BcMIfpv60EovOf9nCD1l7kS5l3kauJJnoGl1Po4mGM3f8NP3OgGS2sJoVYMQlQGcjz_jz9S3zU6a0bUmEWrMy2Cd7FR-kvXIAD8gOpHXS6OXGQ50tPuk1teelAyKvk-YIWW62tM5wfNh_myPltFeH5NZWuDSxPxZummlq4wU_pKkukc6KV1oY02RSIHNqPLB0YWMpgVbFI2ZHZDK4H_eHTlUjwYmZ7xZOEELogxJB1wUumNRMSRHisQNMozkGYf5mvvKEDkAnDIT2ueQKWCBjL3bZMamlWQoNQqX2dFcZRS7QHLgrY5_jegVHWQGPY79JbtbQRe-lFEZUbmGzyIIcrUFukgtE9s9GVyXwm3ZG6fpu_tKLcPSjfBUZMTomTv7T2SnZ9UywiQ0OOyO1YrmCc2QLhWohT372Wna6fAFklcJ4
link.rule.ids 230,315,783,787,888,1607,27936,27937
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+multiwavelength+transients+with+machine+learning&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Sooknunan%2C+K&rft.au=Lochner%2C+M&rft.au=Bassett%2C+Bruce+A&rft.au=Peiris%2C+H+V&rft.date=2021-03-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=502&rft.issue=1&rft.spage=206&rft.epage=224&rft_id=info:doi/10.1093%2Fmnras%2Fstaa3873&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_staa3873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon