Temperature driven internal heat integration in an energy-efficient partial double annular column

This study presents a strategy for the internal heat integration of reactive distillation (RD) columns for concurrently producing 2-ethylhexyl dodecanoate and methyl dodecanoate. Because of a significant temperature difference in the two reactions, the two RD column process with each single reaction...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of chemical engineering Vol. 39; no. 2; pp. 263 - 274
Main Authors Seo, Chaeyeong, Lee, Heecheon, Lee, Minyong, Lee, Jae W.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2022
Springer Nature B.V
한국화학공학회
Subjects
Online AccessGet full text
ISSN0256-1115
1975-7220
DOI10.1007/s11814-021-0937-7

Cover

Abstract This study presents a strategy for the internal heat integration of reactive distillation (RD) columns for concurrently producing 2-ethylhexyl dodecanoate and methyl dodecanoate. Because of a significant temperature difference in the two reactions, the two RD column process with each single reaction occurring in the respective column has lower energy consumption than the direct sequence consisting of one RD column followed by a non-RD column. Thus, internal heat integration in a partial double annular configuration is introduced on the basis of the two RD column process. In the new annular RD configuration, heat is transferred from the outer column shell having a high-temperature exothermic reaction to the inner shell with a low-temperature endothermic reaction. By using the concept of pinch temperature, we determine the heat transfer stages to secure sufficient temperature driving force. For the same product purity and reaction extent, the internal heat integrated distillation column (HIDiC) shows lower internal flow-rate and energy consumption than the other sequences of the direct sequence and the reactive dividing wall column (RDWC). The total utility consumption of the HIDiC with a partial double annular structure was reduced by 15.4% and 14.4% compared to the direct sequence and the RDWC, respectively.
AbstractList This study presents a strategy for the internal heat integration of reactive distillation (RD) columns for concurrently producing 2-ethylhexyl dodecanoate and methyl dodecanoate. Because of a significant temperature difference in the two reactions, the two RD column process with each single reaction occurring in the respective column has lower energy consumption than the direct sequence consisting of one RD column followed by a non-RD column. Thus, internal heat integration in a partial double annular configuration is introduced on the basis of the two RD column process. In the new annular RD configuration, heat is transferred from the outer column shell having a high-temperature exothermic reaction to the inner shell with a low-temperature endothermic reaction. By using the concept of pinch temperature, we determine the heat transfer stages to secure sufficient temperature driving force. For the same product purity and reaction extent, the internal heat integrated distillation column (HIDiC) shows lower internal flow-rate and energy consumption than the other sequences of the direct sequence and the reactive dividing wall column (RDWC). The total utility consumption of the HIDiC with a partial double annular structure was reduced by 15.4% and 14.4% compared to the direct sequence and the RDWC, respectively.
This study presents a strategy for the internal heat integration of reactive distillation (RD) columns for concurrently producing 2-ethylhexyl dodecanoate and methyl dodecanoate. Because of a significant temperature difference in the two reactions, the two RD column process with each single reaction occurring in the respective column has lower energy consumption than the direct sequence consisting of one RD column followed by a non-RD column. Thus, internal heat integration in a partial double annular configuration is introduced on the basis of the two RD column process. In the new annular RD configuration, heat is transferred from the outer column shell having a high-temperature exothermic reaction to the inner shell with a low-temperature endothermic reaction. By using the concept of pinch temperature, we determine the heat transfer stages to secure sufficient temperature driving force. For the same product purity and reaction extent, the internal heat integrated distillation column (HIDiC) shows lower internal flowrate and energy consumption than the other sequences of the direct sequence and the reactive dividing wall column (RDWC). The total utility consumption of the HIDiC with a partial double annular structure was reduced by 15.4% and 14.4% compared to the direct sequence and the RDWC, respectively. KCI Citation Count: 3
Author Lee, Heecheon
Lee, Minyong
Lee, Jae W.
Seo, Chaeyeong
Author_xml – sequence: 1
  givenname: Chaeyeong
  surname: Seo
  fullname: Seo, Chaeyeong
  organization: Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 2
  givenname: Heecheon
  surname: Lee
  fullname: Lee, Heecheon
  organization: Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 3
  givenname: Minyong
  surname: Lee
  fullname: Lee, Minyong
  organization: Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 4
  givenname: Jae W.
  surname: Lee
  fullname: Lee, Jae W.
  email: jaewlee@kaist.ac.kr
  organization: Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002807784$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kMtKAzEUhoMoWC8P4G7AlYtoLk3SWZbiDQRB6jqkmZManSY1yQi-vTMdQRB0dQjn-39OviO0H2IAhM4ouaSEqKtM6YxOMWEUk5orrPbQhNZKYMUY2UcTwoTElFJxiI5yfiVECMnIBJklbLaQTOkSVE3yHxAqHwqkYNrqBUzZvdY94OOwqUyoIEBaf2JwzlsPoVRbk4rv-SZ2qxZ6JHStSZWNbbcJJ-jAmTbD6fc8Rs8318vFHX54vL1fzB-w5YIUzB13jk35lMrGWrFyznKpTMNcU0Pd8MYSJQhIYVaUQM3lTApQnFnFZqKpOT9GF2NvSE6_Wa-j8bu5jvot6fnT8l7XNZNSqp49H9ltiu8d5KJfYzd8OWsmGVdMTeXQqEbKpphzAqetLzsRJRnfakr04F6P7nXvXg_u9dBPfyW3yW9M-vw3w8ZM7tmwhvRz09-hL41gmQM
CitedBy_id crossref_primary_10_1007_s11814_023_1574_0
crossref_primary_10_1016_j_seppur_2022_120598
crossref_primary_10_1021_acsomega_3c08128
crossref_primary_10_1016_j_energy_2022_124622
crossref_primary_10_1016_j_seppur_2023_125550
crossref_primary_10_1016_j_jiec_2022_02_012
Cites_doi 10.1002/aic.13775
10.1007/s11814-020-0631-1
10.1080/01496398708057189
10.1016/j.cep.2014.10.017
10.1016/j.cherd.2019.04.023
10.1021/acs.iecr.0c01683
10.1016/S0009-2509(03)00165-9
10.1021/ie9016607
10.1021/acs.iecr.9b00324
10.1007/s11814-020-0682-3
10.1021/ie990447k
10.1098/rspa.2000.0597
10.1016/j.compchemeng.2013.01.002
10.1007/s11814-017-0342-4
10.1016/j.cjche.2018.08.021
10.1016/S0378-3812(02)00097-3
10.1016/j.cep.2010.02.002
10.1021/ie0610344
10.1016/j.cherd.2017.07.017
10.1016/j.cherd.2019.06.008
10.1002/9781118510193
10.1021/acs.iecr.8b05450
10.1016/S0098-1354(03)00156-X
10.1016/j.seppur.2011.05.009
10.1080/00986445.2017.1387540
10.1039/C5RA24413G
10.1021/ie000633m
10.1007/s11814-019-0271-5
10.1016/0009-2509(83)80185-7
10.1021/ie060867r
10.1098/rspa.2000.0596
10.1002/aic.690470611
10.1016/j.compchemeng.2006.11.006
10.1205/cherd.04301
10.1021/acs.iecr.9b05051
10.1016/0009-2509(85)80125-1
10.1021/ie020925i
10.1016/j.energy.2019.01.126
10.1016/j.tca.2005.11.042
10.1205/026387603321158320
10.1002/aic.690460614
10.1016/j.cep.2010.04.001
10.1016/j.cep.2020.108048
10.1016/S0009-2509(03)00154-4
10.1016/S0098-1354(00)00513-5
10.1021/acsanm.0c01909
10.1007/s11814-020-0505-6
ContentType Journal Article
Copyright The Korean Institute of Chemical Engineers 2021
The Korean Institute of Chemical Engineers 2021.
Copyright_xml – notice: The Korean Institute of Chemical Engineers 2021
– notice: The Korean Institute of Chemical Engineers 2021.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s11814-021-0937-7
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1975-7220
EndPage 274
ExternalDocumentID oai_kci_go_kr_ARTI_9926667
10_1007_s11814_021_0937_7
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z8N
Z8Q
Z8Z
Z92
ZMTXR
ZZE
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
85H
AABYN
AAFGU
AAGCJ
AAUCO
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
SQXTU
UNUBA
ID FETCH-LOGICAL-c350t-3f3ff243416dcc5bffc367ad2fd9e9d3dc0750e65ab10e936865e732c7285d933
IEDL.DBID AGYKE
ISSN 0256-1115
IngestDate Wed Jan 31 06:58:39 EST 2024
Fri Jul 25 10:56:11 EDT 2025
Tue Jul 01 03:29:42 EDT 2025
Thu Apr 24 23:07:59 EDT 2025
Fri Feb 21 02:46:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Internal Heat Integration
Heat Integrated Distillation Column
Reactive Distillation
Partial Double Annular Column
Reactive Dividing Wall Column
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-3f3ff243416dcc5bffc367ad2fd9e9d3dc0750e65ab10e936865e732c7285d933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2623727463
PQPubID 2044390
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9926667
proquest_journals_2623727463
crossref_citationtrail_10_1007_s11814_021_0937_7
crossref_primary_10_1007_s11814_021_0937_7
springer_journals_10_1007_s11814_021_0937_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Korean journal of chemical engineering
PublicationTitleAbbrev Korean J. Chem. Eng
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
한국화학공학회
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: 한국화학공학회
References Alves-RosaM AMartinsLHammerPPulcinelliS HSantilliC VRSC Adv.2016666861:CAS:528:DC%2BC28Xlt1OgtQ%3D%3D
GalanidoR JKimD SChoJKorean J. Chem. Eng.202037850
SteinigewegSGmehlingJInd. Eng. Chem. Res.20034236121:CAS:528:DC%2BD3sXks12ms70%3D
JiangZAgrawalRChem. Eng. Res. Des.20191471221:CAS:528:DC%2BC1MXovFGjurw%3D
GlenchurTGovindRSep. Sci. Technol.19872223231:CAS:528:DyaL1cXotVWr
KissA AJobsonMGaoXInd. Eng. Chem. Res.20195859091:CAS:528:DC%2BC1cXisVOitrvJ
FangJChengXLiZLiHLiCChin. J. Chem. Eng.20192712721:CAS:528:DC%2BB3cXhtVagsLjI
LiB-HChota CastilloY EChangC-TChem. Eng. Res. Des.20191482601:CAS:528:DC%2BC1MXht1ejsbvM
HussR SChenFMaloneM FDohertyM FComput. Chem. Eng.20032718551:CAS:528:DC%2BD3sXotlygsLo%3D
LeeJ WHauanSWesterbergA WAIChE J.20004612181:CAS:528:DC%2BD3cXktl2iu7Y%3D
GadallaMJiménezLOlujicZJansensP JComput. Chem. Eng.20073113461:CAS:528:DC%2BD2sXnvFOgt70%3D
LeeJ WHauanSLienK MWesterbergA WProc. R. Soc. A200045619651:CAS:528:DC%2BD3cXmslSgsr0%3D
NakaiwaMHuangKEndoAOhmoriTAkiyaTTakamatsuTChem. Eng. Res. Des.2003811621:CAS:528:DC%2BD3sXhsFKms7Y%3D
YildirimÖKissA AKenigE YSep. Purit. Technol.2011804031:CAS:528:DC%2BC3MXps1SrtbY%3D
LiB-HChangC-TInd. Eng. Chem. Res.20104939671:CAS:528:DC%2BC3cXjtlaiu7c%3D
HarwardtAMarquardtWAIChE J.20125837401:CAS:528:DC%2BC38XktVKjtbg%3D
MoHLeeHJangWNamgungKLeeJ WKorean J. Chem. Eng.2021381951:CAS:528:DC%2BB3MXhtVCqtr0%3D
NovitaF JLeeH-YLeeMKorean J. Chem. Eng.2018359261:CAS:528:DC%2BC1cXjtVWltbk%3D
DejanovićIMatijaševićLOlujićŸChem. Eng. Process.201049559
MuellerIKenigE YInd. Eng. Chem. Res.20074637091:CAS:528:DC%2BD2sXkslaqtLo%3D
OmotaFDimianA CBliekAChem. Eng. Sci.20035831591:CAS:528:DC%2BD3sXltFKlu74%3D
LuybenW LDistillation design and control using aspen simulation2013Hoboken, New JerseyJohn Wiley & Sons
FengSYeQXiaHLiRSuoXChem. Eng. Res. Des.20171252041:CAS:528:DC%2BC2sXht1eqsb3I
KimG MChoiW YParkJ HJeongS JHongJ-EJungWLeeJ WACS Appl. Nano Mater.2020385921:CAS:528:DC%2BB3cXhs1Cksb3E
YangASunSEslamimaneshAWeiS AShenWEnergy20191723201:CAS:528:DC%2BC1MXisFCntbs%3D
OmotaFDimianA CBliekAChem. Eng. Sci.20035831751:CAS:528:DC%2BD3sXltFKlu78%3D
MaloneM FDohertyM FInd. Eng. Chem. Res.20003939531:CAS:528:DC%2BD3cXmt1KisLw%3D
JangWLeeHHanJLeeJ WInd. Eng. Chem. Res.20195882061:CAS:528:DC%2BC1MXmsVSms7k%3D
NaitoKNakaiwaMHuangKEndoAAsoKNakanishiTNakamuraTNodaHTakamatsuTComput. Chem. Eng.2000244951:CAS:528:DC%2BD3cXlsVekuro%3D
LeeJ WHauanSWesterbergA WInd. Eng. Chem. Res.20003910611:CAS:528:DC%2BD3cXhsFGgs7w%3D
LeeJ WHauanSLienK MWesterbergA WProc. R. Soc. A200045619531:CAS:528:DC%2BD3cXmslSgsrw%3D
NamgungKLeeHJangWMoHLeeJ WChem. Eng. Process. Process Intensif.20201541080481:CAS:528:DC%2BB3cXhsVWqtbzK
KissA AOlujićŽChem. Eng. Process.2014861251:CAS:528:DC%2BC2cXhvVygtrbO
DohertyM FChem. Eng. Sci.19854018851:CAS:528:DyaL2MXmtFOnsL4%3D
JangWNamgungKLeeHMoHLeeJ WInd. Eng. Chem. Res.20205919661:CAS:528:DC%2BC1MXit1SksLzO
van GenderenA C Gvan MiltenburgJ CBlokJ Gvan BommelM Jvan EkerenP Jvan den BergG J KOonkH A JFluid Phase Equilib.20022021091:CAS:528:DC%2BD38XlvFOkt7Y%3D
Gomez-CastroF IRico-RamirezVSegovia-HernandezJ GHernandezSChem. Eng. Process. Process Intensif.2010492621:CAS:528:DC%2BC3cXjvFahsLg%3D
LeeHJangWLeeJ WKorean J. Chem. Eng.2019369541:CAS:528:DC%2BC1MXhtFGit7jL
GadallaMOlujicZSunLDe RijkeAJansensP JChem. Eng. Res. Des.2005839871:CAS:528:DC%2BD2MXhtVSlurfO
LeeHMoHNamgungKJangWLeeJ WInd. Eng. Chem. Res.202059143981:CAS:528:DC%2BB3cXhtlCqs7%2FI
LeeJ WWesterbergA WAIChE J.20014713331:CAS:528:DC%2BD3MXksVGgtrc%3D
HinoMKurashigeMMatsuhashiHArataKThermochim. Acta2006441351:CAS:528:DC%2BD28XlsF2quw%3D%3D
LambaRKumarSSarkarSChem. Eng. Commun.20182052811:CAS:528:DC%2BC1cXitVegtro%3D
LongN V DLeeD YHanT HSunyongPBongH BLeeMKorean J. Chem. Eng.20203718231:CAS:528:DC%2BB3cXitFOgtLfP
GadewarS BMaloneM FDohertyM FInd. Eng. Chem. Res.20074632551:CAS:528:DC%2BD2sXisFSjsrs%3D
WuY-CLeeH-YTsaiC-YHuangH-PChienI LComput. Chem. Eng.201357631:CAS:528:DC%2BC3sXit1Kgs7g%3D
LinnhoffBHindmarshEChem. Eng. Sci.1983387451:CAS:528:DyaL3sXlslyit7s%3D
J W Lee (937_CR9) 2001; 47
N V D Long (937_CR3) 2020; 37
H Lee (937_CR26) 2019; 36
K Namgung (937_CR23) 2020; 154
M Hino (937_CR36) 2006; 441
Y-C Wu (937_CR40) 2013; 57
M F Doherty (937_CR39) 1985; 40
B-H Li (937_CR46) 2010; 49
R Lamba (937_CR38) 2018; 205
M Gadalla (937_CR44) 2005; 83
J W Lee (937_CR13) 2000; 456
W Jang (937_CR17) 2019; 58
F I Gomez-Castro (937_CR1) 2010; 49
H Mo (937_CR24) 2021; 38
I Mueller (937_CR19) 2007; 46
S B Gadewar (937_CR11) 2007; 46
A A Kiss (937_CR7) 2019; 58
G M Kim (937_CR2) 2020; 3
B-H Li (937_CR45) 2019; 148
A C G van Genderen (937_CR41) 2002; 202
F Omota (937_CR33) 2003; 58
W Jang (937_CR18) 2020; 59
Z Jiang (937_CR5) 2019; 147
A Yang (937_CR22) 2019; 172
J Fang (937_CR27) 2019; 27
A Harwardt (937_CR25) 2012; 58
T Glenchur (937_CR29) 1987; 22
M A Alves-Rosa (937_CR37) 2016; 6
I Dejanović (937_CR15) 2010; 49
R J Galanido (937_CR4) 2020; 37
S Steinigeweg (937_CR35) 2003; 42
J W Lee (937_CR12) 2000; 46
J W Lee (937_CR8) 2000; 39
A A Kiss (937_CR42) 2014; 86
S Feng (937_CR21) 2017; 125
H Lee (937_CR32) 2020; 59
B Linnhoff (937_CR43) 1983; 38
M F Malone (937_CR6) 2000; 39
F Omota (937_CR34) 2003; 58
W L Luyben (937_CR47) 2013
F J Novita (937_CR20) 2018; 35
M Gadalla (937_CR28) 2007; 31
K Naito (937_CR30) 2000; 24
R S Huss (937_CR10) 2003; 27
Ö Yildirim (937_CR16) 2011; 80
J W Lee (937_CR14) 2000; 456
M Nakaiwa (937_CR31) 2003; 81
References_xml – reference: LeeJ WHauanSWesterbergA WInd. Eng. Chem. Res.20003910611:CAS:528:DC%2BD3cXhsFGgs7w%3D
– reference: LeeHJangWLeeJ WKorean J. Chem. Eng.2019369541:CAS:528:DC%2BC1MXhtFGit7jL
– reference: GlenchurTGovindRSep. Sci. Technol.19872223231:CAS:528:DyaL1cXotVWr
– reference: LiB-HChota CastilloY EChangC-TChem. Eng. Res. Des.20191482601:CAS:528:DC%2BC1MXht1ejsbvM
– reference: LinnhoffBHindmarshEChem. Eng. Sci.1983387451:CAS:528:DyaL3sXlslyit7s%3D
– reference: JangWLeeHHanJLeeJ WInd. Eng. Chem. Res.20195882061:CAS:528:DC%2BC1MXmsVSms7k%3D
– reference: LeeJ WHauanSLienK MWesterbergA WProc. R. Soc. A200045619531:CAS:528:DC%2BD3cXmslSgsrw%3D
– reference: LeeJ WHauanSLienK MWesterbergA WProc. R. Soc. A200045619651:CAS:528:DC%2BD3cXmslSgsr0%3D
– reference: OmotaFDimianA CBliekAChem. Eng. Sci.20035831751:CAS:528:DC%2BD3sXltFKlu78%3D
– reference: DohertyM FChem. Eng. Sci.19854018851:CAS:528:DyaL2MXmtFOnsL4%3D
– reference: NaitoKNakaiwaMHuangKEndoAAsoKNakanishiTNakamuraTNodaHTakamatsuTComput. Chem. Eng.2000244951:CAS:528:DC%2BD3cXlsVekuro%3D
– reference: OmotaFDimianA CBliekAChem. Eng. Sci.20035831591:CAS:528:DC%2BD3sXltFKlu74%3D
– reference: HussR SChenFMaloneM FDohertyM FComput. Chem. Eng.20032718551:CAS:528:DC%2BD3sXotlygsLo%3D
– reference: LeeJ WWesterbergA WAIChE J.20014713331:CAS:528:DC%2BD3MXksVGgtrc%3D
– reference: GadewarS BMaloneM FDohertyM FInd. Eng. Chem. Res.20074632551:CAS:528:DC%2BD2sXisFSjsrs%3D
– reference: YildirimÖKissA AKenigE YSep. Purit. Technol.2011804031:CAS:528:DC%2BC3MXps1SrtbY%3D
– reference: JangWNamgungKLeeHMoHLeeJ WInd. Eng. Chem. Res.20205919661:CAS:528:DC%2BC1MXit1SksLzO
– reference: FengSYeQXiaHLiRSuoXChem. Eng. Res. Des.20171252041:CAS:528:DC%2BC2sXht1eqsb3I
– reference: Alves-RosaM AMartinsLHammerPPulcinelliS HSantilliC VRSC Adv.2016666861:CAS:528:DC%2BC28Xlt1OgtQ%3D%3D
– reference: LeeJ WHauanSWesterbergA WAIChE J.20004612181:CAS:528:DC%2BD3cXktl2iu7Y%3D
– reference: GalanidoR JKimD SChoJKorean J. Chem. Eng.202037850
– reference: FangJChengXLiZLiHLiCChin. J. Chem. Eng.20192712721:CAS:528:DC%2BB3cXhtVagsLjI
– reference: SteinigewegSGmehlingJInd. Eng. Chem. Res.20034236121:CAS:528:DC%2BD3sXks12ms70%3D
– reference: GadallaMOlujicZSunLDe RijkeAJansensP JChem. Eng. Res. Des.2005839871:CAS:528:DC%2BD2MXhtVSlurfO
– reference: NovitaF JLeeH-YLeeMKorean J. Chem. Eng.2018359261:CAS:528:DC%2BC1cXjtVWltbk%3D
– reference: van GenderenA C Gvan MiltenburgJ CBlokJ Gvan BommelM Jvan EkerenP Jvan den BergG J KOonkH A JFluid Phase Equilib.20022021091:CAS:528:DC%2BD38XlvFOkt7Y%3D
– reference: KissA AJobsonMGaoXInd. Eng. Chem. Res.20195859091:CAS:528:DC%2BC1cXisVOitrvJ
– reference: YangASunSEslamimaneshAWeiS AShenWEnergy20191723201:CAS:528:DC%2BC1MXisFCntbs%3D
– reference: NamgungKLeeHJangWMoHLeeJ WChem. Eng. Process. Process Intensif.20201541080481:CAS:528:DC%2BB3cXhsVWqtbzK
– reference: LeeHMoHNamgungKJangWLeeJ WInd. Eng. Chem. Res.202059143981:CAS:528:DC%2BB3cXhtlCqs7%2FI
– reference: MuellerIKenigE YInd. Eng. Chem. Res.20074637091:CAS:528:DC%2BD2sXkslaqtLo%3D
– reference: LambaRKumarSSarkarSChem. Eng. Commun.20182052811:CAS:528:DC%2BC1cXitVegtro%3D
– reference: KissA AOlujićŽChem. Eng. Process.2014861251:CAS:528:DC%2BC2cXhvVygtrbO
– reference: Gomez-CastroF IRico-RamirezVSegovia-HernandezJ GHernandezSChem. Eng. Process. Process Intensif.2010492621:CAS:528:DC%2BC3cXjvFahsLg%3D
– reference: LongN V DLeeD YHanT HSunyongPBongH BLeeMKorean J. Chem. Eng.20203718231:CAS:528:DC%2BB3cXitFOgtLfP
– reference: KimG MChoiW YParkJ HJeongS JHongJ-EJungWLeeJ WACS Appl. Nano Mater.2020385921:CAS:528:DC%2BB3cXhs1Cksb3E
– reference: WuY-CLeeH-YTsaiC-YHuangH-PChienI LComput. Chem. Eng.201357631:CAS:528:DC%2BC3sXit1Kgs7g%3D
– reference: LiB-HChangC-TInd. Eng. Chem. Res.20104939671:CAS:528:DC%2BC3cXjtlaiu7c%3D
– reference: MaloneM FDohertyM FInd. Eng. Chem. Res.20003939531:CAS:528:DC%2BD3cXmt1KisLw%3D
– reference: NakaiwaMHuangKEndoAOhmoriTAkiyaTTakamatsuTChem. Eng. Res. Des.2003811621:CAS:528:DC%2BD3sXhsFKms7Y%3D
– reference: GadallaMJiménezLOlujicZJansensP JComput. Chem. Eng.20073113461:CAS:528:DC%2BD2sXnvFOgt70%3D
– reference: HinoMKurashigeMMatsuhashiHArataKThermochim. Acta2006441351:CAS:528:DC%2BD28XlsF2quw%3D%3D
– reference: LuybenW LDistillation design and control using aspen simulation2013Hoboken, New JerseyJohn Wiley & Sons
– reference: HarwardtAMarquardtWAIChE J.20125837401:CAS:528:DC%2BC38XktVKjtbg%3D
– reference: JiangZAgrawalRChem. Eng. Res. Des.20191471221:CAS:528:DC%2BC1MXovFGjurw%3D
– reference: DejanovićIMatijaševićLOlujićŸChem. Eng. Process.201049559
– reference: MoHLeeHJangWNamgungKLeeJ WKorean J. Chem. Eng.2021381951:CAS:528:DC%2BB3MXhtVCqtr0%3D
– volume: 58
  start-page: 3740
  year: 2012
  ident: 937_CR25
  publication-title: AIChE J.
  doi: 10.1002/aic.13775
– volume: 37
  start-page: 1823
  year: 2020
  ident: 937_CR3
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-020-0631-1
– volume: 22
  start-page: 2323
  year: 1987
  ident: 937_CR29
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496398708057189
– volume: 86
  start-page: 125
  year: 2014
  ident: 937_CR42
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2014.10.017
– volume: 147
  start-page: 122
  year: 2019
  ident: 937_CR5
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.04.023
– volume: 59
  start-page: 14398
  year: 2020
  ident: 937_CR32
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c01683
– volume: 58
  start-page: 3159
  year: 2003
  ident: 937_CR33
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(03)00165-9
– volume: 49
  start-page: 3967
  year: 2010
  ident: 937_CR46
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9016607
– volume: 58
  start-page: 8206
  year: 2019
  ident: 937_CR17
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b00324
– volume: 38
  start-page: 195
  year: 2021
  ident: 937_CR24
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-020-0682-3
– volume: 39
  start-page: 1061
  year: 2000
  ident: 937_CR8
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie990447k
– volume: 456
  start-page: 1965
  year: 2000
  ident: 937_CR14
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2000.0597
– volume: 57
  start-page: 63
  year: 2013
  ident: 937_CR40
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2013.01.002
– volume: 35
  start-page: 926
  year: 2018
  ident: 937_CR20
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-017-0342-4
– volume: 27
  start-page: 1272
  year: 2019
  ident: 937_CR27
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2018.08.021
– volume: 202
  start-page: 109
  year: 2002
  ident: 937_CR41
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/S0378-3812(02)00097-3
– volume: 49
  start-page: 262
  year: 2010
  ident: 937_CR1
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2010.02.002
– volume: 46
  start-page: 3709
  year: 2007
  ident: 937_CR19
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0610344
– volume: 125
  start-page: 204
  year: 2017
  ident: 937_CR21
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2017.07.017
– volume: 148
  start-page: 260
  year: 2019
  ident: 937_CR45
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.06.008
– volume-title: Distillation design and control using aspen simulation
  year: 2013
  ident: 937_CR47
  doi: 10.1002/9781118510193
– volume: 58
  start-page: 5909
  year: 2019
  ident: 937_CR7
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b05450
– volume: 27
  start-page: 1855
  year: 2003
  ident: 937_CR10
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(03)00156-X
– volume: 80
  start-page: 403
  year: 2011
  ident: 937_CR16
  publication-title: Sep. Purit. Technol.
  doi: 10.1016/j.seppur.2011.05.009
– volume: 205
  start-page: 281
  year: 2018
  ident: 937_CR38
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986445.2017.1387540
– volume: 6
  start-page: 6686
  year: 2016
  ident: 937_CR37
  publication-title: RSC Adv.
  doi: 10.1039/C5RA24413G
– volume: 39
  start-page: 3953
  year: 2000
  ident: 937_CR6
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie000633m
– volume: 36
  start-page: 954
  year: 2019
  ident: 937_CR26
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-019-0271-5
– volume: 38
  start-page: 745
  year: 1983
  ident: 937_CR43
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(83)80185-7
– volume: 46
  start-page: 3255
  year: 2007
  ident: 937_CR11
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie060867r
– volume: 456
  start-page: 1953
  year: 2000
  ident: 937_CR13
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2000.0596
– volume: 47
  start-page: 1333
  year: 2001
  ident: 937_CR9
  publication-title: AIChE J.
  doi: 10.1002/aic.690470611
– volume: 31
  start-page: 1346
  year: 2007
  ident: 937_CR28
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2006.11.006
– volume: 83
  start-page: 987
  year: 2005
  ident: 937_CR44
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/cherd.04301
– volume: 59
  start-page: 1966
  year: 2020
  ident: 937_CR18
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b05051
– volume: 40
  start-page: 1885
  year: 1985
  ident: 937_CR39
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(85)80125-1
– volume: 42
  start-page: 3612
  year: 2003
  ident: 937_CR35
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie020925i
– volume: 172
  start-page: 320
  year: 2019
  ident: 937_CR22
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.126
– volume: 441
  start-page: 35
  year: 2006
  ident: 937_CR36
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2005.11.042
– volume: 81
  start-page: 162
  year: 2003
  ident: 937_CR31
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/026387603321158320
– volume: 46
  start-page: 1218
  year: 2000
  ident: 937_CR12
  publication-title: AIChE J.
  doi: 10.1002/aic.690460614
– volume: 49
  start-page: 559
  year: 2010
  ident: 937_CR15
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2010.04.001
– volume: 154
  start-page: 108048
  year: 2020
  ident: 937_CR23
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2020.108048
– volume: 58
  start-page: 3175
  year: 2003
  ident: 937_CR34
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(03)00154-4
– volume: 24
  start-page: 495
  year: 2000
  ident: 937_CR30
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(00)00513-5
– volume: 3
  start-page: 8592
  year: 2020
  ident: 937_CR2
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c01909
– volume: 37
  start-page: 850
  year: 2020
  ident: 937_CR4
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-020-0505-6
SSID ssj0055620
Score 2.3271031
Snippet This study presents a strategy for the internal heat integration of reactive distillation (RD) columns for concurrently producing 2-ethylhexyl dodecanoate and...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 263
SubjectTerms Biotechnology
Catalysis
Chemistry
Chemistry and Materials Science
Configurations
Distillation
Dividing wall columns
Endothermic reactions
Energy consumption
Exothermic reactions
Heat
High temperature
Industrial Chemistry/Chemical Engineering
Internal flow
Low temperature
Materials Science
Process Safety
Process Systems Engineering
Temperature gradients
화학공학
Title Temperature driven internal heat integration in an energy-efficient partial double annular column
URI https://link.springer.com/article/10.1007/s11814-021-0937-7
https://www.proquest.com/docview/2623727463
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002807784
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Chemical Engineering, 2022, 39(2), 263, pp.263-274
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED7R8sD2MDa2ad1YZU08MRmlcWzHjwXRwSbx1ErwZNmOPaFWKSrty379zkm8DsQm8ZRIuSSO73L32b77DHCkPA_WOk5Z5iUtLAvUIsqlwnGZxeQmZ5oE2StxMSu-X_Prro77PmW7pyXJxlNvi90wGBU0phTgKFxS2YNdPipV2Yfd8bebH-fJAXMM6e3USqTYQ8STFjOfesiDcNSrV-EB0ny0ONrEnMk-TFNr21ST-clmbU_cr0dEjs_8nNfwqsOgZNwazRvY8fUB7J2lrd8O4OVfLIVvwUw9YuuWe5lUq-geyW07kbgg0ZeTxDmBOsZzYmrim5JC6huCCoxr5C6aKMpXy41deBILlHFMTVx0jvU7mE3Op2cXtNuZgTrGszVlgYWQFxgBReUctyE4JqSp8lAprypWuYhEvODGjjKvmCgF95LlTuYlrxRj76FfL2v_AYjkI1NYbtE5uIL70gplstyNZGmMcEU2gCwpSLuOtjzunrHQW8Ll2JMae1LHntRyAMd_brlrOTv-J_wFta7n7lZHpu14_LnU85XG8cSlVgoBjEChw2QUuvvH73WOyBHRXyHYAL4mHW8v__ONH58l_Qle5LHiokkUP4T-erXxnxEHre0Q7X5yeno17Ox_CL1ZPv4NPJkAAQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HNSD-MT1GcSTEug2TdIeRZT1edoFbyFJExGX7rKu_99J27gqKnhqodMWZpKZL8nMNwAnhePeGMspS5ykmWGeGkS5VFguk5DcZHWdIPsgeoPs5pE_tnXcrzHbPR5J1p56VuyGwSijIaUAV-GSynlYRCyQh7YFg_Q8ul-OAb3ZWAkEe4h34lHmT5_4Eozmq4n_gjO_HY3WEedqDVZbqEjOG9uuw5yrNmDpInZo24CVT2SCm6D7DiFwQ5FMyknwYuS52e8bkuBySaSGQFPgPdEVcXXlH3U1jwSGHzIOIwnly9GbGToS6ohx6Uts8GHVFgyuLvsXPdo2UKCW8WRKmWfepxkGKlFay433lgmpy9SXhStKVtoAGJzg2nQTVzCRC-4kS61Mc14WjG3DQjWq3A4Qybs6M9zgHLYZd7kRhU5S25W51sJmSQeSqEllW3bx0ORiqGa8yEH5CpWvgvKV7MDpxyvjhlrjL-FjNI96sc8qEGKH69NIvUwUwv5rVRSIMwQK7UfrqXYqvqoUAR6CtEywDpxFi84e__rH3X9JH8FSr39_p-6uH273YDkNRRJ1bvc-LEwnb-4AocvUHNZD9R0BGuOn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_8gH48FGsrXqt2KX1qWcxls7uXR1EPtUX64IFvy36KeOSO8_z_O5NkeyptoU8JZJLAzO7Mb3dnfgPwpY4yOeclF0XUvHIicYcolysvdUHJTd62CbKX6mxSXVzL677P6X3Ods9Hkl1NA7E0NcvDeUiHq8I3DEwVp_QCXJFrrtdhE73xkAb6pDzKrlhicO82WYhsD7FPPtb80yeeBKb1ZpGeYM5nx6Rt9BlvwZseNrKjzs5vYS022_DyOHdr24bXj4gF34G9igiHO7pkFhbk0dhtt_c3ZeR-WaaJQLPgPbMNi20VII8tpwSqgs1pVKF8mD24aWRUU4zLYObJnzXvYTI-vTo-430zBe6FLJZcJJFSWWHQUsF76VLyQmkbyhTqWAcRPIGHqKR1wyLWQo2UjFqUXpcjGWohdmCjmTVxF5iWQ1s56XA--0rGkVO1LUo_1CNrla-KARRZk8b3TOPU8GJqVhzJpHyDyjekfKMH8PX3K_OOZuNfwp_RPObO3xoix6brzczcLQwuAc5NXSPmUCi0l61n-ml5b0oEewjYKiUG8C1bdPX4r3_88F_Sn-DFz5Ox-XF--f0jvCqpXqJN896DjeXiIe4jilm6g3ak_gI8G-fj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+driven+internal+heat+integration+in+an+energy-efficient+partial+double+annular+column&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Seo%2C+Chaeyeong&rft.au=Lee%2C+Heecheon&rft.au=Lee%2C+Minyong&rft.au=Lee%2C+Jae+W.&rft.date=2022-02-01&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=39&rft.issue=2&rft.spage=263&rft.epage=274&rft_id=info:doi/10.1007%2Fs11814-021-0937-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11814_021_0937_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon