Hazardous impacts of silver nanoparticles on mouse oocyte maturation and fertilization and fetal development through induction of apoptotic processes

Silver nanoparticles (AgNPs) are antibacterial materials widely used in numerous products and medical supplies. Previously, we showed that AgNPs trigger apoptotic processes in mouse blastocysts, leading to a decrease in cell viability and impairment of preimplantation and postimplantation embryonic...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental toxicology Vol. 33; no. 10; pp. 1039 - 1049
Main Authors Huang, Chien-Hsun, Yeh, Jui-Ming, Chan, Wen-Hsiung
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silver nanoparticles (AgNPs) are antibacterial materials widely used in numerous products and medical supplies. Previously, we showed that AgNPs trigger apoptotic processes in mouse blastocysts, leading to a decrease in cell viability and impairment of preimplantation and postimplantation embryonic development in vitro and in vivo. In the present study, we further investigated the hazardous effects of AgNPs on mouse oocyte maturation, in vitro fertilization (IVF), and subsequent preimplantation and postimplantation development in vitro and in vivo. Data from in vitro experiments revealed that AgNPs impair mouse oocyte maturation, decrease IVF rates, and induce injury effects on subsequent embryonic development to a significant extent. In an animal model, intravenous injection of AgNPs (5 mg/kg body weight) led to a significant decrease in mouse oocyte maturation and IVF concomitant with impairment of early embryonic development in vivo. Importantly, pretreatment with N-acetylcysteine effectively prevented AgNP-triggered reactive oxygen species (ROS) production and apoptosis, clearly suggesting a critical role of ROS as an upstream initiator or key regulator of AgNP-induced hazardous effects on oocyte maturation and sequent embryonic development. Furthermore, preincubation of oocytes with Ac-DEVD-cho, a caspase-3-specific inhibitor, effectively prevented hazardous effects, highlighting the potential involvement of caspase-dependent apoptotic signaling cascades in AgNP-mediated events. Expression levels of p53 and p21 of blastocysts were upregulated upon preincubation of mouse oocytes with AgNPs. Our collective results imply that cell apoptosis in mouse blastocysts derived from the AgNP-pretreated oocytes via intracellular ROS generation, which is further mediated through p53-, p21-, and caspase-3-dependent regulatory mechanisms.
AbstractList Abstract Silver nanoparticles (AgNPs) are antibacterial materials widely used in numerous products and medical supplies. Previously, we showed that AgNPs trigger apoptotic processes in mouse blastocysts, leading to a decrease in cell viability and impairment of preimplantation and postimplantation embryonic development in vitro and in vivo. In the present study, we further investigated the hazardous effects of AgNPs on mouse oocyte maturation, in vitro fertilization (IVF), and subsequent preimplantation and postimplantation development in vitro and in vivo. Data from in vitro experiments revealed that AgNPs impair mouse oocyte maturation, decrease IVF rates, and induce injury effects on subsequent embryonic development to a significant extent. In an animal model, intravenous injection of AgNPs (5 mg/kg body weight) led to a significant decrease in mouse oocyte maturation and IVF concomitant with impairment of early embryonic development in vivo. Importantly, pretreatment with N‐ acetylcysteine effectively prevented AgNP‐triggered reactive oxygen species (ROS) production and apoptosis, clearly suggesting a critical role of ROS as an upstream initiator or key regulator of AgNP‐induced hazardous effects on oocyte maturation and sequent embryonic development. Furthermore, preincubation of oocytes with Ac‐DEVD‐cho, a caspase‐3‐specific inhibitor, effectively prevented hazardous effects, highlighting the potential involvement of caspase‐dependent apoptotic signaling cascades in AgNP‐mediated events. Expression levels of p53 and p21 of blastocysts were upregulated upon preincubation of mouse oocytes with AgNPs. Our collective results imply that cell apoptosis in mouse blastocysts derived from the AgNP‐pretreated oocytes via intracellular ROS generation, which is further mediated through p53‐, p21‐, and caspase‐3‐dependent regulatory mechanisms.
Silver nanoparticles (AgNPs) are antibacterial materials widely used in numerous products and medical supplies. Previously, we showed that AgNPs trigger apoptotic processes in mouse blastocysts, leading to a decrease in cell viability and impairment of preimplantation and postimplantation embryonic development in vitro and in vivo. In the present study, we further investigated the hazardous effects of AgNPs on mouse oocyte maturation, in vitro fertilization (IVF), and subsequent preimplantation and postimplantation development in vitro and in vivo. Data from in vitro experiments revealed that AgNPs impair mouse oocyte maturation, decrease IVF rates, and induce injury effects on subsequent embryonic development to a significant extent. In an animal model, intravenous injection of AgNPs (5 mg/kg body weight) led to a significant decrease in mouse oocyte maturation and IVF concomitant with impairment of early embryonic development in vivo. Importantly, pretreatment with N‐acetylcysteine effectively prevented AgNP‐triggered reactive oxygen species (ROS) production and apoptosis, clearly suggesting a critical role of ROS as an upstream initiator or key regulator of AgNP‐induced hazardous effects on oocyte maturation and sequent embryonic development. Furthermore, preincubation of oocytes with Ac‐DEVD‐cho, a caspase‐3‐specific inhibitor, effectively prevented hazardous effects, highlighting the potential involvement of caspase‐dependent apoptotic signaling cascades in AgNP‐mediated events. Expression levels of p53 and p21 of blastocysts were upregulated upon preincubation of mouse oocytes with AgNPs. Our collective results imply that cell apoptosis in mouse blastocysts derived from the AgNP‐pretreated oocytes via intracellular ROS generation, which is further mediated through p53‐, p21‐, and caspase‐3‐dependent regulatory mechanisms.
Author Chan, Wen-Hsiung
Yeh, Jui-Ming
Huang, Chien-Hsun
Author_xml – sequence: 1
  givenname: Chien-Hsun
  surname: Huang
  fullname: Huang, Chien-Hsun
  organization: Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City, Taiwan
– sequence: 2
  givenname: Jui-Ming
  surname: Yeh
  fullname: Yeh, Jui-Ming
  organization: Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, Taiwan
– sequence: 3
  givenname: Wen-Hsiung
  orcidid: 0000-0002-9999-0731
  surname: Chan
  fullname: Chan, Wen-Hsiung
  organization: Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29964317$$D View this record in MEDLINE/PubMed
BookMark eNpNkc1KAzEUhYNU7I8ufAEJuHIxNcn8ZilFrVBwo-shk7mxU2aSMckU2_fwfY2tiqt7OXzcwz1nikbaaEDokpI5JYTdevMxZyzl5ARNaMpYlLO8GB12EiWkoGM0dW5DCOFZmp2hMeM8S2KaT9DnUuyFrc3gcNP1QnqHjcKuabdgsRba9ML6RrYQdI27wAE2Ru484E74wQrfBF3oGisIYNvs_ytetLiGLbSm70B77NfWDG9r3Oh6kAcumIne9N4EE9xbI8E5cOfoVInWwcXPnKHXh_uXxTJaPT8-Le5WkYxT4qMEAISsOMvCw8AgJBDnFQNSC1HxTLEkjpnKkixNVZ7LIs5EUeUJ5TLhSlYqnqHr493g_D6A8-XGDFYHy5JRQnnIiaSBujlS0hrnLKiyt00n7K6kpPwuoAwFlIcCAnv1c3GoOqj_yN_E4y-NS4do
CitedBy_id crossref_primary_10_3390_biom10050777
crossref_primary_10_3390_ijms23168839
crossref_primary_10_1016_j_fct_2021_112053
crossref_primary_10_3390_antiox10030393
crossref_primary_10_1038_s41598_023_36441_5
crossref_primary_10_3390_antiox11030587
crossref_primary_10_1002_tox_22771
crossref_primary_10_1016_j_bej_2021_107937
crossref_primary_10_3390_cancers13102450
crossref_primary_10_3390_ph15080917
crossref_primary_10_1016_j_matdes_2021_109611
crossref_primary_10_1038_s41598_024_65121_1
crossref_primary_10_1155_2021_6667355
crossref_primary_10_3390_antiox11091777
crossref_primary_10_3390_cells11040641
crossref_primary_10_1038_s41598_022_23276_9
crossref_primary_10_3390_antiox11091797
crossref_primary_10_3390_antiox10101588
crossref_primary_10_1093_toxres_tfac028
crossref_primary_10_3390_ani11092483
crossref_primary_10_3390_ijms24097751
crossref_primary_10_3390_antiox9080694
crossref_primary_10_3390_biomedicines12020458
crossref_primary_10_3390_ijms24108853
crossref_primary_10_1002_tox_24002
crossref_primary_10_1007_s00204_024_03699_1
crossref_primary_10_1016_j_meegid_2021_104937
crossref_primary_10_3390_antiox11102072
crossref_primary_10_3390_antiox11050841
crossref_primary_10_1002_tox_22986
crossref_primary_10_3390_antiox11101982
crossref_primary_10_3390_antiox11050926
crossref_primary_10_3390_biomedicines10051196
crossref_primary_10_1002_tox_22748
crossref_primary_10_3390_ijms23062981
crossref_primary_10_3390_ijms24043987
crossref_primary_10_1016_j_envint_2020_105627
crossref_primary_10_3390_ph17020230
crossref_primary_10_3390_antiox9090873
crossref_primary_10_3390_cancers11091303
crossref_primary_10_3390_ijms20133238
crossref_primary_10_3390_jpm11090871
crossref_primary_10_1002_mrd_23536
crossref_primary_10_3390_antiox11071352
crossref_primary_10_3390_antiox11112227
crossref_primary_10_3390_antiox9090876
Cites_doi 10.1128/AEM.69.7.4278-4281.2003
10.3168/jds.S0022-0302(02)74367-1
10.1093/humrep/dem203
10.1016/j.biomaterials.2010.07.045
10.1002/iub.30
10.1126/science.7985020
10.1530/jrf.0.1170097
10.1093/toxsci/kfh041
10.1016/j.chemosphere.2016.12.016
10.3762/bjnano.6.181
10.2337/diab.39.4.471
10.1089/sur.2006.032
10.1021/nn800596w
10.1038/nrc1412
10.3390/ijms13044655
10.1016/0147-619X(92)90008-X
10.1007/s10495-007-0756-2
10.1016/j.toxlet.2011.06.018
10.1021/es7032718
10.1166/jnn.2007.737
10.1016/j.taap.2009.10.016
10.1016/j.tox.2012.05.006
10.1186/1743-8977-2-8
10.1242/dev.107.3.597
10.1042/BJ20061875
10.3390/ijms131113911
10.1002/jcp.20408
10.1002/tox.22085
10.1293/tox.2017-0043
10.1080/152165400410281
10.3390/ijms141020139
10.1016/j.cca.2010.08.016
10.1002/tox.22416
10.1021/es801785m
10.1016/j.reprotox.2009.03.014
10.3390/ijms14010935
10.1038/srep11170
10.1021/jp712087m
10.3390/ijms10041445
10.1088/0957-4484/19/23/235104
10.1002/jcp.10119
10.1093/humrep/del255
10.1016/j.toxlet.2009.07.009
10.1002/jbm.a.30819
10.1016/j.biomaterials.2007.12.037
10.1016/j.toxlet.2010.05.003
10.1002/tox.22366
10.1016/j.taap.2008.09.015
10.1016/j.biotechadv.2008.09.002
10.1002/jez.1402650108
10.1016/j.toxlet.2008.05.011
10.1016/j.tox.2007.09.015
10.1166/jnn.2008.1193
10.1166/jnn.2014.9526
10.1002/tox.21969
10.1021/ja058083c
10.1016/B978-0-444-53864-2.00005-0
10.1158/0008-5472.CAN-03-1880
10.1016/j.freeradbiomed.2007.06.014
10.1021/ja061442z
10.1186/1471-2121-10-65
10.1016/j.theriogenology.2007.06.005
10.1016/j.toxlet.2009.03.004
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
DBID NPM
AAYXX
CITATION
7QH
7ST
7TN
7U7
7UA
C1K
F1W
H97
K9.
L.G
M7N
SOI
DOI 10.1002/tox.22590
DatabaseName PubMed
CrossRef
Aqualine
Environment Abstracts
Oceanic Abstracts
Toxicology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environment Abstracts
DatabaseTitle PubMed
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
Toxicology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Health & Medical Complete (Alumni)
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Oceanography
EISSN 1522-7278
EndPage 1049
ExternalDocumentID 10_1002_tox_22590
29964317
Genre Journal Article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
NPM
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~KM
~WT
.Y3
31~
AAHBH
AAYXX
ACBWZ
AI.
AITYG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
HF~
HVGLF
VH1
7QH
7ST
7TN
7U7
7UA
C1K
F1W
H97
K9.
L.G
M7N
SOI
ID FETCH-LOGICAL-c350t-4eeeacb926727e2e59037b2e0daab96f24332f64655f77c836a8b7419c49fcbf3
ISSN 1520-4081
IngestDate Fri Sep 13 05:20:41 EDT 2024
Fri Aug 23 01:04:14 EDT 2024
Fri May 24 00:05:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords apoptosis
oocyte maturation
silver nanoparticles
embryonic development
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c350t-4eeeacb926727e2e59037b2e0daab96f24332f64655f77c836a8b7419c49fcbf3
ORCID 0000-0002-9999-0731
PMID 29964317
PQID 2101929905
PQPubID 866374
PageCount 11
ParticipantIDs proquest_journals_2101929905
crossref_primary_10_1002_tox_22590
pubmed_primary_29964317
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Environmental toxicology
PublicationTitleAlternate Environ Toxicol
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Zhang XF (e_1_2_7_40_1) 2015; 10
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
Devasagayam TPT (e_1_2_7_57_1) 2004; 52
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – ident: e_1_2_7_13_1
  doi: 10.1128/AEM.69.7.4278-4281.2003
– ident: e_1_2_7_30_1
  doi: 10.3168/jds.S0022-0302(02)74367-1
– ident: e_1_2_7_31_1
  doi: 10.1093/humrep/dem203
– ident: e_1_2_7_50_1
  doi: 10.1016/j.biomaterials.2010.07.045
– ident: e_1_2_7_48_1
  doi: 10.1002/iub.30
– ident: e_1_2_7_56_1
  doi: 10.1126/science.7985020
– ident: e_1_2_7_36_1
  doi: 10.1530/jrf.0.1170097
– ident: e_1_2_7_3_1
  doi: 10.1093/toxsci/kfh041
– ident: e_1_2_7_29_1
  doi: 10.1016/j.chemosphere.2016.12.016
– ident: e_1_2_7_7_1
  doi: 10.3762/bjnano.6.181
– ident: e_1_2_7_44_1
  doi: 10.2337/diab.39.4.471
– ident: e_1_2_7_4_1
  doi: 10.1089/sur.2006.032
– ident: e_1_2_7_51_1
  doi: 10.1021/nn800596w
– ident: e_1_2_7_63_1
  doi: 10.1038/nrc1412
– ident: e_1_2_7_33_1
  doi: 10.3390/ijms13044655
– ident: e_1_2_7_16_1
  doi: 10.1016/0147-619X(92)90008-X
– ident: e_1_2_7_17_1
  doi: 10.1007/s10495-007-0756-2
– ident: e_1_2_7_25_1
  doi: 10.1016/j.toxlet.2011.06.018
– ident: e_1_2_7_9_1
  doi: 10.1021/es7032718
– ident: e_1_2_7_10_1
  doi: 10.1166/jnn.2007.737
– ident: e_1_2_7_20_1
  doi: 10.1016/j.taap.2009.10.016
– ident: e_1_2_7_24_1
  doi: 10.1016/j.tox.2012.05.006
– ident: e_1_2_7_2_1
  doi: 10.1186/1743-8977-2-8
– ident: e_1_2_7_46_1
  doi: 10.1242/dev.107.3.597
– ident: e_1_2_7_19_1
  doi: 10.1042/BJ20061875
– ident: e_1_2_7_34_1
  doi: 10.3390/ijms131113911
– ident: e_1_2_7_37_1
  doi: 10.1002/jcp.20408
– ident: e_1_2_7_65_1
  doi: 10.1002/tox.22085
– ident: e_1_2_7_42_1
  doi: 10.1293/tox.2017-0043
– ident: e_1_2_7_60_1
  doi: 10.1080/152165400410281
– ident: e_1_2_7_66_1
  doi: 10.3390/ijms141020139
– ident: e_1_2_7_12_1
  doi: 10.1016/j.cca.2010.08.016
– ident: e_1_2_7_28_1
  doi: 10.1002/tox.22416
– ident: e_1_2_7_14_1
  doi: 10.1021/es801785m
– ident: e_1_2_7_39_1
  doi: 10.1016/j.reprotox.2009.03.014
– ident: e_1_2_7_23_1
  doi: 10.3390/ijms14010935
– ident: e_1_2_7_41_1
  doi: 10.1038/srep11170
– ident: e_1_2_7_61_1
  doi: 10.1021/jp712087m
– ident: e_1_2_7_64_1
  doi: 10.3390/ijms10041445
– volume: 10
  start-page: 7057
  year: 2015
  ident: e_1_2_7_40_1
  article-title: Silver nanoparticles cause complications in pregnant mice
  publication-title: Int J Nanomedicine
  contributor:
    fullname: Zhang XF
– ident: e_1_2_7_54_1
  doi: 10.1088/0957-4484/19/23/235104
– ident: e_1_2_7_59_1
  doi: 10.1002/jcp.10119
– ident: e_1_2_7_18_1
  doi: 10.1093/humrep/del255
– ident: e_1_2_7_21_1
  doi: 10.1016/j.toxlet.2009.07.009
– ident: e_1_2_7_5_1
  doi: 10.1002/jbm.a.30819
– ident: e_1_2_7_49_1
  doi: 10.1016/j.biomaterials.2007.12.037
– ident: e_1_2_7_22_1
  doi: 10.1016/j.toxlet.2010.05.003
– ident: e_1_2_7_27_1
  doi: 10.1002/tox.22366
– ident: e_1_2_7_52_1
  doi: 10.1016/j.taap.2008.09.015
– ident: e_1_2_7_8_1
  doi: 10.1016/j.biotechadv.2008.09.002
– ident: e_1_2_7_47_1
  doi: 10.1002/jez.1402650108
– ident: e_1_2_7_35_1
  doi: 10.1016/j.toxlet.2008.05.011
– ident: e_1_2_7_45_1
  doi: 10.1016/j.tox.2007.09.015
– ident: e_1_2_7_6_1
  doi: 10.1166/jnn.2008.1193
– ident: e_1_2_7_11_1
  doi: 10.1166/jnn.2014.9526
– ident: e_1_2_7_26_1
  doi: 10.1002/tox.21969
– ident: e_1_2_7_43_1
  doi: 10.1021/ja058083c
– ident: e_1_2_7_55_1
  doi: 10.1016/B978-0-444-53864-2.00005-0
– ident: e_1_2_7_62_1
  doi: 10.1158/0008-5472.CAN-03-1880
– ident: e_1_2_7_58_1
  doi: 10.1016/j.freeradbiomed.2007.06.014
– ident: e_1_2_7_15_1
  doi: 10.1021/ja061442z
– ident: e_1_2_7_53_1
  doi: 10.1186/1471-2121-10-65
– ident: e_1_2_7_32_1
  doi: 10.1016/j.theriogenology.2007.06.005
– ident: e_1_2_7_38_1
  doi: 10.1016/j.toxlet.2009.03.004
– volume: 52
  start-page: 794
  year: 2004
  ident: e_1_2_7_57_1
  article-title: Free radicals and antioxidants in human health: current status and future prospects
  publication-title: J Assoc Physicians India
  contributor:
    fullname: Devasagayam TPT
SSID ssj0009656
Score 2.4486158
Snippet Silver nanoparticles (AgNPs) are antibacterial materials widely used in numerous products and medical supplies. Previously, we showed that AgNPs trigger...
Abstract Silver nanoparticles (AgNPs) are antibacterial materials widely used in numerous products and medical supplies. Previously, we showed that AgNPs...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 1039
SubjectTerms Acetylcysteine
Antibacterial materials
Apoptosis
Biological fertilization
Blastocysts
Body weight
Cascades
Caspase
Cyclin-dependent kinase inhibitor p21
Embryogenesis
Embryonic development
Embryonic growth stage
Fetuses
Impairment
In vitro fertilization
In vivo methods and tests
Intravenous administration
Maturation
Nanoparticles
Oocytes
p53 Protein
Pretreatment
Reactive oxygen species
Regulatory mechanisms (biology)
Silver
Title Hazardous impacts of silver nanoparticles on mouse oocyte maturation and fertilization and fetal development through induction of apoptotic processes
URI https://www.ncbi.nlm.nih.gov/pubmed/29964317
https://www.proquest.com/docview/2101929905/abstract/
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ti9QwEA7riSCC6Pm2ekoQvx1du-lrPsp5UgQV5A7PTyXpJtyCtIvbgt7_8Pf415zppOlWTzj9UpbsJqWdZ5OZ5JlnGHuxsljoyGZBnFoVoPpdoMLcBqE2aqlSqTSxLd6nxWn89iw5m81-7rCWulYvqotL80r-x6rQBnbFLNl_sKwfFBrgM9gXrmBhuF7JxoW6AAMjiZWSHXtaxnaNZOfDWtUQDzvaGx4JYIxvDpum-t4iaRX1NtqBi2yRXf3FpWS6FsySXI2UIl_RB4J4UpztKQSbZtM2KPq6oYwDR0kc9vrHNDoktTff1tVkG7_o3Hb10TlMMZ54UWw7j9nP5pyyR9b-63fDcku0hH7e_DTpvu7cL9x-xjL3zDg_BUNAG4dUyGVhhjaIAwQV-xnmbRLQGPAZ7szCeLy9s6JDxCkvXS1IfRYefgGzGlUtnSpy_7ZSev4iaT2LErqWfddr7LrIZILR_-uPo36ZTPvywf6RBmmrULz0d506RH-Jcnpv5-QOu-3CFP6K8HOXzUy9z24ck_X22a0PlQF8kdr5PfbDA5E7IPLGcgIinwCRNzXvgcgJiHwEIgfY8QkQXQtAh-8AkTsgcg9EvJkHIvdAvM9O3xyfHBWBq_cRVFEStkFsDLgBWgpkBxhh4OVEmRYmXCmlZWoFau3ZFBX_bJZVeZSqXINHLKtY2krb6AHbq5vaPGLcAgKSROW5NnmcyyqPNUQWkVYCj_qlnbPnw0svNyTrUv5h1Dk7GMxRun_9thRLDIrAh0vm7CGZyI8AzSk65I-vMvoTdnOE_wHba7925ik4uK1-1oPoF-F9rdU
link.rule.ids 315,786,790,27957,27958
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hazardous+impacts+of+silver+nanoparticles+on+mouse+oocyte+maturation+and+fertilization+and+fetal+development+through+induction+of+apoptotic+processes&rft.jtitle=Environmental+toxicology&rft.au=Huang%2C+Chien%E2%80%90Hsun&rft.au=Yeh%2C+Jui%E2%80%90Ming&rft.au=Chan%2C+Wen%E2%80%90Hsiung&rft.date=2018-10-01&rft.issn=1520-4081&rft.eissn=1522-7278&rft.volume=33&rft.issue=10&rft.spage=1039&rft.epage=1049&rft_id=info:doi/10.1002%2Ftox.22590&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tox_22590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4081&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4081&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4081&client=summon