Defective bacterial phagocytosis is associated with dysfunctional mitochondria in COPD macrophages

Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the effect of exogenous and endogenous oxidative stress on macrophage phagocytosis in patients with COPD. Monocyte-derived macrophages (MDMs) were...

Full description

Saved in:
Bibliographic Details
Published inThe European respiratory journal Vol. 54; no. 4; p. 1802244
Main Authors Belchamber, Kylie B.R., Singh, Richa, Batista, Craig M., Whyte, Moira K., Dockrell, David H., Kilty, Iain, Robinson, Matthew J., Wedzicha, Jadwiga A., Barnes, Peter J., Donnelly, Louise E.
Format Journal Article
LanguageEnglish
Published England 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the effect of exogenous and endogenous oxidative stress on macrophage phagocytosis in patients with COPD. Monocyte-derived macrophages (MDMs) were generated from non-smoker, smoker and COPD subjects, differentiated in either granulocyte macrophage-colony stimulating factor (G-Mφ) or macrophage-colony stimulating factor (M-Mφ). Alveolar macrophages were isolated from lung tissue or bronchoalveolar lavage fluid. Macrophages were incubated in ±200 µM H 2 O 2 for 24 h, then exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, after which phagocytosis, mitochondrial ROS (mROS) and mitochondrial membrane potential (ΔΨm) were measured. Phagocytosis of bacteria was significantly decreased in both G-Mφ and M-Mφ from COPD patients compared with from non-smoker controls. In non-smokers and smokers, bacterial phagocytosis did not alter mROS or ΔΨm; however, in COPD, phagocytosis increased early mROS and decreased ΔΨm in both G-Mφ and M-Mφ. Exogenous oxidative stress reduced phagocytosis in non-smoker and COPD alveolar macrophages and non-smoker MDMs, associated with reduced mROS production. COPD macrophages show defective phagocytosis, which is associated with altered mitochondrial function and an inability to regulate mROS production. Targeting mitochondrial dysfunction may restore the phagocytic defect in COPD.
AbstractList Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the effect of exogenous and endogenous oxidative stress on macrophage phagocytosis in patients with COPD. Monocyte-derived macrophages (MDMs) were generated from non-smoker, smoker and COPD subjects, differentiated in either granulocyte macrophage-colony stimulating factor (G-Mφ) or macrophage-colony stimulating factor (M-Mφ). Alveolar macrophages were isolated from lung tissue or bronchoalveolar lavage fluid. Macrophages were incubated in ±200 µM H 2 O 2 for 24 h, then exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, after which phagocytosis, mitochondrial ROS (mROS) and mitochondrial membrane potential (ΔΨm) were measured. Phagocytosis of bacteria was significantly decreased in both G-Mφ and M-Mφ from COPD patients compared with from non-smoker controls. In non-smokers and smokers, bacterial phagocytosis did not alter mROS or ΔΨm; however, in COPD, phagocytosis increased early mROS and decreased ΔΨm in both G-Mφ and M-Mφ. Exogenous oxidative stress reduced phagocytosis in non-smoker and COPD alveolar macrophages and non-smoker MDMs, associated with reduced mROS production. COPD macrophages show defective phagocytosis, which is associated with altered mitochondrial function and an inability to regulate mROS production. Targeting mitochondrial dysfunction may restore the phagocytic defect in COPD.
Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the effect of exogenous and endogenous oxidative stress on macrophage phagocytosis in patients with COPD.Monocyte-derived macrophages (MDMs) were generated from non-smoker, smoker and COPD subjects, differentiated in either granulocyte macrophage-colony stimulating factor (G-Mφ) or macrophage-colony stimulating factor (M-Mφ). Alveolar macrophages were isolated from lung tissue or bronchoalveolar lavage fluid. Macrophages were incubated in ±200 µM H O for 24 h, then exposed to fluorescently labelled or for 4 h, after which phagocytosis, mitochondrial ROS (mROS) and mitochondrial membrane potential (ΔΨm) were measured.Phagocytosis of bacteria was significantly decreased in both G-Mφ and M-Mφ from COPD patients compared with from non-smoker controls. In non-smokers and smokers, bacterial phagocytosis did not alter mROS or ΔΨm; however, in COPD, phagocytosis increased early mROS and decreased ΔΨm in both G-Mφ and M-Mφ. Exogenous oxidative stress reduced phagocytosis in non-smoker and COPD alveolar macrophages and non-smoker MDMs, associated with reduced mROS production.COPD macrophages show defective phagocytosis, which is associated with altered mitochondrial function and an inability to regulate mROS production. Targeting mitochondrial dysfunction may restore the phagocytic defect in COPD.
Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the effect of exogenous and endogenous oxidative stress on macrophage phagocytosis in patients with COPD.Monocyte-derived macrophages (MDMs) were generated from non-smoker, smoker and COPD subjects, differentiated in either granulocyte macrophage-colony stimulating factor (G-Mφ) or macrophage-colony stimulating factor (M-Mφ). Alveolar macrophages were isolated from lung tissue or bronchoalveolar lavage fluid. Macrophages were incubated in ±200 µM H2O2 for 24 h, then exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, after which phagocytosis, mitochondrial ROS (mROS) and mitochondrial membrane potential (ΔΨm) were measured.Phagocytosis of bacteria was significantly decreased in both G-Mφ and M-Mφ from COPD patients compared with from non-smoker controls. In non-smokers and smokers, bacterial phagocytosis did not alter mROS or ΔΨm; however, in COPD, phagocytosis increased early mROS and decreased ΔΨm in both G-Mφ and M-Mφ. Exogenous oxidative stress reduced phagocytosis in non-smoker and COPD alveolar macrophages and non-smoker MDMs, associated with reduced mROS production.COPD macrophages show defective phagocytosis, which is associated with altered mitochondrial function and an inability to regulate mROS production. Targeting mitochondrial dysfunction may restore the phagocytic defect in COPD.Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the effect of exogenous and endogenous oxidative stress on macrophage phagocytosis in patients with COPD.Monocyte-derived macrophages (MDMs) were generated from non-smoker, smoker and COPD subjects, differentiated in either granulocyte macrophage-colony stimulating factor (G-Mφ) or macrophage-colony stimulating factor (M-Mφ). Alveolar macrophages were isolated from lung tissue or bronchoalveolar lavage fluid. Macrophages were incubated in ±200 µM H2O2 for 24 h, then exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, after which phagocytosis, mitochondrial ROS (mROS) and mitochondrial membrane potential (ΔΨm) were measured.Phagocytosis of bacteria was significantly decreased in both G-Mφ and M-Mφ from COPD patients compared with from non-smoker controls. In non-smokers and smokers, bacterial phagocytosis did not alter mROS or ΔΨm; however, in COPD, phagocytosis increased early mROS and decreased ΔΨm in both G-Mφ and M-Mφ. Exogenous oxidative stress reduced phagocytosis in non-smoker and COPD alveolar macrophages and non-smoker MDMs, associated with reduced mROS production.COPD macrophages show defective phagocytosis, which is associated with altered mitochondrial function and an inability to regulate mROS production. Targeting mitochondrial dysfunction may restore the phagocytic defect in COPD.
Author Singh, Richa
Belchamber, Kylie B.R.
Wedzicha, Jadwiga A.
Batista, Craig M.
Whyte, Moira K.
Kilty, Iain
Robinson, Matthew J.
Donnelly, Louise E.
Barnes, Peter J.
Dockrell, David H.
Author_xml – sequence: 1
  givenname: Kylie B.R.
  orcidid: 0000-0003-3241-258X
  surname: Belchamber
  fullname: Belchamber, Kylie B.R.
– sequence: 2
  givenname: Richa
  surname: Singh
  fullname: Singh, Richa
– sequence: 3
  givenname: Craig M.
  surname: Batista
  fullname: Batista, Craig M.
– sequence: 4
  givenname: Moira K.
  surname: Whyte
  fullname: Whyte, Moira K.
– sequence: 5
  givenname: David H.
  surname: Dockrell
  fullname: Dockrell, David H.
– sequence: 6
  givenname: Iain
  surname: Kilty
  fullname: Kilty, Iain
– sequence: 7
  givenname: Matthew J.
  surname: Robinson
  fullname: Robinson, Matthew J.
– sequence: 8
  givenname: Jadwiga A.
  surname: Wedzicha
  fullname: Wedzicha, Jadwiga A.
– sequence: 9
  givenname: Peter J.
  surname: Barnes
  fullname: Barnes, Peter J.
– sequence: 10
  givenname: Louise E.
  surname: Donnelly
  fullname: Donnelly, Louise E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31320451$$D View this record in MEDLINE/PubMed
BookMark eNp9kF1LwzAUQINM3If-AkH66EvnTW7StY-y-QWD-aDPJU1TF2mb2WTK_r2p23zwQQhcuJxzIWdMBq1tNSGXFKaUpnhDMcsQAKfAGOcxA5qekFG_jfv1gIwgA4xphsmQjJ17B6AJR3pGhkiRARd0RIqFrrTy5lNHhVRed0bW0WYt36zaeeuMi8KTzlllpNdl9GX8Oip3rtq2wbJtoBvjrVrbtgxuZNpovnpeRI1Une3vaHdOTitZO31xmBPyen_3Mn-Ml6uHp_ntMlYowMeUCUgSnokZV4AChUDkqaqQcZBFJtKsKGQJoBjFdIZVomWRshmUMlRgZYUTcr2_u-nsx1Y7nzfGKV3XstV263LGEsq4AM4DenVAt0Wjy3zTmUZ2u_zYJQC4B8IvnOt09YtQyPv6-bF-_lM_7-sHK_tjKeNln8l30tT_ut9wG4fa
CitedBy_id crossref_primary_10_1136_thoraxjnl_2020_216296
crossref_primary_10_3892_mmr_2024_13261
crossref_primary_10_1002_adfm_202416791
crossref_primary_10_1183_16000617_0165_2020
crossref_primary_10_1007_s11356_021_16797_9
crossref_primary_10_1016_j_mito_2022_09_003
crossref_primary_10_1186_s10020_022_00572_8
crossref_primary_10_3389_fphar_2022_995051
crossref_primary_10_1186_s12931_019_1196_6
crossref_primary_10_1016_j_immuni_2022_08_010
crossref_primary_10_3390_antiox12040973
crossref_primary_10_1152_ajplung_00329_2019
crossref_primary_10_3390_biomedicines12010053
crossref_primary_10_3390_medicina59020253
crossref_primary_10_1002_adma_202304774
crossref_primary_10_1183_23120541_00350_2019
crossref_primary_10_2147_COPD_S276792
crossref_primary_10_1016_j_biopha_2023_114573
crossref_primary_10_1165_rcmb_2022_0372LE
crossref_primary_10_1038_s41385_020_00356_5
crossref_primary_10_1164_rccm_202102_0253UP
crossref_primary_10_1007_s13668_024_00599_9
crossref_primary_10_1186_s12903_024_04635_6
crossref_primary_10_1016_j_pccm_2024_08_007
crossref_primary_10_3389_fimmu_2022_1029085
crossref_primary_10_3389_fimmu_2025_1535796
crossref_primary_10_1016_j_biocel_2021_106095
crossref_primary_10_1042_CS20210504
crossref_primary_10_1042_CS20210900
crossref_primary_10_2147_COPD_S266394
crossref_primary_10_3233_JHD_230595
crossref_primary_10_3390_ph14100979
crossref_primary_10_4014_jmb_2301_01022
crossref_primary_10_3389_fimmu_2023_1083072
crossref_primary_10_1016_j_biocel_2021_105966
crossref_primary_10_3389_fimmu_2024_1404615
crossref_primary_10_1186_s12931_024_02939_3
crossref_primary_10_3390_cells12242771
crossref_primary_10_1172_jci_insight_155581
crossref_primary_10_1016_j_rmed_2022_107035
crossref_primary_10_18632_aging_205849
crossref_primary_10_1186_s12931_021_01718_8
crossref_primary_10_1080_1061186X_2024_2386620
crossref_primary_10_1183_13993003_01641_2019
crossref_primary_10_3389_fimmu_2020_00786
crossref_primary_10_1183_13993003_00589_2023
crossref_primary_10_1183_23120541_00044_2022
crossref_primary_10_1183_16000617_0137_2023
crossref_primary_10_3389_fimmu_2021_573266
crossref_primary_10_1016_j_clim_2023_109324
crossref_primary_10_1002_mco2_127
crossref_primary_10_1016_j_apr_2023_101719
crossref_primary_10_1038_s41598_020_79201_5
crossref_primary_10_18093_0869_0189_2022_3108
crossref_primary_10_1080_08820139_2024_2334296
crossref_primary_10_1164_rccm_201908_1683LE
crossref_primary_10_3389_fcimb_2021_723481
crossref_primary_10_1016_j_pharmthera_2020_107500
crossref_primary_10_3390_biomedicines9101312
crossref_primary_10_1183_16000617_0053_2024
crossref_primary_10_1186_s12931_021_01707_x
crossref_primary_10_3389_fimmu_2021_704173
crossref_primary_10_23736_S0026_4806_22_07972_1
crossref_primary_10_1016_S0140_6736_22_00470_6
crossref_primary_10_1039_D1MH01813B
crossref_primary_10_1080_01913123_2022_2060395
crossref_primary_10_1080_19490976_2024_2320283
crossref_primary_10_1159_000504344
crossref_primary_10_3390_diagnostics11050859
crossref_primary_10_1164_rccm_202302_0200ED
crossref_primary_10_1183_13993003_02143_2021
crossref_primary_10_3390_antiox11050965
crossref_primary_10_3390_molecules27175542
crossref_primary_10_1016_j_freeradbiomed_2023_03_002
crossref_primary_10_1172_jci_insight_133984
crossref_primary_10_1164_rccm_202203_0482OC
crossref_primary_10_3390_biomedicines9121939
crossref_primary_10_1016_j_chest_2020_01_027
crossref_primary_10_1152_ajplung_00053_2020
crossref_primary_10_1016_j_cytogfr_2024_12_005
crossref_primary_10_3390_antibiotics11040474
crossref_primary_10_1128_jvi_01499_24
crossref_primary_10_1016_j_pharmthera_2022_108208
crossref_primary_10_3389_fimmu_2020_02120
crossref_primary_10_1007_s00424_024_03013_z
crossref_primary_10_1186_s12950_022_00309_8
crossref_primary_10_3390_biomedicines10061337
crossref_primary_10_1111_bph_15759
crossref_primary_10_1182_bloodadvances_2020003074
crossref_primary_10_3389_fimmu_2023_1162087
crossref_primary_10_3390_antiox10091335
Cites_doi 10.1080/01902140802366261
10.1183/09031936.03.00098203
10.1016/j.jaci.2016.05.011
10.3389/fimmu.2018.00270
10.1164/rccm.201705-0903OC
10.1371/journal.pone.0072975
10.1164/rccm.201507-1376OC
10.3390/cells7080086
10.1152/ajplung.00180.2014
10.4049/jimmunol.1302269
10.1007/s00109-014-1186-6
10.1016/j.bbrc.2011.02.035
10.1164/ajrccm.164.3.2007149
10.1136/thorax.57.10.847
10.1016/j.chest.2017.03.020
10.1016/j.jaci.2013.08.044
10.1371/journal.pone.0163139
10.4049/jimmunol.1403045
10.1046/j.1440-1711.2003.t01-1-01170.x
10.1086/323084
10.1016/S0140-6736(09)61252-6
10.1164/rccm.200210-1179OC
10.1165/ajrcmb.16.5.9160840
10.1164/rccm.201608-1714OC
10.1165/rcmb.2017-0351LE
10.1038/ni.3052
10.1038/nmeth.2019
10.1146/annurev.med.54.101601.152209
10.1155/2016/7808576
10.1086/508428
10.1056/NEJM200007273430407
10.1111/resp.12734
10.1183/09031936.00036709
10.1586/17476348.2013.834252
10.1136/thoraxjnl-2011-201183
10.1016/j.jaci.2015.01.046
10.3390/ijerph6020445
10.1124/pr.56.4.2
10.1016/j.immuni.2014.06.008
10.1136/thoraxjnl-2015-206780
10.1016/j.redox.2016.12.035
10.1016/S0140-6736(04)16866-9
10.1378/chest.129.4.879
10.1183/09031936.00112408
10.1038/nature09973
10.4049/jimmunol.1103426
ContentType Journal Article
Copyright Copyright ©ERS 2019.
Copyright_xml – notice: Copyright ©ERS 2019.
CorporateAuthor COPD-MAP consortium
CorporateAuthor_xml – name: COPD-MAP consortium
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1183/13993003.02244-2018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1399-3003
ExternalDocumentID 31320451
10_1183_13993003_02244_2018
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Department of Health
  grantid: RP-PG-0109-10056
– fundername: Medical Research Council
  grantid: G1001365
– fundername: Medical Research Council
  grantid: G0800570
– fundername: Medical Research Council
  grantid: MR/N02995X/1
– fundername: Medical Research Council
  grantid: G1001372
GroupedDBID ---
.55
.GJ
18M
1OC
2WC
31~
3O-
53G
5GY
5RE
5VS
8-1
AADJU
AAFWJ
AAYXX
AAZMJ
ABCQX
ABJNI
ABOCM
ABSQV
ACEMG
ACGFO
ACPRK
ACXQS
ADBBV
ADDZX
ADMOG
ADYFA
AENEX
AFFNX
AFHIN
AFZJQ
AIZTS
AJAOE
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CAG
CITATION
COF
CS3
DIK
E3Z
EBS
EJD
F5P
F9R
GX1
H13
INIJC
J5H
KQ8
L7B
LH4
LW6
OK1
P2P
PQQKQ
R0Z
RHI
TER
TR2
W8F
WOQ
X7M
ZE2
ZGI
ZXP
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c350t-12506649574c0353553348cf3240ab9589bbad00c213873f6eab8270da9302df3
ISSN 0903-1936
1399-3003
IngestDate Fri Jul 11 09:46:34 EDT 2025
Sat May 31 02:12:53 EDT 2025
Thu Apr 24 23:05:03 EDT 2025
Tue Jul 01 05:27:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright ©ERS 2019.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c350t-12506649574c0353553348cf3240ab9589bbad00c213873f6eab8270da9302df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3241-258X
OpenAccessLink https://erj.ersjournals.com/content/erj/54/4/1802244.full.pdf
PMID 31320451
PQID 2261245044
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2261245044
pubmed_primary_31320451
crossref_primary_10_1183_13993003_02244_2018
crossref_citationtrail_10_1183_13993003_02244_2018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The European respiratory journal
PublicationTitleAlternate Eur Respir J
PublicationYear 2019
References 2024102101035651000_54.4.1802244.28
2024102101035651000_54.4.1802244.27
2024102101035651000_54.4.1802244.26
2024102101035651000_54.4.1802244.25
2024102101035651000_54.4.1802244.8
2024102101035651000_54.4.1802244.45
2024102101035651000_54.4.1802244.9
2024102101035651000_54.4.1802244.22
2024102101035651000_54.4.1802244.44
2024102101035651000_54.4.1802244.6
Wrench (2024102101035651000_54.4.1802244.10) 2018; 58
2024102101035651000_54.4.1802244.7
2024102101035651000_54.4.1802244.4
Johansson (2024102101035651000_54.4.1802244.29) 1997; 16
2024102101035651000_54.4.1802244.5
2024102101035651000_54.4.1802244.2
2024102101035651000_54.4.1802244.3
Hara (2024102101035651000_54.4.1802244.23) 2018; 7
2024102101035651000_54.4.1802244.1
Bewley (2024102101035651000_54.4.1802244.37) 2018; 198
2024102101035651000_54.4.1802244.32
Prakash (2024102101035651000_54.4.1802244.46) 2017; 152
2024102101035651000_54.4.1802244.31
2024102101035651000_54.4.1802244.30
Diskin (2024102101035651000_54.4.1802244.38) 2018; 9
2024102101035651000_54.4.1802244.18
2024102101035651000_54.4.1802244.17
2024102101035651000_54.4.1802244.39
2024102101035651000_54.4.1802244.16
2024102101035651000_54.4.1802244.15
2024102101035651000_54.4.1802244.14
2024102101035651000_54.4.1802244.36
2024102101035651000_54.4.1802244.13
2024102101035651000_54.4.1802244.12
2024102101035651000_54.4.1802244.34
2024102101035651000_54.4.1802244.11
2024102101035651000_54.4.1802244.33
2024102101035651000_54.4.1802244.19
2024102101035651000_54.4.1802244.21
2024102101035651000_54.4.1802244.43
2024102101035651000_54.4.1802244.20
Sies (2024102101035651000_54.4.1802244.35) 2017; 11
2024102101035651000_54.4.1802244.42
2024102101035651000_54.4.1802244.41
Bialas (2024102101035651000_54.4.1802244.24) 2016; 2016
2024102101035651000_54.4.1802244.40
31601722 - Eur Respir J. 2019 Oct 10;54(4):1901641. doi: 10.1183/13993003.01641-2019.
References_xml – ident: 2024102101035651000_54.4.1802244.30
  doi: 10.1080/01902140802366261
– ident: 2024102101035651000_54.4.1802244.43
  doi: 10.1183/09031936.03.00098203
– ident: 2024102101035651000_54.4.1802244.16
  doi: 10.1016/j.jaci.2016.05.011
– volume: 9
  start-page: 270
  year: 2018
  ident: 2024102101035651000_54.4.1802244.38
  article-title: Metabolic modulation in macrophage effector function
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.00270
– volume: 198
  start-page: 739
  year: 2018
  ident: 2024102101035651000_54.4.1802244.37
  article-title: Opsonic phagocytosis in chronic obstructive pulmonary disease is enhanced by Nrf2 agonists
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201705-0903OC
– ident: 2024102101035651000_54.4.1802244.14
  doi: 10.1371/journal.pone.0072975
– ident: 2024102101035651000_54.4.1802244.40
  doi: 10.1164/rccm.201507-1376OC
– volume: 7
  start-page: 86
  year: 2018
  ident: 2024102101035651000_54.4.1802244.23
  article-title: Mitochondrial quality control in COPD and IPF
  publication-title: Cells
  doi: 10.3390/cells7080086
– ident: 2024102101035651000_54.4.1802244.18
  doi: 10.1152/ajplung.00180.2014
– ident: 2024102101035651000_54.4.1802244.13
  doi: 10.4049/jimmunol.1302269
– ident: 2024102101035651000_54.4.1802244.42
  doi: 10.1007/s00109-014-1186-6
– ident: 2024102101035651000_54.4.1802244.44
  doi: 10.1016/j.bbrc.2011.02.035
– ident: 2024102101035651000_54.4.1802244.15
  doi: 10.1164/ajrccm.164.3.2007149
– ident: 2024102101035651000_54.4.1802244.4
  doi: 10.1136/thorax.57.10.847
– volume: 152
  start-page: 618
  year: 2017
  ident: 2024102101035651000_54.4.1802244.46
  article-title: Mitochondrial dysfunction in airway disease
  publication-title: Chest
  doi: 10.1016/j.chest.2017.03.020
– ident: 2024102101035651000_54.4.1802244.26
  doi: 10.1016/j.jaci.2013.08.044
– ident: 2024102101035651000_54.4.1802244.25
  doi: 10.1371/journal.pone.0163139
– ident: 2024102101035651000_54.4.1802244.31
  doi: 10.4049/jimmunol.1403045
– ident: 2024102101035651000_54.4.1802244.9
  doi: 10.1046/j.1440-1711.2003.t01-1-01170.x
– ident: 2024102101035651000_54.4.1802244.27
  doi: 10.1086/323084
– ident: 2024102101035651000_54.4.1802244.39
  doi: 10.1016/S0140-6736(09)61252-6
– ident: 2024102101035651000_54.4.1802244.3
  doi: 10.1164/rccm.200210-1179OC
– volume: 16
  start-page: 582
  year: 1997
  ident: 2024102101035651000_54.4.1802244.29
  article-title: Functional, morphological, and phenotypical differences between rat alveolar and interstitial macrophages
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/ajrcmb.16.5.9160840
– ident: 2024102101035651000_54.4.1802244.45
  doi: 10.1164/rccm.201608-1714OC
– volume: 58
  start-page: 271
  year: 2018
  ident: 2024102101035651000_54.4.1802244.10
  article-title: Reduced clearance of fungal spores by COPD GM-CSF and M-CSF derived macrophages
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2017-0351LE
– ident: 2024102101035651000_54.4.1802244.7
  doi: 10.1038/ni.3052
– ident: 2024102101035651000_54.4.1802244.28
  doi: 10.1038/nmeth.2019
– ident: 2024102101035651000_54.4.1802244.34
  doi: 10.1146/annurev.med.54.101601.152209
– volume: 2016
  start-page: 7808576
  year: 2016
  ident: 2024102101035651000_54.4.1802244.24
  article-title: The role of mitochondria and oxidative/antioxidative imbalance in pathobiology of chronic obstructive pulmonary disease
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2016/7808576
– ident: 2024102101035651000_54.4.1802244.8
  doi: 10.1086/508428
– ident: 2024102101035651000_54.4.1802244.2
  doi: 10.1056/NEJM200007273430407
– ident: 2024102101035651000_54.4.1802244.6
  doi: 10.1111/resp.12734
– ident: 2024102101035651000_54.4.1802244.11
  doi: 10.1183/09031936.00036709
– ident: 2024102101035651000_54.4.1802244.17
  doi: 10.1586/17476348.2013.834252
– ident: 2024102101035651000_54.4.1802244.20
  doi: 10.1136/thoraxjnl-2011-201183
– ident: 2024102101035651000_54.4.1802244.19
  doi: 10.1016/j.jaci.2015.01.046
– ident: 2024102101035651000_54.4.1802244.36
  doi: 10.3390/ijerph6020445
– ident: 2024102101035651000_54.4.1802244.22
  doi: 10.1124/pr.56.4.2
– ident: 2024102101035651000_54.4.1802244.32
  doi: 10.1016/j.immuni.2014.06.008
– ident: 2024102101035651000_54.4.1802244.33
  doi: 10.1136/thoraxjnl-2015-206780
– volume: 11
  start-page: 613
  year: 2017
  ident: 2024102101035651000_54.4.1802244.35
  article-title: Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2016.12.035
– ident: 2024102101035651000_54.4.1802244.1
  doi: 10.1016/S0140-6736(04)16866-9
– ident: 2024102101035651000_54.4.1802244.5
  doi: 10.1378/chest.129.4.879
– ident: 2024102101035651000_54.4.1802244.21
  doi: 10.1183/09031936.00112408
– ident: 2024102101035651000_54.4.1802244.41
  doi: 10.1038/nature09973
– ident: 2024102101035651000_54.4.1802244.12
  doi: 10.4049/jimmunol.1103426
– reference: 31601722 - Eur Respir J. 2019 Oct 10;54(4):1901641. doi: 10.1183/13993003.01641-2019.
SSID ssj0016431
Score 2.578655
Snippet Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1802244
SubjectTerms Aged
Bacteria
Cell Survival
Female
Haemophilus influenzae
Humans
In Vitro Techniques
Macrophages - immunology
Macrophages - metabolism
Macrophages - pathology
Macrophages, Alveolar - immunology
Macrophages, Alveolar - metabolism
Macrophages, Alveolar - pathology
Male
Membrane Potential, Mitochondrial
Microscopy, Confocal
Middle Aged
Mitochondria - metabolism
Phagocytosis - immunology
Pulmonary Disease, Chronic Obstructive - immunology
Pulmonary Disease, Chronic Obstructive - metabolism
Reactive Oxygen Species - metabolism
Streptococcus pneumoniae
Title Defective bacterial phagocytosis is associated with dysfunctional mitochondria in COPD macrophages
URI https://www.ncbi.nlm.nih.gov/pubmed/31320451
https://www.proquest.com/docview/2261245044
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSNNeEN8rsMlIvJWMJLbz8cg2pglUPsQm9hbZTrIO0WTqsofy13NnO04mdQiQoqhKaru6-_V8Z9_9TMjrREaVzkoR6CiSAUwBKlA6TQNecxGllShjQ_Y8-5Qcn_IPZ-Js2Iox1SWd2tO_1taV_I9W4RnoFatk_0GzvlN4AJ9Bv3AHDcP9r3R8WNXWXk2VJV3Gsqq5PG_1qmuRaQQu6eTfp5mXqyucy9wS4AL-0GAAmxLamgLAz18OpwuJ53pBPy6_8MeAKL94vxxt0Y9_qy350XOJB40YK7ICL3e6PyQmfoPJcu5r-kcrqb0ne7CUF-fDKu33-coe4TdrYUC3LOvWKaLcZ7zBNGNtK_hCAQtDNja-lkHagYyvt-kZcktga2y8h04HBxhYsz3S8uXCqBm5KJE0Z5jgfNph_-ouuRdDVIFm8ePXYdMJnLPIEVPBmG_XjLhFNvs-bvoxtwQnxkk5eUDuu-iCvrNQeUjuVM0jsjlz-ROPifKIoR4xdIwYCteAGIqIoTcQQ8eIoRcNRcTQEWKekNOj9ycHx4E7ZSPQTIRdAB4uuJ0QJ6dch0yA_4nF2bpGpkapcpHlSskyDHUcsSxldVJJlcVpWEqQTlzW7CnZaNqm2iYUQo2Y60RmXEiOrqjOs1RxKVjCWC7rCYl7mRXaUdDjSSg_CxOKZqzoZV4YmRco8wl54xtdWgaWP3_9Va-MAiwlbn_Jpmqvr4oY2fK4CDmfkGdWS77DXqvPb33zgmwNqH5JNrrldbUD_mindg2KfgMs8oYZ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defective+bacterial+phagocytosis+is+associated+with+dysfunctional+mitochondria+in+COPD+macrophages&rft.jtitle=The+European+respiratory+journal&rft.au=Belchamber%2C+Kylie+B+R&rft.au=Singh%2C+Richa&rft.au=Batista%2C+Craig+M&rft.au=Whyte%2C+Moira+K&rft.date=2019-10-01&rft.eissn=1399-3003&rft.volume=54&rft.issue=4&rft_id=info:doi/10.1183%2F13993003.02244-2018&rft_id=info%3Apmid%2F31320451&rft.externalDocID=31320451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0903-1936&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0903-1936&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0903-1936&client=summon