Quantitative MR Image Reconstruction Using Parameter-Specific Dictionary Learning With Adaptive Dictionary-Size and Sparsity-Level Choice

Objective: We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). Methods: Because different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and spa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 71; no. 2; pp. 388 - 399
Main Authors Kofler, Andreas, Kerkering, Kirsten Miriam, Goschel, Laura, Fillmer, Ariane, Kolbitsch, Christoph
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2023.3300090

Cover

Loading…
Abstract Objective: We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). Methods: Because different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and sparse coding (SC) algorithms automatically estimate the optimal dictionary-size and sparsity level separately for each parameter-map. We evaluated the method on a <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-mapping QMRI problem in the brain using the BrainWeb data as well as in-vivo brain images acquired on an ultra-high field 7 T scanner. We compared it to a model-based acceleration for parameter mapping (MAP) approach, other sparsity-based methods using total variation (TV), Wavelets (Wl), and Shearlets (Sh) to a method which uses DL and SC to reconstruct qualitative images, followed by a non-linear (DL+Fit). Results: Our algorithm surpasses MAP, TV, Wl, and Sh in terms of RMSE and PSNR. It yields better or comparable results to DL+Fit by additionally significantly accelerating the reconstruction by a factor of approximately seven. Conclusion: The proposed method outperforms the reported methods of comparison and yields accurate <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-maps. Although presented for <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-mapping in the brain, our method's structure is general and thus most probably also applicable for the the reconstruction of other quantitative parameters in other organs. Significance: From a clinical perspective, the obtained <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-maps could be utilized to differentiate between healthy subjects and patients with Alzheimer's disease. From a technical perspective, the proposed unsupervised method could be employed to obtain ground-truth data for the development of data-driven methods based on supervised learning.
AbstractList We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). Because different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and sparse coding (SC) algorithms automatically estimate the optimal dictionary-size and sparsity level separately for each parameter-map. We evaluated the method on a T -mapping QMRI problem in the brain using the BrainWeb data as well as in-vivo brain images acquired on an ultra-high field 7 T scanner. We compared it to a model-based acceleration for parameter mapping (MAP) approach, other sparsity-based methods using total variation (TV), Wavelets (Wl), and Shearlets (Sh) to a method which uses DL and SC to reconstruct qualitative images, followed by a non-linear (DL+Fit). Our algorithm surpasses MAP, TV, Wl, and Sh in terms of RMSE and PSNR. It yields better or comparable results to DL+Fit by additionally significantly accelerating the reconstruction by a factor of approximately seven. The proposed method outperforms the reported methods of comparison and yields accurate T -maps. Although presented for T -mapping in the brain, our method's structure is general and thus most probably also applicable for the the reconstruction of other quantitative parameters in other organs. From a clinical perspective, the obtained T -maps could be utilized to differentiate between healthy subjects and patients with Alzheimer's disease. From a technical perspective, the proposed unsupervised method could be employed to obtain ground-truth data for the development of data-driven methods based on supervised learning.
Objective: We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). Methods: Because different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and sparse coding (SC) algorithms automatically estimate the optimal dictionary-size and sparsity level separately for each parameter-map. We evaluated the method on a <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-mapping QMRI problem in the brain using the BrainWeb data as well as in-vivo brain images acquired on an ultra-high field 7 T scanner. We compared it to a model-based acceleration for parameter mapping (MAP) approach, other sparsity-based methods using total variation (TV), Wavelets (Wl), and Shearlets (Sh) to a method which uses DL and SC to reconstruct qualitative images, followed by a non-linear (DL+Fit). Results: Our algorithm surpasses MAP, TV, Wl, and Sh in terms of RMSE and PSNR. It yields better or comparable results to DL+Fit by additionally significantly accelerating the reconstruction by a factor of approximately seven. Conclusion: The proposed method outperforms the reported methods of comparison and yields accurate <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-maps. Although presented for <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-mapping in the brain, our method's structure is general and thus most probably also applicable for the the reconstruction of other quantitative parameters in other organs. Significance: From a clinical perspective, the obtained <inline-formula><tex-math notation="LaTeX">T_{1}</tex-math></inline-formula>-maps could be utilized to differentiate between healthy subjects and patients with Alzheimer's disease. From a technical perspective, the proposed unsupervised method could be employed to obtain ground-truth data for the development of data-driven methods based on supervised learning.
Objective: We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). Methods: Because different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and sparse coding (SC) algorithms automatically estimate the optimal dictionary-size and sparsity level separately for each parameter-map. We evaluated the method on a [Formula Omitted]-mapping QMRI problem in the brain using the BrainWeb data as well as in-vivo brain images acquired on an ultra-high field 7 T scanner. We compared it to a model-based acceleration for parameter mapping (MAP) approach, other sparsity-based methods using total variation (TV), Wavelets (Wl), and Shearlets (Sh) to a method which uses DL and SC to reconstruct qualitative images, followed by a non-linear (DL+Fit). Results: Our algorithm surpasses MAP, TV, Wl, and Sh in terms of RMSE and PSNR. It yields better or comparable results to DL+Fit by additionally significantly accelerating the reconstruction by a factor of approximately seven. Conclusion: The proposed method outperforms the reported methods of comparison and yields accurate [Formula Omitted]-maps. Although presented for [Formula Omitted]-mapping in the brain, our method's structure is general and thus most probably also applicable for the the reconstruction of other quantitative parameters in other organs. Significance: From a clinical perspective, the obtained [Formula Omitted]-maps could be utilized to differentiate between healthy subjects and patients with Alzheimer's disease. From a technical perspective, the proposed unsupervised method could be employed to obtain ground-truth data for the development of data-driven methods based on supervised learning.
We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI).OBJECTIVEWe propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI).Because different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and sparse coding (SC) algorithms automatically estimate the optimal dictionary-size and sparsity level separately for each parameter-map. We evaluated the method on a T1-mapping QMRI problem in the brain using the BrainWeb data as well as in-vivo brain images acquired on an ultra-high field 7 T scanner. We compared it to a model-based acceleration for parameter mapping (MAP) approach, other sparsity-based methods using total variation (TV), Wavelets (Wl), and Shearlets (Sh) to a method which uses DL and SC to reconstruct qualitative images, followed by a non-linear (DL+Fit).METHODSBecause different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and sparse coding (SC) algorithms automatically estimate the optimal dictionary-size and sparsity level separately for each parameter-map. We evaluated the method on a T1-mapping QMRI problem in the brain using the BrainWeb data as well as in-vivo brain images acquired on an ultra-high field 7 T scanner. We compared it to a model-based acceleration for parameter mapping (MAP) approach, other sparsity-based methods using total variation (TV), Wavelets (Wl), and Shearlets (Sh) to a method which uses DL and SC to reconstruct qualitative images, followed by a non-linear (DL+Fit).Our algorithm surpasses MAP, TV, Wl, and Sh in terms of RMSE and PSNR. It yields better or comparable results to DL+Fit by additionally significantly accelerating the reconstruction by a factor of approximately seven.RESULTSOur algorithm surpasses MAP, TV, Wl, and Sh in terms of RMSE and PSNR. It yields better or comparable results to DL+Fit by additionally significantly accelerating the reconstruction by a factor of approximately seven.The proposed method outperforms the reported methods of comparison and yields accurate T1-maps. Although presented for T1-mapping in the brain, our method's structure is general and thus most probably also applicable for the the reconstruction of other quantitative parameters in other organs.CONCLUSIONThe proposed method outperforms the reported methods of comparison and yields accurate T1-maps. Although presented for T1-mapping in the brain, our method's structure is general and thus most probably also applicable for the the reconstruction of other quantitative parameters in other organs.From a clinical perspective, the obtained T1-maps could be utilized to differentiate between healthy subjects and patients with Alzheimer's disease. From a technical perspective, the proposed unsupervised method could be employed to obtain ground-truth data for the development of data-driven methods based on supervised learning.SIGNIFICANCEFrom a clinical perspective, the obtained T1-maps could be utilized to differentiate between healthy subjects and patients with Alzheimer's disease. From a technical perspective, the proposed unsupervised method could be employed to obtain ground-truth data for the development of data-driven methods based on supervised learning.
Author Kofler, Andreas
Kolbitsch, Christoph
Kerkering, Kirsten Miriam
Goschel, Laura
Fillmer, Ariane
Author_xml – sequence: 1
  givenname: Andreas
  orcidid: 0000-0001-9169-2572
  surname: Kofler
  fullname: Kofler, Andreas
  email: andreas.kofler@ptb.de
  organization: Physikalisch-Technische Bundesanstalt, Berlin, Germany
– sequence: 2
  givenname: Kirsten Miriam
  orcidid: 0000-0002-8165-5943
  surname: Kerkering
  fullname: Kerkering, Kirsten Miriam
  organization: Physikalisch-Technische Bundesanstalt, Germany
– sequence: 3
  givenname: Laura
  orcidid: 0000-0001-6592-2493
  surname: Goschel
  fullname: Goschel, Laura
  organization: Charité - Universitätsmedizin Berlin, Germany
– sequence: 4
  givenname: Ariane
  orcidid: 0000-0003-3333-6603
  surname: Fillmer
  fullname: Fillmer, Ariane
  organization: Physikalisch-Technische Bundesanstalt, Germany
– sequence: 5
  givenname: Christoph
  orcidid: 0000-0002-4355-8368
  surname: Kolbitsch
  fullname: Kolbitsch, Christoph
  organization: Physikalisch-Technische Bundesanstalt, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37540614$$D View this record in MEDLINE/PubMed
BookMark eNp90ctu1DAUBmALFdFp4QGQELLEhk0GH18m9rIMBSpNBXQGsYw8zknrKuME26lU3oC3JnPhoi5YWZa-35fzn5Cj0AUk5DmwKQAzb1ZvL8-nnHExFYIxZtgjMgGldMGVgCMyYQx0YbiRx-QkpdtxK7WcPSHHolSSzUBOyM8vgw3ZZ5v9HdLLK3qxsddIr9B1IeU4uOy7QL8mH67pZxvtBjPGYtmj84139J3fARvv6QJtDFv2zecbelbbfnfkX1Es_Q-kNtR02duYfL4vFniHLZ3fdN7hU_K4sW3CZ4f1lKzen6_mH4vFpw8X87NF4YRiuQAla8NqwHImGtQ1gHRrYxRwq6xyJdaa1Y0oG11radegLawbbmVpuC6VEafk9f7YPnbfB0y52vjksG1twG5IFR8nNFJQfKSvHtDbbohhfFzFDcykLjmHUb08qGG9wbrqo9-Mv61-z3gEsAcudilFbP4QYNW2x2rbY7XtsTr0OGbKBxm366gLOVrf_jf5Yp_0iPjPTZwZpbX4BSpaqvo
CODEN IEBEAX
CitedBy_id crossref_primary_10_1002_gamm_202470014
crossref_primary_10_1109_TGRS_2024_3430500
Cites_doi 10.1088/0266-5611/30/5/055012
10.1109/TMI.2019.2932961
10.1109/LSP.2012.2188793
10.1007/bfb0067700
10.1002/mrm.22483
10.1109/TBME.2013.2294939
10.1016/s0045-7906(01)00011-8
10.1002/mrm.26668
10.1109/TIP.2017.2761545
10.1109/ACSSC.1993.342465
10.1109/TMI.2006.883453
10.1109/18.382009
10.1109/TSP.2006.881199
10.1063/1.4823127
10.1109/TMI.2010.2090538
10.1007/978-3-319-55795-3_10
10.1016/j.brainresbull.2018.05.004
10.1002/mp.14547
10.1117/12.613494
10.1186/s12968-019-0570-3
10.1007/978-3-319-46726-9_56
10.1002/mrm.27579
10.1109/TMI.2014.2322815
10.1109/TMI.2006.885337
10.1109/TIP.2003.819861
10.1109/ACSSC.2008.5074472
10.1109/TIT.2011.2173241
10.1002/mrm.24600
10.1109/tsp.2009.2025088
10.1093/imaiai/iaad008
10.1109/MSP.2019.2940062
10.1016/j.pnmrs.2018.06.001
10.1109/MSP.2007.914728
10.1109/TIP.2019.2937734
10.1109/cvpr.2018.00984
10.1109/TMI.2021.3084288
10.1007/s10851-010-0251-1
10.1561/2200000016
10.1002/mrm.20648
10.1002/mrm.21435
10.1109/LSP.2022.3167313
10.1007/11585978_10
10.1109/TMI.2014.2301271
10.1109/TIT.2010.2048466
10.1002/mrm.1241
10.1007/bf01589116
10.1016/j.acha.2016.08.002
10.1137/141002293
10.1186/s12880-020-00474-3
10.1109/TCI.2018.2840334
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2023.3300090
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 399
ExternalDocumentID 37540614
10_1109_TBME_2023_3300090
10209588
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Participating States
  grantid: 18HLT09 — NeuroMET2
– fundername: European Union's Horizon 2020 Research and Innovation
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c350t-154d90d1e763fe8d114cb99512a5a5c7ed80df37f8d84ab18a1bf2a479287593
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 16:20:31 EDT 2025
Mon Jun 30 10:14:01 EDT 2025
Thu Apr 03 07:04:45 EDT 2025
Tue Jul 01 03:28:39 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Wed Aug 27 02:29:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-154d90d1e763fe8d114cb99512a5a5c7ed80df37f8d84ab18a1bf2a479287593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9169-2572
0000-0002-8165-5943
0000-0002-4355-8368
0000-0003-3333-6603
0000-0001-6592-2493
PMID 37540614
PQID 2916487221
PQPubID 85474
PageCount 12
ParticipantIDs proquest_miscellaneous_2846928152
crossref_citationtrail_10_1109_TBME_2023_3300090
proquest_journals_2916487221
crossref_primary_10_1109_TBME_2023_3300090
pubmed_primary_37540614
ieee_primary_10209588
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
Ma (ref5) 2017; 42
ref9
ref4
ref3
ref6
ref40
Wajer (ref32) 2001
ref35
ref34
ref36
ref31
ref30
Guo (ref39) 2006; 14
ref33
ref2
ref1
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Tran-Gia (ref37) 2013; 70
References_xml – ident: ref50
  doi: 10.1088/0266-5611/30/5/055012
– ident: ref9
  doi: 10.1109/TMI.2019.2932961
– ident: ref14
  doi: 10.1109/LSP.2012.2188793
– ident: ref43
  doi: 10.1007/bfb0067700
– ident: ref19
  doi: 10.1002/mrm.22483
– ident: ref8
  doi: 10.1109/TBME.2013.2294939
– ident: ref44
  doi: 10.1016/s0045-7906(01)00011-8
– ident: ref4
  doi: 10.1002/mrm.26668
– ident: ref23
  doi: 10.1109/TIP.2017.2761545
– ident: ref18
  doi: 10.1109/ACSSC.1993.342465
– ident: ref36
  doi: 10.1109/TMI.2006.883453
– ident: ref45
  doi: 10.1109/18.382009
– ident: ref17
  doi: 10.1109/TSP.2006.881199
– ident: ref38
  doi: 10.1063/1.4823127
– ident: ref6
  doi: 10.1109/TMI.2010.2090538
– ident: ref51
  doi: 10.1007/978-3-319-55795-3_10
– ident: ref1
  doi: 10.1016/j.brainresbull.2018.05.004
– ident: ref10
  doi: 10.1002/mp.14547
– ident: ref40
  doi: 10.1117/12.613494
– ident: ref3
  doi: 10.1186/s12968-019-0570-3
– ident: ref53
  doi: 10.1007/978-3-319-46726-9_56
– ident: ref20
  doi: 10.1002/mrm.27579
– ident: ref2
  doi: 10.1109/TMI.2014.2322815
– ident: ref35
  doi: 10.1109/TMI.2006.885337
– ident: ref47
  doi: 10.1109/TIP.2003.819861
– ident: ref11
  doi: 10.1109/ACSSC.2008.5074472
– ident: ref13
  doi: 10.1109/TIT.2011.2173241
– ident: ref41
  doi: 10.1002/mrm.24600
– ident: ref12
  doi: 10.1109/tsp.2009.2025088
– ident: ref15
  doi: 10.1093/imaiai/iaad008
– volume-title: Proc. Int. Soc. Mag. Res. Med
  year: 2001
  ident: ref32
  article-title: Major speedup of reconstruction for sensitivity encoding with arbitrary trajectories
– ident: ref21
  doi: 10.1109/MSP.2019.2940062
– ident: ref34
  doi: 10.1016/j.pnmrs.2018.06.001
– ident: ref22
  doi: 10.1109/MSP.2007.914728
– ident: ref25
  doi: 10.1109/TIP.2019.2937734
– ident: ref54
  doi: 10.1109/cvpr.2018.00984
– volume: 42
  start-page: 294
  issue: 2
  volume-title: Appl. Comput. Harmon. Anal.
  year: 2017
  ident: ref5
  article-title: Generalized sampling reconstruction from Fourier measurements using compactly supported shearlets
– ident: ref55
  doi: 10.1109/TMI.2021.3084288
– ident: ref48
  doi: 10.1007/s10851-010-0251-1
– ident: ref49
  doi: 10.1561/2200000016
– ident: ref26
  doi: 10.1002/mrm.20648
– ident: ref42
  doi: 10.1002/mrm.21435
– ident: ref31
  doi: 10.1109/LSP.2022.3167313
– ident: ref46
  doi: 10.1007/11585978_10
– ident: ref7
  doi: 10.1109/TMI.2014.2301271
– ident: ref28
  doi: 10.1093/imaiai/iaad008
– ident: ref27
  doi: 10.1109/TIT.2010.2048466
– ident: ref29
  doi: 10.1002/mrm.1241
– volume: 70
  start-page: 1524
  issue: 6
  volume-title: Magn. Reson. Med.
  year: 2013
  ident: ref37
  article-title: Model-based acceleration of parameter mapping (MAP) for saturation prepared radially acquired data
– ident: ref33
  doi: 10.1007/bf01589116
– ident: ref30
  doi: 10.1016/j.acha.2016.08.002
– ident: ref52
  doi: 10.1137/141002293
– ident: ref16
  doi: 10.1186/s12880-020-00474-3
– ident: ref24
  doi: 10.1109/TCI.2018.2840334
– volume: 14
  start-page: 189
  year: 2006
  ident: ref39
  article-title: Sparse multidimensional representations using anisotropic dilation and shear operators
  publication-title: Wavelets Splines
SSID ssj0014846
Score 2.435215
Snippet Objective: We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). Methods: Because different...
We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). Because different quantitative parameter-maps...
We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI).OBJECTIVEWe propose a method for the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 388
SubjectTerms <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> T_{1}</tex-math> </inline-formula> </named-content>-mapping
Algorithms
Alzheimer's disease
Biomedical measurement
Brain
Brain - diagnostic imaging
Brain mapping
Compressed sensing
Dictionaries
dictionary learning
Encoding
Humans
Image acquisition
Image processing
Image Processing, Computer-Assisted - methods
Image reconstruction
Learning
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mapping
Matching pursuit algorithms
Medical imaging
Methods
Neural coding
Neurodegenerative diseases
Neuroimaging
Parameters
quantitative imaging
Sparsity
Supervised learning
Title Quantitative MR Image Reconstruction Using Parameter-Specific Dictionary Learning With Adaptive Dictionary-Size and Sparsity-Level Choice
URI https://ieeexplore.ieee.org/document/10209588
https://www.ncbi.nlm.nih.gov/pubmed/37540614
https://www.proquest.com/docview/2916487221
https://www.proquest.com/docview/2846928152
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RHhAceJQCgRYZiROSg-M4xD6WPlQQWwFdRG-Rn3QFZFewe2j_Qf81Y8e7LUhF3KJkktiaR77JvABeNIEp7uuKBm4sFb4RVKlQ08Aqq7SzTKpYjTw6en34Wbw7aU5ysXqqhfHep-QzX8bDFMt3U7uIv8pQwzkiAinXYA09t6FYaxUyEHKoymEVajBXIocwK6Zejd-M9ss4J7xE7x1BRRz_Fke_Rm_oj-9RGrByPdZM35yDu3C0XO2QavKtXMxNac__auT439u5B3cy-iQ7g7jchxu-34DbV3oSbsDNUY62P4CLjwvdpyI0NIlk9Im8_YHWh0SP9bLvLElJB-SDjlleyCSaJtqHiSV7k0Sgf56R3MX1K_kymZ-SHadn6ZGXFPR4cu6J7h05numUJ0Lfx3Qmsns6RVO2CeOD_fHuIc2jG6itGzanCMycYq7yaL6Clw69LmsUojmuG93Y1jvJXKjbIJ0U2lRSVyZwLVqFHlyj6oew3k97_xgInkTEok2M0IqWaYSzaIKC4a1BaCiaAtiSf53Nbc3jdI3vXXJvmOoi97vI_S5zv4CXq1tmQ0-PfxFvRs5dIRyYVsDWUkq6rPa_Oo6rQw-Q86qA56vLqLAxCqN7P10gDcop7hJxUwGPBulaPXwplE-ueelTuIVrE0PW-BasI6v9NoKiuXmWlOE3fdIE3A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkXgcCpQCKQWMxAnJqeM4TXwspdUWNiugi-gt8pOugOyK7h7oP-BfM3ay24JUxC1KJomjefibzAvgZeGZ5C7PqOfaUOEKQaX0OfUsM1JZwyoZqpHr0e7gk3h7Upz0xeqxFsY5F5PPXBoOYyzfTs0i_CpDDeeICKrqOtzAjb_IunKtVdBAVF1dDstQh7kUfRAzY3Jn_Lo-SMOk8BT9d4QVYQBcGP4a_KE_dqQ4YuVqtBl3ncO7MFqut0s2-Zou5jo153-1cvzvD7oH6z3-JHudwNyHa67dgDuXuhJuwM26j7c_gF8fFqqNZWhoFEn9kRx9R_tDgs960XmWxLQD8l6FPC9kE40z7f3EkDeTSKB-_CR9H9cv5PNkfkr2rJrFR15Q0OPJuSOqteR4pmKmCB2GhCayfzpFY7YJ48OD8f6A9sMbqMkLNqcIzaxkNnNowLyrLPpdRkvEc1wVqjClsxWzPi99ZSuhdFapTHuuRCnRhytk_hDW2mnrHgPBk4hZlA4xWlEyhYAWjZDXvNQIDkWRAFvyrzF9Y_MwX-NbEx0cJpvA_SZwv-m5n8Cr1S2zrqvHv4g3A-cuEXZMS2B7KSVNr_hnDcfVoQ_IeZbAi9VlVNkQh1Gtmy6QBuUUvxKRUwKPOulaPXwplFtXvPQ53BqM62EzPBq9ewK3cZ2iyyHfhjVku3uKEGmun0XF-A08YQgl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+MR+Image+Reconstruction+Using+Parameter-Specific+Dictionary+Learning+With+Adaptive+Dictionary-Size+and+Sparsity-Level+Choice&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kofler%2C+Andreas&rft.au=Kerkering%2C+Kirsten+Miriam&rft.au=Goschel%2C+Laura&rft.au=Fillmer%2C+Ariane&rft.date=2024-02-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=71&rft.issue=2&rft.spage=388&rft_id=info:doi/10.1109%2FTBME.2023.3300090&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon