Quantitative MR Image Reconstruction Using Parameter-Specific Dictionary Learning With Adaptive Dictionary-Size and Sparsity-Level Choice
Objective: We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). Methods: Because different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and spa...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 71; no. 2; pp. 388 - 399 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2023.3300090 |
Cover
Loading…
Abstract | Objective: We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). Methods: Because different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and sparse coding (SC) algorithms automatically estimate the optimal dictionary-size and sparsity level separately for each parameter-map. We evaluated the method on a <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-mapping QMRI problem in the brain using the BrainWeb data as well as in-vivo brain images acquired on an ultra-high field 7 T scanner. We compared it to a model-based acceleration for parameter mapping (MAP) approach, other sparsity-based methods using total variation (TV), Wavelets (Wl), and Shearlets (Sh) to a method which uses DL and SC to reconstruct qualitative images, followed by a non-linear (DL+Fit). Results: Our algorithm surpasses MAP, TV, Wl, and Sh in terms of RMSE and PSNR. It yields better or comparable results to DL+Fit by additionally significantly accelerating the reconstruction by a factor of approximately seven. Conclusion: The proposed method outperforms the reported methods of comparison and yields accurate <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-maps. Although presented for <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-mapping in the brain, our method's structure is general and thus most probably also applicable for the the reconstruction of other quantitative parameters in other organs. Significance: From a clinical perspective, the obtained <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-maps could be utilized to differentiate between healthy subjects and patients with Alzheimer's disease. From a technical perspective, the proposed unsupervised method could be employed to obtain ground-truth data for the development of data-driven methods based on supervised learning. |
---|---|
AbstractList | We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI).
Because different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and sparse coding (SC) algorithms automatically estimate the optimal dictionary-size and sparsity level separately for each parameter-map. We evaluated the method on a T
-mapping QMRI problem in the brain using the BrainWeb data as well as in-vivo brain images acquired on an ultra-high field 7 T scanner. We compared it to a model-based acceleration for parameter mapping (MAP) approach, other sparsity-based methods using total variation (TV), Wavelets (Wl), and Shearlets (Sh) to a method which uses DL and SC to reconstruct qualitative images, followed by a non-linear (DL+Fit).
Our algorithm surpasses MAP, TV, Wl, and Sh in terms of RMSE and PSNR. It yields better or comparable results to DL+Fit by additionally significantly accelerating the reconstruction by a factor of approximately seven.
The proposed method outperforms the reported methods of comparison and yields accurate T
-maps. Although presented for T
-mapping in the brain, our method's structure is general and thus most probably also applicable for the the reconstruction of other quantitative parameters in other organs.
From a clinical perspective, the obtained T
-maps could be utilized to differentiate between healthy subjects and patients with Alzheimer's disease. From a technical perspective, the proposed unsupervised method could be employed to obtain ground-truth data for the development of data-driven methods based on supervised learning. Objective: We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). Methods: Because different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and sparse coding (SC) algorithms automatically estimate the optimal dictionary-size and sparsity level separately for each parameter-map. We evaluated the method on a <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-mapping QMRI problem in the brain using the BrainWeb data as well as in-vivo brain images acquired on an ultra-high field 7 T scanner. We compared it to a model-based acceleration for parameter mapping (MAP) approach, other sparsity-based methods using total variation (TV), Wavelets (Wl), and Shearlets (Sh) to a method which uses DL and SC to reconstruct qualitative images, followed by a non-linear (DL+Fit). Results: Our algorithm surpasses MAP, TV, Wl, and Sh in terms of RMSE and PSNR. It yields better or comparable results to DL+Fit by additionally significantly accelerating the reconstruction by a factor of approximately seven. Conclusion: The proposed method outperforms the reported methods of comparison and yields accurate <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-maps. Although presented for <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-mapping in the brain, our method's structure is general and thus most probably also applicable for the the reconstruction of other quantitative parameters in other organs. Significance: From a clinical perspective, the obtained <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-maps could be utilized to differentiate between healthy subjects and patients with Alzheimer's disease. From a technical perspective, the proposed unsupervised method could be employed to obtain ground-truth data for the development of data-driven methods based on supervised learning. Objective: We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). Methods: Because different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and sparse coding (SC) algorithms automatically estimate the optimal dictionary-size and sparsity level separately for each parameter-map. We evaluated the method on a [Formula Omitted]-mapping QMRI problem in the brain using the BrainWeb data as well as in-vivo brain images acquired on an ultra-high field 7 T scanner. We compared it to a model-based acceleration for parameter mapping (MAP) approach, other sparsity-based methods using total variation (TV), Wavelets (Wl), and Shearlets (Sh) to a method which uses DL and SC to reconstruct qualitative images, followed by a non-linear (DL+Fit). Results: Our algorithm surpasses MAP, TV, Wl, and Sh in terms of RMSE and PSNR. It yields better or comparable results to DL+Fit by additionally significantly accelerating the reconstruction by a factor of approximately seven. Conclusion: The proposed method outperforms the reported methods of comparison and yields accurate [Formula Omitted]-maps. Although presented for [Formula Omitted]-mapping in the brain, our method's structure is general and thus most probably also applicable for the the reconstruction of other quantitative parameters in other organs. Significance: From a clinical perspective, the obtained [Formula Omitted]-maps could be utilized to differentiate between healthy subjects and patients with Alzheimer's disease. From a technical perspective, the proposed unsupervised method could be employed to obtain ground-truth data for the development of data-driven methods based on supervised learning. We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI).OBJECTIVEWe propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI).Because different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and sparse coding (SC) algorithms automatically estimate the optimal dictionary-size and sparsity level separately for each parameter-map. We evaluated the method on a T1-mapping QMRI problem in the brain using the BrainWeb data as well as in-vivo brain images acquired on an ultra-high field 7 T scanner. We compared it to a model-based acceleration for parameter mapping (MAP) approach, other sparsity-based methods using total variation (TV), Wavelets (Wl), and Shearlets (Sh) to a method which uses DL and SC to reconstruct qualitative images, followed by a non-linear (DL+Fit).METHODSBecause different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and sparse coding (SC) algorithms automatically estimate the optimal dictionary-size and sparsity level separately for each parameter-map. We evaluated the method on a T1-mapping QMRI problem in the brain using the BrainWeb data as well as in-vivo brain images acquired on an ultra-high field 7 T scanner. We compared it to a model-based acceleration for parameter mapping (MAP) approach, other sparsity-based methods using total variation (TV), Wavelets (Wl), and Shearlets (Sh) to a method which uses DL and SC to reconstruct qualitative images, followed by a non-linear (DL+Fit).Our algorithm surpasses MAP, TV, Wl, and Sh in terms of RMSE and PSNR. It yields better or comparable results to DL+Fit by additionally significantly accelerating the reconstruction by a factor of approximately seven.RESULTSOur algorithm surpasses MAP, TV, Wl, and Sh in terms of RMSE and PSNR. It yields better or comparable results to DL+Fit by additionally significantly accelerating the reconstruction by a factor of approximately seven.The proposed method outperforms the reported methods of comparison and yields accurate T1-maps. Although presented for T1-mapping in the brain, our method's structure is general and thus most probably also applicable for the the reconstruction of other quantitative parameters in other organs.CONCLUSIONThe proposed method outperforms the reported methods of comparison and yields accurate T1-maps. Although presented for T1-mapping in the brain, our method's structure is general and thus most probably also applicable for the the reconstruction of other quantitative parameters in other organs.From a clinical perspective, the obtained T1-maps could be utilized to differentiate between healthy subjects and patients with Alzheimer's disease. From a technical perspective, the proposed unsupervised method could be employed to obtain ground-truth data for the development of data-driven methods based on supervised learning.SIGNIFICANCEFrom a clinical perspective, the obtained T1-maps could be utilized to differentiate between healthy subjects and patients with Alzheimer's disease. From a technical perspective, the proposed unsupervised method could be employed to obtain ground-truth data for the development of data-driven methods based on supervised learning. |
Author | Kofler, Andreas Kolbitsch, Christoph Kerkering, Kirsten Miriam Goschel, Laura Fillmer, Ariane |
Author_xml | – sequence: 1 givenname: Andreas orcidid: 0000-0001-9169-2572 surname: Kofler fullname: Kofler, Andreas email: andreas.kofler@ptb.de organization: Physikalisch-Technische Bundesanstalt, Berlin, Germany – sequence: 2 givenname: Kirsten Miriam orcidid: 0000-0002-8165-5943 surname: Kerkering fullname: Kerkering, Kirsten Miriam organization: Physikalisch-Technische Bundesanstalt, Germany – sequence: 3 givenname: Laura orcidid: 0000-0001-6592-2493 surname: Goschel fullname: Goschel, Laura organization: Charité - Universitätsmedizin Berlin, Germany – sequence: 4 givenname: Ariane orcidid: 0000-0003-3333-6603 surname: Fillmer fullname: Fillmer, Ariane organization: Physikalisch-Technische Bundesanstalt, Germany – sequence: 5 givenname: Christoph orcidid: 0000-0002-4355-8368 surname: Kolbitsch fullname: Kolbitsch, Christoph organization: Physikalisch-Technische Bundesanstalt, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37540614$$D View this record in MEDLINE/PubMed |
BookMark | eNp90ctu1DAUBmALFdFp4QGQELLEhk0GH18m9rIMBSpNBXQGsYw8zknrKuME26lU3oC3JnPhoi5YWZa-35fzn5Cj0AUk5DmwKQAzb1ZvL8-nnHExFYIxZtgjMgGldMGVgCMyYQx0YbiRx-QkpdtxK7WcPSHHolSSzUBOyM8vgw3ZZ5v9HdLLK3qxsddIr9B1IeU4uOy7QL8mH67pZxvtBjPGYtmj84139J3fARvv6QJtDFv2zecbelbbfnfkX1Es_Q-kNtR02duYfL4vFniHLZ3fdN7hU_K4sW3CZ4f1lKzen6_mH4vFpw8X87NF4YRiuQAla8NqwHImGtQ1gHRrYxRwq6xyJdaa1Y0oG11radegLawbbmVpuC6VEafk9f7YPnbfB0y52vjksG1twG5IFR8nNFJQfKSvHtDbbohhfFzFDcykLjmHUb08qGG9wbrqo9-Mv61-z3gEsAcudilFbP4QYNW2x2rbY7XtsTr0OGbKBxm366gLOVrf_jf5Yp_0iPjPTZwZpbX4BSpaqvo |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1002_gamm_202470014 crossref_primary_10_1109_TGRS_2024_3430500 |
Cites_doi | 10.1088/0266-5611/30/5/055012 10.1109/TMI.2019.2932961 10.1109/LSP.2012.2188793 10.1007/bfb0067700 10.1002/mrm.22483 10.1109/TBME.2013.2294939 10.1016/s0045-7906(01)00011-8 10.1002/mrm.26668 10.1109/TIP.2017.2761545 10.1109/ACSSC.1993.342465 10.1109/TMI.2006.883453 10.1109/18.382009 10.1109/TSP.2006.881199 10.1063/1.4823127 10.1109/TMI.2010.2090538 10.1007/978-3-319-55795-3_10 10.1016/j.brainresbull.2018.05.004 10.1002/mp.14547 10.1117/12.613494 10.1186/s12968-019-0570-3 10.1007/978-3-319-46726-9_56 10.1002/mrm.27579 10.1109/TMI.2014.2322815 10.1109/TMI.2006.885337 10.1109/TIP.2003.819861 10.1109/ACSSC.2008.5074472 10.1109/TIT.2011.2173241 10.1002/mrm.24600 10.1109/tsp.2009.2025088 10.1093/imaiai/iaad008 10.1109/MSP.2019.2940062 10.1016/j.pnmrs.2018.06.001 10.1109/MSP.2007.914728 10.1109/TIP.2019.2937734 10.1109/cvpr.2018.00984 10.1109/TMI.2021.3084288 10.1007/s10851-010-0251-1 10.1561/2200000016 10.1002/mrm.20648 10.1002/mrm.21435 10.1109/LSP.2022.3167313 10.1007/11585978_10 10.1109/TMI.2014.2301271 10.1109/TIT.2010.2048466 10.1002/mrm.1241 10.1007/bf01589116 10.1016/j.acha.2016.08.002 10.1137/141002293 10.1186/s12880-020-00474-3 10.1109/TCI.2018.2840334 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2023.3300090 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 399 |
ExternalDocumentID | 37540614 10_1109_TBME_2023_3300090 10209588 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Participating States grantid: 18HLT09 — NeuroMET2 – fundername: European Union's Horizon 2020 Research and Innovation |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c350t-154d90d1e763fe8d114cb99512a5a5c7ed80df37f8d84ab18a1bf2a479287593 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 16:20:31 EDT 2025 Mon Jun 30 10:14:01 EDT 2025 Thu Apr 03 07:04:45 EDT 2025 Tue Jul 01 03:28:39 EDT 2025 Thu Apr 24 22:55:37 EDT 2025 Wed Aug 27 02:29:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-154d90d1e763fe8d114cb99512a5a5c7ed80df37f8d84ab18a1bf2a479287593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9169-2572 0000-0002-8165-5943 0000-0002-4355-8368 0000-0003-3333-6603 0000-0001-6592-2493 |
PMID | 37540614 |
PQID | 2916487221 |
PQPubID | 85474 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2846928152 crossref_citationtrail_10_1109_TBME_2023_3300090 proquest_journals_2916487221 crossref_primary_10_1109_TBME_2023_3300090 pubmed_primary_37540614 ieee_primary_10209588 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 Ma (ref5) 2017; 42 ref9 ref4 ref3 ref6 ref40 Wajer (ref32) 2001 ref35 ref34 ref36 ref31 ref30 Guo (ref39) 2006; 14 ref33 ref2 ref1 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Tran-Gia (ref37) 2013; 70 |
References_xml | – ident: ref50 doi: 10.1088/0266-5611/30/5/055012 – ident: ref9 doi: 10.1109/TMI.2019.2932961 – ident: ref14 doi: 10.1109/LSP.2012.2188793 – ident: ref43 doi: 10.1007/bfb0067700 – ident: ref19 doi: 10.1002/mrm.22483 – ident: ref8 doi: 10.1109/TBME.2013.2294939 – ident: ref44 doi: 10.1016/s0045-7906(01)00011-8 – ident: ref4 doi: 10.1002/mrm.26668 – ident: ref23 doi: 10.1109/TIP.2017.2761545 – ident: ref18 doi: 10.1109/ACSSC.1993.342465 – ident: ref36 doi: 10.1109/TMI.2006.883453 – ident: ref45 doi: 10.1109/18.382009 – ident: ref17 doi: 10.1109/TSP.2006.881199 – ident: ref38 doi: 10.1063/1.4823127 – ident: ref6 doi: 10.1109/TMI.2010.2090538 – ident: ref51 doi: 10.1007/978-3-319-55795-3_10 – ident: ref1 doi: 10.1016/j.brainresbull.2018.05.004 – ident: ref10 doi: 10.1002/mp.14547 – ident: ref40 doi: 10.1117/12.613494 – ident: ref3 doi: 10.1186/s12968-019-0570-3 – ident: ref53 doi: 10.1007/978-3-319-46726-9_56 – ident: ref20 doi: 10.1002/mrm.27579 – ident: ref2 doi: 10.1109/TMI.2014.2322815 – ident: ref35 doi: 10.1109/TMI.2006.885337 – ident: ref47 doi: 10.1109/TIP.2003.819861 – ident: ref11 doi: 10.1109/ACSSC.2008.5074472 – ident: ref13 doi: 10.1109/TIT.2011.2173241 – ident: ref41 doi: 10.1002/mrm.24600 – ident: ref12 doi: 10.1109/tsp.2009.2025088 – ident: ref15 doi: 10.1093/imaiai/iaad008 – volume-title: Proc. Int. Soc. Mag. Res. Med year: 2001 ident: ref32 article-title: Major speedup of reconstruction for sensitivity encoding with arbitrary trajectories – ident: ref21 doi: 10.1109/MSP.2019.2940062 – ident: ref34 doi: 10.1016/j.pnmrs.2018.06.001 – ident: ref22 doi: 10.1109/MSP.2007.914728 – ident: ref25 doi: 10.1109/TIP.2019.2937734 – ident: ref54 doi: 10.1109/cvpr.2018.00984 – volume: 42 start-page: 294 issue: 2 volume-title: Appl. Comput. Harmon. Anal. year: 2017 ident: ref5 article-title: Generalized sampling reconstruction from Fourier measurements using compactly supported shearlets – ident: ref55 doi: 10.1109/TMI.2021.3084288 – ident: ref48 doi: 10.1007/s10851-010-0251-1 – ident: ref49 doi: 10.1561/2200000016 – ident: ref26 doi: 10.1002/mrm.20648 – ident: ref42 doi: 10.1002/mrm.21435 – ident: ref31 doi: 10.1109/LSP.2022.3167313 – ident: ref46 doi: 10.1007/11585978_10 – ident: ref7 doi: 10.1109/TMI.2014.2301271 – ident: ref28 doi: 10.1093/imaiai/iaad008 – ident: ref27 doi: 10.1109/TIT.2010.2048466 – ident: ref29 doi: 10.1002/mrm.1241 – volume: 70 start-page: 1524 issue: 6 volume-title: Magn. Reson. Med. year: 2013 ident: ref37 article-title: Model-based acceleration of parameter mapping (MAP) for saturation prepared radially acquired data – ident: ref33 doi: 10.1007/bf01589116 – ident: ref30 doi: 10.1016/j.acha.2016.08.002 – ident: ref52 doi: 10.1137/141002293 – ident: ref16 doi: 10.1186/s12880-020-00474-3 – ident: ref24 doi: 10.1109/TCI.2018.2840334 – volume: 14 start-page: 189 year: 2006 ident: ref39 article-title: Sparse multidimensional representations using anisotropic dilation and shear operators publication-title: Wavelets Splines |
SSID | ssj0014846 |
Score | 2.435215 |
Snippet | Objective: We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). Methods: Because different... We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). Because different quantitative parameter-maps... We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI).OBJECTIVEWe propose a method for the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 388 |
SubjectTerms | <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> T_{1}</tex-math> </inline-formula> </named-content>-mapping Algorithms Alzheimer's disease Biomedical measurement Brain Brain - diagnostic imaging Brain mapping Compressed sensing Dictionaries dictionary learning Encoding Humans Image acquisition Image processing Image Processing, Computer-Assisted - methods Image reconstruction Learning Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Mapping Matching pursuit algorithms Medical imaging Methods Neural coding Neurodegenerative diseases Neuroimaging Parameters quantitative imaging Sparsity Supervised learning |
Title | Quantitative MR Image Reconstruction Using Parameter-Specific Dictionary Learning With Adaptive Dictionary-Size and Sparsity-Level Choice |
URI | https://ieeexplore.ieee.org/document/10209588 https://www.ncbi.nlm.nih.gov/pubmed/37540614 https://www.proquest.com/docview/2916487221 https://www.proquest.com/docview/2846928152 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RHhAceJQCgRYZiROSg-M4xD6WPlQQWwFdRG-Rn3QFZFewe2j_Qf81Y8e7LUhF3KJkktiaR77JvABeNIEp7uuKBm4sFb4RVKlQ08Aqq7SzTKpYjTw6en34Wbw7aU5ysXqqhfHep-QzX8bDFMt3U7uIv8pQwzkiAinXYA09t6FYaxUyEHKoymEVajBXIocwK6Zejd-M9ss4J7xE7x1BRRz_Fke_Rm_oj-9RGrByPdZM35yDu3C0XO2QavKtXMxNac__auT439u5B3cy-iQ7g7jchxu-34DbV3oSbsDNUY62P4CLjwvdpyI0NIlk9Im8_YHWh0SP9bLvLElJB-SDjlleyCSaJtqHiSV7k0Sgf56R3MX1K_kymZ-SHadn6ZGXFPR4cu6J7h05numUJ0Lfx3Qmsns6RVO2CeOD_fHuIc2jG6itGzanCMycYq7yaL6Clw69LmsUojmuG93Y1jvJXKjbIJ0U2lRSVyZwLVqFHlyj6oew3k97_xgInkTEok2M0IqWaYSzaIKC4a1BaCiaAtiSf53Nbc3jdI3vXXJvmOoi97vI_S5zv4CXq1tmQ0-PfxFvRs5dIRyYVsDWUkq6rPa_Oo6rQw-Q86qA56vLqLAxCqN7P10gDcop7hJxUwGPBulaPXwplE-ueelTuIVrE0PW-BasI6v9NoKiuXmWlOE3fdIE3A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkXgcCpQCKQWMxAnJqeM4TXwspdUWNiugi-gt8pOugOyK7h7oP-BfM3ay24JUxC1KJomjefibzAvgZeGZ5C7PqOfaUOEKQaX0OfUsM1JZwyoZqpHr0e7gk3h7Upz0xeqxFsY5F5PPXBoOYyzfTs0i_CpDDeeICKrqOtzAjb_IunKtVdBAVF1dDstQh7kUfRAzY3Jn_Lo-SMOk8BT9d4QVYQBcGP4a_KE_dqQ4YuVqtBl3ncO7MFqut0s2-Zou5jo153-1cvzvD7oH6z3-JHudwNyHa67dgDuXuhJuwM26j7c_gF8fFqqNZWhoFEn9kRx9R_tDgs960XmWxLQD8l6FPC9kE40z7f3EkDeTSKB-_CR9H9cv5PNkfkr2rJrFR15Q0OPJuSOqteR4pmKmCB2GhCayfzpFY7YJ48OD8f6A9sMbqMkLNqcIzaxkNnNowLyrLPpdRkvEc1wVqjClsxWzPi99ZSuhdFapTHuuRCnRhytk_hDW2mnrHgPBk4hZlA4xWlEyhYAWjZDXvNQIDkWRAFvyrzF9Y_MwX-NbEx0cJpvA_SZwv-m5n8Cr1S2zrqvHv4g3A-cuEXZMS2B7KSVNr_hnDcfVoQ_IeZbAi9VlVNkQh1Gtmy6QBuUUvxKRUwKPOulaPXwplFtXvPQ53BqM62EzPBq9ewK3cZ2iyyHfhjVku3uKEGmun0XF-A08YQgl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+MR+Image+Reconstruction+Using+Parameter-Specific+Dictionary+Learning+With+Adaptive+Dictionary-Size+and+Sparsity-Level+Choice&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kofler%2C+Andreas&rft.au=Kerkering%2C+Kirsten+Miriam&rft.au=Goschel%2C+Laura&rft.au=Fillmer%2C+Ariane&rft.date=2024-02-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=71&rft.issue=2&rft.spage=388&rft_id=info:doi/10.1109%2FTBME.2023.3300090&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |