Antibody numbering schemes: advances, comparisons and tools for antibody engineering
The evolution of antibody engineering has significantly enhanced the development of antibody-based therapeutics, enabling the creation of novel antibody formats tailored for specific applications. Since the introduction of the Kabat numbering scheme in 1977, various schemes have been developed and m...
Saved in:
Published in | Protein engineering, design and selection Vol. 38 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1741-0126 1741-0134 1741-0134 |
DOI | 10.1093/protein/gzaf005 |
Cover
Loading…
Abstract | The evolution of antibody engineering has significantly enhanced the development of antibody-based therapeutics, enabling the creation of novel antibody formats tailored for specific applications. Since the introduction of the Kabat numbering scheme in 1977, various schemes have been developed and modified, forming the foundation for multiple antibody engineering projects. The tools associated with these schemes further facilitate the engineering process. However, discrepancies among current numbering schemes can lead to confusion. This study examines various numbering schemes and related tools, providing new insights into antibody variable domains. Improved understanding of antibody numbering and related tools holds significant potential for more precise and efficient antibody design, thereby advancing antibody-based therapeutics and diagnostics. |
---|---|
AbstractList | The evolution of antibody engineering has significantly enhanced the development of antibody-based therapeutics, enabling the creation of novel antibody formats tailored for specific applications. Since the introduction of the Kabat numbering scheme in 1977, various schemes have been developed and modified, forming the foundation for multiple antibody engineering projects. The tools associated with these schemes further facilitate the engineering process. However, discrepancies among current numbering schemes can lead to confusion. This study examines various numbering schemes and related tools, providing new insights into antibody variable domains. Improved understanding of antibody numbering and related tools holds significant potential for more precise and efficient antibody design, thereby advancing antibody-based therapeutics and diagnostics.The evolution of antibody engineering has significantly enhanced the development of antibody-based therapeutics, enabling the creation of novel antibody formats tailored for specific applications. Since the introduction of the Kabat numbering scheme in 1977, various schemes have been developed and modified, forming the foundation for multiple antibody engineering projects. The tools associated with these schemes further facilitate the engineering process. However, discrepancies among current numbering schemes can lead to confusion. This study examines various numbering schemes and related tools, providing new insights into antibody variable domains. Improved understanding of antibody numbering and related tools holds significant potential for more precise and efficient antibody design, thereby advancing antibody-based therapeutics and diagnostics. The evolution of antibody engineering has significantly enhanced the development of antibody-based therapeutics, enabling the creation of novel antibody formats tailored for specific applications. Since the introduction of the Kabat numbering scheme in 1977, various schemes have been developed and modified, forming the foundation for multiple antibody engineering projects. The tools associated with these schemes further facilitate the engineering process. However, discrepancies among current numbering schemes can lead to confusion. This study examines various numbering schemes and related tools, providing new insights into antibody variable domains. Improved understanding of antibody numbering and related tools holds significant potential for more precise and efficient antibody design, thereby advancing antibody-based therapeutics and diagnostics. The evolution of antibody engineering has significantly enhanced the development of antibody-based therapeutics, enabling the creation of novel antibody formats tailored for specific applications. Since the introduction of the Kabat numbering scheme in 1977, various schemes have been developed and modified, forming the foundation for multiple antibody engineering projects. The tools associated with these schemes further facilitate the engineering process. However, discrepancies among current numbering schemes can lead to confusion. This study examines various numbering schemes and related tools, providing new insights into antibody variable domains. Improved understanding of antibody numbering and related tools holds significant potential for more precise and efficient antibody design, thereby advancing antibody-based therapeutics and diagnostics. Graphical Abstract Created with BioRender.com |
Author | Ashrafian, Hossein Tabrizi, Navid Mohammadian Ma, Haowei Zhu, Zirui Matas, Emily Girard, Louisa Nice, Edouard C |
Author_xml | – sequence: 1 givenname: Zirui surname: Zhu fullname: Zhu, Zirui – sequence: 2 givenname: Hossein surname: Ashrafian fullname: Ashrafian, Hossein – sequence: 3 givenname: Navid Mohammadian surname: Tabrizi fullname: Tabrizi, Navid Mohammadian – sequence: 4 givenname: Emily surname: Matas fullname: Matas, Emily – sequence: 5 givenname: Louisa surname: Girard fullname: Girard, Louisa – sequence: 6 givenname: Haowei surname: Ma fullname: Ma, Haowei – sequence: 7 givenname: Edouard C surname: Nice fullname: Nice, Edouard C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40169149$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUU1PwzAMjRCIj8GZG-qRA2PxkqYNFzRNfEmTuMA5SlO3BLVJSbpJ8OspUCbwxbb8_J7ld0R2nXdIyCnQS6CSzbrge7RuVn_oitJ0hxxCxmFKgfHdbT0XB-QoxldK5yID2CcHnIKQwOUheVq43ha-fE_cui0wWFcn0bxgi_Eq0eVGO4PxIjG-7XSw0buYaFcmvfdNTCofhm7cR1dbh98Mx2Sv0k3EkzFPyPPtzdPyfrp6vHtYLlZTw1LaT-eUMsGwymjBCz6EgHK4isssRy2gSiVQyivOjRZYMlEUWYo8B8OlBoo5m5DrH95uXbRYGnR90I3qgm11eFdeW_V_4uyLqv1GAUiZiTQbGM5HhuDf1hh71dposGm0Q7-OikGezgFyyQbo2V-xrcrvLwfA7Adggo8xYLWFAFVfbqnRLTW6xT4Bz92Ltw |
Cites_doi | 10.1002/(SICI)1097-0134(199605)25:1<130::AID-PROT11>3.0.CO;2-L 10.1007/978-1-61779-842-9_33 10.1101/2024.06.17.599429 10.1093/nar/gkt1043 10.1038/342877a0 10.1093/bib/bbae552 10.1093/nar/28.1.214 10.1093/protein/gzn079 10.3389/fimmu.2018.02278 10.1093/protein/13.12.819 10.1371/journal.pone.0008187 10.3389/fbioe.2024.1352014 10.3390/antib10040047 10.1002/j.1460-2075.1986.tb04288.x 10.1089/106652701446143 10.1093/nar/gkp946 10.1006/jmbi.1999.3289 10.1073/pnas.71.11.4298 10.1093/nar/gkw361 10.1146/annurev.immunol.23.021704.115658 10.1006/jmbi.1996.0548 10.3389/fimmu.2013.00302 10.1016/S0021-9258(17)38249-2 10.3233/HAB-230014 10.1006/jmbi.1997.1354 10.1371/journal.pcbi.1002388 10.1073/pnas.71.3.845 10.3389/fimmu.2012.00176 10.1002/prot.25453 10.1093/nar/gku1056 10.1093/nar/gkn316 10.3390/cancers14174206 10.1016/S1040-8428(00)00133-5 10.1146/annurev.iy.01.040183.000511 10.1093/bioinformatics/14.9.755 10.1093/protein/11.11.1015 10.1093/nar/gku1106 10.1093/nar/gkz827 10.1093/bioinformatics/btv552 10.1096/fasebj.9.1.7821752 10.3390/antib2020193 10.1073/pnas.1810576116 10.4049/jimmunol.149.8.2607 10.4049/jimmunol.167.1.296 10.1073/pnas.93.8.3675 10.1093/bioinformatics/btp163 10.3389/fimmu.2019.02454 10.1002/pro.3633 10.1093/bioinformatics/btac016 10.1016/j.coviro.2015.04.002 10.1074/mcp.RA120.002314 10.1002/prot.24756 10.1007/978-3-642-01147-4_3 10.4049/jimmunol.164.3.1432 10.3390/ijms24065994 10.1016/j.ymeth.2004.04.007 10.1073/pnas.92.24.10884 10.1006/jmbi.2001.4662 10.1016/j.ymeth.2005.01.003 10.1002/jmr.2158 10.1002/prot.23246 10.1016/j.imlet.2019.06.009 10.1093/bioinformatics/bth945 10.1073/pnas.92.15.6961 10.3389/fimmu.2022.886546 10.1016/S0145-305X(02)00039-3 10.1016/S0167-5699(97)01163-8 10.3390/antib4030259 10.1016/0022-2836(87)90412-8 10.1016/0022-2836(92)91010-M 10.4049/immunohorizons.2300102 10.1016/S0022-2836(02)01222-6 10.1080/19420862.2017.1289302 10.1016/j.jmb.2016.08.019 10.1006/jmbi.2001.4664 10.1093/nar/gks480 10.1093/nar/27.1.209 10.1101/pdb.prot5633 10.1038/s41571-023-00850-2 10.1038/nmeth1008-860 10.1038/srep45259 10.3390/antib7030035 10.1016/0161-5890(94)90001-9 10.1006/jmbi.1998.1653 10.1007/978-1-4939-6637-0_21 10.1093/abt/tbae005 10.1080/02648725.2013.801235 10.3390/antib8040055 10.1111/j.1749-6632.1971.tb13550.x 10.1093/bioinformatics/18.1.175 10.3390/biomedicines11061610 10.1093/protein/12.4.349 10.1080/19420862.2016.1205773 10.1101/pdb.top115 10.1093/abt/tbac021 10.1007/978-1-61779-974-7_13 10.1084/jem.132.2.211 10.1089/cmb.1998.5.467 10.1016/0022-2836(80)90252-1 10.3389/fimmu.2018.01698 10.3390/antib13040099 10.4049/jimmunol.181.9.6230 10.1093/bioinformatics/bty877 10.1016/j.molimm.2008.05.022 10.1080/19420862.2016.1158370 10.3389/fimmu.2017.00038 10.1093/database/bay040 10.1007/s00251-001-0408-6 10.1093/protein/gzn077 10.3390/molecules28186438 |
ContentType | Journal Article |
Copyright | The Author(s) 2025. Published by Oxford University Press. The Author(s) 2025. Published by Oxford University Press. 2025 |
Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press. – notice: The Author(s) 2025. Published by Oxford University Press. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/protein/gzaf005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1741-0134 |
ExternalDocumentID | PMC11997657 40169149 10_1093_protein_gzaf005 |
Genre | Journal Article Review |
GroupedDBID | --- -E4 -~X .2P .I3 .ZR 0R~ 123 18M 29P 2WC 4.4 482 48X 53G 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAVAP AAVLN AAYXX ABDFA ABEJV ABEUO ABGNP ABIXL ABKDP ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACIWK ACPRK ACUFI ACUTO ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ AEGPL AEJOX AEKSI AELWJ AEMDU AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGORE AGQXC AGSYK AHGBF AHMBA AHMMS AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG BAWUL BAYMD BCRHZ BEYMZ BQDIO BSWAC BTRTY BVRKM CDBKE CITATION CS3 CZ4 DAKXR DILTD D~K EBS EE~ F5P F9B FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H5~ HAR HH5 HW0 HZ~ IH2 IOX JXSIZ KAQDR KOP KQ8 KSI KSN M-Z N9A NGC NLBLG NOMLY NOYVH O9- OAWHX OBC OBOKY OBS OCZFY ODMLO OEB OES OJQWA OJZSN OK1 OPAEJ OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX RUSNO RW1 RXO TJX TLC TR2 X7H YAYTL YKOAZ YXANX ZKX ~91 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c350t-200363ef70b4b444461d9144978ea61f591004f44ca6ed36bb75e481c49a10e83 |
ISSN | 1741-0126 1741-0134 |
IngestDate | Thu Aug 21 18:31:10 EDT 2025 Wed Jul 02 05:12:05 EDT 2025 Fri Jul 04 01:53:57 EDT 2025 Thu Jul 03 08:14:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Protein engineering Antibody engineering Numbering schemes Antibody Computational tools |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c350t-200363ef70b4b444461d9144978ea61f591004f44ca6ed36bb75e481c49a10e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11997657 |
PMID | 40169149 |
PQID | 3185211893 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11997657 proquest_miscellaneous_3185211893 pubmed_primary_40169149 crossref_primary_10_1093_protein_gzaf005 |
PublicationCentury | 2000 |
PublicationDate | 20250401 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 4 year: 2025 text: 20250401 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Protein engineering, design and selection |
PublicationTitleAlternate | Protein Eng Des Sel |
PublicationYear | 2025 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Gabrielli (2025070100312532200_ref30) 2009; 4 Lefranc (2025070100312532200_ref61) 2011; 2011 Sharma (2025070100312532200_ref99) 2023; 28 Brochet (2025070100312532200_ref6) 2008; 36 Madsen (2025070100312532200_ref69) 2024; 12 Schrödinger (2025070100312532200_ref96) 2024 Whitelegg (2025070100312532200_ref107) 2000; 13 Kim (2025070100312532200_ref51) 2012 Cock (2025070100312532200_ref15) 2009; 25 Davies (2025070100312532200_ref17) 1983; 1 Monnier (2025070100312532200_ref75) 2013; 2 Pospisil (2025070100312532200_ref84) 1995; 92 Zhang (2025070100312532200_ref112) 2017; 9 Sela-Culang (2025070100312532200_ref98) 2013; 4 Chothia (2025070100312532200_ref14) 1989; 342 Gelfand (2025070100312532200_ref33) 1995; 92 Rogosch (2025070100312532200_ref91) 2012; 3 Ofran (2025070100312532200_ref80) 2008; 181 Segal (2025070100312532200_ref97) 1974; 71 Chothia (2025070100312532200_ref11) 1998; 278 Doria-Rose (2025070100312532200_ref19) 2015; 11 Honegger (2025070100312532200_ref41) 2001; 309 Honegger (2025070100312532200_ref39) 2009; 22 Lefranc (2025070100312532200_ref64) 2003; 27 Ewert (2025070100312532200_ref26) 2004; 34 Wong (2025070100312532200_ref109) 2019; 35 Dunbar (2025070100312532200_ref20) 2016; 32 Li (2025070100312532200_ref65) 2019; 28 Capra (2025070100312532200_ref8) 1974; 71 (2025070100312532200_ref87); 116 Honegger (2025070100312532200_ref40) 2001; 309 Chothia (2025070100312532200_ref12) 1986; 5 Patel (2025070100312532200_ref83) 2023; 31 Krawczyk (2025070100312532200_ref53) 2018; 9 Kabat (2025070100312532200_ref46) 1971; 190 Zhu (2025070100312532200_ref113) 2024; 13 Ehrenmann (2025070100312532200_ref24) 2010; 38 Allcorn (2025070100312532200_ref1a); 18 Abanades (2025070100312532200_ref1) 2022; 38 Gelfand (2025070100312532200_ref34) 1996; 93 Ehrenmann (2025070100312532200_ref25) 2012 Foote (2025070100312532200_ref28) 1992; 224 Bujotzek (2025070100312532200_ref7) 2015; 83 Rudolph (2025070100312532200_ref92) 2006; 24 Lyu (2025070100312532200_ref67) 2022; 5 Kushwaha (2025070100312532200_ref57) 2024; 25 Martin (2025070100312532200_ref72) 1996; 25 Holmes (2025070100312532200_ref38) 2001; 167 Monod (2025070100312532200_ref76) 2004; 20 Marquart (2025070100312532200_ref71) 1980; 141 Qi (2025070100312532200_ref85) 2021; 20 Krawczyk (2025070100312532200_ref52) 2017 Kügler (2025070100312532200_ref54) 2009; 22 Kiermer (2025070100312532200_ref50) 2008; 5 Chen (2025070100312532200_ref9) 1999; 12 Dunbar (2025070100312532200_ref22) 2014; 42 Singh (2025070100312532200_ref100) 2023; 7 Ferdous (2025070100312532200_ref27) 2018; 2018 Tsuchikama (2025070100312532200_ref106) 2024; 21 Wu (2025070100312532200_ref111) 1970; 132 Ma (2025070100312532200_ref68) 2024; 7 Rodrigo (2025070100312532200_ref89) 2015; 4 Jin (2025070100312532200_ref42) 2023; 24 Chiu (2025070100312532200_ref10) 2019; 8 Padlan (2025070100312532200_ref82) 1995; 9 Rodríguez-Nava (2025070100312532200_ref90) 2023; 11 Lefranc (2025070100312532200_ref60) 1997; 18 Raghunathan (2025070100312532200_ref86) 2012; 25 Gelfand (2025070100312532200_ref1g); 5 Padlan (2025070100312532200_ref81) 1994; 31 Liu (2025070100312532200_ref66) 2017; 8 Julian (2025070100312532200_ref44) 2017; 7 Stoyanov (2025070100312532200_ref102) 2000; 7 Kashmiri (2025070100312532200_ref47) 2005; 36 (2025070100312532200_ref45) 1991 Glaser (2025070100312532200_ref36) 1992; 149 Kunik (2025070100312532200_ref56) 2012; 8 2025070100312532200_ref70 MacCallum (2025070100312532200_ref1m); 262 2025070100312532200_ref74 Bhatta (2025070100312532200_ref5) 2018; 7 Swindells (2025070100312532200_ref103) 2017; 429 Collis (2025070100312532200_ref16) 2003; 325 Muraro (2025070100312532200_ref78) 1988; 48 Safdari (2025070100312532200_ref94) 2013; 29 Gelfand (2025070100312532200_ref31) 1998; 11 Nowak (2025070100312532200_ref79) 2016; 8 Kashmiri (2025070100312532200_ref48) 2001; 38 Leem (2025070100312532200_ref59) 2018; 86 Johnson (2025070100312532200_ref43) 2000; 28 Leem (2025070100312532200_ref58) 2016; 8 Adolf-Bryfogle (2025070100312532200_ref3) 2015; 43 Wong (2025070100312532200_ref110) 2019; 10 Haidar (2025070100312532200_ref37) 2012; 80 Chothia (2025070100312532200_ref13) 1987; 196 Eddy (2025070100312532200_ref23) 1998; 14 Muñoz-López (2025070100312532200_ref77) 2022; 14 Tabasinezhad (2025070100312532200_ref104) 2019; 212 Giudicelli (2025070100312532200_ref35) 2011; 2011 Tamura (2025070100312532200_ref105) 2000; 164 Dondelinger (2025070100312532200_ref18) 2018; 9 Saul (2025070100312532200_ref95) 1978; 253 Khan (2025070100312532200_ref49) 2022; 13 Soleimanizadeh (2025070100312532200_ref101) 2021; 10 De Wildt (2025070100312532200_ref108) 1999; 294 Abhinandan (2025070100312532200_ref2) 2008; 45 Martin (2025070100312532200_ref73) 2010 Ruiz (2025070100312532200_ref93) 2002; 53 Lefranc (2025070100312532200_ref63) 1999; 27 Kunik (2025070100312532200_ref55) 2012; 40 Lefranc (2025070100312532200_ref62) 2015; 43 Al-Lazikani (2025070100312532200_ref4) 1997; 273 Frigoul (2025070100312532200_ref29) 2005; 3 Raybould (2025070100312532200_ref88) 2020; 48 Dunbar (2025070100312532200_ref21) 2016; 44 |
References_xml | – volume: 25 start-page: 130 year: 1996 ident: 2025070100312532200_ref72 article-title: Accessing the Kabat antibody sequence database by computer publication-title: Proteins Struct Funct Bioinforma doi: 10.1002/(SICI)1097-0134(199605)25:1<130::AID-PROT11>3.0.CO;2-L – start-page: 605 volume-title: Immunogenetics: Methods and Applications in Clinical Practice year: 2012 ident: 2025070100312532200_ref25 doi: 10.1007/978-1-61779-842-9_33 – ident: 2025070100312532200_ref74 doi: 10.1101/2024.06.17.599429 – volume: 42 start-page: D1140 year: 2014 ident: 2025070100312532200_ref22 article-title: SAbDab: The structural antibody database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1043 – volume: 342 start-page: 877 year: 1989 ident: 2025070100312532200_ref14 article-title: Conformations of immunoglobulin hypervariable regions publication-title: Nature doi: 10.1038/342877a0 – volume: 25 start-page: bbae552 year: 2024 ident: 2025070100312532200_ref57 article-title: IMGT/RobustpMHC: Robust training for class-I MHC peptide binding prediction publication-title: Brief Bioinform doi: 10.1093/bib/bbae552 – volume: 28 start-page: 214 year: 2000 ident: 2025070100312532200_ref43 article-title: Kabat database and its applications: 30 years after the first variability plot publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.214 – volume: 22 start-page: 135 year: 2009 ident: 2025070100312532200_ref54 article-title: Stabilization and humanization of a single-chain Fv antibody fragment specific for human lymphocyte antigen CD19 by designed point mutations and CDR-grafting onto a human framework publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzn079 – volume: 9 year: 2018 ident: 2025070100312532200_ref18 article-title: Understanding the significance and implications of antibody numbering and antigen-binding surface/residue definition publication-title: Front Immunol doi: 10.3389/fimmu.2018.02278 – volume: 13 start-page: 819 year: 2000 ident: 2025070100312532200_ref107 article-title: WAM: An improved algorithm for modelling antibodies on the WEB publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/13.12.819 – volume: 4 start-page: e8187 year: 2009 ident: 2025070100312532200_ref30 article-title: Antibody complementarity-determining regions (CDRs): A bridge between adaptive and innate immunity publication-title: PLoS One doi: 10.1371/journal.pone.0008187 – volume: 12 year: 2024 ident: 2025070100312532200_ref69 article-title: Design and engineering of bispecific antibodies: Insights and practical considerations publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2024.1352014 – volume: 10 year: 2021 ident: 2025070100312532200_ref101 article-title: Central nervous system delivery of antibodies and their single-domain antibodies and variable fragment derivatives with focus on intranasal nose to brain administration publication-title: Antibodies doi: 10.3390/antib10040047 – volume: 5 start-page: 823 year: 1986 ident: 2025070100312532200_ref12 article-title: The relation between the divergence of sequence and structure in proteins publication-title: EMBO J doi: 10.1002/j.1460-2075.1986.tb04288.x – volume: 7 start-page: 673 year: 2000 ident: 2025070100312532200_ref102 article-title: Geometric invariant core for the CL and CH1 domains of immunoglobulin molecules publication-title: J Comput Biol doi: 10.1089/106652701446143 – volume: 38 start-page: D301 year: 2010 ident: 2025070100312532200_ref24 article-title: IMGT/3Dstructure-DB and IMGT/DomainGapAlign: A database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MhcSF publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp946 – volume: 294 start-page: 701 year: 1999 ident: 2025070100312532200_ref108 article-title: Somatic insertions and deletions shape the human antibody repertoire publication-title: J Mol Biol doi: 10.1006/jmbi.1999.3289 – volume: 71 start-page: 4298 year: 1974 ident: 2025070100312532200_ref97 article-title: The three-dimensional structure of a Phosphorylcholine-binding mouse immunoglobulin fab and the nature of the antigen binding site publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.71.11.4298 – volume: 44 start-page: W474 year: 2016 ident: 2025070100312532200_ref21 article-title: SAbPred: A structure-based antibody prediction server publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw361 – volume: 24 start-page: 419 year: 2006 ident: 2025070100312532200_ref92 article-title: How Tcrs bind Mhcs, peptides, and Coreceptors publication-title: Annual Reviews doi: 10.1146/annurev.immunol.23.021704.115658 – volume: 262 start-page: 732 ident: 2025070100312532200_ref1m article-title: Antibody-antigen Interactions: Contact Analysis and Binding Site Topography publication-title: Journal of Molecular Biology doi: 10.1006/jmbi.1996.0548 – volume: 4 year: 2013 ident: 2025070100312532200_ref98 article-title: The structural basis of antibody-antigen recognition publication-title: Front Immunol doi: 10.3389/fimmu.2013.00302 – volume: 253 start-page: 585 year: 1978 ident: 2025070100312532200_ref95 article-title: Preliminary refinement and structural analysis of the fab fragment from human immunoglobulin new at 2.0 a resolution publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)38249-2 – volume: 31 start-page: 71 year: 2023 ident: 2025070100312532200_ref83 article-title: Significance of antibody numbering systems in the development of antibody engineering publication-title: Hum Antibodies doi: 10.3233/HAB-230014 – volume: 273 start-page: 927 year: 1997 ident: 2025070100312532200_ref4 article-title: Standard conformations for the canonical structures of immunoglobulins publication-title: J Mol Biol doi: 10.1006/jmbi.1997.1354 – volume: 8 year: 2012 ident: 2025070100312532200_ref56 article-title: Structural consensus among antibodies defines the antigen binding site publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002388 – volume: 71 start-page: 845 year: 1974 ident: 2025070100312532200_ref8 article-title: Variable region sequences of five human immunoglobulin heavy chains of the VHIII subgroup: Definitive identification of four heavy chain hypervariable regions publication-title: Proc Natl Acad Sci U A doi: 10.1073/pnas.71.3.845 – volume: 3 start-page: 176 year: 2012 ident: 2025070100312532200_ref91 article-title: Immunoglobulin analysis tool: A novel tool for the analysis of human and mouse heavy and light chain transcripts publication-title: Front Immunol doi: 10.3389/fimmu.2012.00176 – volume: 86 start-page: 383 year: 2018 ident: 2025070100312532200_ref59 article-title: Antibody side chain conformations are position-dependent publication-title: Proteins Struct Funct Bioinforma doi: 10.1002/prot.25453 – volume: 43 start-page: D413 year: 2015 ident: 2025070100312532200_ref62 article-title: IMGT®, the international ImMunoGeneTics information system® 25 years on publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1056 – volume: 36 start-page: W503 year: 2008 ident: 2025070100312532200_ref6 article-title: IMGT/V-QUEST: The highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn316 – volume: 14 year: 2022 ident: 2025070100312532200_ref77 article-title: Single-chain fragment variable: Recent progress in cancer diagnosis and therapy publication-title: Cancers doi: 10.3390/cancers14174206 – volume: 38 start-page: 3 year: 2001 ident: 2025070100312532200_ref48 article-title: Development of a minimally immunogenic variant of humanized anti-carcinoma monoclonal antibody CC49 publication-title: Crit Rev Oncol Hematol doi: 10.1016/S1040-8428(00)00133-5 – volume: 1 start-page: 87 year: 1983 ident: 2025070100312532200_ref17 article-title: Structural basis of antibody function publication-title: Annual Reviews Immunol doi: 10.1146/annurev.iy.01.040183.000511 – volume: 14 start-page: 755 year: 1998 ident: 2025070100312532200_ref23 article-title: Profile hidden Markov models publication-title: Bioinformatics doi: 10.1093/bioinformatics/14.9.755 – volume: 11 start-page: 1015 year: 1998 ident: 2025070100312532200_ref31 article-title: Geometric invariant core for the V(L) and V(H) domains of immunoglobulin molecules publication-title: Protein Eng Des Sel doi: 10.1093/protein/11.11.1015 – volume: 43 start-page: D432 year: 2015 ident: 2025070100312532200_ref3 article-title: PyIgClassify: A database of antibody CDR structural classifications publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1106 – volume: 48 start-page: D383 year: 2020 ident: 2025070100312532200_ref88 article-title: Thera-SAbDab: The therapeutic structural antibody database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz827 – volume: 32 start-page: 298 year: 2016 ident: 2025070100312532200_ref20 article-title: ANARCI: Antigen receptor numbering and receptor classification publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv552 – volume: 9 start-page: 133 year: 1995 ident: 2025070100312532200_ref82 article-title: Identification of specificity-determining residues in antibodies publication-title: FASEB J doi: 10.1096/fasebj.9.1.7821752 – volume: 2 start-page: 193 year: 2013 ident: 2025070100312532200_ref75 article-title: In vivo applications of single chain Fv (variable domain) (scFv) fragments publication-title: Antibodies doi: 10.3390/antib2020193 – volume: 116 ident: 2025070100312532200_ref87 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1810576116 – volume: 149 start-page: 2607 year: 1992 ident: 2025070100312532200_ref36 article-title: Dissection of the combining site in a humanized anti-tac antibody publication-title: J Immunol Baltim Md doi: 10.4049/jimmunol.149.8.2607 – volume: 167 start-page: 296 year: 2001 ident: 2025070100312532200_ref38 article-title: Structural effects of framework mutations on a humanized anti-lysozyme antibody publication-title: J Immunol doi: 10.4049/jimmunol.167.1.296 – volume: 93 start-page: 3675 year: 1996 ident: 2025070100312532200_ref34 article-title: The invariant system of coordinates of antibody molecules: Prediction of the "standard" C alpha framework of VL and VH domains publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.93.8.3675 – volume: 25 start-page: 1422 year: 2009 ident: 2025070100312532200_ref15 article-title: Biopython: Freely available python tools for computational molecular biology and bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp163 – volume: 10 year: 2019 ident: 2025070100312532200_ref110 article-title: Comparative analysis of the CDR loops of antigen receptors publication-title: Front Immunol doi: 10.3389/fimmu.2019.02454 – volume: 28 start-page: 1524 year: 2019 ident: 2025070100312532200_ref65 article-title: AbRSA: A robust tool for antibody numbering publication-title: Protein Sci doi: 10.1002/pro.3633 – volume: 38 start-page: 1877 year: 2022 ident: 2025070100312532200_ref1 article-title: ABlooper: Fast accurate antibody CDR loop structure prediction with accuracy estimation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac016 – volume: 11 start-page: 137 year: 2015 ident: 2025070100312532200_ref19 article-title: Strategies to guide the antibody affinity maturation process publication-title: Curr Opin Virol doi: 10.1016/j.coviro.2015.04.002 – volume: 20 year: 2021 ident: 2025070100312532200_ref85 article-title: Antibody binding epitope mapping (AbMap) of hundred antibodies in a single run publication-title: Mol Cell Proteomics doi: 10.1074/mcp.RA120.002314 – volume: 83 start-page: 681 year: 2015 ident: 2025070100312532200_ref7 article-title: Prediction of VH–VL domain orientation for antibody variable domain modeling publication-title: Proteins Struct. Funct. Bioinforma. doi: 10.1002/prot.24756 – start-page: 33 volume-title: Antibody Engineering year: 2010 ident: 2025070100312532200_ref73 doi: 10.1007/978-3-642-01147-4_3 – volume: 164 start-page: 1432 year: 2000 ident: 2025070100312532200_ref105 article-title: Structural correlates of an Anticarcinoma antibody: Identification of specificity-determining residues (SDRs) and development of a minimally immunogenic antibody variant by retention of SDRs only publication-title: J Immunol doi: 10.4049/jimmunol.164.3.1432 – volume: 24 year: 2023 ident: 2025070100312532200_ref42 article-title: NANOBODIES®: A review of diagnostic and therapeutic applications publication-title: Int J Mol Sci doi: 10.3390/ijms24065994 – volume: 34 start-page: 184 year: 2004 ident: 2025070100312532200_ref26 article-title: Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering publication-title: Intrabodies doi: 10.1016/j.ymeth.2004.04.007 – volume: 92 start-page: 10884 year: 1995 ident: 2025070100312532200_ref33 article-title: Analysis of the relation between the sequence and secondary and three-dimensional structures of immunoglobulin molecules publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.92.24.10884 – volume: 309 start-page: 657 year: 2001 ident: 2025070100312532200_ref40 article-title: Yet another numbering scheme for immunoglobulin variable domains: An automatic Modeling and analysis tool publication-title: J Mol Biol doi: 10.1006/jmbi.2001.4662 – volume: 36 start-page: 25 year: 2005 ident: 2025070100312532200_ref47 article-title: SDR grafting—A new approach to antibody humanization publication-title: Humaniz Antibodies Their Appl doi: 10.1016/j.ymeth.2005.01.003 – volume: 25 start-page: 103 year: 2012 ident: 2025070100312532200_ref86 article-title: Antigen-binding site anatomy and somatic mutations in antibodies that recognize different types of antigens publication-title: J Mol Recognit doi: 10.1002/jmr.2158 – volume: 80 start-page: 896 year: 2012 ident: 2025070100312532200_ref37 article-title: A universal combinatorial design of antibody framework to graft distinct CDR sequences: A bioinformatics approach publication-title: Proteins Struct. Funct. Bioinforma. doi: 10.1002/prot.23246 – volume: 212 start-page: 106 year: 2019 ident: 2025070100312532200_ref104 article-title: Trends in therapeutic antibody affinity maturation: From in-vitro towards next-generation sequencing approaches publication-title: Immunol Lett doi: 10.1016/j.imlet.2019.06.009 – volume: 20 start-page: i379 year: 2004 ident: 2025070100312532200_ref76 article-title: IMGT/JunctionAnalysis: The first tool for the analysis of the immunoglobulin and T cell receptor complex V–J and V–D–J JUNCTIONs publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth945 – ident: 2025070100312532200_ref70 – volume: 92 start-page: 6961 year: 1995 ident: 2025070100312532200_ref84 article-title: Preferential expansion and survival of B lymphocytes based on VH framework 1 and framework 3 expression: "positive" selection in appendix of normal and VH-mutant rabbits publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.92.15.6961 – volume: 13 year: 2022 ident: 2025070100312532200_ref49 publication-title: Front Immunol doi: 10.3389/fimmu.2022.886546 – volume: 27 start-page: 55 year: 2003 ident: 2025070100312532200_ref64 article-title: IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains publication-title: Dev Comp Immunol doi: 10.1016/S0145-305X(02)00039-3 – volume: 18 start-page: 509 year: 1997 ident: 2025070100312532200_ref60 article-title: Unique database numbering system for immunogenetic analysis publication-title: Immunol Today doi: 10.1016/S0167-5699(97)01163-8 – volume: 4 start-page: 259 year: 2015 ident: 2025070100312532200_ref89 article-title: Antibody fragments and their purification by protein L affinity chromatography publication-title: Antibodies doi: 10.3390/antib4030259 – volume: 196 start-page: 901 year: 1987 ident: 2025070100312532200_ref13 article-title: Canonical structures for the hypervariable regions of immunoglobulins publication-title: J Mol Biol doi: 10.1016/0022-2836(87)90412-8 – volume: 224 start-page: 487 year: 1992 ident: 2025070100312532200_ref28 article-title: Antibody framework residues affecting the conformation of the hypervariable loops publication-title: J Mol Biol doi: 10.1016/0022-2836(92)91010-M – volume: 7 start-page: 886 year: 2023 ident: 2025070100312532200_ref100 article-title: Recent advances in the development of monoclonal antibodies and next-generation antibodies publication-title: ImmunoHorizons doi: 10.4049/immunohorizons.2300102 – volume: 325 start-page: 337 year: 2003 ident: 2025070100312532200_ref16 article-title: Analysis of the antigen combining site: Correlations between length and sequence composition of the hypervariable loops and the nature of the antigen publication-title: J Mol Biol doi: 10.1016/S0022-2836(02)01222-6 – volume: 3 start-page: 95 year: 2005 ident: 2025070100312532200_ref29 article-title: MICA: Standardized IMGT allele nomenclature, polymorphisms and diseases publication-title: Recent Res Devel Hum Genet – volume: 9 start-page: 419 year: 2017 ident: 2025070100312532200_ref112 article-title: Humanization of rabbit monoclonal antibodies via grafting combined Kabat/IMGT/Paratome complementarity-determining regions: Rationale and examples publication-title: MAbs doi: 10.1080/19420862.2017.1289302 – volume: 429 start-page: 356 year: 2017 ident: 2025070100312532200_ref103 article-title: abYsis: Integrated antibody sequence and structure—Management, analysis, and prediction publication-title: J Mol Biol doi: 10.1016/j.jmb.2016.08.019 – volume: 309 start-page: 687 year: 2001 ident: 2025070100312532200_ref41 article-title: The influence of the buried glutamine or glutamate residue in position 6 on the structure of immunoglobulin variable domains publication-title: J Mol Biol doi: 10.1006/jmbi.2001.4664 – volume: 40 start-page: W521 year: 2012 ident: 2025070100312532200_ref55 article-title: Paratome: An online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure publication-title: Nucleic Acids Res doi: 10.1093/nar/gks480 – volume: 27 start-page: 209 year: 1999 ident: 2025070100312532200_ref63 article-title: IMGT, the international ImMunoGeneTics database publication-title: Nucleic Acids Res doi: 10.1093/nar/27.1.209 – volume: 2011 start-page: pdb.prot5633 year: 2011 ident: 2025070100312532200_ref35 article-title: IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences publication-title: Cold Spring Harb Protoc doi: 10.1101/pdb.prot5633 – volume: 21 start-page: 203 year: 2024 ident: 2025070100312532200_ref106 article-title: Exploring the next generation of antibody-drug conjugates publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-023-00850-2 – volume: 5 start-page: 860 year: 2008 ident: 2025070100312532200_ref50 article-title: Antibodypedia publication-title: Nat Methods doi: 10.1038/nmeth1008-860 – volume: 48 start-page: 4588 year: 1988 ident: 2025070100312532200_ref78 article-title: Generation and characterization of B72.3 second generation monoclonal antibodies reactive with the tumor-associated glycoprotein 72 antigen publication-title: Cancer Res – volume: 7 start-page: 45259 year: 2017 ident: 2025070100312532200_ref44 article-title: Efficient affinity maturation of antibody variable domains requires co-selection of compensatory mutations to maintain thermodynamic stability publication-title: Sci Rep doi: 10.1038/srep45259 – volume: 7 year: 2018 ident: 2025070100312532200_ref5 article-title: Relative contribution of framework and CDR regions in antibody variable domains to Multimerisation of Fv- and scFv-containing bispecific antibodies publication-title: Antibodies doi: 10.3390/antib7030035 – volume: 31 start-page: 169 year: 1994 ident: 2025070100312532200_ref81 article-title: Anatomy of the antibody molecule publication-title: Mol Immunol doi: 10.1016/0161-5890(94)90001-9 – volume: 278 start-page: 457 year: 1998 ident: 2025070100312532200_ref11 article-title: Structural determinants in the sequences of immunoglobulin variable domain 1 1Edited by a. R. Fersht publication-title: J Mol Biol doi: 10.1006/jmbi.1998.1653 – start-page: 399 volume-title: Computational Protein Design year: 2017 ident: 2025070100312532200_ref52 doi: 10.1007/978-1-4939-6637-0_21 – volume: 7 start-page: 114 year: 2024 ident: 2025070100312532200_ref68 article-title: Reforming solid tumor treatment: The emerging potential of smaller format antibody-drug conjugate publication-title: Antib Ther doi: 10.1093/abt/tbae005 – volume: 29 start-page: 175 year: 2013 ident: 2025070100312532200_ref94 article-title: Antibody humanization methods - a review and update publication-title: Biotechnol Genet Eng Rev doi: 10.1080/02648725.2013.801235 – volume: 8 year: 2019 ident: 2025070100312532200_ref10 article-title: Antibody structure and function: The basis for engineering therapeutics publication-title: Antibodies doi: 10.3390/antib8040055 – volume: 190 start-page: 382 year: 1971 ident: 2025070100312532200_ref46 article-title: Attempts to locate complementarity-determining residues In the variable positions of light and heavy chains * publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1971.tb13550.x – volume: 18 start-page: 175 ident: 2025070100312532200_ref1a article-title: SACS—Self-maintaining database of antibody crystal structure information publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.1.175 – volume: 11 year: 2023 ident: 2025070100312532200_ref90 article-title: Mechanisms of action and limitations of monoclonal antibodies and single chain fragment variable (scFv) in the treatment of cancer publication-title: Biomedicines doi: 10.3390/biomedicines11061610 – volume: 12 start-page: 349 year: 1999 ident: 2025070100312532200_ref9 article-title: In vitro scanning saturation mutagenesis of all the specificity determining residues in an antibody binding site publication-title: Protein Eng Des Sel doi: 10.1093/protein/12.4.349 – volume: 8 start-page: 1259 year: 2016 ident: 2025070100312532200_ref58 article-title: ABodyBuilder: Automated antibody structure prediction with data–driven accuracy estimation publication-title: MAbs doi: 10.1080/19420862.2016.1205773 – volume: 2011 start-page: pdb.top115 year: 2011 ident: 2025070100312532200_ref61 article-title: IMGT, the international ImMunoGeneTics information system publication-title: Cold Spring Harb Protoc doi: 10.1101/pdb.top115 – volume: 5 start-page: 233 year: 2022 ident: 2025070100312532200_ref67 article-title: The global landscape of approved antibody therapies publication-title: Antib Ther doi: 10.1093/abt/tbac021 – start-page: 237 volume-title: Antibody Engineering: Methods and Protocols year: 2012 ident: 2025070100312532200_ref51 doi: 10.1007/978-1-61779-974-7_13 – volume: 132 start-page: 211 year: 1970 ident: 2025070100312532200_ref111 article-title: An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity publication-title: J Exp Med doi: 10.1084/jem.132.2.211 – volume: 5 start-page: 467 ident: 2025070100312532200_ref1g article-title: Algorithmic Determination of Core Positions in the VL and VH Domains of Immunoglobulin Molecules publication-title: Journal of Computational Biology doi: 10.1089/cmb.1998.5.467 – volume: 141 start-page: 369 year: 1980 ident: 2025070100312532200_ref71 article-title: Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0 Å and 1.9 Å resolution publication-title: J Mol Biol doi: 10.1016/0022-2836(80)90252-1 – volume-title: Sequences of proteins of immunological interest (5th ed) year: 1991 ident: 2025070100312532200_ref45 – volume: 9 year: 2018 ident: 2025070100312532200_ref53 article-title: Structurally mapping antibody repertoires publication-title: Front Immunol doi: 10.3389/fimmu.2018.01698 – volume: 13 year: 2024 ident: 2025070100312532200_ref113 article-title: 50 years of antibody numbering schemes: A statistical and structural evaluation reveals key differences and limitations publication-title: Antibodies doi: 10.3390/antib13040099 – volume: 181 start-page: 6230 year: 2008 ident: 2025070100312532200_ref80 article-title: Automated identification of complementarity determining regions (CDRs) reveals peculiar characteristics of CDRs and B cell epitopes publication-title: J Immunol doi: 10.4049/jimmunol.181.9.6230 – volume: 35 start-page: 1774 year: 2019 ident: 2025070100312532200_ref109 article-title: SCALOP: Sequence-based antibody canonical loop structure annotation publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty877 – volume: 45 start-page: 3832 year: 2008 ident: 2025070100312532200_ref2 article-title: Analysis and improvements to Kabat and structurally correct numbering of antibody variable domains publication-title: Mol Immunol doi: 10.1016/j.molimm.2008.05.022 – volume: 8 start-page: 751 year: 2016 ident: 2025070100312532200_ref79 article-title: Length-independent structural similarities enrich the antibody CDR canonical class model publication-title: MAbs doi: 10.1080/19420862.2016.1158370 – year: 2024 ident: 2025070100312532200_ref96 – volume: 8 year: 2017 ident: 2025070100312532200_ref66 article-title: Fc engineering for developing therapeutic bispecific antibodies and novel scaffolds publication-title: Front Immunol doi: 10.3389/fimmu.2017.00038 – volume: 2018 start-page: bay040 year: 2018 ident: 2025070100312532200_ref27 article-title: AbDb: Antibody structure database—A database of PDB-derived antibody structures publication-title: Database doi: 10.1093/database/bay040 – volume: 53 start-page: 857 year: 2002 ident: 2025070100312532200_ref93 article-title: IMGT gene identification and colliers de Perles of human immunoglobulins with known 3D structures publication-title: Immunogenetics doi: 10.1007/s00251-001-0408-6 – volume: 22 start-page: 121 year: 2009 ident: 2025070100312532200_ref39 article-title: The influence of the framework core residues on the biophysical properties of immunoglobulin heavy chain variable domains publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzn077 – volume: 28 year: 2023 ident: 2025070100312532200_ref99 article-title: Therapeutic antibodies in medicine publication-title: Molecules doi: 10.3390/molecules28186438 |
SSID | ssj0026711 |
Score | 2.4487772 |
SecondaryResourceType | review_article |
Snippet | The evolution of antibody engineering has significantly enhanced the development of antibody-based therapeutics, enabling the creation of novel antibody... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Animals Antibodies - chemistry Antibodies - genetics Humans Protein Engineering - methods Review |
Title | Antibody numbering schemes: advances, comparisons and tools for antibody engineering |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40169149 https://www.proquest.com/docview/3185211893 https://pubmed.ncbi.nlm.nih.gov/PMC11997657 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_r-eKLnPi1fhHBB0HrtU3Sbnw75GRRThT24PClJGniFtxWdrsH7oN_u5OPfuydwuk-lJIuQ5v5NZ3JzPwGoRdpznSSKxkJomhEJTeR5ExEiqU6j7kGI9kWOJ9-yuZn9MM5O59Mfo2rS1r5Ru3-WFfyP1qFMdCrrZL9B832QmEAzkG_cAQNw_FaOj6u20o25c9Xvq-H2xoAJax8nlsI7ztFqb7doOdkbpvm-yZkUAYZemAmHFusny2Rg-UVGS5bgaXL_HCyNq6Vziie_3W5dTGPar2tekBtlmthKr_dOocvs66GFGAh19Wu8ov9RVXCQrMUq5UYQ_dUtL707MRuyIz3KlI2SnHxyyvYLzCQBvLr8VjY0gxrsmd8ubK8e-qrH_7B4ezbTpg4ZsO3rIvfX_rE9YmHPuROiiCiCAJuoJspuBm2A8bHL30UKs1y17-5v-uOGoqToyDgKAjYt2quuCqXM25HJsziEN0Ovgc-9kC6gya6vosWHYhwDyIcQPQWdxB6jUcAwqB07ACEAUC4AxAeIeQeOnt_sng3j0KrjUgRFrf2rSIZ0SaPJZUUfllScvC1eT7TIksM45ZZ0FCqRKZLkkkJ7zidJYpykcR6Ru6jg7qp9UOENSdMCGVUzFIqjBECfA5hFCeEZlrFU_SymypQg2NUKf6ilil63k1lAaueDWWJWjfbTeFq_sE35mSKHvip7YVRSzAEjv8UzfYmvf-DZVTfv1JXS8esnti0q4zlj65_j4_RrQHpT9BBu97qp2CntvKZA9NvC6Gefw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibody+numbering+schemes%3A+advances%2C+comparisons+and+tools+for+antibody+engineering&rft.jtitle=Protein+engineering%2C+design+and+selection&rft.au=Zhu%2C+Zirui&rft.au=Ashrafian%2C+Hossein&rft.au=Tabrizi%2C+Navid+Mohammadian&rft.au=Matas%2C+Emily&rft.date=2025-04-01&rft.issn=1741-0126&rft.eissn=1741-0134&rft.volume=38&rft_id=info:doi/10.1093%2Fprotein%2Fgzaf005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_protein_gzaf005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-0126&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-0126&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-0126&client=summon |