Formation mechanism of the solid electrolyte interphase in different ester electrolytes

The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. Herein, the formation mechanisms of the SEI is investigated in electrolytes with two frequently adopted solvents: diethyl carbonate (DEC) and ethylene carbonate (EC). The dispersit...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 9; no. 35; pp. 19664 - 19668
Main Authors Yang, Shi-Jie, Yao, Nan, Xu, Xiang-Qun, Jiang, Feng-Ni, Chen, Xiang, Liu, He, Yuan, Hong, Huang, Jia-Qi, Cheng, Xin-Bing
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 14.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. Herein, the formation mechanisms of the SEI is investigated in electrolytes with two frequently adopted solvents: diethyl carbonate (DEC) and ethylene carbonate (EC). The dispersity of reaction products between Li and solvents are explored by 1 H-NMR and first-principles calculations. Lithium ethylene carbonate (LEC), the reduction product of DEC, disperses in the electrolyte, while lithium ethylene dicarbonate (LEDC), the reduction product of EC, cannot disperse in the electrolyte. First-principles calculations further prove that the low polymerization degree of (LEC) n leads to its good dispersity, while poly-LEDC macromolecules can remain on the Li surface acting as the stable SEI. This work not only clearly points out the formation mechanism of SEI, but also demonstrates the functional role of EC, which can provide novel insights for electrolyte design of advanced batteries. The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries.
AbstractList The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. Herein, the formation mechanisms of the SEI is investigated in electrolytes with two frequently adopted solvents: diethyl carbonate (DEC) and ethylene carbonate (EC). The dispersity of reaction products between Li and solvents are explored by 1 H-NMR and first-principles calculations. Lithium ethylene carbonate (LEC), the reduction product of DEC, disperses in the electrolyte, while lithium ethylene dicarbonate (LEDC), the reduction product of EC, cannot disperse in the electrolyte. First-principles calculations further prove that the low polymerization degree of (LEC) n leads to its good dispersity, while poly-LEDC macromolecules can remain on the Li surface acting as the stable SEI. This work not only clearly points out the formation mechanism of SEI, but also demonstrates the functional role of EC, which can provide novel insights for electrolyte design of advanced batteries. The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries.
The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. Herein, the formation mechanisms of the SEI is investigated in electrolytes with two frequently adopted solvents: diethyl carbonate (DEC) and ethylene carbonate (EC). The dispersity of reaction products between Li and solvents are explored by 1H-NMR and first-principles calculations. Lithium ethylene carbonate (LEC), the reduction product of DEC, disperses in the electrolyte, while lithium ethylene dicarbonate (LEDC), the reduction product of EC, cannot disperse in the electrolyte. First-principles calculations further prove that the low polymerization degree of (LEC)n leads to its good dispersity, while poly-LEDC macromolecules can remain on the Li surface acting as the stable SEI. This work not only clearly points out the formation mechanism of SEI, but also demonstrates the functional role of EC, which can provide novel insights for electrolyte design of advanced batteries.
The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. Herein, the formation mechanisms of the SEI is investigated in electrolytes with two frequently adopted solvents: diethyl carbonate (DEC) and ethylene carbonate (EC). The dispersity of reaction products between Li and solvents are explored by ¹H-NMR and first-principles calculations. Lithium ethylene carbonate (LEC), the reduction product of DEC, disperses in the electrolyte, while lithium ethylene dicarbonate (LEDC), the reduction product of EC, cannot disperse in the electrolyte. First-principles calculations further prove that the low polymerization degree of (LEC)ₙ leads to its good dispersity, while poly-LEDC macromolecules can remain on the Li surface acting as the stable SEI. This work not only clearly points out the formation mechanism of SEI, but also demonstrates the functional role of EC, which can provide novel insights for electrolyte design of advanced batteries.
The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. Herein, the formation mechanisms of the SEI is investigated in electrolytes with two frequently adopted solvents: diethyl carbonate (DEC) and ethylene carbonate (EC). The dispersity of reaction products between Li and solvents are explored by 1 H-NMR and first-principles calculations. Lithium ethylene carbonate (LEC), the reduction product of DEC, disperses in the electrolyte, while lithium ethylene dicarbonate (LEDC), the reduction product of EC, cannot disperse in the electrolyte. First-principles calculations further prove that the low polymerization degree of (LEC) n leads to its good dispersity, while poly-LEDC macromolecules can remain on the Li surface acting as the stable SEI. This work not only clearly points out the formation mechanism of SEI, but also demonstrates the functional role of EC, which can provide novel insights for electrolyte design of advanced batteries.
Author Liu, He
Yuan, Hong
Yang, Shi-Jie
Yao, Nan
Huang, Jia-Qi
Xu, Xiang-Qun
Cheng, Xin-Bing
Jiang, Feng-Ni
Chen, Xiang
AuthorAffiliation Department of Chemical Engineering
Advanced Research Institute of Multidisciplinary Science
Tsinghua University
School of Materials Science & Engineering
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology
Beijing Institute of Technology
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: School of Materials Science & Engineering
– name: Tsinghua University
– name: Advanced Research Institute of Multidisciplinary Science
– name: Beijing Institute of Technology
– name: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology
Author_xml – sequence: 1
  givenname: Shi-Jie
  surname: Yang
  fullname: Yang, Shi-Jie
– sequence: 2
  givenname: Nan
  surname: Yao
  fullname: Yao, Nan
– sequence: 3
  givenname: Xiang-Qun
  surname: Xu
  fullname: Xu, Xiang-Qun
– sequence: 4
  givenname: Feng-Ni
  surname: Jiang
  fullname: Jiang, Feng-Ni
– sequence: 5
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
– sequence: 6
  givenname: He
  surname: Liu
  fullname: Liu, He
– sequence: 7
  givenname: Hong
  surname: Yuan
  fullname: Yuan, Hong
– sequence: 8
  givenname: Jia-Qi
  surname: Huang
  fullname: Huang, Jia-Qi
– sequence: 9
  givenname: Xin-Bing
  surname: Cheng
  fullname: Cheng, Xin-Bing
BookMark eNptkU1LAzEQhoNUsNZevAsBLyJUk-wmmz2WalUoeKl4XNJ80JTdpCbpof_etJUqxbnMMDwzvPPOJeg57zQA1xg9YFTUjwongQjDVJyBPkEUjaqyZr1jzfkFGMa4Qjk4Qqyu--Bz6kMnkvUOdlouhbOxg97AtNQw-tYqqFstU_DtNmloXdJhvRRxV0JljdFBuwR1zP2_ZLwC50a0UQ9_8gB8TJ_nk9fR7P3lbTKejWRBURplTTUtF4RLZCqFEWeMFpJRsygrrThmpuJMEYVLjqWoiKKGSipRXWEsFqYoBuDusHcd_Ncm62g6G6VuW-G038SGsILlW2tCM3p7gq78JrisriG0ImV2qeSZQgdKBh9j0KaRNu0NSkHYtsGo2ZndPOH5eG_2OI_cn4ysg-1E2P4P3xzgEOWR-_1c8Q1ZNYq0
CitedBy_id crossref_primary_10_1002_anie_202305287
crossref_primary_10_1016_j_est_2021_103641
crossref_primary_10_1002_smll_202206355
crossref_primary_10_1016_j_apsusc_2022_152430
crossref_primary_10_1016_j_jechem_2021_12_049
crossref_primary_10_1016_j_ensm_2022_05_045
crossref_primary_10_1039_D3PY01311A
crossref_primary_10_1002_cssc_202300995
crossref_primary_10_1039_D3TA07229K
crossref_primary_10_1039_D1TA10723B
crossref_primary_10_1039_D2TA03253H
crossref_primary_10_1002_ange_202307728
crossref_primary_10_1002_anie_202214545
crossref_primary_10_23919_IEN_2022_0003
crossref_primary_10_1021_acsenergylett_2c01227
crossref_primary_10_1007_s12598_022_02044_8
crossref_primary_10_1002_eem2_12892
crossref_primary_10_1038_s41467_022_33691_1
crossref_primary_10_1039_D4EE02358G
crossref_primary_10_1016_j_jechem_2022_01_027
crossref_primary_10_1016_j_mtphys_2022_100672
crossref_primary_10_1002_anie_202312068
crossref_primary_10_1016_j_etran_2023_100279
crossref_primary_10_3390_nano13111789
crossref_primary_10_1039_D2SE00958G
crossref_primary_10_1016_j_jechem_2022_05_005
crossref_primary_10_1021_acsaem_1c01852
crossref_primary_10_1039_D2SE00647B
crossref_primary_10_1002_sus2_74
crossref_primary_10_1007_s40843_021_1960_3
crossref_primary_10_1021_acsaem_1c03797
crossref_primary_10_1002_aenm_202301354
crossref_primary_10_1002_adma_202405086
crossref_primary_10_1039_D1TA06327H
crossref_primary_10_1002_anie_202307728
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1002_ange_202312068
crossref_primary_10_1016_j_electacta_2023_143189
crossref_primary_10_1016_j_jechem_2022_01_019
crossref_primary_10_1016_j_cej_2021_134471
crossref_primary_10_1002_inf2_12512
crossref_primary_10_1016_j_apsusc_2022_152806
crossref_primary_10_1007_s11705_022_2286_4
crossref_primary_10_1016_j_est_2024_111285
crossref_primary_10_3390_ma16206628
crossref_primary_10_1002_admi_202102283
crossref_primary_10_1016_j_mtener_2021_100871
crossref_primary_10_1002_ange_202305287
crossref_primary_10_1038_s41467_024_46186_y
crossref_primary_10_1021_acsaem_2c03051
crossref_primary_10_1039_D2TA02162E
crossref_primary_10_1016_j_cej_2022_135293
crossref_primary_10_1039_D2QI00640E
crossref_primary_10_1016_j_cej_2021_133570
crossref_primary_10_1039_D4TA02153C
crossref_primary_10_1007_s11581_022_04500_y
crossref_primary_10_1039_D2TA07696A
crossref_primary_10_1021_acs_jpcc_4c04828
crossref_primary_10_1002_ange_202214545
Cites_doi 10.1016/j.ensm.2020.07.008
10.1016/j.jechem.2020.08.029
10.1021/la980454y
10.1021/acs.chemmater.7b00454
10.1149/1.1507595
10.1016/j.ensm.2018.11.003
10.1021/acsenergylett.0c02140
10.1002/aenm.202003293
10.1002/anie.202009575
10.1021/cr030203g
10.1039/C7CS00863E
10.1109/JPROC.2012.2190170
10.1002/adma.201800561
10.1038/s41586-019-1481-z
10.1149/1.1353158
10.1149/1.2100722
10.1021/jp0601522
10.1002/aenm.201902254
10.1021/acsenergylett.0c01619
10.1002/adma.201902785
10.1021/acsami.9b18315
10.1016/j.ensm.2021.01.012
10.1038/s41557-019-0304-z
10.1039/D0EE02088E
10.1039/C8EE00364E
10.1149/1945-7111/abc436
10.1016/j.jechem.2020.11.016
10.1149/2.100310jes
10.1016/j.jpowsour.2013.05.138
10.1021/acs.jpcc.9b03146
10.1021/acsaem.0c01605
10.1038/s41565-018-0284-y
10.1038/s41467-020-16114-x
10.1016/j.jpowsour.2018.10.060
10.1002/aenm.201702097
10.1039/D0TA06126C
10.1016/j.electacta.2016.12.126
10.1021/acs.nanolett.0c03438
10.1002/aenm.201902989
10.1021/acsenergylett.8b00526
10.1016/j.joule.2019.08.018
10.1038/s41560-019-0464-5
10.1016/j.nanoen.2020.105507
10.1021/acsnano.0c05636
10.1149/2.0021409eel
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d1ta02615a
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database
AGRICOLA
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 19668
ExternalDocumentID 10_1039_D1TA02615A
d1ta02615a
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c350t-488954b28c0f7d1086653c65fb47ed816f786d2d1481ca72d5f5c5c09711abf33
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 13:59:40 EDT 2025
Mon Jun 30 12:06:44 EDT 2025
Thu Apr 24 23:10:46 EDT 2025
Tue Jul 01 01:13:09 EDT 2025
Sun Apr 17 04:30:15 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c350t-488954b28c0f7d1086653c65fb47ed816f786d2d1481ca72d5f5c5c09711abf33
Notes and anions (S9), extended experiments of FEC and DMC (S10). See DOI
10.1039/d1ta02615a
Electronic supplementary information (ESI) available: Experimental procedures, first-principles calculation details, battery cycling performance (S1 and S5), electrolytic cell's image (S2 and S6), solutions' images (S3, S7 and S8), SEM photos (S4), binding energy between Li
+
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7565-2204
0000-0001-7394-9186
0000-0001-7567-1210
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2021/ta/d1ta02615a
PQID 2572420548
PQPubID 2047523
PageCount 5
ParticipantIDs crossref_citationtrail_10_1039_D1TA02615A
proquest_miscellaneous_2636800925
proquest_journals_2572420548
rsc_primary_d1ta02615a
crossref_primary_10_1039_D1TA02615A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210914
PublicationDateYYYYMMDD 2021-09-14
PublicationDate_xml – month: 9
  year: 2021
  text: 20210914
  day: 14
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Qiao (D1TA02615A/cit6) 2020; 12
Aurbach (D1TA02615A/cit34) 1987; 134
Liu (D1TA02615A/cit29) 2020
Zhuang (D1TA02615A/cit45) 1999; 15
Meyerson (D1TA02615A/cit27) 2021; 15
Adams (D1TA02615A/cit9) 2018; 8
Hood (D1TA02615A/cit12) 2021; 21
Hope (D1TA02615A/cit7) 2020; 11
Fang (D1TA02615A/cit19) 2019; 572
Xu (D1TA02615A/cit14) 2021; 56
Shi (D1TA02615A/cit3) 2019; 31
Nanda (D1TA02615A/cit13) 2021; 11
Sun (D1TA02615A/cit16) 2019; 10
Kim (D1TA02615A/cit44) 2017; 225
Ding (D1TA02615A/cit5) 2021; 59
Jurng (D1TA02615A/cit25) 2018; 11
Shi (D1TA02615A/cit15) 2020; 13
Yun (D1TA02615A/cit28) 2020; 5
Wu (D1TA02615A/cit8) 2020; 49
Cao (D1TA02615A/cit10) 2019; 4
Luo (D1TA02615A/cit20) 2021; 79
Li (D1TA02615A/cit1) 2018; 30
Liu (D1TA02615A/cit37) 2019; 14
Seo (D1TA02615A/cit39) 2014; 3
Nagpure (D1TA02615A/cit18) 2018; 407
Li (D1TA02615A/cit2) 2021; 37
Li (D1TA02615A/cit30) 2020; 6
Ramasubramanian (D1TA02615A/cit40) 2020; 3
Li (D1TA02615A/cit23) 2020; 32
Wang (D1TA02615A/cit42) 2019; 11
Fu (D1TA02615A/cit21) 2020; 59
Liu (D1TA02615A/cit17) 2019; 9
Boyer (D1TA02615A/cit38) 2019; 123
Rendek (D1TA02615A/cit35) 2002; 149
Nakajima (D1TA02615A/cit46) 2013; 243
Sloop (D1TA02615A/cit33) 2001; 4
Heiskanen (D1TA02615A/cit43) 2019; 3
Liu (D1TA02615A/cit26) 2020; 8
Su (D1TA02615A/cit22) 2019; 17
Xu (D1TA02615A/cit36) 2006; 110
Yoon (D1TA02615A/cit41) 2017; 29
Cheng (D1TA02615A/cit11) 2018; 3
Ding (D1TA02615A/cit31) 2013; 160
Xu (D1TA02615A/cit32) 2004; 104
Whittingham (D1TA02615A/cit4) 2012; 100
Weber (D1TA02615A/cit24) 2020; 167
References_xml – volume: 32
  start-page: 306
  year: 2020
  ident: D1TA02615A/cit23
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2020.07.008
– volume: 56
  start-page: 391
  year: 2021
  ident: D1TA02615A/cit14
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.08.029
– volume: 15
  start-page: 1470
  year: 1999
  ident: D1TA02615A/cit45
  publication-title: Langmuir
  doi: 10.1021/la980454y
– volume: 29
  start-page: 3237
  year: 2017
  ident: D1TA02615A/cit41
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00454
– volume: 149
  start-page: E408
  year: 2002
  ident: D1TA02615A/cit35
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1507595
– volume: 17
  start-page: 284
  year: 2019
  ident: D1TA02615A/cit22
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2018.11.003
– volume: 6
  start-page: 69
  year: 2020
  ident: D1TA02615A/cit30
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02140
– volume: 11
  start-page: 2003293
  year: 2021
  ident: D1TA02615A/cit13
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003293
– volume: 59
  start-page: 22194
  year: 2020
  ident: D1TA02615A/cit21
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202009575
– volume: 104
  start-page: 4303
  year: 2004
  ident: D1TA02615A/cit32
  publication-title: Chem. Rev.
  doi: 10.1021/cr030203g
– volume: 49
  start-page: 1569
  year: 2020
  ident: D1TA02615A/cit8
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00863E
– volume: 100
  start-page: 1518
  year: 2012
  ident: D1TA02615A/cit4
  publication-title: Proc. IEEE.
  doi: 10.1109/JPROC.2012.2190170
– volume: 30
  start-page: 1800561
  year: 2018
  ident: D1TA02615A/cit1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800561
– volume: 572
  start-page: 511
  year: 2019
  ident: D1TA02615A/cit19
  publication-title: Nature
  doi: 10.1038/s41586-019-1481-z
– volume: 4
  start-page: A42
  year: 2001
  ident: D1TA02615A/cit33
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1353158
– volume: 134
  start-page: 1611
  year: 1987
  ident: D1TA02615A/cit34
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2100722
– volume: 110
  start-page: 7708
  year: 2006
  ident: D1TA02615A/cit36
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0601522
– volume: 9
  start-page: 1902254
  year: 2019
  ident: D1TA02615A/cit17
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902254
– volume: 5
  start-page: 3108
  year: 2020
  ident: D1TA02615A/cit28
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01619
– start-page: 477
  year: 2020
  ident: D1TA02615A/cit29
  publication-title: J. Power Sources
– volume: 31
  start-page: 1902785
  year: 2019
  ident: D1TA02615A/cit3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902785
– volume: 12
  start-page: 5767
  year: 2020
  ident: D1TA02615A/cit6
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b18315
– volume: 37
  start-page: 40
  year: 2021
  ident: D1TA02615A/cit2
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2021.01.012
– volume: 11
  start-page: 789
  year: 2019
  ident: D1TA02615A/cit42
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0304-z
– volume: 13
  start-page: 3620
  year: 2020
  ident: D1TA02615A/cit15
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02088E
– volume: 11
  start-page: 2600
  year: 2018
  ident: D1TA02615A/cit25
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00364E
– volume: 167
  start-page: 140523
  year: 2020
  ident: D1TA02615A/cit24
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abc436
– volume: 59
  start-page: 306
  year: 2021
  ident: D1TA02615A/cit5
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.11.016
– volume: 160
  start-page: A1894
  year: 2013
  ident: D1TA02615A/cit31
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.100310jes
– volume: 243
  start-page: 581
  year: 2013
  ident: D1TA02615A/cit46
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.05.138
– volume: 123
  start-page: 17695
  year: 2019
  ident: D1TA02615A/cit38
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b03146
– volume: 3
  start-page: 10560
  year: 2020
  ident: D1TA02615A/cit40
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01605
– volume: 14
  start-page: 50
  year: 2019
  ident: D1TA02615A/cit37
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0284-y
– volume: 11
  start-page: 2224
  year: 2020
  ident: D1TA02615A/cit7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16114-x
– volume: 407
  start-page: 53
  year: 2018
  ident: D1TA02615A/cit18
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.060
– volume: 8
  start-page: 1702097
  year: 2018
  ident: D1TA02615A/cit9
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702097
– volume: 8
  start-page: 17415
  year: 2020
  ident: D1TA02615A/cit26
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA06126C
– volume: 225
  start-page: 358
  year: 2017
  ident: D1TA02615A/cit44
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.126
– volume: 21
  start-page: 151
  year: 2021
  ident: D1TA02615A/cit12
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c03438
– volume: 10
  start-page: 1902989
  year: 2019
  ident: D1TA02615A/cit16
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902989
– volume: 3
  start-page: 1564
  year: 2018
  ident: D1TA02615A/cit11
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00526
– volume: 3
  start-page: 2322
  year: 2019
  ident: D1TA02615A/cit43
  publication-title: Joule
  doi: 10.1016/j.joule.2019.08.018
– volume: 4
  start-page: 796
  year: 2019
  ident: D1TA02615A/cit10
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0464-5
– volume: 79
  start-page: 105507
  year: 2021
  ident: D1TA02615A/cit20
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105507
– volume: 15
  start-page: 29
  year: 2021
  ident: D1TA02615A/cit27
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05636
– volume: 3
  start-page: A91
  year: 2014
  ident: D1TA02615A/cit39
  publication-title: ECS Electrochem. Lett.
  doi: 10.1149/2.0021409eel
SSID ssj0000800699
Score 2.566143
Snippet The solid electrolyte interphase (SEI) plays a critical role in determining the performance of lithium metal batteries. Herein, the formation mechanisms of the...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19664
SubjectTerms Anions
carbonates
Dispersion
Electrolytes
Electrolytic cells
Ethylene
First principles
Interphase
Lithium
Lithium batteries
Macromolecules
Mathematical analysis
NMR
Nuclear magnetic resonance
polymerization
Reaction products
Solid electrolytes
Solvents
Title Formation mechanism of the solid electrolyte interphase in different ester electrolytes
URI https://www.proquest.com/docview/2572420548
https://www.proquest.com/docview/2636800925
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QscEK8VhQUFwQVFLkkcO86xglZLVYqQUlFOUWLHu5WWdrVND_AL-NmMndgJYpEWLlE0du3U89keP-YbhF4ToVm8RImDQkgc81LhIowrTGWgJJWCp4Zi4-OSna3i-ZquB4OfvVtLh7ocix83-pX8j1ZBBnrVXrL_oFlXKAjgHfQLT9AwPG-l45n1PPS_VdqDVwe8aM_8oeKN9NsgN5ff68oQQ0CjwqxlbsC2gVFq31Al9HPu_2KwQlXNn_KFjRI39ieNw49NMQTijTuh2ZG37ln6Bq7bvP9q96gvNni-qTrxrh3vrWR90II1IPgcfz448XzTFgDKOMfLTX_nIgr1NYvGY7QZ4KKABjiJm4i2djROe6Aj1L8awxDBYqyfvDfQGmlv1nbpf0wJAdGMqjKsC73cpL2Jzx72Lz_ls9VikWfTdXaEjiNYcERDdDyZZh8Wbr9OW9bMhCN1n23Zbkn6tiv-d_umW7QcXduIMsZyye6je60GvUmDnwdoUG0fors9IspH6ItDkueQ5O2UB0jyDJK8Hj68Dknw6jkkeQZJ_Zz7x2g1m2bvznAbcgMLQoMaOitPaVxGXAQqkToKF6NEMKrKOKkkD5lKOJORhEV0KIokklRRQYUmIguLUhFygobb3bZ6gjxYtaVRIRULeBJLIjitYqVYkeiQAWCmj9Ab21C5aPnodViUy9zciyBp_j7MJqZRJyP0yuW9alhYbsx1ats7b3vpPocpCaxQWJjwEXrpkqGT6IOxYlvtDpCHEcY1-xgdoRPQk6ujU-vTW_z4GbrTwfwUDevrQ_UcTNa6fNGi6RcrmJnc
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+mechanism+of+the+solid+electrolyte+interphase+in+different+ester+electrolytes&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Yang%2C+Shi-Jie&rft.au=Yao%2C+Nan&rft.au=Xu%2C+Xiang-Qun&rft.au=Jiang%2C+Feng-Ni&rft.date=2021-09-14&rft.issn=2050-7496&rft.volume=9&rft.issue=35+p.19664-19668&rft.spage=19664&rft.epage=19668&rft_id=info:doi/10.1039%2Fd1ta02615a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon