Ergodic measures of Markov semigroups with the e-property

We study the set of ergodic measures for a Markov semigroup on a Polish state space. The principal assumption on this semigroup is the e-property, an equicontinuity condition. We introduce a weak concentrating condition around a compact set K and show that this condition has several implications on...

Full description

Saved in:
Bibliographic Details
Published inErgodic theory and dynamical systems Vol. 32; no. 3; pp. 1117 - 1135
Main Authors SZAREK, TOMASZ, WORM, DANIËL T. H.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.06.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the set of ergodic measures for a Markov semigroup on a Polish state space. The principal assumption on this semigroup is the e-property, an equicontinuity condition. We introduce a weak concentrating condition around a compact set K and show that this condition has several implications on the set of ergodic measures, one of them being the existence of a Borel subset K0 of K with a bijective map from K0 to the ergodic measures, by sending a point in K0 to the weak limit of the Cesàro averages of the Dirac measure on this point. We also give sufficient conditions for the set of ergodic measures to be countable and finite. Finally, we give a quite general condition under which the Cesàro averages of any measure converge to an invariant measure.
AbstractList We study the set of ergodic measures for a Markov semigroup on a Polish state space. The principal assumption on this semigroup is the e-property, an equicontinuity condition. We introduce a weak concentrating condition around a compact set K and show that this condition has several implications on the set of ergodic measures, one of them being the existence of a Borel subset K sub(0) of K with a bijective map from K sub(0) to the ergodic measures, by sending a point in K sub(0) to the weak limit of the Cesaro averages of the Dirac measure on this point. We also give sufficient conditions for the set of ergodic measures to be countable and finite. Finally, we give a quite general condition under which the Cesaro averages of any measure converge to an invariant measure.
We study the set of ergodic measures for a Markov semigroup on a Polish state space. The principal assumption on this semigroup is the e-property, an equicontinuity condition. We introduce a weak concentrating condition around a compact set K and show that this condition has several implications on the set of ergodic measures, one of them being the existence of a Borel subset K0 of K with a bijective map from K0 to the ergodic measures, by sending a point in K0 to the weak limit of the Cesàro averages of the Dirac measure on this point. We also give sufficient conditions for the set of ergodic measures to be countable and finite. Finally, we give a quite general condition under which the Cesàro averages of any measure converge to an invariant measure.
Abstract We study the set of ergodic measures for a Markov semigroup on a Polish state space. The principal assumption on this semigroup is the e-property, an equicontinuity condition. We introduce a weak concentrating condition around a compact set K and show that this condition has several implications on the set of ergodic measures, one of them being the existence of a Borel subset K0 of K with a bijective map from K0 to the ergodic measures, by sending a point in K0 to the weak limit of the Cesàro averages of the Dirac measure on this point. We also give sufficient conditions for the set of ergodic measures to be countable and finite. Finally, we give a quite general condition under which the Cesàro averages of any measure converge to an invariant measure. [PUBLICATION ABSTRACT]
Abstract We study the set of ergodic measures for a Markov semigroup on a Polish state space. The principal assumption on this semigroup is the e-property, an equicontinuity condition. We introduce a weak concentrating condition around a compact set K and show that this condition has several implications on the set of ergodic measures, one of them being the existence of a Borel subset K 0 of K with a bijective map from K 0 to the ergodic measures, by sending a point in K 0 to the weak limit of the Cesàro averages of the Dirac measure on this point. We also give sufficient conditions for the set of ergodic measures to be countable and finite. Finally, we give a quite general condition under which the Cesàro averages of any measure converge to an invariant measure.
Author SZAREK, TOMASZ
WORM, DANIËL T. H.
Author_xml – sequence: 1
  givenname: TOMASZ
  surname: SZAREK
  fullname: SZAREK, TOMASZ
  email: szarek@itl.pl
  organization: †University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland (email: szarek@itl.pl)
– sequence: 2
  givenname: DANIËL T. H.
  surname: WORM
  fullname: WORM, DANIËL T. H.
  email: daniel.worm@gmail.com
  organization: ‡Mathematical Institute, University of Leiden, PO Box 9512, 2300 RA Leiden, The Netherlands (email: daniel.worm@gmail.com)
BookMark eNp1kD9PwzAQxS1UJNrCB2CzxMIS8MV2XI-oKn-kIgZgjoxzaVOaONgJqN8eR-2AQNxwN7zfuzu9CRk1rkFCzoFdAQN1_cxAcD6TCoDFStMjMgaR6UQIUCMyHuRk0E_IJIRNRDgoOSZ64VeuqCyt0YTeY6CupI_Gv7tPGrCuVt71baBfVbem3RopJq13Lfpud0qOS7MNeHaYU_J6u3iZ3yfLp7uH-c0ysVyyLsm4YGmWSS1YqRm3qMpCwkyJ1JbAdQaZxBLTInahUzRWCmWksUYyzZADn5LL_d54-KPH0OV1FSxut6ZB14ccpAAhZKoH9OIXunG9b-J3eQyJaa2kVJGCPWW9C8Fjmbe-qo3fRWjgVP4nzOjhB4-p33xVrPDn6v9c3-GBdYU
CitedBy_id crossref_primary_10_1016_j_spa_2017_12_006
crossref_primary_10_1016_j_spl_2020_108964
crossref_primary_10_1007_s10255_023_1072_5
crossref_primary_10_1007_s11118_014_9429_2
crossref_primary_10_1142_S0218202524400037
crossref_primary_10_1080_07362994_2013_836716
crossref_primary_10_1007_s00025_024_02134_2
crossref_primary_10_1016_j_jmaa_2016_11_072
crossref_primary_10_1016_j_crma_2017_10_019
crossref_primary_10_1137_15M1049774
crossref_primary_10_1017_etds_2012_187
Cites_doi 10.1007/978-1-4612-6371-5
10.1007/s11118-011-9242-0
10.1016/j.jde.2006.04.018
10.1007/s00233-009-9176-7
10.4064/sm-143-2-145-152
10.1112/blms/bdq055
10.1007/s10440-011-9626-6
10.1017/S0143385710000039
10.1239/jap/1158784945
10.4064/sm-27-3-251-268
10.4007/annals.2006.164.993
10.1007/s00020-008-1652-z
10.1007/978-3-540-34514-5
10.1214/09-AOP513
10.1007/978-1-4471-3267-7
10.1007/s002200200639
10.1017/CBO9780511662829
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2011
Copyright_xml – notice: Copyright © Cambridge University Press 2011
DBID AAYXX
CITATION
3V.
7SC
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
H8D
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M2P
M7S
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0143385711000022
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Aerospace Database

Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-4417
EndPage 1135
ExternalDocumentID 2651381261
10_1017_S0143385711000022
Genre Feature
GroupedDBID --Z
-1D
-1F
-2P
-2V
-DZ
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
29G
3V.
4.4
5GY
5VS
6TJ
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ACBMC
ACCHT
ACETC
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AETEA
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
T9M
TN5
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAYXX
ABVZP
CITATION
CTKSN
7SC
7U5
7XB
8FD
8FK
H8D
JQ2
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c350t-63402665940f903ce7fd518742cf1396165efe2d5ef492eac547a5aca5090e313
IEDL.DBID 8FG
ISSN 0143-3857
IngestDate Fri Oct 25 03:01:00 EDT 2024
Thu Oct 10 17:40:07 EDT 2024
Thu Sep 26 17:35:39 EDT 2024
Wed Mar 13 05:56:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-63402665940f903ce7fd518742cf1396165efe2d5ef492eac547a5aca5090e313
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1010997557
PQPubID 36706
PageCount 19
ParticipantIDs proquest_miscellaneous_1541445291
proquest_journals_1010997557
crossref_primary_10_1017_S0143385711000022
cambridge_journals_10_1017_S0143385711000022
PublicationCentury 2000
PublicationDate 20120600
2012-06-00
20120601
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 20120600
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Ergodic theory and dynamical systems
PublicationTitleAlternate Ergod. Th. Dynam. Sys
PublicationYear 2012
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0143385711000022_ref3
S0143385711000022_ref2
S0143385711000022_ref5
S0143385711000022_ref4
S0143385711000022_ref1
S0143385711000022_ref11
S0143385711000022_ref12
S0143385711000022_ref10
S0143385711000022_ref7
S0143385711000022_ref6
S0143385711000022_ref9
S0143385711000022_ref8
S0143385711000022_ref19
S0143385711000022_ref17
S0143385711000022_ref18
S0143385711000022_ref15
S0143385711000022_ref16
S0143385711000022_ref13
S0143385711000022_ref14
References_xml – ident: S0143385711000022_ref19
– ident: S0143385711000022_ref1
  doi: 10.1007/978-1-4612-6371-5
– ident: S0143385711000022_ref10
  doi: 10.1007/s11118-011-9242-0
– ident: S0143385711000022_ref12
  doi: 10.1016/j.jde.2006.04.018
– ident: S0143385711000022_ref9
  doi: 10.1007/s00233-009-9176-7
– ident: S0143385711000022_ref15
  doi: 10.4064/sm-143-2-145-152
– ident: S0143385711000022_ref16
  doi: 10.1112/blms/bdq055
– ident: S0143385711000022_ref18
  doi: 10.1007/s10440-011-9626-6
– ident: S0143385711000022_ref17
  doi: 10.1017/S0143385710000039
– ident: S0143385711000022_ref3
  doi: 10.1239/jap/1158784945
– ident: S0143385711000022_ref5
  doi: 10.4064/sm-27-3-251-268
– ident: S0143385711000022_ref6
  doi: 10.4007/annals.2006.164.993
– ident: S0143385711000022_ref8
  doi: 10.1007/s00020-008-1652-z
– ident: S0143385711000022_ref2
  doi: 10.1007/978-3-540-34514-5
– ident: S0143385711000022_ref7
– ident: S0143385711000022_ref11
  doi: 10.1214/09-AOP513
– ident: S0143385711000022_ref14
  doi: 10.1007/978-1-4471-3267-7
– ident: S0143385711000022_ref13
  doi: 10.1007/s002200200639
– ident: S0143385711000022_ref4
  doi: 10.1017/CBO9780511662829
SSID ssj0003175
Score 2.058902
Snippet We study the set of ergodic measures for a Markov semigroup on a Polish state space. The principal assumption on this semigroup is the e-property, an...
Abstract We study the set of ergodic measures for a Markov semigroup on a Polish state space. The principal assumption on this semigroup is the e-property, an...
Abstract We study the set of ergodic measures for a Markov semigroup on a Polish state space. The principal assumption on this semigroup is the e-property, an...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Publisher
StartPage 1117
SubjectTerms Dynamical systems
Ergodic processes
Group theory
Invariants
Markov analysis
Markov processes
Mathematical analysis
Title Ergodic measures of Markov semigroups with the e-property
URI https://www.cambridge.org/core/product/identifier/S0143385711000022/type/journal_article
https://www.proquest.com/docview/1010997557
https://search.proquest.com/docview/1541445291
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfuJ0jgiexECbNEl7EpXNIWyIONitpG0CO9jOtRP8783rlw5hlx6SNIeXl_ed90PoJqFeRJUnCZfSOii-K4hSxhDhRVEgAsWjsu3iZCrGM-9lzud1wC2vyyobmVgK6iSLIUZubzfkcCTn8n75SQA1CrKrNYTGLuq6VEpwvvzRcyuJQTdWJYyMMJ_LJqtZtoy2gzDmlgFuwM797a2wqaM2RXSpd0aH6KA2GPFDdcJHaEenx2h_0nZbzU9QMFxZ73IR448q4JfjzGB4hJN94Vx_LMqXGzmGkCu2v2FNlhCCXxXfp2g2Gr4_jUkNiUBixp2CCGb9PSF44DkmcFispUk4wOrR2FhbTriCa6NpYr9eQK1Q5Z5UXAHuQeBo5rIz1EmzVJ8jDPVtsfQNZ9JqKMdRdtbnIpKKGWpd5h66awkS1oydh1VRmAz_0a-HbhuahcuqUca2xf2Gqn-3bk64h67bacvtkMJQqc7Wdg2glkOu2L3YvsUl2rOmDa2KuvqoU6zW-sqaD0U0KHlkgLqPw-nr2w8nEb28
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagDMCAeIpCASMxISwlcWwnE0KIUqDt1ErdIie1pQ5tStMi8e-5ywsqpC4ZbMfD2b733UfI3djzY0_7igmlwEAJXMm0tpZJP45DGWoR520Xe33ZGfrvIzEqHW5ZmVZZ8cScUY_TBH3k8LoxhqOEUI_zT4aoURhdLSE0tsmOz0FWY6V4-7XmxCgbixRGznggVBXVzFtGwyCOubmDG7Fzf3srrMuodRady532ITkoFUb6VJzwEdkys2Oy36u7rWYnJHxZgHU5Sei0cPhlNLUUi3DSL5qZ6SSv3Mgoulwp_EYNm6MLfrH8PiXD9svgucNKSASWcOEsmeRg70kpQt-xocMTo-xYIKyel1jQ5aQrhbHGG8PXDz1gqsJXWmjEPQgdw11-RhqzdGbOCcX8tkQFVnAFEspxNMwGQsZKc-uBydwkDzVBovJiZ1GRFKaif_RrkvuKZtG8aJSxaXGrourfrasTbpLbehpuO4Yw9MykK1iDqOUYK3YvNm9xQ3Y7g1436r71Py7JHqg5XpHg1SKN5WJlrkCVWMbX-X35ASLjvwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ergodic+measures+of+Markov+semigroups+with+the+e-property&rft.jtitle=Ergodic+theory+and+dynamical+systems&rft.au=SZAREK%2C+TOMASZ&rft.au=WORM%2C+DANI%C3%8BL+T.+H.&rft.date=2012-06-01&rft.pub=Cambridge+University+Press&rft.issn=0143-3857&rft.eissn=1469-4417&rft.volume=32&rft.issue=3&rft.spage=1117&rft.epage=1135&rft_id=info:doi/10.1017%2FS0143385711000022&rft.externalDocID=10_1017_S0143385711000022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-3857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-3857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-3857&client=summon