FBLPF-ABOW: An Effective Method for Blink Artifact Removal in Single-Channel EEG Signal
Objective: The latest development in low-cost single-channel Electroencephalography (EEG) devices is gaining widespread attention because it reduces hardware complexity. Discrete wavelet transform (DWT) has been a popular solution to eliminate the blink artifacts in EEG signals. However, the existin...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 27; no. 12; pp. 5722 - 5733 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Objective: The latest development in low-cost single-channel Electroencephalography (EEG) devices is gaining widespread attention because it reduces hardware complexity. Discrete wavelet transform (DWT) has been a popular solution to eliminate the blink artifacts in EEG signals. However, the existing DWT-based methods share the same wavelet function among subjects, which ignores the individual difference. To remedy this deficiency, this article proposes a novel approach to eliminate the blink artifacts in single-channel EEG signals. Methods: Firstly, the forward-backward low-pass filter (FBLPF) and a fixed-length window are used to detect blink artifact intervals. Secondly, the adaptive bi-orthogonal wavelet (ABOW) is constructed based on the most representative blink signal. Thirdly, these detected signals are filtered by ABOW-DWT. The DWT's decomposition depth is automatically chosen by a similarity-based method. Results: Compared to eight state-of-the-art methods, experiments on semi-simulated and real EEG signals demonstrate the proposed method's superiority in removing the blink artifacts with less neural information loss. Significance: To filter the blink artifacts in single-channel EEG signals, the innovative idea of constructing an adaptive wavelet function based on the signal characteristics rather than using the conventional wavelet is proposed for the first time. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2194 2168-2208 2168-2208 |
DOI: | 10.1109/JBHI.2023.3314197 |