Non-parametric individual treatment effect estimation for survival data with random forests

Abstract Motivation Personalized medicine often relies on accurate estimation of a treatment effect for specific subjects. This estimation can be based on the subject’s baseline covariates but additional complications arise for a time-to-event response subject to censoring. In this paper, the treatm...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 36; no. 2; pp. 629 - 636
Main Authors Tabib, Sami, Larocque, Denis
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.01.2020
Online AccessGet full text

Cover

Loading…
Abstract Abstract Motivation Personalized medicine often relies on accurate estimation of a treatment effect for specific subjects. This estimation can be based on the subject’s baseline covariates but additional complications arise for a time-to-event response subject to censoring. In this paper, the treatment effect is measured as the difference between the mean survival time of a treated subject and the mean survival time of a control subject. We propose a new random forest method for estimating the individual treatment effect with survival data. The random forest is formed by individual trees built with a splitting rule specifically designed to partition the data according to the individual treatment effect. For a new subject, the forest provides a set of similar subjects from the training dataset that can be used to compute an estimation of the individual treatment effect with any adequate method. Results The merits of the proposed method are investigated with a simulation study where it is compared to numerous competitors, including recent state-of-the-art methods. The results indicate that the proposed method has a very good and stable performance to estimate the individual treatment effects. Two examples of application with a colon cancer data and breast cancer data show that the proposed method can detect a treatment effect in a sub-population even when the overall effect is small or nonexistent. Availability and implementation The authors are working on an R package implementing the proposed method and it will be available soon. In the meantime, the code can be obtained from the first author at sami.tabib@hec.ca. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Abstract Motivation Personalized medicine often relies on accurate estimation of a treatment effect for specific subjects. This estimation can be based on the subject’s baseline covariates but additional complications arise for a time-to-event response subject to censoring. In this paper, the treatment effect is measured as the difference between the mean survival time of a treated subject and the mean survival time of a control subject. We propose a new random forest method for estimating the individual treatment effect with survival data. The random forest is formed by individual trees built with a splitting rule specifically designed to partition the data according to the individual treatment effect. For a new subject, the forest provides a set of similar subjects from the training dataset that can be used to compute an estimation of the individual treatment effect with any adequate method. Results The merits of the proposed method are investigated with a simulation study where it is compared to numerous competitors, including recent state-of-the-art methods. The results indicate that the proposed method has a very good and stable performance to estimate the individual treatment effects. Two examples of application with a colon cancer data and breast cancer data show that the proposed method can detect a treatment effect in a sub-population even when the overall effect is small or nonexistent. Availability and implementation The authors are working on an R package implementing the proposed method and it will be available soon. In the meantime, the code can be obtained from the first author at sami.tabib@hec.ca. Supplementary information Supplementary data are available at Bioinformatics online.
Personalized medicine often relies on accurate estimation of a treatment effect for specific subjects. This estimation can be based on the subject's baseline covariates but additional complications arise for a time-to-event response subject to censoring. In this paper, the treatment effect is measured as the difference between the mean survival time of a treated subject and the mean survival time of a control subject. We propose a new random forest method for estimating the individual treatment effect with survival data. The random forest is formed by individual trees built with a splitting rule specifically designed to partition the data according to the individual treatment effect. For a new subject, the forest provides a set of similar subjects from the training dataset that can be used to compute an estimation of the individual treatment effect with any adequate method.MOTIVATIONPersonalized medicine often relies on accurate estimation of a treatment effect for specific subjects. This estimation can be based on the subject's baseline covariates but additional complications arise for a time-to-event response subject to censoring. In this paper, the treatment effect is measured as the difference between the mean survival time of a treated subject and the mean survival time of a control subject. We propose a new random forest method for estimating the individual treatment effect with survival data. The random forest is formed by individual trees built with a splitting rule specifically designed to partition the data according to the individual treatment effect. For a new subject, the forest provides a set of similar subjects from the training dataset that can be used to compute an estimation of the individual treatment effect with any adequate method.The merits of the proposed method are investigated with a simulation study where it is compared to numerous competitors, including recent state-of-the-art methods. The results indicate that the proposed method has a very good and stable performance to estimate the individual treatment effects. Two examples of application with a colon cancer data and breast cancer data show that the proposed method can detect a treatment effect in a sub-population even when the overall effect is small or nonexistent.RESULTSThe merits of the proposed method are investigated with a simulation study where it is compared to numerous competitors, including recent state-of-the-art methods. The results indicate that the proposed method has a very good and stable performance to estimate the individual treatment effects. Two examples of application with a colon cancer data and breast cancer data show that the proposed method can detect a treatment effect in a sub-population even when the overall effect is small or nonexistent.The authors are working on an R package implementing the proposed method and it will be available soon. In the meantime, the code can be obtained from the first author at sami.tabib@hec.ca.AVAILABILITY AND IMPLEMENTATIONThe authors are working on an R package implementing the proposed method and it will be available soon. In the meantime, the code can be obtained from the first author at sami.tabib@hec.ca.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Personalized medicine often relies on accurate estimation of a treatment effect for specific subjects. This estimation can be based on the subject's baseline covariates but additional complications arise for a time-to-event response subject to censoring. In this paper, the treatment effect is measured as the difference between the mean survival time of a treated subject and the mean survival time of a control subject. We propose a new random forest method for estimating the individual treatment effect with survival data. The random forest is formed by individual trees built with a splitting rule specifically designed to partition the data according to the individual treatment effect. For a new subject, the forest provides a set of similar subjects from the training dataset that can be used to compute an estimation of the individual treatment effect with any adequate method. The merits of the proposed method are investigated with a simulation study where it is compared to numerous competitors, including recent state-of-the-art methods. The results indicate that the proposed method has a very good and stable performance to estimate the individual treatment effects. Two examples of application with a colon cancer data and breast cancer data show that the proposed method can detect a treatment effect in a sub-population even when the overall effect is small or nonexistent. The authors are working on an R package implementing the proposed method and it will be available soon. In the meantime, the code can be obtained from the first author at sami.tabib@hec.ca. Supplementary data are available at Bioinformatics online.
Author Tabib, Sami
Larocque, Denis
Author_xml – sequence: 1
  givenname: Sami
  surname: Tabib
  fullname: Tabib, Sami
  organization: Department of Decision Sciences, HEC Montréal, Montréal, QC H3T 2A7, Canada
– sequence: 2
  givenname: Denis
  orcidid: 0000-0002-7372-7943
  surname: Larocque
  fullname: Larocque, Denis
  email: denis.larocque@hec.ca
  organization: Department of Decision Sciences, HEC Montréal, Montréal, QC H3T 2A7, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31373350$$D View this record in MEDLINE/PubMed
BookMark eNqNkDtPwzAYRS0Eoi3wE0AZWQKOX03EhCpeEoIFJgbL8UMYJXaxnSL49bikDLDA9FnyOb7-7gxsO-80AIcVPKlgg09b660zPvQiWRlP2_TBINoC04owWCJIm-18xmxekhriCZjF-AIhrQghu2CCKzzHmMIpeLrzrlyKIHqdgpWFdcqurBpEV6SgReq1S4U2Rss8YrLrOO-KHFzEIazsKoNKJFG82fRcBOGU79e3mY37YMeILuqDzdwDj5cXD4vr8vb-6mZxflvK_IVUUqmgbhk1BhIsDFW0kg2iGuuG0FqJmhJkGGsQqQkUkqFKq7pBEmlW4xYbvAeOx3eXwb8OOZn3NkrddcJpP0SOUAZhQyDL6NEGHdpeK74MeaPwzr8LycDZCMjgYwzacGnT184pCNvxCvJ1_fxn_XysP9v0l_0d8JcHR88Py38qn1IupAo
CitedBy_id crossref_primary_10_1016_j_jbi_2020_103474
crossref_primary_10_1515_ijb_2023_0056
crossref_primary_10_1155_2021_4602465
crossref_primary_10_1177_09622802231224628
crossref_primary_10_1002_sim_9090
crossref_primary_10_1109_TNNLS_2023_3266429
crossref_primary_10_59717_j_xinn_med_2023_100023
crossref_primary_10_1093_bioinformatics_btab158
crossref_primary_10_1145_3466818
crossref_primary_10_1177_09622802241275401
crossref_primary_10_1177_0272989X241263356
crossref_primary_10_1186_s12859_023_05377_y
crossref_primary_10_2147_CMAR_S239795
crossref_primary_10_6339_24_JDS1119
Cites_doi 10.1007/s10618-014-0383-9
10.1198/106186008X319331
10.1002/sim.4780132105
10.1023/A:1010933404324
10.1214/09-AOAS285
10.1111/1467-985X.00122
10.1198/016214505000001230
10.1002/sim.6929
10.1200/JCO.1994.12.10.2086
10.1111/j.0006-341X.2001.01207.x
10.1002/sim.1593
10.1515/ijb-2015-0032
10.1093/bioinformatics/btx174
10.1002/sim.7594
10.1145/772862.772872
10.1001/jama.1982.03320430047030
10.1007/s10985-016-9372-1
10.1093/bioinformatics/btr295
10.1017/CBO9781139025751
10.1002/sim.6454
10.1200/JCO.1989.7.10.1447
10.1093/bib/bbr001
10.7326/0003-4819-122-5-199503010-00001
10.1080/01969722.2015.1012892
10.1037/h0037350
10.1002/sim.7297
10.1186/1471-2288-13-152
10.1007/s10115-011-0434-0
10.1177/0962280217727314
10.1002/sim.6246
10.1002/dir.10035
10.1056/NEJM199002083220602
10.1002/sim.7661
10.1214/18-AOS1709
10.1093/bioinformatics/btw391
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1093/bioinformatics/btz602
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 636
ExternalDocumentID 31373350
10_1093_bioinformatics_btz602
10.1093/bioinformatics/btz602
Genre Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
– fundername: Fondation HEC Montréal
GroupedDBID -~X
.2P
5GY
AAMVS
ABPTD
ACGFS
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BCRHZ
F5P
HW0
KOP
Q5Y
RD5
ROX
TLC
TN5
TOX
WH7
---
-E4
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HZ~
IOX
J21
JXSIZ
KAQDR
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
M49
NPM
7X8
ID FETCH-LOGICAL-c350t-5cd0eb65ff043af5d51c925e3e9458da8542f66924840ac621ed892c2e683b3f3
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Fri Jul 11 16:38:59 EDT 2025
Thu Apr 03 07:08:48 EDT 2025
Tue Jul 01 02:33:49 EDT 2025
Thu Apr 24 22:58:37 EDT 2025
Wed Aug 28 03:17:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-5cd0eb65ff043af5d51c925e3e9458da8542f66924840ac621ed892c2e683b3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7372-7943
PMID 31373350
PQID 2268309406
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2268309406
pubmed_primary_31373350
crossref_citationtrail_10_1093_bioinformatics_btz602
crossref_primary_10_1093_bioinformatics_btz602
oup_primary_10_1093_bioinformatics_btz602
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200115
2020-01-15
2020-Jan-15
PublicationDateYYYYMMDD 2020-01-15
PublicationDate_xml – month: 01
  year: 2020
  text: 20200115
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hansotia (2023013112062320500_btz602-B11) 2002; 16
Fernald (2023013112062320500_btz602-B8) 2011; 27
Radcliffe (2023013112062320500_btz602-B31) 2011
Lin (2023013112062320500_btz602-B21) 1994; 13
Moradian (2023013112062320500_btz602-B28) 2017; 23
Wey (2023013112062320500_btz602-B45) 2016; 35
Horiguchi (2023013112062320500_btz602-B14) 2018; 37
Ishwaran (2023013112062320500_btz602-B18) 2017
Athey (2023013112062320500_btz602-B4) 2019; 47
(2023013112062320500_btz602-B30) 2017
Zhang (2023013112062320500_btz602-B47) 2017; 33
Royston (2023013112062320500_btz602-B34) 2013; 13
Breiman (2023013112062320500_btz602-B5) 2001; 45
Therneau (2023013112062320500_btz602-B42) 2015
Rubin (2023013112062320500_btz602-B35) 1974; 66
Lo (2023013112062320500_btz602-B23) 2002; 4
Zeileis (2023013112062320500_btz602-B46) 2008; 17
Moradian (2023013112062320500_btz602-B29) 2019; 28
Gérardy (2023013112062320500_btz602-B9) 2016; 67
Breiman (2023013112062320500_btz602-B6) 1984
Schumacher (2023013112062320500_btz602-B38) 1994; 12
Jaroszewicz (2023013112062320500_btz602-B19) 2014
Rzepakowski (2023013112062320500_btz602-B36) 2012; 32
Guelman (2023013112062320500_btz602-B10) 2015; 46
Andersen (2023013112062320500_btz602-B1) 2017; 36
Harrell (2023013112062320500_btz602-B12) 1982; 247
Imbens (2023013112062320500_btz602-B17) 2015
Riccardo (2023013112062320500_btz602-B32) 2014; 33
Seibold (2023013112062320500_btz602-B39) 2016; 12
Wang (2023013112062320500_btz602-B44) 2016; 32
Hothorn (2023013112062320500_btz602-B15) 2017
Simon (2023013112062320500_btz602-B40) 2011; 12
Athey (2023013112062320500_btz602-B3) 2015; 1050
Loh (2023013112062320500_btz602-B25) 2015; 34
Sauerbrei (2023013112062320500_btz602-B37) 1999; 162
Hothorn (2023013112062320500_btz602-B16) 2004; 23
Anstrom (2023013112062320500_btz602-B2) 2001; 57
Lin (2023013112062320500_btz602-B22) 2006; 101
Roy (2023013112062320500_btz602-B33) 2019
Moertel (2023013112062320500_btz602-B27) 1995; 122
Sołtys (2023013112062320500_btz602-B41) 2015; 29
Loh (2023013112062320500_btz602-B24) 2002; 12
Chipman (2023013112062320500_btz602-B7) 2010; 4
Moertel (2023013112062320500_btz602-B26) 1990; 322
Thomas (2023013112062320500_btz602-B43) 2018; 37
Henderson (2023013112062320500_btz602-B13) 2018
Laurie (2023013112062320500_btz602-B20) 1989; 7
References_xml – volume: 29
  start-page: 1531
  year: 2015
  ident: 2023013112062320500_btz602-B41
  article-title: Ensemble methods for uplift modeling
  publication-title: Data Min. Knowl. Disc
  doi: 10.1007/s10618-014-0383-9
– volume-title: Classification and Regression Trees
  year: 1984
  ident: 2023013112062320500_btz602-B6
– volume: 17
  start-page: 492
  year: 2008
  ident: 2023013112062320500_btz602-B46
  article-title: Model-based recursive partitioning
  publication-title: J. Comput. Graph. Stat
  doi: 10.1198/106186008X319331
– volume: 13
  start-page: 2233
  year: 1994
  ident: 2023013112062320500_btz602-B21
  article-title: Cox regression analysis of multivariate failure time data: the marginal approach
  publication-title: Stat. Med
  doi: 10.1002/sim.4780132105
– volume: 45
  start-page: 5
  year: 2001
  ident: 2023013112062320500_btz602-B5
  article-title: Random forests
  publication-title: Mach. Learn
  doi: 10.1023/A:1010933404324
– volume: 4
  start-page: 266
  year: 2010
  ident: 2023013112062320500_btz602-B7
  article-title: BART: Bayesian Additive Regression Trees
  publication-title: Ann. Appl. Stat
  doi: 10.1214/09-AOAS285
– volume: 162
  start-page: 71
  year: 1999
  ident: 2023013112062320500_btz602-B37
  article-title: Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials
  publication-title: J. R. Stat. Soc. Ser. A (Stat. Soc.)
  doi: 10.1111/1467-985X.00122
– volume: 101
  start-page: 578
  year: 2006
  ident: 2023013112062320500_btz602-B22
  article-title: Random forests and adaptive nearest neighbors
  publication-title: J. Am. Stat. Assoc
  doi: 10.1198/016214505000001230
– volume: 35
  start-page: 3319
  year: 2016
  ident: 2023013112062320500_btz602-B45
  article-title: Estimating restricted mean treatment effects with stacked survival models
  publication-title: Stat. Med
  doi: 10.1002/sim.6929
– volume: 12
  start-page: 2086
  year: 1994
  ident: 2023013112062320500_btz602-B38
  article-title: Randomized 2 x 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. German Breast Cancer Study Group
  publication-title: J. Clin. Oncol
  doi: 10.1200/JCO.1994.12.10.2086
– volume: 57
  start-page: 1207
  year: 2001
  ident: 2023013112062320500_btz602-B2
  article-title: Utilizing propensity scores to estimate causal treatment effects with censored time-lagged data
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.01207.x
– volume: 23
  start-page: 77
  year: 2004
  ident: 2023013112062320500_btz602-B16
  article-title: Bagging survival trees
  publication-title: Stat. Med
  doi: 10.1002/sim.1593
– volume: 12
  start-page: 45
  year: 2016
  ident: 2023013112062320500_btz602-B39
  article-title: Model-based recursive partitioning for subgroup analyses
  publication-title: Int. J. Biostat
  doi: 10.1515/ijb-2015-0032
– volume: 33
  start-page: 2372
  year: 2017
  ident: 2023013112062320500_btz602-B47
  article-title: Mining heterogeneous causal effects for personalized cancer treatment
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx174
– volume: 12
  start-page: 361
  year: 2002
  ident: 2023013112062320500_btz602-B24
  article-title: Regression tress with unbiased variable selection and interaction detection
  publication-title: Stat. Si
– volume: 37
  start-page: 1608
  year: 2018
  ident: 2023013112062320500_btz602-B43
  article-title: Subgroup identification in dose-finding trials via model-based recursive partitioning
  publication-title: Stat. Med
  doi: 10.1002/sim.7594
– volume: 4
  start-page: 78
  year: 2002
  ident: 2023013112062320500_btz602-B23
  article-title: The true lift model: a novel data mining approach to response modeling in database marketing
  publication-title: ACM SIGKDD Explor. Newslett
  doi: 10.1145/772862.772872
– volume: 247
  start-page: 2543
  year: 1982
  ident: 2023013112062320500_btz602-B12
  article-title: Evaluating the yield of medical tests
  publication-title: JAMA
  doi: 10.1001/jama.1982.03320430047030
– year: 2014
  ident: 2023013112062320500_btz602-B19
– year: 2018
  ident: 2023013112062320500_btz602-B13
– volume: 23
  start-page: 671
  year: 2017
  ident: 2023013112062320500_btz602-B28
  article-title: L1 rules in survival forests
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-016-9372-1
– year: 2011
  ident: 2023013112062320500_btz602-B31
– volume: 67
  start-page: 1
  year: 2016
  ident: 2023013112062320500_btz602-B9
  article-title: Causal inference and uplift modeling: a review of the literature
  publication-title: JMLR Workshop Conf. Proc
– volume: 27
  start-page: 1741
  year: 2011
  ident: 2023013112062320500_btz602-B8
  article-title: Bioinformatics challenges for personalized medicine
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr295
– volume-title: Causal Inference in Statistics, Social, and Biomedical Sciences
  year: 2015
  ident: 2023013112062320500_btz602-B17
  doi: 10.1017/CBO9781139025751
– volume: 34
  start-page: 1818
  year: 2015
  ident: 2023013112062320500_btz602-B25
  article-title: A regression tree approach to identifying subgroups with differential treatment effects
  publication-title: Stat. Med
  doi: 10.1002/sim.6454
– volume: 7
  start-page: 1447
  year: 1989
  ident: 2023013112062320500_btz602-B20
  article-title: Surgical adjuvant therapy of large-bowel carcinoma: an evaluation of levamisole and the combination of levamisole and fluorouracil. The North Central Cancer Treatment Group and the Mayo Clinic
  publication-title: J. Clin. Oncol
  doi: 10.1200/JCO.1989.7.10.1447
– volume: 12
  start-page: 203
  year: 2011
  ident: 2023013112062320500_btz602-B40
  article-title: Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data
  publication-title: Brief. Bioinf
  doi: 10.1093/bib/bbr001
– volume: 122
  start-page: 321
  year: 1995
  ident: 2023013112062320500_btz602-B27
  article-title: Fluorouracil plus levamisole as effective adjuvant therapy after resection of stage III colon carcinoma: a final report
  publication-title: Ann. Internal Med
  doi: 10.7326/0003-4819-122-5-199503010-00001
– volume: 46
  start-page: 230
  year: 2015
  ident: 2023013112062320500_btz602-B10
  article-title: Uplift random forests
  publication-title: Cybern. Syst
  doi: 10.1080/01969722.2015.1012892
– volume: 1050
  start-page: 1
  year: 2015
  ident: 2023013112062320500_btz602-B3
  article-title: Machine learning methods for estimating heterogeneous causal effects
  publication-title: Stat
– volume: 66
  start-page: 688
  year: 1974
  ident: 2023013112062320500_btz602-B35
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: J. Educ. Psychol
  doi: 10.1037/h0037350
– volume: 36
  start-page: 2669
  year: 2017
  ident: 2023013112062320500_btz602-B1
  article-title: Causal inference in survival analysis using pseudo-observations
  publication-title: Stat. Med
  doi: 10.1002/sim.7297
– year: 2017
  ident: 2023013112062320500_btz602-B15
– year: 2019
  ident: 2023013112062320500_btz602-B33
  article-title: Prediction intervals with random forests
  publication-title: Stat. Methods Med. Res
– volume: 13
  start-page: 152
  year: 2013
  ident: 2023013112062320500_btz602-B34
  article-title: Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome
  publication-title: BMC Med. Res. Methodol
  doi: 10.1186/1471-2288-13-152
– volume: 32
  start-page: 303
  year: 2012
  ident: 2023013112062320500_btz602-B36
  article-title: Decision trees for uplift modeling with single and multiple treatments
  publication-title: Knowl. Inf. Syst
  doi: 10.1007/s10115-011-0434-0
– volume: 28
  start-page: 445
  year: 2019
  ident: 2023013112062320500_btz602-B29
  article-title: Survival forests for data with dependent censoring
  publication-title: Stat. Methods Med. Res
  doi: 10.1177/0962280217727314
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2017
  ident: 2023013112062320500_btz602-B30
– year: 2017
  ident: 2023013112062320500_btz602-B18
– volume: 33
  start-page: 5310
  year: 2014
  ident: 2023013112062320500_btz602-B32
  article-title: Investigating the prediction ability of survival models based on both clinical and omics data: two case studies
  publication-title: Stat. Med
  doi: 10.1002/sim.6246
– volume: 16
  start-page: 35.
  year: 2002
  ident: 2023013112062320500_btz602-B11
  article-title: Incremental value modeling
  publication-title: J. Interact. Market
  doi: 10.1002/dir.10035
– volume: 322
  start-page: 352
  year: 1990
  ident: 2023013112062320500_btz602-B26
  article-title: Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJM199002083220602
– volume: 37
  start-page: 2307
  year: 2018
  ident: 2023013112062320500_btz602-B14
  article-title: A flexible and coherent test/estimation procedure based on restricted mean survival times for censored time-to-event data in randomized clinical trials
  publication-title: Stat. Med
  doi: 10.1002/sim.7661
– year: 2015
  ident: 2023013112062320500_btz602-B42
– volume: 47
  start-page: 1148
  year: 2019
  ident: 2023013112062320500_btz602-B4
  article-title: Generalized random forests
  publication-title: Ann. Stat
  doi: 10.1214/18-AOS1709
– volume: 32
  start-page: 3348
  year: 2016
  ident: 2023013112062320500_btz602-B44
  article-title: TwoPhaseInd: an R package for estimating gene–treatment interactions and discovering predictive markers in randomized clinical trials
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw391
SSID ssj0051444
ssj0005056
Score 2.408014
Snippet Abstract Motivation Personalized medicine often relies on accurate estimation of a treatment effect for specific subjects. This estimation can be based on the...
Personalized medicine often relies on accurate estimation of a treatment effect for specific subjects. This estimation can be based on the subject's baseline...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 629
Title Non-parametric individual treatment effect estimation for survival data with random forests
URI https://www.ncbi.nlm.nih.gov/pubmed/31373350
https://www.proquest.com/docview/2268309406
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9jIPgifju_iOCLD3FtLunHo4hjCM6XDQY-lCZNYOBacd2D_vVelq0yRdTH0iQtd2nurne_3xFyGVqr8iS0TMexZgJsypTMFUtdo9sYDZzUDij8MIj6I3E_luMWCVZYmK8p_BS6alItSUQdcXFX1e_Rgj0SDbEjyx8-jj9rOgLHDOMv0BMQvqWtY_ZOAljhd35acs0yraHdvjmdC-PT2yZbS6-R3ng175CWKXfJhu8j-bZHngZVyRyJ99T1x9J00qCsaFNITn3lBnWsGh6uSPHV6GyOZwXuNupKRan7K0vRehXV1N3FsbN9MurdDW_7bNk1gWmQQc2kLgKjImltICC3spChTrk0YFIhkyJPpOA2ijDuwtgu1xEPTZGkXHMTJaDAwgFpl1VpjghVghsOEAtbKCGtVMC1LAo8I5XkqMQOESuJZXpJKe46WzxnPrUN2bqgMy_oDrlupr14To3fJlyhOv469mKltAy_FJf-yEtTzWcZOpoJOLrAqEMOvTabJSGEGFB8x_940gnZ5C74DkIWylPSrl_n5gw9lFqdL3blB9iD6ec
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-parametric+individual+treatment+effect+estimation+for+survival+data+with+random+forests&rft.jtitle=Bioinformatics&rft.au=Tabib%2C+Sami&rft.au=Larocque%2C+Denis&rft.date=2020-01-15&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=36&rft.issue=2&rft.spage=629&rft.epage=636&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz602&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtz602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon