Leveraging Transfer Superposition Theory for Stable-State Visual Evoked Potential Cross-Subject Frequency Recognition
In steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), various spatial filtering methods based on individual calibration data have been proposed to alleviate the interference of spontaneous activities in SSVEP signals for enhancing the SSVEP detection performance. Ho...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 71; no. 11; pp. 3071 - 3084 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2024.3406603 |
Cover
Loading…
Abstract | In steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), various spatial filtering methods based on individual calibration data have been proposed to alleviate the interference of spontaneous activities in SSVEP signals for enhancing the SSVEP detection performance. However, the necessary calibration procedures take time, cause visual fatigue and reduce usability. For the calibration-free scenario, we propose a cross-subject frequency identification method based on transfer superimposed theory for SSVEP frequency decoding. First, a multi-channel signal decomposition model was constructed. Next, we used the cross least squares iterative method to create individual specific transfer spatial filters as well as source subject transfer superposition templates in the source subject. Then, we identified common knowledge among source subjects using a prototype spatial filter to make common transfer spatial filters and common impulse responses. Following, we reconstructed a global transfer superimposition template with SSVEP frequency characteristics. Finally, an ensemble cross-subject transfer learning method was proposed for SSVEP frequency recognition by combining the source-subject transfer mode, the global transfer mode, and the sine-cosine reference template. Offline tests on two public datasets show that the proposed method significantly outperforms the FBCCA, TTCCA, and CSSFT methods. More importantly, the proposed method can be directly used in online SSVEP recognition without calibration. The proposed algorithm was robust, which is important for a practical BCI. |
---|---|
AbstractList | In steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), various spatial filtering methods based on individual calibration data have been proposed to alleviate the interference of spontaneous activities in SSVEP signals for enhancing the SSVEP detection performance. However, the necessary calibration procedures take time, cause visual fatigue and reduce usability. For the calibration-free scenario, we propose a cross-subject frequency identification method based on transfer superimposed theory for SSVEP frequency decoding. First, a multi-channel signal decomposition model was constructed. Next, we used the cross least squares iterative method to create individual specific transfer spatial filters as well as source subject transfer superposition templates in the source subject. Then, we identified common knowledge among source subjects using a prototype spatial filter to make common transfer spatial filters and common impulse responses. Following, we reconstructed a global transfer superimposition template with SSVEP frequency characteristics. Finally, an ensemble cross-subject transfer learning method was proposed for SSVEP frequency recognition by combining the source-subject transfer mode, the global transfer mode, and the sine-cosine reference template. Offline tests on two public datasets show that the proposed method significantly outperforms the FBCCA, TTCCA, and CSSFT methods. More importantly, the proposed method can be directly used in online SSVEP recognition without calibration. The proposed algorithm was robust, which is important for a practical BCI. In steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), various spatial filtering methods based on individual calibration data have been proposed to alleviate the interference of spontaneous activities in SSVEP signals for enhancing the SSVEP detection performance. However, the necessary calibration procedures take time, cause visual fatigue and reduce usability. For the calibration-free scenario, we propose a cross-subject frequency identification method based on transfer superimposed theory for SSVEP frequency decoding. First, a multi-channel signal decomposition model was constructed. Next, we used the cross least squares iterative method to create individual specific transfer spatial filters as well as source subject transfer superposition templates in the source subject. Then, we identified common knowledge among source subjects using a prototype spatial filter to make common transfer spatial filters and common impulse responses. Following, we reconstructed a global transfer superimposition template with SSVEP frequency characteristics. Finally, an ensemble cross-subject transfer learning method was proposed for SSVEP frequency recognition by combining the source-subject transfer mode, the global transfer mode, and the sine-cosine reference template. Offline tests on two public datasets show that the proposed method significantly outperforms the FBCCA, TTCCA, and CSSFT methods. More importantly, the proposed method can be directly used in online SSVEP recognition without calibration. The proposed algorithm was robust, which is important for a practical BCI.In steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), various spatial filtering methods based on individual calibration data have been proposed to alleviate the interference of spontaneous activities in SSVEP signals for enhancing the SSVEP detection performance. However, the necessary calibration procedures take time, cause visual fatigue and reduce usability. For the calibration-free scenario, we propose a cross-subject frequency identification method based on transfer superimposed theory for SSVEP frequency decoding. First, a multi-channel signal decomposition model was constructed. Next, we used the cross least squares iterative method to create individual specific transfer spatial filters as well as source subject transfer superposition templates in the source subject. Then, we identified common knowledge among source subjects using a prototype spatial filter to make common transfer spatial filters and common impulse responses. Following, we reconstructed a global transfer superimposition template with SSVEP frequency characteristics. Finally, an ensemble cross-subject transfer learning method was proposed for SSVEP frequency recognition by combining the source-subject transfer mode, the global transfer mode, and the sine-cosine reference template. Offline tests on two public datasets show that the proposed method significantly outperforms the FBCCA, TTCCA, and CSSFT methods. More importantly, the proposed method can be directly used in online SSVEP recognition without calibration. The proposed algorithm was robust, which is important for a practical BCI. |
Author | He, Xinjie Wang, Xingyu Allison, Brendan Z. Liang, Wei Jin, Jing Qin, Ke Cichocki, Andrzej |
Author_xml | – sequence: 1 givenname: Xinjie orcidid: 0009-0002-0584-1450 surname: He fullname: He, Xinjie organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, China – sequence: 2 givenname: Brendan Z. surname: Allison fullname: Allison, Brendan Z. organization: Department of Cognitive Science, University of California, USA – sequence: 3 givenname: Ke orcidid: 0000-0002-3617-4032 surname: Qin fullname: Qin, Ke organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, China – sequence: 4 givenname: Wei orcidid: 0000-0002-4514-9015 surname: Liang fullname: Liang, Wei organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, China – sequence: 5 givenname: Xingyu surname: Wang fullname: Wang, Xingyu organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, China – sequence: 6 givenname: Andrzej orcidid: 0000-0002-8364-7226 surname: Cichocki fullname: Cichocki, Andrzej organization: Department of Informatics, Nicolaus Copernicus University, Poland – sequence: 7 givenname: Jing orcidid: 0000-0002-6133-5491 surname: Jin fullname: Jin, Jing email: jinjingat@gmail.com organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39120991$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9vEzEQxS3UiqaFD4CEkCUuXDYd_1l3fYQopUipimjguvJ6Z4PDxk7t3Ur59jhNQKgHTiOPf288fu-cnPjgkZA3DKaMgb5cfrqdTzlwORUSlALxgkxYWVYFLwU7IRMAVhWaa3lGzlNa56OspHpJzoRmHLRmEzIu8BGjWTm_ostofOow0vtxi3Ebkhtc8HT5E0Pc0S7ki8E0PRa5DEh_uDSans4fwy9s6dcwoB9cbsxiSKm4H5s12oFeR3wY0dsd_YY2rPzTzFfktDN9wtfHekG-X8-Xs5ticff5y-zjorCihKHgDTDdVrprO6wa3jXWlkaJCjjHrrnClrEGJLb5tyWCaBthWtECr6QoFc_tC_LhMHcbQ94iDfXGJYt9bzyGMdUCNGMlaJAZff8MXYcx-rxdLbJZSiqldabeHamx2WBbb6PbmLir_xiaAXYA7N6FiN1fhEG9D63eh1bvQ6uPoWXN1TONddnh7NMQjev_q3x7UDpE_OclJXilpPgNIsmlCw |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107404 |
Cites_doi | 10.1109/tbme.2010.2068571 10.1109/tnnls.2021.3135696 10.1016/j.eswa.2024.123492 10.1088/1741-2560/12/4/046008 10.1109/tbme.2021.3133594 10.1109/TNNLS.2021.3118468 10.1109/TNSRE.2023.3305202 10.1038/s41586-019-1119-1 10.1109/TNSRE.2016.2627556 10.1109/EMBC.2014.6944263 10.1088/1741-2552/ac81ee 10.3389/fnins.2020.00627 10.1109/TIM.2022.3219497 10.1249/MSS.0b013e31824f5be4 10.1109/TBME.2021.3110440 10.1109/TNSRE.2023.3250953 10.1109/TNSRE.2022.3230250 10.1109/TNSRE.2016.2597854 10.1109/JSEN.2020.3017491 10.1109/SMC.2016.7844880 10.1109/TBME.2006.886577 10.1109/TNSRE.2019.2956488 10.1109/tnsre.2023.3260842 10.1371/journal.pone.0206107 10.1016/j.neucom.2020.09.017 10.1088/1741-2552/acacca 10.1088/1741-2560/12/4/046006 10.1088/1741-2552/ac6b57 10.1109/tnsre.2023.3246359 10.1109/TCDS.2021.3096812 10.1088/1741-2560/12/5/056009 10.1088/1741-2560/13/1/016014 10.1109/TNSRE.2013.2279680 10.1109/TNSRE.2018.2826541 10.1109/TNSRE.2021.3057938 10.26599/tst.2021.9010085 10.1109/TNSRE.2020.3019276 10.1109/SMC.2018.00092 10.1371/journal.pone.0014543 10.1088/1741-2552/aa6213 10.1109/tbme.2020.2975614 10.1109/TASE.2021.3054741 10.1088/1741-2560/2/4/008 10.1371/journal.pone.0133797 10.1109/TNSRE.2022.3161989 10.1109/TNSRE.2019.2941349 10.1109/TBME.2017.2694818 10.1109/TBME.2020.2965178 10.1109/TCDS.2020.3007453 10.1016/j.clinph.2008.08.002 10.1142/S0129065714500130 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2024.3406603 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 3084 |
ExternalDocumentID | 39120991 10_1109_TBME_2024_3406603 10632864 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Program of Introducing Talents of Discipline to Universities grantid: B17017 – fundername: Shanghai Municipal Science and Technology Major Project grantid: 2021SHZDZX – fundername: STI 2030-major Projects grantid: 2022ZD0208900 – fundername: National Government Guided Special Funds for Local Science and Technology Development, Shenzhen, China grantid: 2021Szvup043 – fundername: National Natural Science Foundation of China grantid: 62176090 funderid: 10.13039/501100001809 – fundername: Jiangsu Province Science and Technology Plan Special Fund in 2022 grantid: BE2022064-1 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c350t-2b019d89fdfe8b2fbcc5a638022efb7ed11b04ed5315e03db3ad3d02843562d53 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 10:53:12 EDT 2025 Mon Jun 30 10:16:47 EDT 2025 Wed Feb 19 02:03:46 EST 2025 Tue Jul 01 03:28:41 EDT 2025 Thu Apr 24 22:51:28 EDT 2025 Wed Aug 27 02:14:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-2b019d89fdfe8b2fbcc5a638022efb7ed11b04ed5315e03db3ad3d02843562d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0002-0584-1450 0000-0002-3617-4032 0000-0002-4514-9015 0000-0002-6133-5491 0000-0002-8364-7226 |
PMID | 39120991 |
PQID | 3120646699 |
PQPubID | 85474 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3091150904 pubmed_primary_39120991 ieee_primary_10632864 proquest_journals_3120646699 crossref_primary_10_1109_TBME_2024_3406603 crossref_citationtrail_10_1109_TBME_2024_3406603 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref12 doi: 10.1109/tbme.2010.2068571 – ident: ref13 doi: 10.1109/tnnls.2021.3135696 – ident: ref48 doi: 10.1016/j.eswa.2024.123492 – ident: ref17 doi: 10.1088/1741-2560/12/4/046008 – ident: ref27 doi: 10.1109/tbme.2021.3133594 – ident: ref26 doi: 10.1109/TNNLS.2021.3118468 – ident: ref38 doi: 10.1109/TNSRE.2023.3305202 – ident: ref1 doi: 10.1038/s41586-019-1119-1 – ident: ref40 doi: 10.1109/TNSRE.2016.2627556 – ident: ref20 doi: 10.1109/EMBC.2014.6944263 – ident: ref37 doi: 10.1088/1741-2552/ac81ee – ident: ref41 doi: 10.3389/fnins.2020.00627 – ident: ref24 doi: 10.1109/TIM.2022.3219497 – ident: ref47 doi: 10.1249/MSS.0b013e31824f5be4 – ident: ref51 doi: 10.1109/TBME.2021.3110440 – ident: ref34 doi: 10.1109/TNSRE.2023.3250953 – ident: ref49 doi: 10.1109/TNSRE.2022.3230250 – ident: ref9 doi: 10.1109/TNSRE.2016.2597854 – ident: ref15 doi: 10.1109/JSEN.2020.3017491 – ident: ref32 doi: 10.1109/SMC.2016.7844880 – ident: ref16 doi: 10.1109/TBME.2006.886577 – ident: ref3 doi: 10.1109/TNSRE.2019.2956488 – ident: ref28 doi: 10.1109/tnsre.2023.3260842 – ident: ref45 doi: 10.1371/journal.pone.0206107 – ident: ref30 doi: 10.1016/j.neucom.2020.09.017 – ident: ref50 doi: 10.1088/1741-2552/acacca – ident: ref31 doi: 10.1088/1741-2560/12/4/046006 – ident: ref36 doi: 10.1088/1741-2552/ac6b57 – ident: ref11 doi: 10.1109/tnsre.2023.3246359 – ident: ref25 doi: 10.1109/TCDS.2021.3096812 – ident: ref7 doi: 10.1088/1741-2560/12/5/056009 – ident: ref8 doi: 10.1088/1741-2560/13/1/016014 – ident: ref18 doi: 10.1109/TNSRE.2013.2279680 – ident: ref23 doi: 10.1109/TNSRE.2018.2826541 – ident: ref33 doi: 10.1109/TNSRE.2021.3057938 – ident: ref14 doi: 10.26599/tst.2021.9010085 – ident: ref35 doi: 10.1109/TNSRE.2020.3019276 – ident: ref46 doi: 10.1109/SMC.2018.00092 – ident: ref43 doi: 10.1371/journal.pone.0014543 – ident: ref4 doi: 10.1088/1741-2552/aa6213 – ident: ref10 doi: 10.1109/tbme.2020.2975614 – ident: ref39 doi: 10.1109/TASE.2021.3054741 – ident: ref6 doi: 10.1088/1741-2560/2/4/008 – ident: ref44 doi: 10.1371/journal.pone.0133797 – ident: ref5 doi: 10.1109/TNSRE.2022.3161989 – ident: ref22 doi: 10.1109/TNSRE.2019.2941349 – ident: ref21 doi: 10.1109/TBME.2017.2694818 – ident: ref2 doi: 10.1109/TBME.2020.2965178 – ident: ref29 doi: 10.1109/TCDS.2020.3007453 – ident: ref42 doi: 10.1016/j.clinph.2008.08.002 – ident: ref19 doi: 10.1142/S0129065714500130 |
SSID | ssj0014846 |
Score | 2.46233 |
Snippet | In steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), various spatial filtering methods based on individual calibration data... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3071 |
SubjectTerms | Adult Algorithms Benchmark testing Brain computer interface (BCI) Brain-Computer Interfaces Calibration Correlation Decoding Electroencephalography electroencephalography (EEG) Electroencephalography - methods Evoked Potentials, Visual - physiology Fatigue Female Filters Frequency dependence Human-computer interface Humans Identification methods Iterative methods Knowledge management Male Recognition Signal Processing, Computer-Assisted Spatial filtering Spatial filters steady-state visual evoked potential (SSVEP) superposition theory Transfer learning transfer mode Visual evoked potentials Visualization Young Adult |
Title | Leveraging Transfer Superposition Theory for Stable-State Visual Evoked Potential Cross-Subject Frequency Recognition |
URI | https://ieeexplore.ieee.org/document/10632864 https://www.ncbi.nlm.nih.gov/pubmed/39120991 https://www.proquest.com/docview/3120646699 https://www.proquest.com/docview/3091150904 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9UwFA9uD6IPfsypV6dE8EnINV_NbR513MsQ7xDdZG-lSU5hbLTjrhX0r_ckaS9TmPhW0jRJe87p-SXni5C3MUm6E8KzupGe6UI5VitfM1WERvPSh9LGAOf1sTk61Z_OirMxWD3FwgBAcj6DebxMtvzQ-SEelaGEGyVLo3fIDu7ccrDW1mSgyxyVwwVKsLR6NGEKbt-ffFwvcSso9Vyh_jI8Fs9RNkWNij_0USqwcjvWTDpn9ZAcT6vNriYX86F3c__rr0SO__06j8iDEX3SD5ldHpM70O6R-zdyEu6Ru-vR2v6EDJ8BGT2VMaJJpzWwod-Gq1iYK7t60RzaTxH5UoSt7hJYQq_0-_n1gBMtf3QXEOiXro9OSdhwGD8Cw79VPP6hq0125P5Jv05-TF27T05Xy5PDIzaWaWBeFbxn0iFMjDQNDZRONs77okaxRnQAjVtAEMJxDQGlvQCuglN1UAFxDSI1I7H5KdltuxaeE-pr48UCCijMAnGasz4mLGys9EUjQYoZ4ROxKj_mMI-lNC6rtJfhtoqkriKpq5HUM_Ju-8hVTuDxr877kUw3OmYKzcjBxBLVKOPXlUIGMtoYa2fkzfY2Smc0udQtdAP2QTiGkNtyHOJZZqXt4BMHvrhl0pfkXlxbDnw8ILv9ZoBXiIB69zpx_m_3u__Z |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgSHw88DEGFAYYiSekFH_EbvwIU6sCbYWgQ3uLYvsioU3N1CVI8NdztpNqIA3xFjmO7eTucj_7vgh5HZKkW85dVtXCZbmSNqukqzKpfJ2zwvnChADn5UrPj_OPJ-qkD1aPsTAAEJ3PYBwuoy3fN64LR2Uo4VqKQufXyQ1U_IqncK2d0SAvUlwO4yjDwuS9EZMz83b9fjnFzaDIxxI1mGahfI40MW6U_6GRYomVq9Fm1Dqze2Q1rDc5m5yOu9aO3a-_Ujn-9wvdJ3d7_EnfJYZ5QK7BZp_cuZSVcJ_cXPb29oekWwCyeixkRKNWq2FLv3bnoTRXcvaiKbifIvalCFztGWQRv9Jv3y86nGj6ozkFTz83bXBLwoaj8BEy_F-FAyA62yZX7p_0y-DJ1GwOyPFsuj6aZ32hhsxJxdpMWASKgaq-hsKK2jqnKhRsxAdQ2wl4zi3LwaO8K2DSW1l56RHZIFbTApsfkb1Ns4EnhLpKOz4BBUpPEKlZ40LKwtoIp2oBgo8IG4hVuj6LeSimcVbG3QwzZSB1GUhd9qQekTe7R85TCo9_dT4IZLrUMVFoRA4Hlih7Kb8oJTKQzrU2ZkRe7W6jfAajS7WBpsM-CMgQdBuGQzxOrLQbfODAp1dM-pLcmq-Xi3LxYfXpGbkd1pnCIA_JXrvt4Dnioda-iFLwG3QLAzE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+Transfer+Superposition+Theory+for+Stable-State+Visual+Evoked+Potential+Cross-Subject+Frequency+Recognition&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=He%2C+Xinjie&rft.au=Allison%2C+Brendan+Z&rft.au=Qin%2C+Ke&rft.au=Liang%2C+Wei&rft.date=2024-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=71&rft.issue=11&rft.spage=3071&rft_id=info:doi/10.1109%2FTBME.2024.3406603&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |