In-situ hydrodeoxygenation of furfural to furans over supported Ni catalysts in aqueous solution
In-situ hydrodeoxygenation of furfural as a representative component in bio-oil was investigated in aqueous solution over supported Ni catalysts, for preparing furans as an antiknock additive. The addition of methanol, ethanol, or isopropanol was found inhibitive to coke formation at 220 °C. When us...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 36; no. 8; pp. 1235 - 1242 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2019
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In-situ hydrodeoxygenation of furfural as a representative component in bio-oil was investigated in aqueous solution over supported Ni catalysts, for preparing furans as an antiknock additive. The addition of methanol, ethanol, or isopropanol was found inhibitive to coke formation at 220 °C. When using methanol as the hydrogen donor and coke inhibitor, the support in mesoporous structure with moderate acidity was more favorable to the conversion of furfural and to the formation of furans. An increased loading amount of Ni facilitated the generation of deep hydrogenated products. The conversion of furfural could hardly be changed under different methanol to water ratios, while the product distribution varied remarkably. Under optimized conditions, the summary yield of furan and 2-methylfuran reached to above 85%. On the basis of optimized reaction conditions, the in-situ hydrodeoxygenation of an eight-component synthetic bio-oil was tested, and the results verified the adaptability of the method for conversion of bio-oil. |
---|---|
AbstractList | In-situ hydrodeoxygenation of furfural as a representative component in bio-oil was investigated in aqueous solution over supported Ni catalysts, for preparing furans as an antiknock additive. The addition of methanol, ethanol, or isopropanol was found inhibitive to coke formation at 220 °C. When using methanol as the hydrogen donor and coke inhibitor, the support in mesoporous structure with moderate acidity was more favorable to the conversion of furfural and to the formation of furans. An increased loading amount of Ni facilitated the generation of deep hydrogenated products. The conversion of furfural could hardly be changed under different methanol to water ratios, while the product distribution varied remarkably. Under optimized conditions, the summary yield of furan and 2-methylfuran reached to above 85%. On the basis of optimized reaction conditions, the in-situ hydrodeoxygenation of an eight-component synthetic bio-oil was tested, and the results verified the adaptability of the method for conversion of bio-oil. In-situ hydrodeoxygenation of furfural as a representative component in bio-oil was investigated in aqueous solution over supported Ni catalysts, for preparing furans as an antiknock additive. The addition of methanol, ethanol, or isopropanol was found inhibitive to coke formation at 220 oC. When using methanol as the hydrogen donor and coke inhibitor, the support in mesoporous structure with moderate acidity was more favorable to the conversion of furfural and to the formation of furans. An increased loading amount of Ni facilitated the generation of deep hydrogenated products. The conversion of furfural could hardly be changed under different methanol to water ratios, while the product distribution varied remarkably. Under optimized conditions, the summary yield of furan and 2-methylfuran reached to above 85%. On the basis of optimized reaction conditions, the in-situ hydrodeoxygenation of an eight-component synthetic bio-oil was tested, and the results verified the adaptability of the method for conversion of bio-oil. KCI Citation Count: 14 |
Author | Li, Songgeng Lin, Weigang Song, Wenli Fu, Zhaolin Wang, Ze |
Author_xml | – sequence: 1 givenname: Ze surname: Wang fullname: Wang, Ze email: wangze@ipe.ac.cn organization: State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Sino-Danish College, University of Chinese Academy of Sciences – sequence: 2 givenname: Zhaolin surname: Fu fullname: Fu, Zhaolin organization: State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Sinopec Research Institute of Petroleum Processing – sequence: 3 givenname: Weigang surname: Lin fullname: Lin, Weigang organization: State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Sino-Danish College, University of Chinese Academy of Sciences – sequence: 4 givenname: Songgeng surname: Li fullname: Li, Songgeng organization: State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Sino-Danish College, University of Chinese Academy of Sciences – sequence: 5 givenname: Wenli surname: Song fullname: Song, Wenli organization: State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Sino-Danish College, University of Chinese Academy of Sciences |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002488598$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kE1rGzEQhkVIIY7bH9CboKce1GpG1ko-hpAPQ2ghJGdF1mpdJRvJlbQhzq_vOlsIFBoYmDk87_DyHJPDmKIn5DPwb8C5-l4ANCwYhyXjgkv2ckBmsFSSKUR-SGYcZcMAQB6R41LuOZeyQT4jd6vISqgD_bVrc2p9et5tfLQ1pEhTR7shj2N7WtP-trHQ9OQzLcN2m3L1Lf0RqLPV9rtSCw2R2t-DT0OhJfXD_stH8qGzffGf_u45uT0_uzm9ZFc_L1anJ1fMCckrQ9QNOtF1AkF3HvTCizU2mrs1KOGUats1qoVrdaOlWjcO3WKJwjrbNh68EHPydfobc2ceXDDJhte9SeYhm5Prm5WRSy4BcWS_TOw2p7FuqeY-DTmO9Qxio4BrDXKk1ES5nErJvjMu1FczNdvQG-Bmr95M6s2o3uzVm5cxCf8ktzk82rx7N4NTpoxs3Pj81un_oT95xpmg |
CitedBy_id | crossref_primary_10_1016_j_jaap_2024_106579 crossref_primary_10_1134_S0965544123040072 crossref_primary_10_1016_j_cej_2019_122912 crossref_primary_10_1007_s12155_022_10438_w crossref_primary_10_1016_j_rser_2023_113700 crossref_primary_10_1007_s11814_020_0527_0 crossref_primary_10_1016_j_cej_2020_126527 crossref_primary_10_1016_j_fuel_2023_129864 crossref_primary_10_1007_s11356_023_30528_2 crossref_primary_10_1016_j_biortech_2020_123835 crossref_primary_10_1007_s11814_020_0725_9 crossref_primary_10_1016_j_fuel_2022_126388 crossref_primary_10_1039_D0CS01601B crossref_primary_10_1002_slct_202200013 crossref_primary_10_1360_SSC_2024_0211 crossref_primary_10_1039_D1GC03836B crossref_primary_10_1016_j_cej_2024_152552 crossref_primary_10_1016_j_envres_2020_109311 crossref_primary_10_1016_j_fuel_2022_125446 crossref_primary_10_2139_ssrn_4119328 crossref_primary_10_1002_jccs_202100149 crossref_primary_10_1016_j_fuel_2023_130473 crossref_primary_10_5802_crchim_122 |
Cites_doi | 10.1021/acssuschemeng.5b00271 10.1016/S1872-5813(16)30008-1 10.1016/j.ijhydene.2013.08.073 10.1021/cr068360d 10.1016/j.enconman.2014.09.017 10.1016/j.rser.2009.10.003 10.1016/j.rser.2014.07.003 10.1016/j.bej.2008.09.012 10.1016/j.cej.2017.03.028 10.1021/ef070044u 10.1016/j.fuel.2013.08.046 10.1016/S0021-9517(03)00032-0 10.1021/cs400266e 10.1021/nl3023127 10.1016/j.apcata.2011.08.046 10.1007/s00706-016-1662-5 10.1016/j.biortech.2012.07.119 10.1039/C0EE00436G 10.1016/j.energy.2014.03.004 10.1007/s10562-011-0581-7 10.1016/j.rser.2015.04.080 10.1016/j.supflu.2003.12.018 10.1021/cs400069z 10.1016/j.jcat.2015.04.018 10.1016/j.pecs.2010.01.003 10.1016/j.apcata.2009.02.006 10.1021/ie051088y 10.1016/j.biortech.2012.08.089 10.1021/ef5024669 10.1021/op500196x 10.1021/ie900108d 10.1016/j.catcom.2016.04.018 10.1016/j.fuproc.2011.04.005 10.1016/j.rser.2015.05.025 10.1016/j.biortech.2014.08.121 |
ContentType | Journal Article |
Copyright | The Korean Institute of Chemical Engineers 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: The Korean Institute of Chemical Engineers 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-019-0305-z |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 1242 |
ExternalDocumentID | oai_kci_go_kr_ARTI_5905122 10_1007_s11814_019_0305_z |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z8N Z8Q Z8Z Z92 ZMTXR ZZE ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ 85H AABYN AAFGU AAGCJ AAUCO AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU UNUBA |
ID | FETCH-LOGICAL-c350t-22862c3ff3218fe184e3b2680cb173c77ddb274cd86857b6c2c4923acad6e1e33 |
IEDL.DBID | U2A |
ISSN | 0256-1115 |
IngestDate | Wed Jan 31 06:58:08 EST 2024 Fri Jul 25 11:12:49 EDT 2025 Tue Jul 01 03:29:38 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Fri Feb 21 02:35:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | In-situ Hydrodeoxygenation Furfural Hydrogen Donor 2-Methylfuran Methanol |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-22862c3ff3218fe184e3b2680cb173c77ddb274cd86857b6c2c4923acad6e1e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2267108815 |
PQPubID | 2044390 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_5905122 proquest_journals_2267108815 crossref_citationtrail_10_1007_s11814_019_0305_z crossref_primary_10_1007_s11814_019_0305_z springer_journals_10_1007_s11814_019_0305_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | NaikS NGoudV VRoutandP KDalaiA KRenew. Sust. Energy Rev.20101457810.1016/j.rser.2009.10.0031:CAS:528:DC%2BD1MXhsF2isbvF SiriruangCCharojrochkulSToochindaPMonatsh. Chem.2016147114310.1007/s00706-016-1662-51:CAS:528:DC%2BC28XjsVGktbY%3D FiskC AMorganTJiYCrockerMCrofcheckCLewisS AAppl. Catal. A-Gen.200935815010.1016/j.apcata.2009.02.0061:CAS:528:DC%2BD1MXjsleku78%3D XiongW-MFuYZengF-XGuoQ-XFuel Process. Technol.201192159910.1016/j.fuproc.2011.04.0051:CAS:528:DC%2BC3MXmtleit74%3D ShiYDuXYangLSunYYangYInt. J. Hydrogen Energy2013381397410.1016/j.ijhydene.2013.08.0731:CAS:528:DC%2BC3sXhsVGjurzK PushkarevV VMusselwhiteNAnKAlayogluSSomorjaiG ANano Lett.201212519610.1021/nl30231271:CAS:528:DC%2BC38Xht12ju77M22938198 XuYLongJLiuQLiYWangCZhangQLvWZhangXQiuSWangTMaLEnergy Convers. Manage.20158918810.1016/j.enconman.2014.09.0171:CAS:528:DC%2BC2cXhslKmtrfF AsghariF SYoshidaHInd. Eng. Chem. Res.200645216310.1021/ie051088y1:CAS:528:DC%2BD28Xhs1CjtLc%3D ZhangSDongLXueBChenJGuanNZhangFReact. Kinet. Catal. Lett.2006891 WangHMaleJWangYACS Catal.20133104710.1021/cs400069z1:CAS:528:DC%2BC3sXlsV2ns70%3D LiXGunawanRWangYChaiwatWHuXGholizadehMBromlyJLiC-ZFuel201411664210.1016/j.fuel.2013.08.0461:CAS:528:DC%2BC3sXhslKnu7fM ShabakerJJ. Catal.200321534410.1016/S0021-9517(03)00032-01:CAS:528:DC%2BD3sXjvVCnt7g%3D NigamP SSinghAProg. Energy Combust.2011375210.1016/j.pecs.2010.01.0031:CAS:528:DC%2BC3cXhsVaisLfL YanKWuGLafleurTJarvisCRenew. Sust. Energy Rev.20143866310.1016/j.rser.2014.07.0031:CAS:528:DC%2BC2cXhtlWrs77P TangZLvQZhangYZhuX FGuoQ XInd. Eng. Chem. Res.200948692310.1021/ie900108d1:CAS:528:DC%2BD1MXot1GmsL8%3D MortensenP MGrunwaldtJ-DJensenP AJensenA DACS Catal.20133177410.1021/cs400266e1:CAS:528:DC%2BC3sXhtValsbfN BiradarN SHengneA ABirajdarS NSwamiRRodeC VOrg. Process Res. Dev.201418143410.1021/op500196x1:CAS:528:DC%2BC2cXht12gu7rL MortensenPMGrunwaldtJ DJensenP AKnudsenK GJensenA DAppl. Catal. A-Gen.2011407110.1016/j.apcata.2011.08.0461:CAS:528:DC%2BC3MXht1ylsbnP KimT-SOhSKimJ-YChoiI-GChoiJ WEnergy20146843710.1016/j.energy.2014.03.0041:CAS:528:DC%2BC2cXlt1SgsLo%3D ElliottD CEnergy Fuels200721179210.1021/ef070044u1:CAS:528:DC%2BD2sXkslOmurg%3D LiYZhangCLiuYHouXZhangRTangXEnergy Fuels201529172210.1021/ef50246691:CAS:528:DC%2BC2MXjsF2itLo%3D AmiriT YMoghaddasJJ. Fuel Chem. Technol.2016448410.1016/S1872-5813(16)30008-1 YangZKumarAHuhnkeR LRenew. Sust. Energy Rev.20155085910.1016/j.rser.2015.05.0251:CAS:528:DC%2BC2MXovVChu74%3D BohreADuttaSSahaBAbu-OmarM MACS Sustain. Chem. Eng.20153126310.1021/acssuschemeng.5b002711:CAS:528:DC%2BC2MXovF2ru7o%3D SitthisaSResascoD ECatal. Lett.201114178410.1007/s10562-011-0581-71:CAS:528:DC%2BC3MXjvVOitrk%3D ChengK-KZhangJ-ALingH-ZPingW-XHuangWGeJ-PXuJ-MBiochem. Eng. J.20094320310.1016/j.bej.2008.09.0121:CAS:528:DC%2BD1cXhsFagsL7J ZengYWangZLinWSongWChem. Eng. J.20173205510.1016/j.cej.2017.03.0281:CAS:528:DC%2BC2sXkvVSmtbw%3D Serrano-RuizJ CDumesicJ AEnerg y Environ. Sci.201148310.1039/C0EE00436G1:CAS:528:DC%2BC3MXivF2nurw%3D BhogeswararaoSSrinivasDJ. Catal.20153276510.1016/j.jcat.2015.04.0181:CAS:528:DC%2BC2MXnsFyhur8%3D ZhangXWangTMaLZhangQJiangTBioresour. Techol.201312730610.1016/j.biortech.2012.07.1191:CAS:528:DC%2BC38XhslymsL7E KimJ SBioresour. Technol.20151789010.1016/j.biortech.2014.08.1211:CAS:528:DC%2BC2cXhsFerur7E25239785 VogelFBlanchardJLDMarroneP ARiceS FWebleyP APetersW ASmithA KTesterJ WJ. Supercrit. Fluid20053424910.1016/j.supflu.2003.12.0181:CAS:528:DC%2BD2MXjvVSrsL0%3D BuQLeiHZacherA HWangLRenSLiangJWeiYLiuYTangJZhangQRuanRBioresour. Technol.201212447010.1016/j.biortech.2012.08.0891:CAS:528:DC%2BC38XhsValt73J23021958 HuberG WIborraSCormaAChem. Rev.2006106404410.1021/cr068360d1:CAS:528:DC%2BD28Xmt12mtbs%3D16967928 ZengYWangZLinWSongWChristensenJ MJensenA DCatal. Commun.2016824610.1016/j.catcom.2016.04.0181:CAS:528:DC%2BC28XnsV2rsr4%3D NakagawaYNakazawaHWatanabeHTomishigeKChem-CatChem2012417911:CAS:528:DC%2BC38XhtVGgtrjO StedileTEnderLMeierH FSimionattoE LWig-gersV RRenew. Sust. Energy Rev.2015509210.1016/j.rser.2015.04.0801:CAS:528:DC%2BC2MXotVSlu78%3D K Yan (305_CR10) 2014; 38 P M Mortensen (305_CR22) 2013; 3 S N Naik (305_CR2) 2010; 14 Y Li (305_CR28) 2015; 29 C A Fisk (305_CR14) 2009; 358 D C Elliott (305_CR11) 2007; 21 N S Biradar (305_CR37) 2014; 18 H Wang (305_CR7) 2013; 3 P S Nigam (305_CR3) 2011; 37 G W Huber (305_CR1) 2006; 106 Y Zeng (305_CR12) 2016; 82 F Vogel (305_CR36) 2005; 34 C Siriruang (305_CR33) 2016; 147 S Zhang (305_CR32) 2006; 89 T Y Amiri (305_CR34) 2016; 44 J C Serrano-Ruiz (305_CR4) 2011; 4 T-S Kim (305_CR6) 2014; 68 K-K Cheng (305_CR25) 2009; 43 V V Pushkarev (305_CR18) 2012; 12 Q Bu (305_CR9) 2012; 124 Y Zeng (305_CR15) 2017; 320 A Bohre (305_CR19) 2015; 3 Z Yang (305_CR8) 2015; 50 T Stedile (305_CR24) 2015; 50 J Shabaker (305_CR30) 2003; 215 X Zhang (305_CR21) 2013; 127 Y Shi (305_CR35) 2013; 38 W-M Xiong (305_CR27) 2011; 92 Y Xu (305_CR13) 2015; 89 PM Mortensen (305_CR23) 2011; 407 J S Kim (305_CR5) 2015; 178 Z Tang (305_CR16) 2009; 48 S Bhogeswararao (305_CR17) 2015; 327 Y Nakagawa (305_CR31) 2012; 4 X Li (305_CR26) 2014; 116 S Sitthisa (305_CR20) 2011; 141 F S Asghari (305_CR29) 2006; 45 |
References_xml | – reference: XuYLongJLiuQLiYWangCZhangQLvWZhangXQiuSWangTMaLEnergy Convers. Manage.20158918810.1016/j.enconman.2014.09.0171:CAS:528:DC%2BC2cXhslKmtrfF – reference: SiriruangCCharojrochkulSToochindaPMonatsh. Chem.2016147114310.1007/s00706-016-1662-51:CAS:528:DC%2BC28XjsVGktbY%3D – reference: Serrano-RuizJ CDumesicJ AEnerg y Environ. Sci.201148310.1039/C0EE00436G1:CAS:528:DC%2BC3MXivF2nurw%3D – reference: AsghariF SYoshidaHInd. Eng. Chem. Res.200645216310.1021/ie051088y1:CAS:528:DC%2BD28Xhs1CjtLc%3D – reference: NakagawaYNakazawaHWatanabeHTomishigeKChem-CatChem2012417911:CAS:528:DC%2BC38XhtVGgtrjO – reference: PushkarevV VMusselwhiteNAnKAlayogluSSomorjaiG ANano Lett.201212519610.1021/nl30231271:CAS:528:DC%2BC38Xht12ju77M22938198 – reference: FiskC AMorganTJiYCrockerMCrofcheckCLewisS AAppl. Catal. A-Gen.200935815010.1016/j.apcata.2009.02.0061:CAS:528:DC%2BD1MXjsleku78%3D – reference: SitthisaSResascoD ECatal. Lett.201114178410.1007/s10562-011-0581-71:CAS:528:DC%2BC3MXjvVOitrk%3D – reference: StedileTEnderLMeierH FSimionattoE LWig-gersV RRenew. Sust. Energy Rev.2015509210.1016/j.rser.2015.04.0801:CAS:528:DC%2BC2MXotVSlu78%3D – reference: LiXGunawanRWangYChaiwatWHuXGholizadehMBromlyJLiC-ZFuel201411664210.1016/j.fuel.2013.08.0461:CAS:528:DC%2BC3sXhslKnu7fM – reference: KimT-SOhSKimJ-YChoiI-GChoiJ WEnergy20146843710.1016/j.energy.2014.03.0041:CAS:528:DC%2BC2cXlt1SgsLo%3D – reference: ZengYWangZLinWSongWChem. Eng. J.20173205510.1016/j.cej.2017.03.0281:CAS:528:DC%2BC2sXkvVSmtbw%3D – reference: ZhangSDongLXueBChenJGuanNZhangFReact. Kinet. Catal. Lett.2006891 – reference: BiradarN SHengneA ABirajdarS NSwamiRRodeC VOrg. Process Res. Dev.201418143410.1021/op500196x1:CAS:528:DC%2BC2cXht12gu7rL – reference: ShabakerJJ. Catal.200321534410.1016/S0021-9517(03)00032-01:CAS:528:DC%2BD3sXjvVCnt7g%3D – reference: KimJ SBioresour. Technol.20151789010.1016/j.biortech.2014.08.1211:CAS:528:DC%2BC2cXhsFerur7E25239785 – reference: VogelFBlanchardJLDMarroneP ARiceS FWebleyP APetersW ASmithA KTesterJ WJ. Supercrit. Fluid20053424910.1016/j.supflu.2003.12.0181:CAS:528:DC%2BD2MXjvVSrsL0%3D – reference: ZhangXWangTMaLZhangQJiangTBioresour. Techol.201312730610.1016/j.biortech.2012.07.1191:CAS:528:DC%2BC38XhslymsL7E – reference: MortensenP MGrunwaldtJ-DJensenP AJensenA DACS Catal.20133177410.1021/cs400266e1:CAS:528:DC%2BC3sXhtValsbfN – reference: ZengYWangZLinWSongWChristensenJ MJensenA DCatal. Commun.2016824610.1016/j.catcom.2016.04.0181:CAS:528:DC%2BC28XnsV2rsr4%3D – reference: XiongW-MFuYZengF-XGuoQ-XFuel Process. Technol.201192159910.1016/j.fuproc.2011.04.0051:CAS:528:DC%2BC3MXmtleit74%3D – reference: BhogeswararaoSSrinivasDJ. Catal.20153276510.1016/j.jcat.2015.04.0181:CAS:528:DC%2BC2MXnsFyhur8%3D – reference: AmiriT YMoghaddasJJ. Fuel Chem. Technol.2016448410.1016/S1872-5813(16)30008-1 – reference: HuberG WIborraSCormaAChem. Rev.2006106404410.1021/cr068360d1:CAS:528:DC%2BD28Xmt12mtbs%3D16967928 – reference: ShiYDuXYangLSunYYangYInt. J. Hydrogen Energy2013381397410.1016/j.ijhydene.2013.08.0731:CAS:528:DC%2BC3sXhsVGjurzK – reference: YanKWuGLafleurTJarvisCRenew. Sust. Energy Rev.20143866310.1016/j.rser.2014.07.0031:CAS:528:DC%2BC2cXhtlWrs77P – reference: ChengK-KZhangJ-ALingH-ZPingW-XHuangWGeJ-PXuJ-MBiochem. Eng. J.20094320310.1016/j.bej.2008.09.0121:CAS:528:DC%2BD1cXhsFagsL7J – reference: BuQLeiHZacherA HWangLRenSLiangJWeiYLiuYTangJZhangQRuanRBioresour. Technol.201212447010.1016/j.biortech.2012.08.0891:CAS:528:DC%2BC38XhsValt73J23021958 – reference: LiYZhangCLiuYHouXZhangRTangXEnergy Fuels201529172210.1021/ef50246691:CAS:528:DC%2BC2MXjsF2itLo%3D – reference: BohreADuttaSSahaBAbu-OmarM MACS Sustain. Chem. Eng.20153126310.1021/acssuschemeng.5b002711:CAS:528:DC%2BC2MXovF2ru7o%3D – reference: YangZKumarAHuhnkeR LRenew. Sust. Energy Rev.20155085910.1016/j.rser.2015.05.0251:CAS:528:DC%2BC2MXovVChu74%3D – reference: ElliottD CEnergy Fuels200721179210.1021/ef070044u1:CAS:528:DC%2BD2sXkslOmurg%3D – reference: WangHMaleJWangYACS Catal.20133104710.1021/cs400069z1:CAS:528:DC%2BC3sXlsV2ns70%3D – reference: TangZLvQZhangYZhuX FGuoQ XInd. Eng. Chem. Res.200948692310.1021/ie900108d1:CAS:528:DC%2BD1MXot1GmsL8%3D – reference: MortensenPMGrunwaldtJ DJensenP AKnudsenK GJensenA DAppl. Catal. A-Gen.2011407110.1016/j.apcata.2011.08.0461:CAS:528:DC%2BC3MXht1ylsbnP – reference: NaikS NGoudV VRoutandP KDalaiA KRenew. Sust. Energy Rev.20101457810.1016/j.rser.2009.10.0031:CAS:528:DC%2BD1MXhsF2isbvF – reference: NigamP SSinghAProg. Energy Combust.2011375210.1016/j.pecs.2010.01.0031:CAS:528:DC%2BC3cXhsVaisLfL – volume: 3 start-page: 1263 year: 2015 ident: 305_CR19 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00271 – volume: 44 start-page: 84 year: 2016 ident: 305_CR34 publication-title: J. Fuel Chem. Technol. doi: 10.1016/S1872-5813(16)30008-1 – volume: 38 start-page: 13974 year: 2013 ident: 305_CR35 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.08.073 – volume: 106 start-page: 4044 year: 2006 ident: 305_CR1 publication-title: Chem. Rev. doi: 10.1021/cr068360d – volume: 89 start-page: 188 year: 2015 ident: 305_CR13 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.09.017 – volume: 89 start-page: 1 year: 2006 ident: 305_CR32 publication-title: React. Kinet. Catal. Lett. – volume: 14 start-page: 578 year: 2010 ident: 305_CR2 publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2009.10.003 – volume: 38 start-page: 663 year: 2014 ident: 305_CR10 publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2014.07.003 – volume: 43 start-page: 203 year: 2009 ident: 305_CR25 publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2008.09.012 – volume: 320 start-page: 55 year: 2017 ident: 305_CR15 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.028 – volume: 21 start-page: 1792 year: 2007 ident: 305_CR11 publication-title: Energy Fuels doi: 10.1021/ef070044u – volume: 116 start-page: 642 year: 2014 ident: 305_CR26 publication-title: Fuel doi: 10.1016/j.fuel.2013.08.046 – volume: 215 start-page: 344 year: 2003 ident: 305_CR30 publication-title: J. Catal. doi: 10.1016/S0021-9517(03)00032-0 – volume: 3 start-page: 1774 year: 2013 ident: 305_CR22 publication-title: ACS Catal. doi: 10.1021/cs400266e – volume: 12 start-page: 5196 year: 2012 ident: 305_CR18 publication-title: Nano Lett. doi: 10.1021/nl3023127 – volume: 407 start-page: 1 year: 2011 ident: 305_CR23 publication-title: Appl. Catal. A-Gen. doi: 10.1016/j.apcata.2011.08.046 – volume: 147 start-page: 1143 year: 2016 ident: 305_CR33 publication-title: Monatsh. Chem. doi: 10.1007/s00706-016-1662-5 – volume: 127 start-page: 306 year: 2013 ident: 305_CR21 publication-title: Bioresour. Techol. doi: 10.1016/j.biortech.2012.07.119 – volume: 4 start-page: 83 year: 2011 ident: 305_CR4 publication-title: Energ y Environ. Sci. doi: 10.1039/C0EE00436G – volume: 68 start-page: 437 year: 2014 ident: 305_CR6 publication-title: Energy doi: 10.1016/j.energy.2014.03.004 – volume: 141 start-page: 784 year: 2011 ident: 305_CR20 publication-title: Catal. Lett. doi: 10.1007/s10562-011-0581-7 – volume: 50 start-page: 92 year: 2015 ident: 305_CR24 publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2015.04.080 – volume: 34 start-page: 249 year: 2005 ident: 305_CR36 publication-title: J. Supercrit. Fluid doi: 10.1016/j.supflu.2003.12.018 – volume: 4 start-page: 1791 year: 2012 ident: 305_CR31 publication-title: Chem-CatChem – volume: 3 start-page: 1047 year: 2013 ident: 305_CR7 publication-title: ACS Catal. doi: 10.1021/cs400069z – volume: 327 start-page: 65 year: 2015 ident: 305_CR17 publication-title: J. Catal. doi: 10.1016/j.jcat.2015.04.018 – volume: 37 start-page: 52 year: 2011 ident: 305_CR3 publication-title: Prog. Energy Combust. doi: 10.1016/j.pecs.2010.01.003 – volume: 358 start-page: 150 year: 2009 ident: 305_CR14 publication-title: Appl. Catal. A-Gen. doi: 10.1016/j.apcata.2009.02.006 – volume: 45 start-page: 2163 year: 2006 ident: 305_CR29 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie051088y – volume: 124 start-page: 470 year: 2012 ident: 305_CR9 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.08.089 – volume: 29 start-page: 1722 year: 2015 ident: 305_CR28 publication-title: Energy Fuels doi: 10.1021/ef5024669 – volume: 18 start-page: 1434 year: 2014 ident: 305_CR37 publication-title: Org. Process Res. Dev. doi: 10.1021/op500196x – volume: 48 start-page: 6923 year: 2009 ident: 305_CR16 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie900108d – volume: 82 start-page: 46 year: 2016 ident: 305_CR12 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2016.04.018 – volume: 92 start-page: 1599 year: 2011 ident: 305_CR27 publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2011.04.005 – volume: 50 start-page: 859 year: 2015 ident: 305_CR8 publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2015.05.025 – volume: 178 start-page: 90 year: 2015 ident: 305_CR5 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.08.121 |
SSID | ssj0055620 |
Score | 2.304913 |
Snippet | In-situ hydrodeoxygenation of furfural as a representative component in bio-oil was investigated in aqueous solution over supported Ni catalysts, for preparing... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1235 |
SubjectTerms | Antiknock additives Aqueous solutions Biotechnology Catalysis Catalysts Chemistry Chemistry and Materials Science Coke Conversion Ethanol Furans Furfural Hydrogen storage Industrial Chemistry/Chemical Engineering Materials Science Methanol Reaction Engineering 화학공학 |
Title | In-situ hydrodeoxygenation of furfural to furans over supported Ni catalysts in aqueous solution |
URI | https://link.springer.com/article/10.1007/s11814-019-0305-z https://www.proquest.com/docview/2267108815 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002488598 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2019, 36(8), 233, pp.1235-1242 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4NeGA8oI0xrcCQNe1pk6U0jhP3sSA62KQ-rRJ78mLHhoopQU0iUX49d2lMYdom7cmR4iTW3cX3nX3-DuBjlJg0EiPJVWIynlAhd4OK5iYxyiZW-TTvEmSn6fks-XopL_tz3HXIdg9bkt1MvT7shs6IMiZGnIyU32_AlsTQnfK4ZvE4TL8SHfpqYYUI9hDvhK3MP73imTPaKBf-Gc78bWu08ziTV7DbQ0U2Xun2Nbxw5R5sn4YKbXuw84RM8A38vCh5PW9adr0scFZ01d0SjaMTPKs88-3CE8UGayq6Rg_FKHuT1e1tx21esOmcdYs5y7qp2bxkOQ6wamsWrHMfZpOz76fnvK-fwK2QUcPjGMMVK7wX6Me9w1jOCROnKrJmmAmbZUVhMCi1hUqVzExqY0t0bbnNi9QNnRBvYbOsSvcOmHCI2_LcRFmGWvTDfEQ8bZFKpMmVVNkAoiBIbXtycapx8UuvaZFJ9hplr0n2-n4Anx4fuV0xa_yr8wfUjr6xc0182NReVfpmoRH1X2hJJGNxPICjoDzd_4m1RniJIEqpoRzA56DQ9e2_fvHgv3ofwsu4MyvKDDyCzWbRuveIVhpzDFvjycnJlNovP76dHXfW-gBHf-Pi |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH4a4zA4TDBAFAZYCC4gS6kTJ-5hh2kwtWz0tEq7mdixRzWUTE0i6P6d_aN7L40pQ4DEYadEiqNE7-dn-_l7AG-ixKRRPJJcJSbjCTVyN6hobhKjbGKVT_OuQHaajmfJp1N5ugFX4SxMV-0etiS7SL0-7IbJiComRpyMlF_2lZRHbvkd52n13uQDKvWtEIcfTw7GvG8lwG0so4YLgcjdxt7HmNK8w2mNi41IVWTNMIttlhWFwfmZLVSqZGZSKywxl-U2L1I3dLTqiXH-LmIPRa4zE_sh3EsEEKuFHCL0Q3wVtk7_9Ms3kt-dcuFv4NrftmK7DHf4ALZ7aMr2V7b0EDZcuQNbB6Ej3A7c_4W88BF8mZS8njct-7osMAq76scSjbFTNKs88-3CE6UHayq6x4zIqFqU1e1Fx6VesOmcdYtHy7qp2bxkOf5g1dYseMNjmN2KkJ_AZlmV7imw2CFOzHMTZRlajR_mI-KFi1QiTa6kygYQBUFq25OZU0-Nb3pNw0yy1yh7TbLXlwN49_OVixWTx78Gv0bt6HM718S_TdezSp8vNM4yJloSqZkQA9gNytO959ca4SyCNqWGcgDvg0LXj__6xWf_NfoVbI1PPh_r48n06DncE52JUVXiLmw2i9a9QKTUmJedpTI0iFt2jWvNnh2m |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NIcF4QDBAKwywELyArKVOnLgPPEwb1cpQxQOV9mZix4ZqKKmaRND9Kf4id2lMGQIkHvaUSHGU6O5899m--w7geZSYNIpHkqvEZDyhRu4GFc1NYpRNrPJp3iXITtOTWfL2TJ5twfdQC9Nlu4cjyXVNA7E0lc3BovAHm8I3DEyUPTHiZLD8os-qPHWrr7hmq19PjlHBL4QYv_lwdML7tgLcxjJquBCI4m3sfYzhzTtc4rjYiFRF1gyz2GZZURhcq9lCpUpmJrXCEotZbvMidUNHO6Do868nVHyME2gmDoPrlwgm1ps6RO6HWCsco_7ply8Fwmvl0l_CuL8dy3bRbnwHbvcwlR2u7eoubLlyF24ehe5wu3DrFyLDe_BxUvJ63rTs86pAj-yqbys0zE7prPLMt0tP9B6sqegeoyOjzFFWt4uOV71g0znrNpJWdVOzecly_MGqrVmYGfdhdiVCfgDbZVW6PWCxQ8yY5ybKMrQgP8xHxBEXqUSaXEmVDSAKgtS2Jzan_hpf9IaSmWSvUfaaZK8vBvDy5yuLNavHvwY_Q-3oczvXxMVN10-VPl9qXHFMtCSCMyEGsB-Up3svUGuEtgjglBrKAbwKCt08_usXH_7X6Kdw4_3xWL-bTE8fwY7oLIwSFPdhu1m27jGCpsY86QyVoT1c8cz4AWtRIdk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+hydrodeoxygenation+of+furfural+to+furans+over+supported+Ni+catalysts+in+aqueous+solution&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Wang%2C+Ze&rft.au=Fu%2C+Zhaolin&rft.au=Lin%2C+Weigang&rft.au=Li%2C+Songgeng&rft.date=2019-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=36&rft.issue=8&rft.spage=1235&rft.epage=1242&rft_id=info:doi/10.1007%2Fs11814-019-0305-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |