Formation mechanism of the solid electrolyte interphase in different ester electrolytes
The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. Herein, the formation mechanisms of the SEI is investigated in electrolytes with two frequently adopted solvents: diethyl carbonate (DEC) and ethylene carbonate (EC). The dispersit...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 9; no. 35; pp. 19664 - 19668 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
14.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. Herein, the formation mechanisms of the SEI is investigated in electrolytes with two frequently adopted solvents: diethyl carbonate (DEC) and ethylene carbonate (EC). The dispersity of reaction products between Li and solvents are explored by
1
H-NMR and first-principles calculations. Lithium ethylene carbonate (LEC), the reduction product of DEC, disperses in the electrolyte, while lithium ethylene dicarbonate (LEDC), the reduction product of EC, cannot disperse in the electrolyte. First-principles calculations further prove that the low polymerization degree of (LEC)
n
leads to its good dispersity, while poly-LEDC macromolecules can remain on the Li surface acting as the stable SEI. This work not only clearly points out the formation mechanism of SEI, but also demonstrates the functional role of EC, which can provide novel insights for electrolyte design of advanced batteries.
The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. |
---|---|
AbstractList | The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. Herein, the formation mechanisms of the SEI is investigated in electrolytes with two frequently adopted solvents: diethyl carbonate (DEC) and ethylene carbonate (EC). The dispersity of reaction products between Li and solvents are explored by
1
H-NMR and first-principles calculations. Lithium ethylene carbonate (LEC), the reduction product of DEC, disperses in the electrolyte, while lithium ethylene dicarbonate (LEDC), the reduction product of EC, cannot disperse in the electrolyte. First-principles calculations further prove that the low polymerization degree of (LEC)
n
leads to its good dispersity, while poly-LEDC macromolecules can remain on the Li surface acting as the stable SEI. This work not only clearly points out the formation mechanism of SEI, but also demonstrates the functional role of EC, which can provide novel insights for electrolyte design of advanced batteries.
The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. Herein, the formation mechanisms of the SEI is investigated in electrolytes with two frequently adopted solvents: diethyl carbonate (DEC) and ethylene carbonate (EC). The dispersity of reaction products between Li and solvents are explored by 1H-NMR and first-principles calculations. Lithium ethylene carbonate (LEC), the reduction product of DEC, disperses in the electrolyte, while lithium ethylene dicarbonate (LEDC), the reduction product of EC, cannot disperse in the electrolyte. First-principles calculations further prove that the low polymerization degree of (LEC)n leads to its good dispersity, while poly-LEDC macromolecules can remain on the Li surface acting as the stable SEI. This work not only clearly points out the formation mechanism of SEI, but also demonstrates the functional role of EC, which can provide novel insights for electrolyte design of advanced batteries. The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. Herein, the formation mechanisms of the SEI is investigated in electrolytes with two frequently adopted solvents: diethyl carbonate (DEC) and ethylene carbonate (EC). The dispersity of reaction products between Li and solvents are explored by ¹H-NMR and first-principles calculations. Lithium ethylene carbonate (LEC), the reduction product of DEC, disperses in the electrolyte, while lithium ethylene dicarbonate (LEDC), the reduction product of EC, cannot disperse in the electrolyte. First-principles calculations further prove that the low polymerization degree of (LEC)ₙ leads to its good dispersity, while poly-LEDC macromolecules can remain on the Li surface acting as the stable SEI. This work not only clearly points out the formation mechanism of SEI, but also demonstrates the functional role of EC, which can provide novel insights for electrolyte design of advanced batteries. The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. Herein, the formation mechanisms of the SEI is investigated in electrolytes with two frequently adopted solvents: diethyl carbonate (DEC) and ethylene carbonate (EC). The dispersity of reaction products between Li and solvents are explored by 1 H-NMR and first-principles calculations. Lithium ethylene carbonate (LEC), the reduction product of DEC, disperses in the electrolyte, while lithium ethylene dicarbonate (LEDC), the reduction product of EC, cannot disperse in the electrolyte. First-principles calculations further prove that the low polymerization degree of (LEC) n leads to its good dispersity, while poly-LEDC macromolecules can remain on the Li surface acting as the stable SEI. This work not only clearly points out the formation mechanism of SEI, but also demonstrates the functional role of EC, which can provide novel insights for electrolyte design of advanced batteries. |
Author | Liu, He Yuan, Hong Yang, Shi-Jie Yao, Nan Huang, Jia-Qi Xu, Xiang-Qun Cheng, Xin-Bing Jiang, Feng-Ni Chen, Xiang |
AuthorAffiliation | Department of Chemical Engineering Advanced Research Institute of Multidisciplinary Science Tsinghua University School of Materials Science & Engineering Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Beijing Institute of Technology |
AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: School of Materials Science & Engineering – name: Tsinghua University – name: Advanced Research Institute of Multidisciplinary Science – name: Beijing Institute of Technology – name: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology |
Author_xml | – sequence: 1 givenname: Shi-Jie surname: Yang fullname: Yang, Shi-Jie – sequence: 2 givenname: Nan surname: Yao fullname: Yao, Nan – sequence: 3 givenname: Xiang-Qun surname: Xu fullname: Xu, Xiang-Qun – sequence: 4 givenname: Feng-Ni surname: Jiang fullname: Jiang, Feng-Ni – sequence: 5 givenname: Xiang surname: Chen fullname: Chen, Xiang – sequence: 6 givenname: He surname: Liu fullname: Liu, He – sequence: 7 givenname: Hong surname: Yuan fullname: Yuan, Hong – sequence: 8 givenname: Jia-Qi surname: Huang fullname: Huang, Jia-Qi – sequence: 9 givenname: Xin-Bing surname: Cheng fullname: Cheng, Xin-Bing |
BookMark | eNptkU1LAzEQhoNUsNZevAsBLyJUk-wmmz2WalUoeKl4XNJ80JTdpCbpof_etJUqxbnMMDwzvPPOJeg57zQA1xg9YFTUjwongQjDVJyBPkEUjaqyZr1jzfkFGMa4Qjk4Qqyu--Bz6kMnkvUOdlouhbOxg97AtNQw-tYqqFstU_DtNmloXdJhvRRxV0JljdFBuwR1zP2_ZLwC50a0UQ9_8gB8TJ_nk9fR7P3lbTKejWRBURplTTUtF4RLZCqFEWeMFpJRsygrrThmpuJMEYVLjqWoiKKGSipRXWEsFqYoBuDusHcd_Ncm62g6G6VuW-G038SGsILlW2tCM3p7gq78JrisriG0ImV2qeSZQgdKBh9j0KaRNu0NSkHYtsGo2ZndPOH5eG_2OI_cn4ysg-1E2P4P3xzgEOWR-_1c8Q1ZNYq0 |
CitedBy_id | crossref_primary_10_1002_anie_202305287 crossref_primary_10_1016_j_est_2021_103641 crossref_primary_10_1002_smll_202206355 crossref_primary_10_1016_j_apsusc_2022_152430 crossref_primary_10_1016_j_jechem_2021_12_049 crossref_primary_10_1016_j_ensm_2022_05_045 crossref_primary_10_1039_D3PY01311A crossref_primary_10_1002_cssc_202300995 crossref_primary_10_1039_D3TA07229K crossref_primary_10_1039_D1TA10723B crossref_primary_10_1039_D2TA03253H crossref_primary_10_1002_ange_202307728 crossref_primary_10_1002_anie_202214545 crossref_primary_10_23919_IEN_2022_0003 crossref_primary_10_1021_acsenergylett_2c01227 crossref_primary_10_1007_s12598_022_02044_8 crossref_primary_10_1002_eem2_12892 crossref_primary_10_1038_s41467_022_33691_1 crossref_primary_10_1039_D4EE02358G crossref_primary_10_1016_j_jechem_2022_01_027 crossref_primary_10_1016_j_mtphys_2022_100672 crossref_primary_10_1002_anie_202312068 crossref_primary_10_1016_j_etran_2023_100279 crossref_primary_10_3390_nano13111789 crossref_primary_10_1039_D2SE00958G crossref_primary_10_1016_j_jechem_2022_05_005 crossref_primary_10_1021_acsaem_1c01852 crossref_primary_10_1039_D2SE00647B crossref_primary_10_1002_sus2_74 crossref_primary_10_1007_s40843_021_1960_3 crossref_primary_10_1021_acsaem_1c03797 crossref_primary_10_1002_aenm_202301354 crossref_primary_10_1002_adma_202405086 crossref_primary_10_1039_D1TA06327H crossref_primary_10_1002_anie_202307728 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1002_ange_202312068 crossref_primary_10_1016_j_electacta_2023_143189 crossref_primary_10_1016_j_jechem_2022_01_019 crossref_primary_10_1016_j_cej_2021_134471 crossref_primary_10_1002_inf2_12512 crossref_primary_10_1016_j_apsusc_2022_152806 crossref_primary_10_1007_s11705_022_2286_4 crossref_primary_10_1016_j_est_2024_111285 crossref_primary_10_3390_ma16206628 crossref_primary_10_1002_admi_202102283 crossref_primary_10_1016_j_mtener_2021_100871 crossref_primary_10_1002_ange_202305287 crossref_primary_10_1038_s41467_024_46186_y crossref_primary_10_1021_acsaem_2c03051 crossref_primary_10_1039_D2TA02162E crossref_primary_10_1016_j_cej_2022_135293 crossref_primary_10_1039_D2QI00640E crossref_primary_10_1016_j_cej_2021_133570 crossref_primary_10_1039_D4TA02153C crossref_primary_10_1007_s11581_022_04500_y crossref_primary_10_1039_D2TA07696A crossref_primary_10_1021_acs_jpcc_4c04828 crossref_primary_10_1002_ange_202214545 |
Cites_doi | 10.1016/j.ensm.2020.07.008 10.1016/j.jechem.2020.08.029 10.1021/la980454y 10.1021/acs.chemmater.7b00454 10.1149/1.1507595 10.1016/j.ensm.2018.11.003 10.1021/acsenergylett.0c02140 10.1002/aenm.202003293 10.1002/anie.202009575 10.1021/cr030203g 10.1039/C7CS00863E 10.1109/JPROC.2012.2190170 10.1002/adma.201800561 10.1038/s41586-019-1481-z 10.1149/1.1353158 10.1149/1.2100722 10.1021/jp0601522 10.1002/aenm.201902254 10.1021/acsenergylett.0c01619 10.1002/adma.201902785 10.1021/acsami.9b18315 10.1016/j.ensm.2021.01.012 10.1038/s41557-019-0304-z 10.1039/D0EE02088E 10.1039/C8EE00364E 10.1149/1945-7111/abc436 10.1016/j.jechem.2020.11.016 10.1149/2.100310jes 10.1016/j.jpowsour.2013.05.138 10.1021/acs.jpcc.9b03146 10.1021/acsaem.0c01605 10.1038/s41565-018-0284-y 10.1038/s41467-020-16114-x 10.1016/j.jpowsour.2018.10.060 10.1002/aenm.201702097 10.1039/D0TA06126C 10.1016/j.electacta.2016.12.126 10.1021/acs.nanolett.0c03438 10.1002/aenm.201902989 10.1021/acsenergylett.8b00526 10.1016/j.joule.2019.08.018 10.1038/s41560-019-0464-5 10.1016/j.nanoen.2020.105507 10.1021/acsnano.0c05636 10.1149/2.0021409eel |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d1ta02615a |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 19668 |
ExternalDocumentID | 10_1039_D1TA02615A d1ta02615a |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c350t-488954b28c0f7d1086653c65fb47ed816f786d2d1481ca72d5f5c5c09711abf33 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 13:59:40 EDT 2025 Mon Jun 30 12:06:44 EDT 2025 Thu Apr 24 23:10:46 EDT 2025 Tue Jul 01 01:13:09 EDT 2025 Sun Apr 17 04:30:15 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c350t-488954b28c0f7d1086653c65fb47ed816f786d2d1481ca72d5f5c5c09711abf33 |
Notes | and anions (S9), extended experiments of FEC and DMC (S10). See DOI 10.1039/d1ta02615a Electronic supplementary information (ESI) available: Experimental procedures, first-principles calculation details, battery cycling performance (S1 and S5), electrolytic cell's image (S2 and S6), solutions' images (S3, S7 and S8), SEM photos (S4), binding energy between Li + ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7565-2204 0000-0001-7394-9186 0000-0001-7567-1210 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2021/ta/d1ta02615a |
PQID | 2572420548 |
PQPubID | 2047523 |
PageCount | 5 |
ParticipantIDs | crossref_citationtrail_10_1039_D1TA02615A proquest_miscellaneous_2636800925 proquest_journals_2572420548 rsc_primary_d1ta02615a crossref_primary_10_1039_D1TA02615A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210914 |
PublicationDateYYYYMMDD | 2021-09-14 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210914 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Qiao (D1TA02615A/cit6) 2020; 12 Aurbach (D1TA02615A/cit34) 1987; 134 Liu (D1TA02615A/cit29) 2020 Zhuang (D1TA02615A/cit45) 1999; 15 Meyerson (D1TA02615A/cit27) 2021; 15 Adams (D1TA02615A/cit9) 2018; 8 Hood (D1TA02615A/cit12) 2021; 21 Hope (D1TA02615A/cit7) 2020; 11 Fang (D1TA02615A/cit19) 2019; 572 Xu (D1TA02615A/cit14) 2021; 56 Shi (D1TA02615A/cit3) 2019; 31 Nanda (D1TA02615A/cit13) 2021; 11 Sun (D1TA02615A/cit16) 2019; 10 Kim (D1TA02615A/cit44) 2017; 225 Ding (D1TA02615A/cit5) 2021; 59 Jurng (D1TA02615A/cit25) 2018; 11 Shi (D1TA02615A/cit15) 2020; 13 Yun (D1TA02615A/cit28) 2020; 5 Wu (D1TA02615A/cit8) 2020; 49 Cao (D1TA02615A/cit10) 2019; 4 Luo (D1TA02615A/cit20) 2021; 79 Li (D1TA02615A/cit1) 2018; 30 Liu (D1TA02615A/cit37) 2019; 14 Seo (D1TA02615A/cit39) 2014; 3 Nagpure (D1TA02615A/cit18) 2018; 407 Li (D1TA02615A/cit2) 2021; 37 Li (D1TA02615A/cit30) 2020; 6 Ramasubramanian (D1TA02615A/cit40) 2020; 3 Li (D1TA02615A/cit23) 2020; 32 Wang (D1TA02615A/cit42) 2019; 11 Fu (D1TA02615A/cit21) 2020; 59 Liu (D1TA02615A/cit17) 2019; 9 Boyer (D1TA02615A/cit38) 2019; 123 Rendek (D1TA02615A/cit35) 2002; 149 Nakajima (D1TA02615A/cit46) 2013; 243 Sloop (D1TA02615A/cit33) 2001; 4 Heiskanen (D1TA02615A/cit43) 2019; 3 Liu (D1TA02615A/cit26) 2020; 8 Su (D1TA02615A/cit22) 2019; 17 Xu (D1TA02615A/cit36) 2006; 110 Yoon (D1TA02615A/cit41) 2017; 29 Cheng (D1TA02615A/cit11) 2018; 3 Ding (D1TA02615A/cit31) 2013; 160 Xu (D1TA02615A/cit32) 2004; 104 Whittingham (D1TA02615A/cit4) 2012; 100 Weber (D1TA02615A/cit24) 2020; 167 |
References_xml | – volume: 32 start-page: 306 year: 2020 ident: D1TA02615A/cit23 publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2020.07.008 – volume: 56 start-page: 391 year: 2021 ident: D1TA02615A/cit14 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.08.029 – volume: 15 start-page: 1470 year: 1999 ident: D1TA02615A/cit45 publication-title: Langmuir doi: 10.1021/la980454y – volume: 29 start-page: 3237 year: 2017 ident: D1TA02615A/cit41 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00454 – volume: 149 start-page: E408 year: 2002 ident: D1TA02615A/cit35 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1507595 – volume: 17 start-page: 284 year: 2019 ident: D1TA02615A/cit22 publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2018.11.003 – volume: 6 start-page: 69 year: 2020 ident: D1TA02615A/cit30 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02140 – volume: 11 start-page: 2003293 year: 2021 ident: D1TA02615A/cit13 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003293 – volume: 59 start-page: 22194 year: 2020 ident: D1TA02615A/cit21 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202009575 – volume: 104 start-page: 4303 year: 2004 ident: D1TA02615A/cit32 publication-title: Chem. Rev. doi: 10.1021/cr030203g – volume: 49 start-page: 1569 year: 2020 ident: D1TA02615A/cit8 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00863E – volume: 100 start-page: 1518 year: 2012 ident: D1TA02615A/cit4 publication-title: Proc. IEEE. doi: 10.1109/JPROC.2012.2190170 – volume: 30 start-page: 1800561 year: 2018 ident: D1TA02615A/cit1 publication-title: Adv. Mater. doi: 10.1002/adma.201800561 – volume: 572 start-page: 511 year: 2019 ident: D1TA02615A/cit19 publication-title: Nature doi: 10.1038/s41586-019-1481-z – volume: 4 start-page: A42 year: 2001 ident: D1TA02615A/cit33 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1353158 – volume: 134 start-page: 1611 year: 1987 ident: D1TA02615A/cit34 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2100722 – volume: 110 start-page: 7708 year: 2006 ident: D1TA02615A/cit36 publication-title: J. Phys. Chem. B doi: 10.1021/jp0601522 – volume: 9 start-page: 1902254 year: 2019 ident: D1TA02615A/cit17 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902254 – volume: 5 start-page: 3108 year: 2020 ident: D1TA02615A/cit28 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01619 – start-page: 477 year: 2020 ident: D1TA02615A/cit29 publication-title: J. Power Sources – volume: 31 start-page: 1902785 year: 2019 ident: D1TA02615A/cit3 publication-title: Adv. Mater. doi: 10.1002/adma.201902785 – volume: 12 start-page: 5767 year: 2020 ident: D1TA02615A/cit6 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b18315 – volume: 37 start-page: 40 year: 2021 ident: D1TA02615A/cit2 publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2021.01.012 – volume: 11 start-page: 789 year: 2019 ident: D1TA02615A/cit42 publication-title: Nat. Chem. doi: 10.1038/s41557-019-0304-z – volume: 13 start-page: 3620 year: 2020 ident: D1TA02615A/cit15 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02088E – volume: 11 start-page: 2600 year: 2018 ident: D1TA02615A/cit25 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00364E – volume: 167 start-page: 140523 year: 2020 ident: D1TA02615A/cit24 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abc436 – volume: 59 start-page: 306 year: 2021 ident: D1TA02615A/cit5 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.11.016 – volume: 160 start-page: A1894 year: 2013 ident: D1TA02615A/cit31 publication-title: J. Electrochem. Soc. doi: 10.1149/2.100310jes – volume: 243 start-page: 581 year: 2013 ident: D1TA02615A/cit46 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.05.138 – volume: 123 start-page: 17695 year: 2019 ident: D1TA02615A/cit38 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b03146 – volume: 3 start-page: 10560 year: 2020 ident: D1TA02615A/cit40 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01605 – volume: 14 start-page: 50 year: 2019 ident: D1TA02615A/cit37 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0284-y – volume: 11 start-page: 2224 year: 2020 ident: D1TA02615A/cit7 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16114-x – volume: 407 start-page: 53 year: 2018 ident: D1TA02615A/cit18 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.060 – volume: 8 start-page: 1702097 year: 2018 ident: D1TA02615A/cit9 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702097 – volume: 8 start-page: 17415 year: 2020 ident: D1TA02615A/cit26 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA06126C – volume: 225 start-page: 358 year: 2017 ident: D1TA02615A/cit44 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.126 – volume: 21 start-page: 151 year: 2021 ident: D1TA02615A/cit12 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c03438 – volume: 10 start-page: 1902989 year: 2019 ident: D1TA02615A/cit16 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902989 – volume: 3 start-page: 1564 year: 2018 ident: D1TA02615A/cit11 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00526 – volume: 3 start-page: 2322 year: 2019 ident: D1TA02615A/cit43 publication-title: Joule doi: 10.1016/j.joule.2019.08.018 – volume: 4 start-page: 796 year: 2019 ident: D1TA02615A/cit10 publication-title: Nat. Energy doi: 10.1038/s41560-019-0464-5 – volume: 79 start-page: 105507 year: 2021 ident: D1TA02615A/cit20 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105507 – volume: 15 start-page: 29 year: 2021 ident: D1TA02615A/cit27 publication-title: ACS Nano doi: 10.1021/acsnano.0c05636 – volume: 3 start-page: A91 year: 2014 ident: D1TA02615A/cit39 publication-title: ECS Electrochem. Lett. doi: 10.1149/2.0021409eel |
SSID | ssj0000800699 |
Score | 2.566143 |
Snippet | The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. Herein, the formation mechanisms of the... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 19664 |
SubjectTerms | Anions carbonates Dispersion Electrolytes Electrolytic cells Ethylene First principles Interphase Lithium Lithium batteries Macromolecules Mathematical analysis NMR Nuclear magnetic resonance polymerization Reaction products Solid electrolytes Solvents |
Title | Formation mechanism of the solid electrolyte interphase in different ester electrolytes |
URI | https://www.proquest.com/docview/2572420548 https://www.proquest.com/docview/2636800925 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QscEK8VhQUFwQVFLkkcO86xglZLVYqQUlFOUWLHu5WWdrVND_AL-NmMndgJYpEWLlE0du3U89keP-YbhF4ToVm8RImDQkgc81LhIowrTGWgJJWCp4Zi4-OSna3i-ZquB4OfvVtLh7ocix83-pX8j1ZBBnrVXrL_oFlXKAjgHfQLT9AwPG-l45n1PPS_VdqDVwe8aM_8oeKN9NsgN5ff68oQQ0CjwqxlbsC2gVFq31Al9HPu_2KwQlXNn_KFjRI39ieNw49NMQTijTuh2ZG37ln6Bq7bvP9q96gvNni-qTrxrh3vrWR90II1IPgcfz448XzTFgDKOMfLTX_nIgr1NYvGY7QZ4KKABjiJm4i2djROe6Aj1L8awxDBYqyfvDfQGmlv1nbpf0wJAdGMqjKsC73cpL2Jzx72Lz_ls9VikWfTdXaEjiNYcERDdDyZZh8Wbr9OW9bMhCN1n23Zbkn6tiv-d_umW7QcXduIMsZyye6je60GvUmDnwdoUG0fors9IspH6ItDkueQ5O2UB0jyDJK8Hj68Dknw6jkkeQZJ_Zz7x2g1m2bvznAbcgMLQoMaOitPaVxGXAQqkToKF6NEMKrKOKkkD5lKOJORhEV0KIokklRRQYUmIguLUhFygobb3bZ6gjxYtaVRIRULeBJLIjitYqVYkeiQAWCmj9Ab21C5aPnodViUy9zciyBp_j7MJqZRJyP0yuW9alhYbsx1ats7b3vpPocpCaxQWJjwEXrpkqGT6IOxYlvtDpCHEcY1-xgdoRPQk6ujU-vTW_z4GbrTwfwUDevrQ_UcTNa6fNGi6RcrmJnc |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+mechanism+of+the+solid+electrolyte+interphase+in+different+ester+electrolytes&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Yang%2C+Shi-Jie&rft.au=Yao%2C+Nan&rft.au=Xu%2C+Xiang-Qun&rft.au=Jiang%2C+Feng-Ni&rft.date=2021-09-14&rft.issn=2050-7496&rft.volume=9&rft.issue=35+p.19664-19668&rft.spage=19664&rft.epage=19668&rft_id=info:doi/10.1039%2Fd1ta02615a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |