Temperature driven internal heat integration in an energy-efficient partial double annular column
This study presents a strategy for the internal heat integration of reactive distillation (RD) columns for concurrently producing 2-ethylhexyl dodecanoate and methyl dodecanoate. Because of a significant temperature difference in the two reactions, the two RD column process with each single reaction...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 39; no. 2; pp. 263 - 274 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2022
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0256-1115 1975-7220 |
DOI | 10.1007/s11814-021-0937-7 |
Cover
Abstract | This study presents a strategy for the internal heat integration of reactive distillation (RD) columns for concurrently producing 2-ethylhexyl dodecanoate and methyl dodecanoate. Because of a significant temperature difference in the two reactions, the two RD column process with each single reaction occurring in the respective column has lower energy consumption than the direct sequence consisting of one RD column followed by a non-RD column. Thus, internal heat integration in a partial double annular configuration is introduced on the basis of the two RD column process. In the new annular RD configuration, heat is transferred from the outer column shell having a high-temperature exothermic reaction to the inner shell with a low-temperature endothermic reaction. By using the concept of pinch temperature, we determine the heat transfer stages to secure sufficient temperature driving force. For the same product purity and reaction extent, the internal heat integrated distillation column (HIDiC) shows lower internal flow-rate and energy consumption than the other sequences of the direct sequence and the reactive dividing wall column (RDWC). The total utility consumption of the HIDiC with a partial double annular structure was reduced by 15.4% and 14.4% compared to the direct sequence and the RDWC, respectively. |
---|---|
AbstractList | This study presents a strategy for the internal heat integration of reactive distillation (RD) columns for concurrently producing 2-ethylhexyl dodecanoate and methyl dodecanoate. Because of a significant temperature difference in the two reactions, the two RD column process with each single reaction occurring in the respective column has lower energy consumption than the direct sequence consisting of one RD column followed by a non-RD column. Thus, internal heat integration in a partial double annular configuration is introduced on the basis of the two RD column process. In the new annular RD configuration, heat is transferred from the outer column shell having a high-temperature exothermic reaction to the inner shell with a low-temperature endothermic reaction. By using the concept of pinch temperature, we determine the heat transfer stages to secure sufficient temperature driving force. For the same product purity and reaction extent, the internal heat integrated distillation column (HIDiC) shows lower internal flow-rate and energy consumption than the other sequences of the direct sequence and the reactive dividing wall column (RDWC). The total utility consumption of the HIDiC with a partial double annular structure was reduced by 15.4% and 14.4% compared to the direct sequence and the RDWC, respectively. This study presents a strategy for the internal heat integration of reactive distillation (RD) columns for concurrently producing 2-ethylhexyl dodecanoate and methyl dodecanoate. Because of a significant temperature difference in the two reactions, the two RD column process with each single reaction occurring in the respective column has lower energy consumption than the direct sequence consisting of one RD column followed by a non-RD column. Thus, internal heat integration in a partial double annular configuration is introduced on the basis of the two RD column process. In the new annular RD configuration, heat is transferred from the outer column shell having a high-temperature exothermic reaction to the inner shell with a low-temperature endothermic reaction. By using the concept of pinch temperature, we determine the heat transfer stages to secure sufficient temperature driving force. For the same product purity and reaction extent, the internal heat integrated distillation column (HIDiC) shows lower internal flowrate and energy consumption than the other sequences of the direct sequence and the reactive dividing wall column (RDWC). The total utility consumption of the HIDiC with a partial double annular structure was reduced by 15.4% and 14.4% compared to the direct sequence and the RDWC, respectively. KCI Citation Count: 3 |
Author | Lee, Heecheon Lee, Minyong Lee, Jae W. Seo, Chaeyeong |
Author_xml | – sequence: 1 givenname: Chaeyeong surname: Seo fullname: Seo, Chaeyeong organization: Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 2 givenname: Heecheon surname: Lee fullname: Lee, Heecheon organization: Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 3 givenname: Minyong surname: Lee fullname: Lee, Minyong organization: Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 4 givenname: Jae W. surname: Lee fullname: Lee, Jae W. email: jaewlee@kaist.ac.kr organization: Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002807784$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kMtKAzEUhoMoWC8P4G7AlYtoLk3SWZbiDQRB6jqkmZManSY1yQi-vTMdQRB0dQjn-39OviO0H2IAhM4ouaSEqKtM6YxOMWEUk5orrPbQhNZKYMUY2UcTwoTElFJxiI5yfiVECMnIBJklbLaQTOkSVE3yHxAqHwqkYNrqBUzZvdY94OOwqUyoIEBaf2JwzlsPoVRbk4rv-SZ2qxZ6JHStSZWNbbcJJ-jAmTbD6fc8Rs8318vFHX54vL1fzB-w5YIUzB13jk35lMrGWrFyznKpTMNcU0Pd8MYSJQhIYVaUQM3lTApQnFnFZqKpOT9GF2NvSE6_Wa-j8bu5jvot6fnT8l7XNZNSqp49H9ltiu8d5KJfYzd8OWsmGVdMTeXQqEbKpphzAqetLzsRJRnfakr04F6P7nXvXg_u9dBPfyW3yW9M-vw3w8ZM7tmwhvRz09-hL41gmQM |
CitedBy_id | crossref_primary_10_1007_s11814_023_1574_0 crossref_primary_10_1016_j_seppur_2022_120598 crossref_primary_10_1021_acsomega_3c08128 crossref_primary_10_1016_j_energy_2022_124622 crossref_primary_10_1016_j_seppur_2023_125550 crossref_primary_10_1016_j_jiec_2022_02_012 |
Cites_doi | 10.1002/aic.13775 10.1007/s11814-020-0631-1 10.1080/01496398708057189 10.1016/j.cep.2014.10.017 10.1016/j.cherd.2019.04.023 10.1021/acs.iecr.0c01683 10.1016/S0009-2509(03)00165-9 10.1021/ie9016607 10.1021/acs.iecr.9b00324 10.1007/s11814-020-0682-3 10.1021/ie990447k 10.1098/rspa.2000.0597 10.1016/j.compchemeng.2013.01.002 10.1007/s11814-017-0342-4 10.1016/j.cjche.2018.08.021 10.1016/S0378-3812(02)00097-3 10.1016/j.cep.2010.02.002 10.1021/ie0610344 10.1016/j.cherd.2017.07.017 10.1016/j.cherd.2019.06.008 10.1002/9781118510193 10.1021/acs.iecr.8b05450 10.1016/S0098-1354(03)00156-X 10.1016/j.seppur.2011.05.009 10.1080/00986445.2017.1387540 10.1039/C5RA24413G 10.1021/ie000633m 10.1007/s11814-019-0271-5 10.1016/0009-2509(83)80185-7 10.1021/ie060867r 10.1098/rspa.2000.0596 10.1002/aic.690470611 10.1016/j.compchemeng.2006.11.006 10.1205/cherd.04301 10.1021/acs.iecr.9b05051 10.1016/0009-2509(85)80125-1 10.1021/ie020925i 10.1016/j.energy.2019.01.126 10.1016/j.tca.2005.11.042 10.1205/026387603321158320 10.1002/aic.690460614 10.1016/j.cep.2010.04.001 10.1016/j.cep.2020.108048 10.1016/S0009-2509(03)00154-4 10.1016/S0098-1354(00)00513-5 10.1021/acsanm.0c01909 10.1007/s11814-020-0505-6 |
ContentType | Journal Article |
Copyright | The Korean Institute of Chemical Engineers 2021 The Korean Institute of Chemical Engineers 2021. |
Copyright_xml | – notice: The Korean Institute of Chemical Engineers 2021 – notice: The Korean Institute of Chemical Engineers 2021. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-021-0937-7 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 274 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9926667 10_1007_s11814_021_0937_7 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z8N Z8Q Z8Z Z92 ZMTXR ZZE ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ 85H AABYN AAFGU AAGCJ AAUCO AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU UNUBA |
ID | FETCH-LOGICAL-c350t-3f3ff243416dcc5bffc367ad2fd9e9d3dc0750e65ab10e936865e732c7285d933 |
IEDL.DBID | AGYKE |
ISSN | 0256-1115 |
IngestDate | Wed Jan 31 06:58:39 EST 2024 Fri Jul 25 10:56:11 EDT 2025 Tue Jul 01 03:29:42 EDT 2025 Thu Apr 24 23:07:59 EDT 2025 Fri Feb 21 02:46:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Internal Heat Integration Heat Integrated Distillation Column Reactive Distillation Partial Double Annular Column Reactive Dividing Wall Column |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-3f3ff243416dcc5bffc367ad2fd9e9d3dc0750e65ab10e936865e732c7285d933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2623727463 |
PQPubID | 2044390 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9926667 proquest_journals_2623727463 crossref_citationtrail_10_1007_s11814_021_0937_7 crossref_primary_10_1007_s11814_021_0937_7 springer_journals_10_1007_s11814_021_0937_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | Alves-RosaM AMartinsLHammerPPulcinelliS HSantilliC VRSC Adv.2016666861:CAS:528:DC%2BC28Xlt1OgtQ%3D%3D GalanidoR JKimD SChoJKorean J. Chem. Eng.202037850 SteinigewegSGmehlingJInd. Eng. Chem. Res.20034236121:CAS:528:DC%2BD3sXks12ms70%3D JiangZAgrawalRChem. Eng. Res. Des.20191471221:CAS:528:DC%2BC1MXovFGjurw%3D GlenchurTGovindRSep. Sci. Technol.19872223231:CAS:528:DyaL1cXotVWr KissA AJobsonMGaoXInd. Eng. Chem. Res.20195859091:CAS:528:DC%2BC1cXisVOitrvJ FangJChengXLiZLiHLiCChin. J. Chem. Eng.20192712721:CAS:528:DC%2BB3cXhtVagsLjI LiB-HChota CastilloY EChangC-TChem. Eng. Res. Des.20191482601:CAS:528:DC%2BC1MXht1ejsbvM HussR SChenFMaloneM FDohertyM FComput. Chem. Eng.20032718551:CAS:528:DC%2BD3sXotlygsLo%3D LeeJ WHauanSWesterbergA WAIChE J.20004612181:CAS:528:DC%2BD3cXktl2iu7Y%3D GadallaMJiménezLOlujicZJansensP JComput. Chem. Eng.20073113461:CAS:528:DC%2BD2sXnvFOgt70%3D LeeJ WHauanSLienK MWesterbergA WProc. R. Soc. A200045619651:CAS:528:DC%2BD3cXmslSgsr0%3D NakaiwaMHuangKEndoAOhmoriTAkiyaTTakamatsuTChem. Eng. Res. Des.2003811621:CAS:528:DC%2BD3sXhsFKms7Y%3D YildirimÖKissA AKenigE YSep. Purit. Technol.2011804031:CAS:528:DC%2BC3MXps1SrtbY%3D LiB-HChangC-TInd. Eng. Chem. Res.20104939671:CAS:528:DC%2BC3cXjtlaiu7c%3D HarwardtAMarquardtWAIChE J.20125837401:CAS:528:DC%2BC38XktVKjtbg%3D MoHLeeHJangWNamgungKLeeJ WKorean J. Chem. Eng.2021381951:CAS:528:DC%2BB3MXhtVCqtr0%3D NovitaF JLeeH-YLeeMKorean J. Chem. Eng.2018359261:CAS:528:DC%2BC1cXjtVWltbk%3D DejanovićIMatijaševićLOlujićŸChem. Eng. Process.201049559 MuellerIKenigE YInd. Eng. Chem. Res.20074637091:CAS:528:DC%2BD2sXkslaqtLo%3D OmotaFDimianA CBliekAChem. Eng. Sci.20035831591:CAS:528:DC%2BD3sXltFKlu74%3D LuybenW LDistillation design and control using aspen simulation2013Hoboken, New JerseyJohn Wiley & Sons FengSYeQXiaHLiRSuoXChem. Eng. Res. Des.20171252041:CAS:528:DC%2BC2sXht1eqsb3I KimG MChoiW YParkJ HJeongS JHongJ-EJungWLeeJ WACS Appl. Nano Mater.2020385921:CAS:528:DC%2BB3cXhs1Cksb3E YangASunSEslamimaneshAWeiS AShenWEnergy20191723201:CAS:528:DC%2BC1MXisFCntbs%3D OmotaFDimianA CBliekAChem. Eng. Sci.20035831751:CAS:528:DC%2BD3sXltFKlu78%3D MaloneM FDohertyM FInd. Eng. Chem. Res.20003939531:CAS:528:DC%2BD3cXmt1KisLw%3D JangWLeeHHanJLeeJ WInd. Eng. Chem. Res.20195882061:CAS:528:DC%2BC1MXmsVSms7k%3D NaitoKNakaiwaMHuangKEndoAAsoKNakanishiTNakamuraTNodaHTakamatsuTComput. Chem. Eng.2000244951:CAS:528:DC%2BD3cXlsVekuro%3D LeeJ WHauanSWesterbergA WInd. Eng. Chem. Res.20003910611:CAS:528:DC%2BD3cXhsFGgs7w%3D LeeJ WHauanSLienK MWesterbergA WProc. R. Soc. A200045619531:CAS:528:DC%2BD3cXmslSgsrw%3D NamgungKLeeHJangWMoHLeeJ WChem. Eng. Process. Process Intensif.20201541080481:CAS:528:DC%2BB3cXhsVWqtbzK KissA AOlujićŽChem. Eng. Process.2014861251:CAS:528:DC%2BC2cXhvVygtrbO DohertyM FChem. Eng. Sci.19854018851:CAS:528:DyaL2MXmtFOnsL4%3D JangWNamgungKLeeHMoHLeeJ WInd. Eng. Chem. Res.20205919661:CAS:528:DC%2BC1MXit1SksLzO van GenderenA C Gvan MiltenburgJ CBlokJ Gvan BommelM Jvan EkerenP Jvan den BergG J KOonkH A JFluid Phase Equilib.20022021091:CAS:528:DC%2BD38XlvFOkt7Y%3D Gomez-CastroF IRico-RamirezVSegovia-HernandezJ GHernandezSChem. Eng. Process. Process Intensif.2010492621:CAS:528:DC%2BC3cXjvFahsLg%3D LeeHJangWLeeJ WKorean J. Chem. Eng.2019369541:CAS:528:DC%2BC1MXhtFGit7jL GadallaMOlujicZSunLDe RijkeAJansensP JChem. Eng. Res. Des.2005839871:CAS:528:DC%2BD2MXhtVSlurfO LeeHMoHNamgungKJangWLeeJ WInd. Eng. Chem. Res.202059143981:CAS:528:DC%2BB3cXhtlCqs7%2FI LeeJ WWesterbergA WAIChE J.20014713331:CAS:528:DC%2BD3MXksVGgtrc%3D HinoMKurashigeMMatsuhashiHArataKThermochim. Acta2006441351:CAS:528:DC%2BD28XlsF2quw%3D%3D LambaRKumarSSarkarSChem. Eng. Commun.20182052811:CAS:528:DC%2BC1cXitVegtro%3D LongN V DLeeD YHanT HSunyongPBongH BLeeMKorean J. Chem. Eng.20203718231:CAS:528:DC%2BB3cXitFOgtLfP GadewarS BMaloneM FDohertyM FInd. Eng. Chem. Res.20074632551:CAS:528:DC%2BD2sXisFSjsrs%3D WuY-CLeeH-YTsaiC-YHuangH-PChienI LComput. Chem. Eng.201357631:CAS:528:DC%2BC3sXit1Kgs7g%3D LinnhoffBHindmarshEChem. Eng. Sci.1983387451:CAS:528:DyaL3sXlslyit7s%3D J W Lee (937_CR9) 2001; 47 N V D Long (937_CR3) 2020; 37 H Lee (937_CR26) 2019; 36 K Namgung (937_CR23) 2020; 154 M Hino (937_CR36) 2006; 441 Y-C Wu (937_CR40) 2013; 57 M F Doherty (937_CR39) 1985; 40 B-H Li (937_CR46) 2010; 49 R Lamba (937_CR38) 2018; 205 M Gadalla (937_CR44) 2005; 83 J W Lee (937_CR13) 2000; 456 W Jang (937_CR17) 2019; 58 F I Gomez-Castro (937_CR1) 2010; 49 H Mo (937_CR24) 2021; 38 I Mueller (937_CR19) 2007; 46 S B Gadewar (937_CR11) 2007; 46 A A Kiss (937_CR7) 2019; 58 G M Kim (937_CR2) 2020; 3 B-H Li (937_CR45) 2019; 148 A C G van Genderen (937_CR41) 2002; 202 F Omota (937_CR33) 2003; 58 W Jang (937_CR18) 2020; 59 Z Jiang (937_CR5) 2019; 147 A Yang (937_CR22) 2019; 172 J Fang (937_CR27) 2019; 27 A Harwardt (937_CR25) 2012; 58 T Glenchur (937_CR29) 1987; 22 M A Alves-Rosa (937_CR37) 2016; 6 I Dejanović (937_CR15) 2010; 49 R J Galanido (937_CR4) 2020; 37 S Steinigeweg (937_CR35) 2003; 42 J W Lee (937_CR12) 2000; 46 J W Lee (937_CR8) 2000; 39 A A Kiss (937_CR42) 2014; 86 S Feng (937_CR21) 2017; 125 H Lee (937_CR32) 2020; 59 B Linnhoff (937_CR43) 1983; 38 M F Malone (937_CR6) 2000; 39 F Omota (937_CR34) 2003; 58 W L Luyben (937_CR47) 2013 F J Novita (937_CR20) 2018; 35 M Gadalla (937_CR28) 2007; 31 K Naito (937_CR30) 2000; 24 R S Huss (937_CR10) 2003; 27 Ö Yildirim (937_CR16) 2011; 80 J W Lee (937_CR14) 2000; 456 M Nakaiwa (937_CR31) 2003; 81 |
References_xml | – reference: LeeJ WHauanSWesterbergA WInd. Eng. Chem. Res.20003910611:CAS:528:DC%2BD3cXhsFGgs7w%3D – reference: LeeHJangWLeeJ WKorean J. Chem. Eng.2019369541:CAS:528:DC%2BC1MXhtFGit7jL – reference: GlenchurTGovindRSep. Sci. Technol.19872223231:CAS:528:DyaL1cXotVWr – reference: LiB-HChota CastilloY EChangC-TChem. Eng. Res. Des.20191482601:CAS:528:DC%2BC1MXht1ejsbvM – reference: LinnhoffBHindmarshEChem. Eng. Sci.1983387451:CAS:528:DyaL3sXlslyit7s%3D – reference: JangWLeeHHanJLeeJ WInd. Eng. Chem. Res.20195882061:CAS:528:DC%2BC1MXmsVSms7k%3D – reference: LeeJ WHauanSLienK MWesterbergA WProc. R. Soc. A200045619531:CAS:528:DC%2BD3cXmslSgsrw%3D – reference: LeeJ WHauanSLienK MWesterbergA WProc. R. Soc. A200045619651:CAS:528:DC%2BD3cXmslSgsr0%3D – reference: OmotaFDimianA CBliekAChem. Eng. Sci.20035831751:CAS:528:DC%2BD3sXltFKlu78%3D – reference: DohertyM FChem. Eng. Sci.19854018851:CAS:528:DyaL2MXmtFOnsL4%3D – reference: NaitoKNakaiwaMHuangKEndoAAsoKNakanishiTNakamuraTNodaHTakamatsuTComput. Chem. Eng.2000244951:CAS:528:DC%2BD3cXlsVekuro%3D – reference: OmotaFDimianA CBliekAChem. Eng. Sci.20035831591:CAS:528:DC%2BD3sXltFKlu74%3D – reference: HussR SChenFMaloneM FDohertyM FComput. Chem. Eng.20032718551:CAS:528:DC%2BD3sXotlygsLo%3D – reference: LeeJ WWesterbergA WAIChE J.20014713331:CAS:528:DC%2BD3MXksVGgtrc%3D – reference: GadewarS BMaloneM FDohertyM FInd. Eng. Chem. Res.20074632551:CAS:528:DC%2BD2sXisFSjsrs%3D – reference: YildirimÖKissA AKenigE YSep. Purit. Technol.2011804031:CAS:528:DC%2BC3MXps1SrtbY%3D – reference: JangWNamgungKLeeHMoHLeeJ WInd. Eng. Chem. Res.20205919661:CAS:528:DC%2BC1MXit1SksLzO – reference: FengSYeQXiaHLiRSuoXChem. Eng. Res. Des.20171252041:CAS:528:DC%2BC2sXht1eqsb3I – reference: Alves-RosaM AMartinsLHammerPPulcinelliS HSantilliC VRSC Adv.2016666861:CAS:528:DC%2BC28Xlt1OgtQ%3D%3D – reference: LeeJ WHauanSWesterbergA WAIChE J.20004612181:CAS:528:DC%2BD3cXktl2iu7Y%3D – reference: GalanidoR JKimD SChoJKorean J. Chem. Eng.202037850 – reference: FangJChengXLiZLiHLiCChin. J. Chem. Eng.20192712721:CAS:528:DC%2BB3cXhtVagsLjI – reference: SteinigewegSGmehlingJInd. Eng. Chem. Res.20034236121:CAS:528:DC%2BD3sXks12ms70%3D – reference: GadallaMOlujicZSunLDe RijkeAJansensP JChem. Eng. Res. Des.2005839871:CAS:528:DC%2BD2MXhtVSlurfO – reference: NovitaF JLeeH-YLeeMKorean J. Chem. Eng.2018359261:CAS:528:DC%2BC1cXjtVWltbk%3D – reference: van GenderenA C Gvan MiltenburgJ CBlokJ Gvan BommelM Jvan EkerenP Jvan den BergG J KOonkH A JFluid Phase Equilib.20022021091:CAS:528:DC%2BD38XlvFOkt7Y%3D – reference: KissA AJobsonMGaoXInd. Eng. Chem. Res.20195859091:CAS:528:DC%2BC1cXisVOitrvJ – reference: YangASunSEslamimaneshAWeiS AShenWEnergy20191723201:CAS:528:DC%2BC1MXisFCntbs%3D – reference: NamgungKLeeHJangWMoHLeeJ WChem. Eng. Process. Process Intensif.20201541080481:CAS:528:DC%2BB3cXhsVWqtbzK – reference: LeeHMoHNamgungKJangWLeeJ WInd. Eng. Chem. Res.202059143981:CAS:528:DC%2BB3cXhtlCqs7%2FI – reference: MuellerIKenigE YInd. Eng. Chem. Res.20074637091:CAS:528:DC%2BD2sXkslaqtLo%3D – reference: LambaRKumarSSarkarSChem. Eng. Commun.20182052811:CAS:528:DC%2BC1cXitVegtro%3D – reference: KissA AOlujićŽChem. Eng. Process.2014861251:CAS:528:DC%2BC2cXhvVygtrbO – reference: Gomez-CastroF IRico-RamirezVSegovia-HernandezJ GHernandezSChem. Eng. Process. Process Intensif.2010492621:CAS:528:DC%2BC3cXjvFahsLg%3D – reference: LongN V DLeeD YHanT HSunyongPBongH BLeeMKorean J. Chem. Eng.20203718231:CAS:528:DC%2BB3cXitFOgtLfP – reference: KimG MChoiW YParkJ HJeongS JHongJ-EJungWLeeJ WACS Appl. Nano Mater.2020385921:CAS:528:DC%2BB3cXhs1Cksb3E – reference: WuY-CLeeH-YTsaiC-YHuangH-PChienI LComput. Chem. Eng.201357631:CAS:528:DC%2BC3sXit1Kgs7g%3D – reference: LiB-HChangC-TInd. Eng. Chem. Res.20104939671:CAS:528:DC%2BC3cXjtlaiu7c%3D – reference: MaloneM FDohertyM FInd. Eng. Chem. Res.20003939531:CAS:528:DC%2BD3cXmt1KisLw%3D – reference: NakaiwaMHuangKEndoAOhmoriTAkiyaTTakamatsuTChem. Eng. Res. Des.2003811621:CAS:528:DC%2BD3sXhsFKms7Y%3D – reference: GadallaMJiménezLOlujicZJansensP JComput. Chem. Eng.20073113461:CAS:528:DC%2BD2sXnvFOgt70%3D – reference: HinoMKurashigeMMatsuhashiHArataKThermochim. Acta2006441351:CAS:528:DC%2BD28XlsF2quw%3D%3D – reference: LuybenW LDistillation design and control using aspen simulation2013Hoboken, New JerseyJohn Wiley & Sons – reference: HarwardtAMarquardtWAIChE J.20125837401:CAS:528:DC%2BC38XktVKjtbg%3D – reference: JiangZAgrawalRChem. Eng. Res. Des.20191471221:CAS:528:DC%2BC1MXovFGjurw%3D – reference: DejanovićIMatijaševićLOlujićŸChem. Eng. Process.201049559 – reference: MoHLeeHJangWNamgungKLeeJ WKorean J. Chem. Eng.2021381951:CAS:528:DC%2BB3MXhtVCqtr0%3D – volume: 58 start-page: 3740 year: 2012 ident: 937_CR25 publication-title: AIChE J. doi: 10.1002/aic.13775 – volume: 37 start-page: 1823 year: 2020 ident: 937_CR3 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-020-0631-1 – volume: 22 start-page: 2323 year: 1987 ident: 937_CR29 publication-title: Sep. Sci. Technol. doi: 10.1080/01496398708057189 – volume: 86 start-page: 125 year: 2014 ident: 937_CR42 publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2014.10.017 – volume: 147 start-page: 122 year: 2019 ident: 937_CR5 publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.04.023 – volume: 59 start-page: 14398 year: 2020 ident: 937_CR32 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c01683 – volume: 58 start-page: 3159 year: 2003 ident: 937_CR33 publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(03)00165-9 – volume: 49 start-page: 3967 year: 2010 ident: 937_CR46 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9016607 – volume: 58 start-page: 8206 year: 2019 ident: 937_CR17 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b00324 – volume: 38 start-page: 195 year: 2021 ident: 937_CR24 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-020-0682-3 – volume: 39 start-page: 1061 year: 2000 ident: 937_CR8 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie990447k – volume: 456 start-page: 1965 year: 2000 ident: 937_CR14 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2000.0597 – volume: 57 start-page: 63 year: 2013 ident: 937_CR40 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2013.01.002 – volume: 35 start-page: 926 year: 2018 ident: 937_CR20 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-017-0342-4 – volume: 27 start-page: 1272 year: 2019 ident: 937_CR27 publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2018.08.021 – volume: 202 start-page: 109 year: 2002 ident: 937_CR41 publication-title: Fluid Phase Equilib. doi: 10.1016/S0378-3812(02)00097-3 – volume: 49 start-page: 262 year: 2010 ident: 937_CR1 publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2010.02.002 – volume: 46 start-page: 3709 year: 2007 ident: 937_CR19 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0610344 – volume: 125 start-page: 204 year: 2017 ident: 937_CR21 publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2017.07.017 – volume: 148 start-page: 260 year: 2019 ident: 937_CR45 publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.06.008 – volume-title: Distillation design and control using aspen simulation year: 2013 ident: 937_CR47 doi: 10.1002/9781118510193 – volume: 58 start-page: 5909 year: 2019 ident: 937_CR7 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b05450 – volume: 27 start-page: 1855 year: 2003 ident: 937_CR10 publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(03)00156-X – volume: 80 start-page: 403 year: 2011 ident: 937_CR16 publication-title: Sep. Purit. Technol. doi: 10.1016/j.seppur.2011.05.009 – volume: 205 start-page: 281 year: 2018 ident: 937_CR38 publication-title: Chem. Eng. Commun. doi: 10.1080/00986445.2017.1387540 – volume: 6 start-page: 6686 year: 2016 ident: 937_CR37 publication-title: RSC Adv. doi: 10.1039/C5RA24413G – volume: 39 start-page: 3953 year: 2000 ident: 937_CR6 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie000633m – volume: 36 start-page: 954 year: 2019 ident: 937_CR26 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-019-0271-5 – volume: 38 start-page: 745 year: 1983 ident: 937_CR43 publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(83)80185-7 – volume: 46 start-page: 3255 year: 2007 ident: 937_CR11 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060867r – volume: 456 start-page: 1953 year: 2000 ident: 937_CR13 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2000.0596 – volume: 47 start-page: 1333 year: 2001 ident: 937_CR9 publication-title: AIChE J. doi: 10.1002/aic.690470611 – volume: 31 start-page: 1346 year: 2007 ident: 937_CR28 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2006.11.006 – volume: 83 start-page: 987 year: 2005 ident: 937_CR44 publication-title: Chem. Eng. Res. Des. doi: 10.1205/cherd.04301 – volume: 59 start-page: 1966 year: 2020 ident: 937_CR18 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b05051 – volume: 40 start-page: 1885 year: 1985 ident: 937_CR39 publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(85)80125-1 – volume: 42 start-page: 3612 year: 2003 ident: 937_CR35 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie020925i – volume: 172 start-page: 320 year: 2019 ident: 937_CR22 publication-title: Energy doi: 10.1016/j.energy.2019.01.126 – volume: 441 start-page: 35 year: 2006 ident: 937_CR36 publication-title: Thermochim. Acta doi: 10.1016/j.tca.2005.11.042 – volume: 81 start-page: 162 year: 2003 ident: 937_CR31 publication-title: Chem. Eng. Res. Des. doi: 10.1205/026387603321158320 – volume: 46 start-page: 1218 year: 2000 ident: 937_CR12 publication-title: AIChE J. doi: 10.1002/aic.690460614 – volume: 49 start-page: 559 year: 2010 ident: 937_CR15 publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2010.04.001 – volume: 154 start-page: 108048 year: 2020 ident: 937_CR23 publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2020.108048 – volume: 58 start-page: 3175 year: 2003 ident: 937_CR34 publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(03)00154-4 – volume: 24 start-page: 495 year: 2000 ident: 937_CR30 publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(00)00513-5 – volume: 3 start-page: 8592 year: 2020 ident: 937_CR2 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c01909 – volume: 37 start-page: 850 year: 2020 ident: 937_CR4 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-020-0505-6 |
SSID | ssj0055620 |
Score | 2.3271031 |
Snippet | This study presents a strategy for the internal heat integration of reactive distillation (RD) columns for concurrently producing 2-ethylhexyl dodecanoate and... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 263 |
SubjectTerms | Biotechnology Catalysis Chemistry Chemistry and Materials Science Configurations Distillation Dividing wall columns Endothermic reactions Energy consumption Exothermic reactions Heat High temperature Industrial Chemistry/Chemical Engineering Internal flow Low temperature Materials Science Process Safety Process Systems Engineering Temperature gradients 화학공학 |
Title | Temperature driven internal heat integration in an energy-efficient partial double annular column |
URI | https://link.springer.com/article/10.1007/s11814-021-0937-7 https://www.proquest.com/docview/2623727463 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002807784 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2022, 39(2), 263, pp.263-274 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED7R8sD2MDa2ad1YZU08MRmlcWzHjwXRwSbx1ErwZNmOPaFWKSrty379zkm8DsQm8ZRIuSSO73L32b77DHCkPA_WOk5Z5iUtLAvUIsqlwnGZxeQmZ5oE2StxMSu-X_Prro77PmW7pyXJxlNvi90wGBU0phTgKFxS2YNdPipV2Yfd8bebH-fJAXMM6e3USqTYQ8STFjOfesiDcNSrV-EB0ny0ONrEnMk-TFNr21ST-clmbU_cr0dEjs_8nNfwqsOgZNwazRvY8fUB7J2lrd8O4OVfLIVvwUw9YuuWe5lUq-geyW07kbgg0ZeTxDmBOsZzYmrim5JC6huCCoxr5C6aKMpXy41deBILlHFMTVx0jvU7mE3Op2cXtNuZgTrGszVlgYWQFxgBReUctyE4JqSp8lAprypWuYhEvODGjjKvmCgF95LlTuYlrxRj76FfL2v_AYjkI1NYbtE5uIL70gplstyNZGmMcEU2gCwpSLuOtjzunrHQW8Ll2JMae1LHntRyAMd_brlrOTv-J_wFta7n7lZHpu14_LnU85XG8cSlVgoBjEChw2QUuvvH73WOyBHRXyHYAL4mHW8v__ONH58l_Qle5LHiokkUP4T-erXxnxEHre0Q7X5yeno17Ox_CL1ZPv4NPJkAAQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HNSD-MT1GcSTEug2TdIeRZT1edoFbyFJExGX7rKu_99J27gqKnhqodMWZpKZL8nMNwAnhePeGMspS5ykmWGeGkS5VFguk5DcZHWdIPsgeoPs5pE_tnXcrzHbPR5J1p56VuyGwSijIaUAV-GSynlYRCyQh7YFg_Q8ul-OAb3ZWAkEe4h34lHmT5_4Eozmq4n_gjO_HY3WEedqDVZbqEjOG9uuw5yrNmDpInZo24CVT2SCm6D7DiFwQ5FMyknwYuS52e8bkuBySaSGQFPgPdEVcXXlH3U1jwSGHzIOIwnly9GbGToS6ohx6Uts8GHVFgyuLvsXPdo2UKCW8WRKmWfepxkGKlFay433lgmpy9SXhStKVtoAGJzg2nQTVzCRC-4kS61Mc14WjG3DQjWq3A4Qybs6M9zgHLYZd7kRhU5S25W51sJmSQeSqEllW3bx0ORiqGa8yEH5CpWvgvKV7MDpxyvjhlrjL-FjNI96sc8qEGKH69NIvUwUwv5rVRSIMwQK7UfrqXYqvqoUAR6CtEywDpxFi84e__rH3X9JH8FSr39_p-6uH273YDkNRRJ1bvc-LEwnb-4AocvUHNZD9R0BGuOn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_8gH48FGsrXqt2KX1qWcxls7uXR1EPtUX64IFvy36KeOSO8_z_O5NkeyptoU8JZJLAzO7Mb3dnfgPwpY4yOeclF0XUvHIicYcolysvdUHJTd62CbKX6mxSXVzL677P6X3Ods9Hkl1NA7E0NcvDeUiHq8I3DEwVp_QCXJFrrtdhE73xkAb6pDzKrlhicO82WYhsD7FPPtb80yeeBKb1ZpGeYM5nx6Rt9BlvwZseNrKjzs5vYS022_DyOHdr24bXj4gF34G9igiHO7pkFhbk0dhtt_c3ZeR-WaaJQLPgPbMNi20VII8tpwSqgs1pVKF8mD24aWRUU4zLYObJnzXvYTI-vTo-430zBe6FLJZcJJFSWWHQUsF76VLyQmkbyhTqWAcRPIGHqKR1wyLWQo2UjFqUXpcjGWohdmCjmTVxF5iWQ1s56XA--0rGkVO1LUo_1CNrla-KARRZk8b3TOPU8GJqVhzJpHyDyjekfKMH8PX3K_OOZuNfwp_RPObO3xoix6brzczcLQwuAc5NXSPmUCi0l61n-ml5b0oEewjYKiUG8C1bdPX4r3_88F_Sn-DFz5Ox-XF--f0jvCqpXqJN896DjeXiIe4jilm6g3ak_gI8G-fj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+driven+internal+heat+integration+in+an+energy-efficient+partial+double+annular+column&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Seo%2C+Chaeyeong&rft.au=Lee%2C+Heecheon&rft.au=Lee%2C+Minyong&rft.au=Lee%2C+Jae+W.&rft.date=2022-02-01&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=39&rft.issue=2&rft.spage=263&rft.epage=274&rft_id=info:doi/10.1007%2Fs11814-021-0937-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11814_021_0937_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |