Leveraging Transfer Superposition Theory for Stable-State Visual Evoked Potential Cross-Subject Frequency Recognition

In steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), various spatial filtering methods based on individual calibration data have been proposed to alleviate the interference of spontaneous activities in SSVEP signals for enhancing the SSVEP detection performance. Ho...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 71; no. 11; pp. 3071 - 3084
Main Authors He, Xinjie, Allison, Brendan Z., Qin, Ke, Liang, Wei, Wang, Xingyu, Cichocki, Andrzej, Jin, Jing
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2024.3406603

Cover

Loading…
Abstract In steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), various spatial filtering methods based on individual calibration data have been proposed to alleviate the interference of spontaneous activities in SSVEP signals for enhancing the SSVEP detection performance. However, the necessary calibration procedures take time, cause visual fatigue and reduce usability. For the calibration-free scenario, we propose a cross-subject frequency identification method based on transfer superimposed theory for SSVEP frequency decoding. First, a multi-channel signal decomposition model was constructed. Next, we used the cross least squares iterative method to create individual specific transfer spatial filters as well as source subject transfer superposition templates in the source subject. Then, we identified common knowledge among source subjects using a prototype spatial filter to make common transfer spatial filters and common impulse responses. Following, we reconstructed a global transfer superimposition template with SSVEP frequency characteristics. Finally, an ensemble cross-subject transfer learning method was proposed for SSVEP frequency recognition by combining the source-subject transfer mode, the global transfer mode, and the sine-cosine reference template. Offline tests on two public datasets show that the proposed method significantly outperforms the FBCCA, TTCCA, and CSSFT methods. More importantly, the proposed method can be directly used in online SSVEP recognition without calibration. The proposed algorithm was robust, which is important for a practical BCI.
AbstractList In steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), various spatial filtering methods based on individual calibration data have been proposed to alleviate the interference of spontaneous activities in SSVEP signals for enhancing the SSVEP detection performance. However, the necessary calibration procedures take time, cause visual fatigue and reduce usability. For the calibration-free scenario, we propose a cross-subject frequency identification method based on transfer superimposed theory for SSVEP frequency decoding. First, a multi-channel signal decomposition model was constructed. Next, we used the cross least squares iterative method to create individual specific transfer spatial filters as well as source subject transfer superposition templates in the source subject. Then, we identified common knowledge among source subjects using a prototype spatial filter to make common transfer spatial filters and common impulse responses. Following, we reconstructed a global transfer superimposition template with SSVEP frequency characteristics. Finally, an ensemble cross-subject transfer learning method was proposed for SSVEP frequency recognition by combining the source-subject transfer mode, the global transfer mode, and the sine-cosine reference template. Offline tests on two public datasets show that the proposed method significantly outperforms the FBCCA, TTCCA, and CSSFT methods. More importantly, the proposed method can be directly used in online SSVEP recognition without calibration. The proposed algorithm was robust, which is important for a practical BCI.
In steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), various spatial filtering methods based on individual calibration data have been proposed to alleviate the interference of spontaneous activities in SSVEP signals for enhancing the SSVEP detection performance. However, the necessary calibration procedures take time, cause visual fatigue and reduce usability. For the calibration-free scenario, we propose a cross-subject frequency identification method based on transfer superimposed theory for SSVEP frequency decoding. First, a multi-channel signal decomposition model was constructed. Next, we used the cross least squares iterative method to create individual specific transfer spatial filters as well as source subject transfer superposition templates in the source subject. Then, we identified common knowledge among source subjects using a prototype spatial filter to make common transfer spatial filters and common impulse responses. Following, we reconstructed a global transfer superimposition template with SSVEP frequency characteristics. Finally, an ensemble cross-subject transfer learning method was proposed for SSVEP frequency recognition by combining the source-subject transfer mode, the global transfer mode, and the sine-cosine reference template. Offline tests on two public datasets show that the proposed method significantly outperforms the FBCCA, TTCCA, and CSSFT methods. More importantly, the proposed method can be directly used in online SSVEP recognition without calibration. The proposed algorithm was robust, which is important for a practical BCI.In steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), various spatial filtering methods based on individual calibration data have been proposed to alleviate the interference of spontaneous activities in SSVEP signals for enhancing the SSVEP detection performance. However, the necessary calibration procedures take time, cause visual fatigue and reduce usability. For the calibration-free scenario, we propose a cross-subject frequency identification method based on transfer superimposed theory for SSVEP frequency decoding. First, a multi-channel signal decomposition model was constructed. Next, we used the cross least squares iterative method to create individual specific transfer spatial filters as well as source subject transfer superposition templates in the source subject. Then, we identified common knowledge among source subjects using a prototype spatial filter to make common transfer spatial filters and common impulse responses. Following, we reconstructed a global transfer superimposition template with SSVEP frequency characteristics. Finally, an ensemble cross-subject transfer learning method was proposed for SSVEP frequency recognition by combining the source-subject transfer mode, the global transfer mode, and the sine-cosine reference template. Offline tests on two public datasets show that the proposed method significantly outperforms the FBCCA, TTCCA, and CSSFT methods. More importantly, the proposed method can be directly used in online SSVEP recognition without calibration. The proposed algorithm was robust, which is important for a practical BCI.
Author He, Xinjie
Wang, Xingyu
Allison, Brendan Z.
Liang, Wei
Jin, Jing
Qin, Ke
Cichocki, Andrzej
Author_xml – sequence: 1
  givenname: Xinjie
  orcidid: 0009-0002-0584-1450
  surname: He
  fullname: He, Xinjie
  organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, China
– sequence: 2
  givenname: Brendan Z.
  surname: Allison
  fullname: Allison, Brendan Z.
  organization: Department of Cognitive Science, University of California, USA
– sequence: 3
  givenname: Ke
  orcidid: 0000-0002-3617-4032
  surname: Qin
  fullname: Qin, Ke
  organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0002-4514-9015
  surname: Liang
  fullname: Liang, Wei
  organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, China
– sequence: 5
  givenname: Xingyu
  surname: Wang
  fullname: Wang, Xingyu
  organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, China
– sequence: 6
  givenname: Andrzej
  orcidid: 0000-0002-8364-7226
  surname: Cichocki
  fullname: Cichocki, Andrzej
  organization: Department of Informatics, Nicolaus Copernicus University, Poland
– sequence: 7
  givenname: Jing
  orcidid: 0000-0002-6133-5491
  surname: Jin
  fullname: Jin, Jing
  email: jinjingat@gmail.com
  organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39120991$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vEzEQxS3UiqaFD4CEkCUuXDYd_1l3fYQopUipimjguvJ6Z4PDxk7t3Ur59jhNQKgHTiOPf288fu-cnPjgkZA3DKaMgb5cfrqdTzlwORUSlALxgkxYWVYFLwU7IRMAVhWaa3lGzlNa56OspHpJzoRmHLRmEzIu8BGjWTm_ostofOow0vtxi3Ebkhtc8HT5E0Pc0S7ki8E0PRa5DEh_uDSans4fwy9s6dcwoB9cbsxiSKm4H5s12oFeR3wY0dsd_YY2rPzTzFfktDN9wtfHekG-X8-Xs5ticff5y-zjorCihKHgDTDdVrprO6wa3jXWlkaJCjjHrrnClrEGJLb5tyWCaBthWtECr6QoFc_tC_LhMHcbQ94iDfXGJYt9bzyGMdUCNGMlaJAZff8MXYcx-rxdLbJZSiqldabeHamx2WBbb6PbmLir_xiaAXYA7N6FiN1fhEG9D63eh1bvQ6uPoWXN1TONddnh7NMQjev_q3x7UDpE_OclJXilpPgNIsmlCw
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107404
Cites_doi 10.1109/tbme.2010.2068571
10.1109/tnnls.2021.3135696
10.1016/j.eswa.2024.123492
10.1088/1741-2560/12/4/046008
10.1109/tbme.2021.3133594
10.1109/TNNLS.2021.3118468
10.1109/TNSRE.2023.3305202
10.1038/s41586-019-1119-1
10.1109/TNSRE.2016.2627556
10.1109/EMBC.2014.6944263
10.1088/1741-2552/ac81ee
10.3389/fnins.2020.00627
10.1109/TIM.2022.3219497
10.1249/MSS.0b013e31824f5be4
10.1109/TBME.2021.3110440
10.1109/TNSRE.2023.3250953
10.1109/TNSRE.2022.3230250
10.1109/TNSRE.2016.2597854
10.1109/JSEN.2020.3017491
10.1109/SMC.2016.7844880
10.1109/TBME.2006.886577
10.1109/TNSRE.2019.2956488
10.1109/tnsre.2023.3260842
10.1371/journal.pone.0206107
10.1016/j.neucom.2020.09.017
10.1088/1741-2552/acacca
10.1088/1741-2560/12/4/046006
10.1088/1741-2552/ac6b57
10.1109/tnsre.2023.3246359
10.1109/TCDS.2021.3096812
10.1088/1741-2560/12/5/056009
10.1088/1741-2560/13/1/016014
10.1109/TNSRE.2013.2279680
10.1109/TNSRE.2018.2826541
10.1109/TNSRE.2021.3057938
10.26599/tst.2021.9010085
10.1109/TNSRE.2020.3019276
10.1109/SMC.2018.00092
10.1371/journal.pone.0014543
10.1088/1741-2552/aa6213
10.1109/tbme.2020.2975614
10.1109/TASE.2021.3054741
10.1088/1741-2560/2/4/008
10.1371/journal.pone.0133797
10.1109/TNSRE.2022.3161989
10.1109/TNSRE.2019.2941349
10.1109/TBME.2017.2694818
10.1109/TBME.2020.2965178
10.1109/TCDS.2020.3007453
10.1016/j.clinph.2008.08.002
10.1142/S0129065714500130
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2024.3406603
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 3084
ExternalDocumentID 39120991
10_1109_TBME_2024_3406603
10632864
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Program of Introducing Talents of Discipline to Universities
  grantid: B17017
– fundername: Shanghai Municipal Science and Technology Major Project
  grantid: 2021SHZDZX
– fundername: STI 2030-major Projects
  grantid: 2022ZD0208900
– fundername: National Government Guided Special Funds for Local Science and Technology Development, Shenzhen, China
  grantid: 2021Szvup043
– fundername: National Natural Science Foundation of China
  grantid: 62176090
  funderid: 10.13039/501100001809
– fundername: Jiangsu Province Science and Technology Plan Special Fund in 2022
  grantid: BE2022064-1
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c350t-2b019d89fdfe8b2fbcc5a638022efb7ed11b04ed5315e03db3ad3d02843562d53
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 10:53:12 EDT 2025
Mon Jun 30 10:16:47 EDT 2025
Wed Feb 19 02:03:46 EST 2025
Tue Jul 01 03:28:41 EDT 2025
Thu Apr 24 22:51:28 EDT 2025
Wed Aug 27 02:14:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-2b019d89fdfe8b2fbcc5a638022efb7ed11b04ed5315e03db3ad3d02843562d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0002-0584-1450
0000-0002-3617-4032
0000-0002-4514-9015
0000-0002-6133-5491
0000-0002-8364-7226
PMID 39120991
PQID 3120646699
PQPubID 85474
PageCount 14
ParticipantIDs proquest_miscellaneous_3091150904
pubmed_primary_39120991
ieee_primary_10632864
proquest_journals_3120646699
crossref_primary_10_1109_TBME_2024_3406603
crossref_citationtrail_10_1109_TBME_2024_3406603
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref12
  doi: 10.1109/tbme.2010.2068571
– ident: ref13
  doi: 10.1109/tnnls.2021.3135696
– ident: ref48
  doi: 10.1016/j.eswa.2024.123492
– ident: ref17
  doi: 10.1088/1741-2560/12/4/046008
– ident: ref27
  doi: 10.1109/tbme.2021.3133594
– ident: ref26
  doi: 10.1109/TNNLS.2021.3118468
– ident: ref38
  doi: 10.1109/TNSRE.2023.3305202
– ident: ref1
  doi: 10.1038/s41586-019-1119-1
– ident: ref40
  doi: 10.1109/TNSRE.2016.2627556
– ident: ref20
  doi: 10.1109/EMBC.2014.6944263
– ident: ref37
  doi: 10.1088/1741-2552/ac81ee
– ident: ref41
  doi: 10.3389/fnins.2020.00627
– ident: ref24
  doi: 10.1109/TIM.2022.3219497
– ident: ref47
  doi: 10.1249/MSS.0b013e31824f5be4
– ident: ref51
  doi: 10.1109/TBME.2021.3110440
– ident: ref34
  doi: 10.1109/TNSRE.2023.3250953
– ident: ref49
  doi: 10.1109/TNSRE.2022.3230250
– ident: ref9
  doi: 10.1109/TNSRE.2016.2597854
– ident: ref15
  doi: 10.1109/JSEN.2020.3017491
– ident: ref32
  doi: 10.1109/SMC.2016.7844880
– ident: ref16
  doi: 10.1109/TBME.2006.886577
– ident: ref3
  doi: 10.1109/TNSRE.2019.2956488
– ident: ref28
  doi: 10.1109/tnsre.2023.3260842
– ident: ref45
  doi: 10.1371/journal.pone.0206107
– ident: ref30
  doi: 10.1016/j.neucom.2020.09.017
– ident: ref50
  doi: 10.1088/1741-2552/acacca
– ident: ref31
  doi: 10.1088/1741-2560/12/4/046006
– ident: ref36
  doi: 10.1088/1741-2552/ac6b57
– ident: ref11
  doi: 10.1109/tnsre.2023.3246359
– ident: ref25
  doi: 10.1109/TCDS.2021.3096812
– ident: ref7
  doi: 10.1088/1741-2560/12/5/056009
– ident: ref8
  doi: 10.1088/1741-2560/13/1/016014
– ident: ref18
  doi: 10.1109/TNSRE.2013.2279680
– ident: ref23
  doi: 10.1109/TNSRE.2018.2826541
– ident: ref33
  doi: 10.1109/TNSRE.2021.3057938
– ident: ref14
  doi: 10.26599/tst.2021.9010085
– ident: ref35
  doi: 10.1109/TNSRE.2020.3019276
– ident: ref46
  doi: 10.1109/SMC.2018.00092
– ident: ref43
  doi: 10.1371/journal.pone.0014543
– ident: ref4
  doi: 10.1088/1741-2552/aa6213
– ident: ref10
  doi: 10.1109/tbme.2020.2975614
– ident: ref39
  doi: 10.1109/TASE.2021.3054741
– ident: ref6
  doi: 10.1088/1741-2560/2/4/008
– ident: ref44
  doi: 10.1371/journal.pone.0133797
– ident: ref5
  doi: 10.1109/TNSRE.2022.3161989
– ident: ref22
  doi: 10.1109/TNSRE.2019.2941349
– ident: ref21
  doi: 10.1109/TBME.2017.2694818
– ident: ref2
  doi: 10.1109/TBME.2020.2965178
– ident: ref29
  doi: 10.1109/TCDS.2020.3007453
– ident: ref42
  doi: 10.1016/j.clinph.2008.08.002
– ident: ref19
  doi: 10.1142/S0129065714500130
SSID ssj0014846
Score 2.46233
Snippet In steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), various spatial filtering methods based on individual calibration data...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3071
SubjectTerms Adult
Algorithms
Benchmark testing
Brain computer interface (BCI)
Brain-Computer Interfaces
Calibration
Correlation
Decoding
Electroencephalography
electroencephalography (EEG)
Electroencephalography - methods
Evoked Potentials, Visual - physiology
Fatigue
Female
Filters
Frequency dependence
Human-computer interface
Humans
Identification methods
Iterative methods
Knowledge management
Male
Recognition
Signal Processing, Computer-Assisted
Spatial filtering
Spatial filters
steady-state visual evoked potential (SSVEP)
superposition theory
Transfer learning
transfer mode
Visual evoked potentials
Visualization
Young Adult
Title Leveraging Transfer Superposition Theory for Stable-State Visual Evoked Potential Cross-Subject Frequency Recognition
URI https://ieeexplore.ieee.org/document/10632864
https://www.ncbi.nlm.nih.gov/pubmed/39120991
https://www.proquest.com/docview/3120646699
https://www.proquest.com/docview/3091150904
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9UwFA9uD6IPfsypV6dE8EnINV_NbR513MsQ7xDdZG-lSU5hbLTjrhX0r_ckaS9TmPhW0jRJe87p-SXni5C3MUm6E8KzupGe6UI5VitfM1WERvPSh9LGAOf1sTk61Z_OirMxWD3FwgBAcj6DebxMtvzQ-SEelaGEGyVLo3fIDu7ccrDW1mSgyxyVwwVKsLR6NGEKbt-ffFwvcSso9Vyh_jI8Fs9RNkWNij_0USqwcjvWTDpn9ZAcT6vNriYX86F3c__rr0SO__06j8iDEX3SD5ldHpM70O6R-zdyEu6Ru-vR2v6EDJ8BGT2VMaJJpzWwod-Gq1iYK7t60RzaTxH5UoSt7hJYQq_0-_n1gBMtf3QXEOiXro9OSdhwGD8Cw79VPP6hq0125P5Jv05-TF27T05Xy5PDIzaWaWBeFbxn0iFMjDQNDZRONs77okaxRnQAjVtAEMJxDQGlvQCuglN1UAFxDSI1I7H5KdltuxaeE-pr48UCCijMAnGasz4mLGys9EUjQYoZ4ROxKj_mMI-lNC6rtJfhtoqkriKpq5HUM_Ju-8hVTuDxr877kUw3OmYKzcjBxBLVKOPXlUIGMtoYa2fkzfY2Smc0udQtdAP2QTiGkNtyHOJZZqXt4BMHvrhl0pfkXlxbDnw8ILv9ZoBXiIB69zpx_m_3u__Z
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgSHw88DEGFAYYiSekFH_EbvwIU6sCbYWgQ3uLYvsioU3N1CVI8NdztpNqIA3xFjmO7eTucj_7vgh5HZKkW85dVtXCZbmSNqukqzKpfJ2zwvnChADn5UrPj_OPJ-qkD1aPsTAAEJ3PYBwuoy3fN64LR2Uo4VqKQufXyQ1U_IqncK2d0SAvUlwO4yjDwuS9EZMz83b9fjnFzaDIxxI1mGahfI40MW6U_6GRYomVq9Fm1Dqze2Q1rDc5m5yOu9aO3a-_Ujn-9wvdJ3d7_EnfJYZ5QK7BZp_cuZSVcJ_cXPb29oekWwCyeixkRKNWq2FLv3bnoTRXcvaiKbifIvalCFztGWQRv9Jv3y86nGj6ozkFTz83bXBLwoaj8BEy_F-FAyA62yZX7p_0y-DJ1GwOyPFsuj6aZ32hhsxJxdpMWASKgaq-hsKK2jqnKhRsxAdQ2wl4zi3LwaO8K2DSW1l56RHZIFbTApsfkb1Ns4EnhLpKOz4BBUpPEKlZ40LKwtoIp2oBgo8IG4hVuj6LeSimcVbG3QwzZSB1GUhd9qQekTe7R85TCo9_dT4IZLrUMVFoRA4Hlih7Kb8oJTKQzrU2ZkRe7W6jfAajS7WBpsM-CMgQdBuGQzxOrLQbfODAp1dM-pLcmq-Xi3LxYfXpGbkd1pnCIA_JXrvt4Dnioda-iFLwG3QLAzE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+Transfer+Superposition+Theory+for+Stable-State+Visual+Evoked+Potential+Cross-Subject+Frequency+Recognition&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=He%2C+Xinjie&rft.au=Allison%2C+Brendan+Z&rft.au=Qin%2C+Ke&rft.au=Liang%2C+Wei&rft.date=2024-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=71&rft.issue=11&rft.spage=3071&rft_id=info:doi/10.1109%2FTBME.2024.3406603&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon