Economic-energy-exergy-risk (3ER) assessment of novel integrated ammonia synthesis process and modified sulfur-iodine cycle for co-production of ammonia and sulfuric acid

A novel integrated modified sulfur cycle and ammonia production process was suggested for the co-generation of sulfuric acid. Exergy analysis, heat integration, and safety assessment were conducted to investigate the feasibility and analyze the process. The exergy analysis showed that the highest ex...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of chemical engineering Vol. 38; no. 12; pp. 2381 - 2396
Main Authors Park, JunKyu, Jeon, Junsung, Um, Wooyong
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2021
Springer Nature B.V
한국화학공학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel integrated modified sulfur cycle and ammonia production process was suggested for the co-generation of sulfuric acid. Exergy analysis, heat integration, and safety assessment were conducted to investigate the feasibility and analyze the process. The exergy analysis showed that the highest exergy destruction occurred in the section with the most considerable temperature difference involved with a large flow rate. The heat integration — an economic assessment, confirmed that the total cost was estimated to be reduced by 10.9% at the minimum temperature difference of 39 °C. The failure rate contribution to the overall system was 19%, 11%, 22%, and 47% from the Bunsen section, H 2 SO 4 concentration section, HI decomposition section, ammonia production section explosion, fire, and structural damage contributed 82%, 16%, and 2% to the overall system in terms of accident scenario. The accident cost contributed 84% and 16% of accident injury costs to the overall system, respectively. For the sectional based contribution, section 1 (Bunsen process), SA concentration, section 3, and ammonia production process contributed 45%, 29%, 19%, and 6% to the accident injury cost in the overall system, respectively. As a result of individual section failure to the whole section, failure in Bunsen process and HI decomposition led to failure in production of all the products. Failure in NH 3 production section led to production in concentrated H 2 SO 4 and H 2 . The failure in H 2 SO 4 section leads to production in NH 3 and diluted H 2 SO 4 concentration. The failure in H 2 SO 4 concentration, NH 3 production, and Bunsen process and HI decomposition contributed to the higher failure rate in ascending order.
AbstractList A novel integrated modified sulfur cycle and ammonia production process was suggested for the co-generation of sulfuric acid. Exergy analysis, heat integration, and safety assessment were conducted to investigate the feasibility and analyze the process. The exergy analysis showed that the highest exergy destruction occurred in the section with the most considerable temperature difference involved with a large flow rate. The heat integration — an economic assessment, confirmed that the total cost was estimated to be reduced by 10.9% at the minimum temperature difference of 39 °C. The failure rate contribution to the overall system was 19%, 11%, 22%, and 47% from the Bunsen section, H2SO4 concentration section, HI decomposition section, ammonia production section explosion, fire, and structural damage contributed 82%, 16%, and 2% to the overall system in terms of accident scenario. The accident cost contributed 84% and 16% of accident injury costs to the overall system, respectively. For the sectional based contribution, section 1 (Bunsen process), SA concentration, section 3, and ammonia production process contributed 45%, 29%, 19%, and 6% to the accident injury cost in the overall system, respectively. As a result of individual section failure to the whole section, failure in Bunsen process and HI decomposition led to failure in production of all the products. Failure in NH3 production section led to production in concentrated H2SO4 and H2. The failure in H2SO4 section leads to production in NH3 and diluted H2SO4 concentration. The failure in H2SO4 concentration, NH3 production, and Bunsen process and HI decomposition contributed to the higher failure rate in ascending order.
A novel integrated modified sulfur cycle and ammonia production process was suggested for the co-generation of sulfuric acid. Exergy analysis, heat integration, and safety assessment were conducted to investigate the feasibility and analyze the process. The exergy analysis showed that the highest exergy destruction occurred in the section with the most considerable temperature difference involved with a large flow rate. The heat integration - an economic assessment, confirmed that the total cost was estimated to be reduced by 10.9% at the minimum temperature difference of 39 oC. The failure rate contribution to the overall system was 19%, 11%, 22%, and 47% from the Bunsen section, H2SO4 concentration section, HI decomposition section, ammonia production section explosion, fire, and structural damage contributed 82%, 16%, and 2% to the overall system in terms of accident scenario. The accident cost contributed 84% and 16% of accident injury costs to the overall system, respectively. For the sectional based contribution, section 1 (Bunsen process), SA concentration, section 3, and ammonia production process contributed 45%, 29%, 19%, and 6% to the accident injury cost in the overall system, respectively. As a result of individual section failure to the whole section, failure in Bunsen process and HI decomposition led to failure in production of all the products. Failure in NH3 production section led to production in concentrated H2SO4 and H2. The failure in H2SO4 section leads to production in NH3 and diluted H2SO4 concentration. The failure in H2SO4 concentration, NH3 production, and Bunsen process and HI decomposition contributed to the higher failure rate in ascending order. KCI Citation Count: 3
A novel integrated modified sulfur cycle and ammonia production process was suggested for the co-generation of sulfuric acid. Exergy analysis, heat integration, and safety assessment were conducted to investigate the feasibility and analyze the process. The exergy analysis showed that the highest exergy destruction occurred in the section with the most considerable temperature difference involved with a large flow rate. The heat integration — an economic assessment, confirmed that the total cost was estimated to be reduced by 10.9% at the minimum temperature difference of 39 °C. The failure rate contribution to the overall system was 19%, 11%, 22%, and 47% from the Bunsen section, H 2 SO 4 concentration section, HI decomposition section, ammonia production section explosion, fire, and structural damage contributed 82%, 16%, and 2% to the overall system in terms of accident scenario. The accident cost contributed 84% and 16% of accident injury costs to the overall system, respectively. For the sectional based contribution, section 1 (Bunsen process), SA concentration, section 3, and ammonia production process contributed 45%, 29%, 19%, and 6% to the accident injury cost in the overall system, respectively. As a result of individual section failure to the whole section, failure in Bunsen process and HI decomposition led to failure in production of all the products. Failure in NH 3 production section led to production in concentrated H 2 SO 4 and H 2 . The failure in H 2 SO 4 section leads to production in NH 3 and diluted H 2 SO 4 concentration. The failure in H 2 SO 4 concentration, NH 3 production, and Bunsen process and HI decomposition contributed to the higher failure rate in ascending order.
Author Um, Wooyong
Park, JunKyu
Jeon, Junsung
Author_xml – sequence: 1
  givenname: JunKyu
  surname: Park
  fullname: Park, JunKyu
  email: jpark228@postech.ac.kr
  organization: Graduate Institute of Ferrous & Energy Materials Technology (GIFT), POSTECH
– sequence: 2
  givenname: Junsung
  surname: Jeon
  fullname: Jeon, Junsung
  organization: Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH)
– sequence: 3
  givenname: Wooyong
  surname: Um
  fullname: Um, Wooyong
  email: wooyongum@postech.ac.kr
  organization: Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), Division of Environmental Sciences and Engineering (DESE), Pohang University of Science and Technology (POSTECH)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002779218$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp1kdFuFCEUhompidvqA3hH4o29oAIzMDOXTbPaJk1MmnpNWDisdHegcmZMt4_kU8p2NF55dSD5vp9D_lNyknICQt4LfiE47z6hEL1oGZeC8X7Q7PkVWYmhU6yTkp-QFZdKMyGEekNOER84V0pLviK_1i6nPEbHIEHZHhg8vYwScUc_Nuu7c2oRAXGENNEcaMo_YU9jmmBb7ASe2nHMKVqKhzR9B4xIH0t21aA2eTpmH0OsGM77MBcW6z0BdQe3BxpyoS6zyvvZTTGn4wN_8472IkVHrYv-LXkd7B7h3Z95Rr59Xt9fXbPbr19uri5vmWsUn5jqelCtda13bb_x2gatA4gGvBZq03ohnQ6D3oR6EkMjlWxk71TbdYMalPDNGTlfclMJZueiyTa-zG02u2Iu7-5vzNAPXHdNZT8sbP3DjxlwMg95LqmuZ6Tmfdv1XLeVEgvlSkYsEMxjiaMtByO4OdZnlvpMrc8c6zPP1ZGLg5VNWyj_kv8v_QYq06JE
CitedBy_id crossref_primary_10_1016_j_jece_2022_107566
crossref_primary_10_1016_j_csite_2023_103484
crossref_primary_10_1016_j_jpowsour_2023_233015
crossref_primary_10_1021_acssuschemeng_2c06841
Cites_doi 10.1016/j.ijhydene.2017.02.163
10.1002/ceat.201800215
10.1016/j.energy.2018.04.178
10.1016/j.enconman.2016.06.036
10.1016/j.jiec.2018.05.027
10.1016/j.energy.2017.08.121
10.1016/j.rser.2017.05.275
10.1016/j.ijhydene.2011.12.102
10.1016/j.rser.2019.109262
10.1016/j.anucene.2019.107248
10.1016/j.ijhydene.2008.02.045
10.1021/acs.iecr.8b00785
10.1016/j.energy.2009.06.018
10.1016/j.apenergy.2017.10.051
10.1016/j.ijhydene.2012.02.082
10.1016/B978-0-08-097089-9.00004-8
10.1016/j.ijhydene.2013.05.031
10.1016/j.fluid.2009.10.025
10.1016/j.ijhydene.2020.03.167
10.13182/NT09-A8854
10.1289/isesisee.2018.P02.1680
10.1016/j.jclepro.2016.07.023
10.1016/j.jclepro.2019.118647
10.1016/j.rser.2015.08.060
10.1016/j.energy.2017.12.031
10.1016/j.cej.2010.01.023
10.1016/j.enconman.2019.111851
10.1016/j.cherd.2015.10.022
10.1252/jcej.18we078
10.1016/j.ijhydene.2012.02.163
10.12783/acer.2015.0401.01
10.1016/j.ijhydene.2011.11.108
ContentType Journal Article
Copyright The Korean Institute of Chemical Engineers 2021
The Korean Institute of Chemical Engineers 2021.
Copyright_xml – notice: The Korean Institute of Chemical Engineers 2021
– notice: The Korean Institute of Chemical Engineers 2021.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s11814-021-0896-z
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1975-7220
EndPage 2396
ExternalDocumentID oai_kci_go_kr_ARTI_9890673
10_1007_s11814_021_0896_z
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
85H
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AABYN
AAFGU
AAGCJ
AAHNG
AAIAL
AAIKT
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUCO
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJGSW
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z8N
Z8Q
Z8Z
Z92
ZMTXR
ZZE
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGJZZ
AGQEE
AGRTI
AIGIU
CITATION
H13
SJYHP
ACYCR
ID FETCH-LOGICAL-c350t-578e54ac4dc48bd6af66fe13ed615b4d12c6f96bfd12193252328c547795951d3
IEDL.DBID AGYKE
ISSN 0256-1115
IngestDate Wed Jan 31 06:58:40 EST 2024
Fri Sep 13 07:13:04 EDT 2024
Thu Sep 12 17:01:59 EDT 2024
Sat Dec 16 12:08:37 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Ammonia
3ER Analysis
Sulfuric Acid
Polygeneration
Hydrogen
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-578e54ac4dc48bd6af66fe13ed615b4d12c6f96bfd12193252328c547795951d3
PQID 2608478064
PQPubID 2044390
PageCount 16
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9890673
proquest_journals_2608478064
crossref_primary_10_1007_s11814_021_0896_z
springer_journals_10_1007_s11814_021_0896_z
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Korean journal of chemical engineering
PublicationTitleAbbrev Korean J. Chem. Eng
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
한국화학공학회
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: 한국화학공학회
References Grand View Research. Sulfuric Acid Market Size, Share & Trends Analysis Report by Raw Material (Element Sulfur, Base Metal Smelters, Pyrite Ore), By Application (Fertilizers, Chemical Manufacturing, Refinery, Textile), and Segment Forecasts, 2018–2025. GRV-2-68038-231-0; 2016.
LeeB JNoH CYoonH JKimS JKimE SInt. J. Hydrogen Energy20083322001:CAS:528:DC%2BD1cXls1yqt7g%3D10.1016/j.ijhydene.2008.02.045
BrownN ROhSRevankarS TVierowKRodriguezSColeRJr.GaunttRNucl. Technol.2009167951:CAS:528:DC%2BD1MXot1alu70%3D10.13182/NT09-A8854
HanfeiZLigangWJanVFrancoisMUmbertoDAppl. Energy201720819510.1016/j.apenergy.2017.10.051
TripodiACompagoniMBahadoriERossettiIJ. Ind. Eng. Chem.2018661761:CAS:528:DC%2BC1cXhtVKnsbbN10.1016/j.jiec.2018.05.027
LiberatoreRLanchiMCaputoGFeliciCGianoiaASauSTarquiniPInt. J. Hydrgoen Energy20123789391:CAS:528:DC%2BC38XkvFansL4%3D10.1016/j.ijhydene.2012.02.163
ParkJIfaeiPBa AlwaiA HSafderUYooC KInt. J. Hydrogen Energy202045145781:CAS:528:DC%2BB3cXmvFKnu70%3D10.1016/j.ijhydene.2020.03.167
RosenM AEnergy20103510681:CAS:528:DC%2BC3cXhtlymtrk%3D10.1016/j.energy.2009.06.018
KimSGuoJAhnK ILeeJ CAmerican Nucl. Soc.2017117951
ShinY KLeeKKimYChangJChoWBaeKInt. J. Hydrogen Energy201237166041:CAS:528:DC%2BC38XktFyjsbo%3D10.1016/j.ijhydene.2012.02.082
ParkJNamKHeoSLeeJLeeI BYooC KKorean Chem. Eng. Res.2020582351:CAS:528:DC%2BB3cXhsl2qsbbF
GiaconiaACaputoGCeroliADiamantiMBarbossaVTarquiniPSauSInt. J. Hydrogen Energy200732532
Grand View Research. Ammonia Market Size, Share & Trends Analysis Report by Product Form (Liquid, Gas, Powder), by Application (Fertilizers, Textile, Pharmaceuticals, Refrigerants), by Region, and Segment Forecasts, 2018–2025. GRV-2-68038-207-5; 2017.
IfaeiPSafderUYooC KEnergy Convers. Manage.20191971118511:CAS:528:DC%2BC1MXhsVOkt7fL10.1016/j.enconman.2019.111851
J. H. Norman, G. E. Besenbruch, L. C. Brown, D. R. O’Keefe and C. L. Allen, Report, General Atomics Corp (1982).
O. Kirk, Encyclopedia of chemical technology, John Wiley & Sons (1984).
HwangboSLeeSYooCAppl. Energy20172081951:CAS:528:DC%2BC2sXhs12rtbbE10.1016/j.apenergy.2017.10.051
R. Smith, Chemical process design and integration, John Wiley & Sons (2005).
ImmanuelVSakulaAInt. J. Hydrogen Energy20123748291:CAS:528:DC%2BC38XjtFSgurc%3D10.1016/j.ijhydene.2011.12.102
MurphyJ EO’ConnellJ PInt. J. Hdyrogen Energy20123740021:CAS:528:DC%2BC38XitVCltr8%3D10.1016/j.ijhydene.2011.11.108
Y. I. Kim, National Health Insurance Statistical Year book, NHIS (2018).
LeeBParkJLeeHByunMYoonC WLimHRenew. Sustain. Energy Rev.20191131092621:CAS:528:DC%2BC1MXhsVWht7vN10.1016/j.rser.2019.109262
M. J. King, W. G. Davenport and M. S. Moats, Sulfuric Acid Manufacture Analysis, Control, and Optimization. Elsevier (2013).
IfaeiPRashidiJYooC KEnergy Convers. Manage.201612361010.1016/j.enconman.2016.06.036
PingZLaijunWSongzheCJingmingXRenew. Sustain. Energy Rev.201881180210.1016/j.rser.2017.05.275
MehrpooyMHabibiRJ. Clean. Prod.202027512386
DehghaniSSayyaadiHInt. J. Hydrogen Energy20133890741:CAS:528:DC%2BC3sXptFOnt7c%3D10.1016/j.ijhydene.2013.05.031
BicerYIharahimDCalinZGregVFrankRJ. Clean. Prod.201613513791:CAS:528:DC%2BC28Xht1SltrrL10.1016/j.jclepro.2016.07.023
S. Mannan, Lees’ loss prevention in the process industries: hazard identification, assessment, and control, Elsevier (2012).
R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz and D. Bhattacharyya, Pearson (2013).
RodriguezD GLiraC A B DParraL R GHernandezC R GValdesR DEnergy201814711651:CAS:528:DC%2BC1cXisVyitLk%3D10.1016/j.energy.2017.12.031
SakuraiMNakajimaHOnukiKShimizuSInt. J. Hydrogen Energy200025206
L. C. Brown, G. E. Besenbruch, R. D. Lentsch, K. R. Shultz, J. F. Funk, P. S. Pickard, A. C. Marshall and S. K. Showalter, Report, General Atomics Corp (2020).
I. Dincer and M. A. Rosen, Exergy: energy, environment and sustainable development, Newnes (2012).
RashidiJYooC KEnergy20181555041:CAS:528:DC%2BC1cXpslant74%3D10.1016/j.energy.2018.04.178
OrregoDSharmaSOliveiraSJr.MarechalFJ. Clean. Prod.20204411864710.1016/j.jclepro.2019.118647
ZhuLLiLFanJChem. Eng. Res. Des.20151047921:CAS:528:DC%2BC2MXhslCnt7bK10.1016/j.cherd.2015.10.022
YilmazFSelbasREnergy20171405201:CAS:528:DC%2BC2sXhsFSkt7nJ10.1016/j.energy.2017.08.121
RongALahdelmaRRenew. Sustain. Energy Rev.20165336310.1016/j.rser.2015.08.060
KissA ABiledaC SGrievinkJChem. Eng. J.20101582411:CAS:528:DC%2BC3cXjt1ajtbc%3D10.1016/j.cej.2010.01.023
KasaharaSIwatuskiJTakegamiHTanakaNNoguchiHKamijiYOnukiKKuboSInt. J. Hydrogen Energy201742134771:CAS:528:DC%2BC2sXksV2htbk%3D10.1016/j.ijhydene.2017.02.163
CrowlD ALouvarJ FChemical process safety fundamentals and applications2011New YorkPrentice Hall
SINTEF Industrial Management, Offshore Reliability Data Handbook, Norway (2002).
MurphyJ EO’ConnellJ PFluid Phase Equilia2010288991:CAS:528:DC%2BD1MXhsFyjtrjF10.1016/j.fluid.2009.10.025
ShariffMShariffA MBuangAShaikhM SKhanM IChem. Eng. Technol.20194252410.1002/ceat.201800215
KimSLeeJ CAnnals of Nuclear Energy20201391072481:CAS:528:DC%2BC1MXisVeqtLbO10.1016/j.anucene.2019.107248
Tejada-IglesiasMSzubaJKoniuchRRicardez-SandovalLInd. Eng. Chem. Res.201857825310.1021/acs.iecr.8b00785
SaputeS RParkJRevankarS TAdv. Chem. Eng. Res.20154110.12783/acer.2015.0401.01
ParkJLeeSLeeIJ. Chem. Eng. Jpn.2019526381:CAS:528:DC%2BC1MXhvFeis7jO10.1252/jcej.18we078
L Zhu (896_CR13) 2015; 104
S Kim (896_CR44) 2020; 139
J E Murphy (896_CR27) 2012; 37
F Yilmaz (896_CR42) 2017; 140
S Kasahara (896_CR18) 2017; 42
J Park (896_CR21) 2020; 58
M Shariff (896_CR48) 2019; 42
D A Crowl (896_CR33) 2011
Z Ping (896_CR20) 2018; 81
N R Brown (896_CR39) 2009; 167
S R Sapute (896_CR25) 2015; 4
A Rong (896_CR31) 2016; 53
P Ifaei (896_CR34) 2016; 123
D G Rodriguez (896_CR19) 2018; 147
D Orrego (896_CR11) 2020; 44
A A Kiss (896_CR2) 2010; 158
M A Rosen (896_CR1) 2010; 35
S Kim (896_CR36) 2017; 117
S Dehghani (896_CR41) 2013; 38
J Park (896_CR22) 2019; 52
J Rashidi (896_CR40) 2018; 155
Y Bicer (896_CR9) 2016; 135
896_CR35
Y K Shin (896_CR17) 2012; 37
A Tripodi (896_CR38) 2018; 66
B Lee (896_CR6) 2019; 113
R Liberatore (896_CR29) 2012; 37
J Park (896_CR30) 2020; 45
A Giaconia (896_CR23) 2007; 32
B J Lee (896_CR24) 2008; 33
M Tejada-Iglesias (896_CR3) 2018; 57
896_CR47
896_CR49
896_CR43
V Immanuel (896_CR28) 2012; 37
J E Murphy (896_CR37) 2010; 288
896_CR46
Z Hanfei (896_CR10) 2017; 208
896_CR45
S Hwangbo (896_CR12) 2017; 208
P Ifaei (896_CR32) 2019; 197
896_CR7
896_CR15
896_CR8
M Sakurai (896_CR26) 2000; 25
896_CR5
896_CR16
896_CR4
M Mehrpooy (896_CR14) 2020; 275
References_xml – volume: 42
  start-page: 13477
  year: 2017
  ident: 896_CR18
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.02.163
  contributor:
    fullname: S Kasahara
– ident: 896_CR47
– volume: 42
  start-page: 524
  year: 2019
  ident: 896_CR48
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201800215
  contributor:
    fullname: M Shariff
– volume: 155
  start-page: 504
  year: 2018
  ident: 896_CR40
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.178
  contributor:
    fullname: J Rashidi
– volume: 123
  start-page: 610
  year: 2016
  ident: 896_CR34
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.06.036
  contributor:
    fullname: P Ifaei
– volume: 66
  start-page: 176
  year: 2018
  ident: 896_CR38
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2018.05.027
  contributor:
    fullname: A Tripodi
– volume: 140
  start-page: 520
  year: 2017
  ident: 896_CR42
  publication-title: Energy
  doi: 10.1016/j.energy.2017.08.121
  contributor:
    fullname: F Yilmaz
– volume: 58
  start-page: 235
  year: 2020
  ident: 896_CR21
  publication-title: Korean Chem. Eng. Res.
  contributor:
    fullname: J Park
– volume: 81
  start-page: 1802
  year: 2018
  ident: 896_CR20
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.275
  contributor:
    fullname: Z Ping
– volume: 37
  start-page: 4829
  year: 2012
  ident: 896_CR28
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.12.102
  contributor:
    fullname: V Immanuel
– volume: 113
  start-page: 109262
  year: 2019
  ident: 896_CR6
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109262
  contributor:
    fullname: B Lee
– volume: 139
  start-page: 107248
  year: 2020
  ident: 896_CR44
  publication-title: Annals of Nuclear Energy
  doi: 10.1016/j.anucene.2019.107248
  contributor:
    fullname: S Kim
– ident: 896_CR43
– volume: 25
  start-page: 206
  year: 2000
  ident: 896_CR26
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: M Sakurai
– volume-title: Chemical process safety fundamentals and applications
  year: 2011
  ident: 896_CR33
  contributor:
    fullname: D A Crowl
– volume: 33
  start-page: 2200
  year: 2008
  ident: 896_CR24
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.02.045
  contributor:
    fullname: B J Lee
– volume: 57
  start-page: 8253
  year: 2018
  ident: 896_CR3
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b00785
  contributor:
    fullname: M Tejada-Iglesias
– volume: 117
  start-page: 951
  year: 2017
  ident: 896_CR36
  publication-title: American Nucl. Soc.
  contributor:
    fullname: S Kim
– volume: 35
  start-page: 1068
  year: 2010
  ident: 896_CR1
  publication-title: Energy
  doi: 10.1016/j.energy.2009.06.018
  contributor:
    fullname: M A Rosen
– volume: 208
  start-page: 195
  year: 2017
  ident: 896_CR12
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.10.051
  contributor:
    fullname: S Hwangbo
– volume: 37
  start-page: 16604
  year: 2012
  ident: 896_CR17
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.02.082
  contributor:
    fullname: Y K Shin
– ident: 896_CR5
– volume: 208
  start-page: 195
  year: 2017
  ident: 896_CR10
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.10.051
  contributor:
    fullname: Z Hanfei
– ident: 896_CR35
  doi: 10.1016/B978-0-08-097089-9.00004-8
– volume: 38
  start-page: 9074
  year: 2013
  ident: 896_CR41
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.05.031
  contributor:
    fullname: S Dehghani
– volume: 288
  start-page: 99
  year: 2010
  ident: 896_CR37
  publication-title: Fluid Phase Equilia
  doi: 10.1016/j.fluid.2009.10.025
  contributor:
    fullname: J E Murphy
– ident: 896_CR15
– volume: 45
  start-page: 14578
  year: 2020
  ident: 896_CR30
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.03.167
  contributor:
    fullname: J Park
– volume: 167
  start-page: 95
  year: 2009
  ident: 896_CR39
  publication-title: Nucl. Technol.
  doi: 10.13182/NT09-A8854
  contributor:
    fullname: N R Brown
– ident: 896_CR46
  doi: 10.1289/isesisee.2018.P02.1680
– volume: 135
  start-page: 1379
  year: 2016
  ident: 896_CR9
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.07.023
  contributor:
    fullname: Y Bicer
– volume: 44
  start-page: 118647
  year: 2020
  ident: 896_CR11
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118647
  contributor:
    fullname: D Orrego
– ident: 896_CR8
– volume: 53
  start-page: 363
  year: 2016
  ident: 896_CR31
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.08.060
  contributor:
    fullname: A Rong
– volume: 275
  start-page: 12386
  year: 2020
  ident: 896_CR14
  publication-title: J. Clean. Prod.
  contributor:
    fullname: M Mehrpooy
– ident: 896_CR4
– ident: 896_CR16
– volume: 32
  start-page: 532
  year: 2007
  ident: 896_CR23
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: A Giaconia
– volume: 147
  start-page: 1165
  year: 2018
  ident: 896_CR19
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.031
  contributor:
    fullname: D G Rodriguez
– volume: 158
  start-page: 241
  year: 2010
  ident: 896_CR2
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.01.023
  contributor:
    fullname: A A Kiss
– volume: 197
  start-page: 111851
  year: 2019
  ident: 896_CR32
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.111851
  contributor:
    fullname: P Ifaei
– volume: 104
  start-page: 792
  year: 2015
  ident: 896_CR13
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2015.10.022
  contributor:
    fullname: L Zhu
– ident: 896_CR45
– ident: 896_CR49
– volume: 52
  start-page: 638
  year: 2019
  ident: 896_CR22
  publication-title: J. Chem. Eng. Jpn.
  doi: 10.1252/jcej.18we078
  contributor:
    fullname: J Park
– ident: 896_CR7
– volume: 37
  start-page: 8939
  year: 2012
  ident: 896_CR29
  publication-title: Int. J. Hydrgoen Energy
  doi: 10.1016/j.ijhydene.2012.02.163
  contributor:
    fullname: R Liberatore
– volume: 4
  start-page: 1
  year: 2015
  ident: 896_CR25
  publication-title: Adv. Chem. Eng. Res.
  doi: 10.12783/acer.2015.0401.01
  contributor:
    fullname: S R Sapute
– volume: 37
  start-page: 4002
  year: 2012
  ident: 896_CR27
  publication-title: Int. J. Hdyrogen Energy
  doi: 10.1016/j.ijhydene.2011.11.108
  contributor:
    fullname: J E Murphy
SSID ssj0055620
Score 2.33621
Snippet A novel integrated modified sulfur cycle and ammonia production process was suggested for the co-generation of sulfuric acid. Exergy analysis, heat...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 2381
SubjectTerms Accidents
Ammonia
Biotechnology
Catalysis
Chemistry
Chemistry and Materials Science
Cogeneration
Decomposition
Exergy
Failure rates
Fire damage
Flow velocity
Industrial Chemistry/Chemical Engineering
Iodine
Materials Science
Process Safety
Process Systems Engineering
Structural damage
Sulfur
Sulfuric acid
Temperature gradients
화학공학
Title Economic-energy-exergy-risk (3ER) assessment of novel integrated ammonia synthesis process and modified sulfur-iodine cycle for co-production of ammonia and sulfuric acid
URI https://link.springer.com/article/10.1007/s11814-021-0896-z
https://www.proquest.com/docview/2608478064/abstract/
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002779218
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Chemical Engineering, 2021, 38(12), 261, pp.2381-2396
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5tuwfgwGMBUVgqC3HgIVdpEqfJsbtqWUDsAVFpOVl-oqhLUjUt0vYn8SuZSZqW5XHYkxMlthPN2PPZnvkG4GVgbBiOtOdqJDSPvUh5mvmUC4MarXySCE-xw5_Ok7NZ_OFCXBxAuNu6KOaD9kSynqj3sW5oi2JOHgVBmiV804FDQVmpu3A4fvf146SdfwVa9GZnhRj2EPC0Z5n_auSaNeoUS38NaP5xNlqbnOm9JgywqpkKydNkPliv9MBs_uZxvMHf3Ie7WwTKxo3KPIADVxzBrdM28dsR3PmNo_Ah_GxDl7mrwwQ5JWnCgnzS2ato8vk1Uzt2T1Z6VpQ_3CXb0VBYpkjVc8WqqwLRZpVXbNFEJzBVWPa9tLlHHMyq9aVfL3mO94Vj5go_jiGiZqbki4aWFlWIOmjbo9pNpdwwZXL7CGbTyZfTM75N8MBNJIIVx9nCiViZ2Jo41TYh3fBuGDmLOEvHdhiaxGeJ9nhFQBMXzWFqRDyiBOliaKPH0C3Kwj0BpgIEkiOBeMjqWLlEqzDydmQDn-lUGN2DN62g5aLh8ZB7xmYShkRhSBKG3PTgBaqCnJtcEvs2ld9KOV9KXGO8l1maUXafHhy3miK3476SuDpEc58izuvB21by-8f_7fHpjd5-BrdDUp3aq-YYuqvl2j1HbLTSfRwM05OT8_52UPShMwvHvwD2hQte
link.rule.ids 315,786,790,27957,27958,41116,41558,42185,42627,52146,52269
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7aFw4FFAbClgIQ485Cqb2Hkcq2rLlj4OaCuVk-UnirZNVptdpO5P4lcy3sRdWsGhJydK_Ihm7Pkcz3wD8CHSJo4z5ajMuKLM8Zzmhcsp16jR0qUpdz52-PQsHZ2zbxf8oovjboK3eziSXK3U62A3NEaMepeCKC9SutyATYYGivdgc__rj-NhWIA5mvT214qn2EPEEw4z_9XILXO0Uc3cLaR553B0ZXMOn8A4jLZ1NZnsLeZqTy_vEDne83OewuMOg5L9VmmewQNbbcPWQUj9tg2P_mIpfA6_Q_AytatAQerTNGHhvdLJx2T4_RORN_yepHakqn_ZS3JDRGGI9MpeStJcV4g3m7Ih0zY-gcjKkKvalA6RMGkWl24xoyXeV5boaxwcQUxNdE2nLTEtKpHvILTna7eVSk2kLs0LOD8cjg9GtEvxQHXCoznF9cJyJjUzmuXKpF47nB0k1iDSUswMYp26IlUOrzzUxG1znGvOMp8inQ9M8hJ6VV3ZV0BkhFAy44iIjGLSpkrGiTOZiVyhcq5VHz4HSYtpy-Qh1pzNXhgChSG8MMSyD-9RF8REl8Lzb_vyZy0mM4G7jCNR5IXP79OH3aAqopv5jcD9IRr8HJFeH74Eya8f_7fHnXu9_Q62RuPTE3FydHb8Gh7GXo1WPja70JvPFvYNIqW5etvNjD_4XwzN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6ircRyYCkgBgpYiAOL3GYSO8uxKjO0FCqEqFROxiuKpiSjSQap85P4lTxP4g6t4IA4OVHiJfJn-3P83vcAnkfaxHGmHJUZV5Q5ntO8cDnlGhEtXZpy532HPxyl-8fs3Qk_6eOcNsHaPRxJdj4NXqWpanemxu2sHN9wYWLUmxdEeZHSxRpsMBy1CPGN3bdfDkdhMua4vHe_WbzcHrKfcLD5p0IuLE1r1cxdYJ2XDkqX68_4FnwNLe_MTibb81Zt68UlUcf_-LTbcLPnpmS3A9MduGKrTbi2F0LCbcKN39QL78LP4NRM7dKBkPrwTZh4a3XyIhl9eknkue4nqR2p6h_2lJwLVBgi_SAoJWnOKuShTdmQaee3QGRlyPfalA4ZMmnmp24-oyXeV5boM2wcQa5NdE2nnWAtgstXEMrzubtMpSZSl-YeHI9Hn_f2aR_6geqERy3FecRyJjUzmuXKpB41zg4Ta5CBKWaGsU5dkSqHV56C4nY6zjVnmQ-dzocmuQ_rVV3ZB0BkhBQz48iUjGLSpkrGiTOZiVyhcq7VAF6FXhfTTuFDrLScfWcI7AzhO0MsBvAMcSEmuhRel9un32oxmQncfRyIIi983J8BbAXYiH5GaATuG5EI5MgAB_A6oGD1-K81Pvynt5_C1Y9vxuL9wdHhI7geexQtTW-2YL2dze1jJFCtetIPkl9ILBWo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Economic-energy-exergy-risk+%283ER%29+assessment+of+novel+integrated+ammonia+synthesis+process+and+modified+sulfur-iodine+cycle+for+co-production+of+ammonia+and+sulfuric+acid&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Park+JunKyu&rft.au=Jeon+Junsung&rft.au=Um+Wooyong&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=38&rft.issue=12&rft.spage=2381&rft.epage=2396&rft_id=info:doi/10.1007%2Fs11814-021-0896-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon