Defective bacterial phagocytosis is associated with dysfunctional mitochondria in COPD macrophages
Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the effect of exogenous and endogenous oxidative stress on macrophage phagocytosis in patients with COPD. Monocyte-derived macrophages (MDMs) were...
Saved in:
Published in | The European respiratory journal Vol. 54; no. 4; p. 1802244 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the effect of exogenous and endogenous oxidative stress on macrophage phagocytosis in patients with COPD.
Monocyte-derived macrophages (MDMs) were generated from non-smoker, smoker and COPD subjects, differentiated in either granulocyte macrophage-colony stimulating factor (G-Mφ) or macrophage-colony stimulating factor (M-Mφ). Alveolar macrophages were isolated from lung tissue or bronchoalveolar lavage fluid. Macrophages were incubated in ±200 µM H 2 O 2 for 24 h, then exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, after which phagocytosis, mitochondrial ROS (mROS) and mitochondrial membrane potential (ΔΨm) were measured.
Phagocytosis of bacteria was significantly decreased in both G-Mφ and M-Mφ from COPD patients compared with from non-smoker controls. In non-smokers and smokers, bacterial phagocytosis did not alter mROS or ΔΨm; however, in COPD, phagocytosis increased early mROS and decreased ΔΨm in both G-Mφ and M-Mφ. Exogenous oxidative stress reduced phagocytosis in non-smoker and COPD alveolar macrophages and non-smoker MDMs, associated with reduced mROS production.
COPD macrophages show defective phagocytosis, which is associated with altered mitochondrial function and an inability to regulate mROS production. Targeting mitochondrial dysfunction may restore the phagocytic defect in COPD. |
---|---|
AbstractList | Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the effect of exogenous and endogenous oxidative stress on macrophage phagocytosis in patients with COPD.
Monocyte-derived macrophages (MDMs) were generated from non-smoker, smoker and COPD subjects, differentiated in either granulocyte macrophage-colony stimulating factor (G-Mφ) or macrophage-colony stimulating factor (M-Mφ). Alveolar macrophages were isolated from lung tissue or bronchoalveolar lavage fluid. Macrophages were incubated in ±200 µM H 2 O 2 for 24 h, then exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, after which phagocytosis, mitochondrial ROS (mROS) and mitochondrial membrane potential (ΔΨm) were measured.
Phagocytosis of bacteria was significantly decreased in both G-Mφ and M-Mφ from COPD patients compared with from non-smoker controls. In non-smokers and smokers, bacterial phagocytosis did not alter mROS or ΔΨm; however, in COPD, phagocytosis increased early mROS and decreased ΔΨm in both G-Mφ and M-Mφ. Exogenous oxidative stress reduced phagocytosis in non-smoker and COPD alveolar macrophages and non-smoker MDMs, associated with reduced mROS production.
COPD macrophages show defective phagocytosis, which is associated with altered mitochondrial function and an inability to regulate mROS production. Targeting mitochondrial dysfunction may restore the phagocytic defect in COPD. Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the effect of exogenous and endogenous oxidative stress on macrophage phagocytosis in patients with COPD.Monocyte-derived macrophages (MDMs) were generated from non-smoker, smoker and COPD subjects, differentiated in either granulocyte macrophage-colony stimulating factor (G-Mφ) or macrophage-colony stimulating factor (M-Mφ). Alveolar macrophages were isolated from lung tissue or bronchoalveolar lavage fluid. Macrophages were incubated in ±200 µM H O for 24 h, then exposed to fluorescently labelled or for 4 h, after which phagocytosis, mitochondrial ROS (mROS) and mitochondrial membrane potential (ΔΨm) were measured.Phagocytosis of bacteria was significantly decreased in both G-Mφ and M-Mφ from COPD patients compared with from non-smoker controls. In non-smokers and smokers, bacterial phagocytosis did not alter mROS or ΔΨm; however, in COPD, phagocytosis increased early mROS and decreased ΔΨm in both G-Mφ and M-Mφ. Exogenous oxidative stress reduced phagocytosis in non-smoker and COPD alveolar macrophages and non-smoker MDMs, associated with reduced mROS production.COPD macrophages show defective phagocytosis, which is associated with altered mitochondrial function and an inability to regulate mROS production. Targeting mitochondrial dysfunction may restore the phagocytic defect in COPD. Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the effect of exogenous and endogenous oxidative stress on macrophage phagocytosis in patients with COPD.Monocyte-derived macrophages (MDMs) were generated from non-smoker, smoker and COPD subjects, differentiated in either granulocyte macrophage-colony stimulating factor (G-Mφ) or macrophage-colony stimulating factor (M-Mφ). Alveolar macrophages were isolated from lung tissue or bronchoalveolar lavage fluid. Macrophages were incubated in ±200 µM H2O2 for 24 h, then exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, after which phagocytosis, mitochondrial ROS (mROS) and mitochondrial membrane potential (ΔΨm) were measured.Phagocytosis of bacteria was significantly decreased in both G-Mφ and M-Mφ from COPD patients compared with from non-smoker controls. In non-smokers and smokers, bacterial phagocytosis did not alter mROS or ΔΨm; however, in COPD, phagocytosis increased early mROS and decreased ΔΨm in both G-Mφ and M-Mφ. Exogenous oxidative stress reduced phagocytosis in non-smoker and COPD alveolar macrophages and non-smoker MDMs, associated with reduced mROS production.COPD macrophages show defective phagocytosis, which is associated with altered mitochondrial function and an inability to regulate mROS production. Targeting mitochondrial dysfunction may restore the phagocytic defect in COPD.Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the effect of exogenous and endogenous oxidative stress on macrophage phagocytosis in patients with COPD.Monocyte-derived macrophages (MDMs) were generated from non-smoker, smoker and COPD subjects, differentiated in either granulocyte macrophage-colony stimulating factor (G-Mφ) or macrophage-colony stimulating factor (M-Mφ). Alveolar macrophages were isolated from lung tissue or bronchoalveolar lavage fluid. Macrophages were incubated in ±200 µM H2O2 for 24 h, then exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, after which phagocytosis, mitochondrial ROS (mROS) and mitochondrial membrane potential (ΔΨm) were measured.Phagocytosis of bacteria was significantly decreased in both G-Mφ and M-Mφ from COPD patients compared with from non-smoker controls. In non-smokers and smokers, bacterial phagocytosis did not alter mROS or ΔΨm; however, in COPD, phagocytosis increased early mROS and decreased ΔΨm in both G-Mφ and M-Mφ. Exogenous oxidative stress reduced phagocytosis in non-smoker and COPD alveolar macrophages and non-smoker MDMs, associated with reduced mROS production.COPD macrophages show defective phagocytosis, which is associated with altered mitochondrial function and an inability to regulate mROS production. Targeting mitochondrial dysfunction may restore the phagocytic defect in COPD. |
Author | Singh, Richa Belchamber, Kylie B.R. Wedzicha, Jadwiga A. Batista, Craig M. Whyte, Moira K. Kilty, Iain Robinson, Matthew J. Donnelly, Louise E. Barnes, Peter J. Dockrell, David H. |
Author_xml | – sequence: 1 givenname: Kylie B.R. orcidid: 0000-0003-3241-258X surname: Belchamber fullname: Belchamber, Kylie B.R. – sequence: 2 givenname: Richa surname: Singh fullname: Singh, Richa – sequence: 3 givenname: Craig M. surname: Batista fullname: Batista, Craig M. – sequence: 4 givenname: Moira K. surname: Whyte fullname: Whyte, Moira K. – sequence: 5 givenname: David H. surname: Dockrell fullname: Dockrell, David H. – sequence: 6 givenname: Iain surname: Kilty fullname: Kilty, Iain – sequence: 7 givenname: Matthew J. surname: Robinson fullname: Robinson, Matthew J. – sequence: 8 givenname: Jadwiga A. surname: Wedzicha fullname: Wedzicha, Jadwiga A. – sequence: 9 givenname: Peter J. surname: Barnes fullname: Barnes, Peter J. – sequence: 10 givenname: Louise E. surname: Donnelly fullname: Donnelly, Louise E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31320451$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kF1LwzAUQINM3If-AkH66EvnTW7StY-y-QWD-aDPJU1TF2mb2WTK_r2p23zwQQhcuJxzIWdMBq1tNSGXFKaUpnhDMcsQAKfAGOcxA5qekFG_jfv1gIwgA4xphsmQjJ17B6AJR3pGhkiRARd0RIqFrrTy5lNHhVRed0bW0WYt36zaeeuMi8KTzlllpNdl9GX8Oip3rtq2wbJtoBvjrVrbtgxuZNpovnpeRI1Une3vaHdOTitZO31xmBPyen_3Mn-Ml6uHp_ntMlYowMeUCUgSnokZV4AChUDkqaqQcZBFJtKsKGQJoBjFdIZVomWRshmUMlRgZYUTcr2_u-nsx1Y7nzfGKV3XstV263LGEsq4AM4DenVAt0Wjy3zTmUZ2u_zYJQC4B8IvnOt09YtQyPv6-bF-_lM_7-sHK_tjKeNln8l30tT_ut9wG4fa |
CitedBy_id | crossref_primary_10_1136_thoraxjnl_2020_216296 crossref_primary_10_3892_mmr_2024_13261 crossref_primary_10_1002_adfm_202416791 crossref_primary_10_1183_16000617_0165_2020 crossref_primary_10_1007_s11356_021_16797_9 crossref_primary_10_1016_j_mito_2022_09_003 crossref_primary_10_1186_s10020_022_00572_8 crossref_primary_10_3389_fphar_2022_995051 crossref_primary_10_1186_s12931_019_1196_6 crossref_primary_10_1016_j_immuni_2022_08_010 crossref_primary_10_3390_antiox12040973 crossref_primary_10_1152_ajplung_00329_2019 crossref_primary_10_3390_biomedicines12010053 crossref_primary_10_3390_medicina59020253 crossref_primary_10_1002_adma_202304774 crossref_primary_10_1183_23120541_00350_2019 crossref_primary_10_2147_COPD_S276792 crossref_primary_10_1016_j_biopha_2023_114573 crossref_primary_10_1165_rcmb_2022_0372LE crossref_primary_10_1038_s41385_020_00356_5 crossref_primary_10_1164_rccm_202102_0253UP crossref_primary_10_1007_s13668_024_00599_9 crossref_primary_10_1186_s12903_024_04635_6 crossref_primary_10_1016_j_pccm_2024_08_007 crossref_primary_10_3389_fimmu_2022_1029085 crossref_primary_10_3389_fimmu_2025_1535796 crossref_primary_10_1016_j_biocel_2021_106095 crossref_primary_10_1042_CS20210504 crossref_primary_10_1042_CS20210900 crossref_primary_10_2147_COPD_S266394 crossref_primary_10_3233_JHD_230595 crossref_primary_10_3390_ph14100979 crossref_primary_10_4014_jmb_2301_01022 crossref_primary_10_3389_fimmu_2023_1083072 crossref_primary_10_1016_j_biocel_2021_105966 crossref_primary_10_3389_fimmu_2024_1404615 crossref_primary_10_1186_s12931_024_02939_3 crossref_primary_10_3390_cells12242771 crossref_primary_10_1172_jci_insight_155581 crossref_primary_10_1016_j_rmed_2022_107035 crossref_primary_10_18632_aging_205849 crossref_primary_10_1186_s12931_021_01718_8 crossref_primary_10_1080_1061186X_2024_2386620 crossref_primary_10_1183_13993003_01641_2019 crossref_primary_10_3389_fimmu_2020_00786 crossref_primary_10_1183_13993003_00589_2023 crossref_primary_10_1183_23120541_00044_2022 crossref_primary_10_1183_16000617_0137_2023 crossref_primary_10_3389_fimmu_2021_573266 crossref_primary_10_1016_j_clim_2023_109324 crossref_primary_10_1002_mco2_127 crossref_primary_10_1016_j_apr_2023_101719 crossref_primary_10_1038_s41598_020_79201_5 crossref_primary_10_18093_0869_0189_2022_3108 crossref_primary_10_1080_08820139_2024_2334296 crossref_primary_10_1164_rccm_201908_1683LE crossref_primary_10_3389_fcimb_2021_723481 crossref_primary_10_1016_j_pharmthera_2020_107500 crossref_primary_10_3390_biomedicines9101312 crossref_primary_10_1183_16000617_0053_2024 crossref_primary_10_1186_s12931_021_01707_x crossref_primary_10_3389_fimmu_2021_704173 crossref_primary_10_23736_S0026_4806_22_07972_1 crossref_primary_10_1016_S0140_6736_22_00470_6 crossref_primary_10_1039_D1MH01813B crossref_primary_10_1080_01913123_2022_2060395 crossref_primary_10_1080_19490976_2024_2320283 crossref_primary_10_1159_000504344 crossref_primary_10_3390_diagnostics11050859 crossref_primary_10_1164_rccm_202302_0200ED crossref_primary_10_1183_13993003_02143_2021 crossref_primary_10_3390_antiox11050965 crossref_primary_10_3390_molecules27175542 crossref_primary_10_1016_j_freeradbiomed_2023_03_002 crossref_primary_10_1172_jci_insight_133984 crossref_primary_10_1164_rccm_202203_0482OC crossref_primary_10_3390_biomedicines9121939 crossref_primary_10_1016_j_chest_2020_01_027 crossref_primary_10_1152_ajplung_00053_2020 crossref_primary_10_1016_j_cytogfr_2024_12_005 crossref_primary_10_3390_antibiotics11040474 crossref_primary_10_1128_jvi_01499_24 crossref_primary_10_1016_j_pharmthera_2022_108208 crossref_primary_10_3389_fimmu_2020_02120 crossref_primary_10_1007_s00424_024_03013_z crossref_primary_10_1186_s12950_022_00309_8 crossref_primary_10_3390_biomedicines10061337 crossref_primary_10_1111_bph_15759 crossref_primary_10_1182_bloodadvances_2020003074 crossref_primary_10_3389_fimmu_2023_1162087 crossref_primary_10_3390_antiox10091335 |
Cites_doi | 10.1080/01902140802366261 10.1183/09031936.03.00098203 10.1016/j.jaci.2016.05.011 10.3389/fimmu.2018.00270 10.1164/rccm.201705-0903OC 10.1371/journal.pone.0072975 10.1164/rccm.201507-1376OC 10.3390/cells7080086 10.1152/ajplung.00180.2014 10.4049/jimmunol.1302269 10.1007/s00109-014-1186-6 10.1016/j.bbrc.2011.02.035 10.1164/ajrccm.164.3.2007149 10.1136/thorax.57.10.847 10.1016/j.chest.2017.03.020 10.1016/j.jaci.2013.08.044 10.1371/journal.pone.0163139 10.4049/jimmunol.1403045 10.1046/j.1440-1711.2003.t01-1-01170.x 10.1086/323084 10.1016/S0140-6736(09)61252-6 10.1164/rccm.200210-1179OC 10.1165/ajrcmb.16.5.9160840 10.1164/rccm.201608-1714OC 10.1165/rcmb.2017-0351LE 10.1038/ni.3052 10.1038/nmeth.2019 10.1146/annurev.med.54.101601.152209 10.1155/2016/7808576 10.1086/508428 10.1056/NEJM200007273430407 10.1111/resp.12734 10.1183/09031936.00036709 10.1586/17476348.2013.834252 10.1136/thoraxjnl-2011-201183 10.1016/j.jaci.2015.01.046 10.3390/ijerph6020445 10.1124/pr.56.4.2 10.1016/j.immuni.2014.06.008 10.1136/thoraxjnl-2015-206780 10.1016/j.redox.2016.12.035 10.1016/S0140-6736(04)16866-9 10.1378/chest.129.4.879 10.1183/09031936.00112408 10.1038/nature09973 10.4049/jimmunol.1103426 |
ContentType | Journal Article |
Copyright | Copyright ©ERS 2019. |
Copyright_xml | – notice: Copyright ©ERS 2019. |
CorporateAuthor | COPD-MAP consortium |
CorporateAuthor_xml | – name: COPD-MAP consortium |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1183/13993003.02244-2018 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1399-3003 |
ExternalDocumentID | 31320451 10_1183_13993003_02244_2018 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Department of Health grantid: RP-PG-0109-10056 – fundername: Medical Research Council grantid: G1001365 – fundername: Medical Research Council grantid: G0800570 – fundername: Medical Research Council grantid: MR/N02995X/1 – fundername: Medical Research Council grantid: G1001372 |
GroupedDBID | --- .55 .GJ 18M 1OC 2WC 31~ 3O- 53G 5GY 5RE 5VS 8-1 AADJU AAFWJ AAYXX AAZMJ ABCQX ABJNI ABOCM ABSQV ACEMG ACGFO ACPRK ACXQS ADBBV ADDZX ADMOG ADYFA AENEX AFFNX AFHIN AFZJQ AIZTS AJAOE ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CAG CITATION COF CS3 DIK E3Z EBS EJD F5P F9R GX1 H13 INIJC J5H KQ8 L7B LH4 LW6 OK1 P2P PQQKQ R0Z RHI TER TR2 W8F WOQ X7M ZE2 ZGI ZXP ~02 CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c350t-12506649574c0353553348cf3240ab9589bbad00c213873f6eab8270da9302df3 |
ISSN | 0903-1936 1399-3003 |
IngestDate | Fri Jul 11 09:46:34 EDT 2025 Sat May 31 02:12:53 EDT 2025 Thu Apr 24 23:05:03 EDT 2025 Tue Jul 01 05:27:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Copyright ©ERS 2019. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c350t-12506649574c0353553348cf3240ab9589bbad00c213873f6eab8270da9302df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3241-258X |
OpenAccessLink | https://erj.ersjournals.com/content/erj/54/4/1802244.full.pdf |
PMID | 31320451 |
PQID | 2261245044 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2261245044 pubmed_primary_31320451 crossref_primary_10_1183_13993003_02244_2018 crossref_citationtrail_10_1183_13993003_02244_2018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | The European respiratory journal |
PublicationTitleAlternate | Eur Respir J |
PublicationYear | 2019 |
References | 2024102101035651000_54.4.1802244.28 2024102101035651000_54.4.1802244.27 2024102101035651000_54.4.1802244.26 2024102101035651000_54.4.1802244.25 2024102101035651000_54.4.1802244.8 2024102101035651000_54.4.1802244.45 2024102101035651000_54.4.1802244.9 2024102101035651000_54.4.1802244.22 2024102101035651000_54.4.1802244.44 2024102101035651000_54.4.1802244.6 Wrench (2024102101035651000_54.4.1802244.10) 2018; 58 2024102101035651000_54.4.1802244.7 2024102101035651000_54.4.1802244.4 Johansson (2024102101035651000_54.4.1802244.29) 1997; 16 2024102101035651000_54.4.1802244.5 2024102101035651000_54.4.1802244.2 2024102101035651000_54.4.1802244.3 Hara (2024102101035651000_54.4.1802244.23) 2018; 7 2024102101035651000_54.4.1802244.1 Bewley (2024102101035651000_54.4.1802244.37) 2018; 198 2024102101035651000_54.4.1802244.32 Prakash (2024102101035651000_54.4.1802244.46) 2017; 152 2024102101035651000_54.4.1802244.31 2024102101035651000_54.4.1802244.30 Diskin (2024102101035651000_54.4.1802244.38) 2018; 9 2024102101035651000_54.4.1802244.18 2024102101035651000_54.4.1802244.17 2024102101035651000_54.4.1802244.39 2024102101035651000_54.4.1802244.16 2024102101035651000_54.4.1802244.15 2024102101035651000_54.4.1802244.14 2024102101035651000_54.4.1802244.36 2024102101035651000_54.4.1802244.13 2024102101035651000_54.4.1802244.12 2024102101035651000_54.4.1802244.34 2024102101035651000_54.4.1802244.11 2024102101035651000_54.4.1802244.33 2024102101035651000_54.4.1802244.19 2024102101035651000_54.4.1802244.21 2024102101035651000_54.4.1802244.43 2024102101035651000_54.4.1802244.20 Sies (2024102101035651000_54.4.1802244.35) 2017; 11 2024102101035651000_54.4.1802244.42 2024102101035651000_54.4.1802244.41 Bialas (2024102101035651000_54.4.1802244.24) 2016; 2016 2024102101035651000_54.4.1802244.40 31601722 - Eur Respir J. 2019 Oct 10;54(4):1901641. doi: 10.1183/13993003.01641-2019. |
References_xml | – ident: 2024102101035651000_54.4.1802244.30 doi: 10.1080/01902140802366261 – ident: 2024102101035651000_54.4.1802244.43 doi: 10.1183/09031936.03.00098203 – ident: 2024102101035651000_54.4.1802244.16 doi: 10.1016/j.jaci.2016.05.011 – volume: 9 start-page: 270 year: 2018 ident: 2024102101035651000_54.4.1802244.38 article-title: Metabolic modulation in macrophage effector function publication-title: Front Immunol doi: 10.3389/fimmu.2018.00270 – volume: 198 start-page: 739 year: 2018 ident: 2024102101035651000_54.4.1802244.37 article-title: Opsonic phagocytosis in chronic obstructive pulmonary disease is enhanced by Nrf2 agonists publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201705-0903OC – ident: 2024102101035651000_54.4.1802244.14 doi: 10.1371/journal.pone.0072975 – ident: 2024102101035651000_54.4.1802244.40 doi: 10.1164/rccm.201507-1376OC – volume: 7 start-page: 86 year: 2018 ident: 2024102101035651000_54.4.1802244.23 article-title: Mitochondrial quality control in COPD and IPF publication-title: Cells doi: 10.3390/cells7080086 – ident: 2024102101035651000_54.4.1802244.18 doi: 10.1152/ajplung.00180.2014 – ident: 2024102101035651000_54.4.1802244.13 doi: 10.4049/jimmunol.1302269 – ident: 2024102101035651000_54.4.1802244.42 doi: 10.1007/s00109-014-1186-6 – ident: 2024102101035651000_54.4.1802244.44 doi: 10.1016/j.bbrc.2011.02.035 – ident: 2024102101035651000_54.4.1802244.15 doi: 10.1164/ajrccm.164.3.2007149 – ident: 2024102101035651000_54.4.1802244.4 doi: 10.1136/thorax.57.10.847 – volume: 152 start-page: 618 year: 2017 ident: 2024102101035651000_54.4.1802244.46 article-title: Mitochondrial dysfunction in airway disease publication-title: Chest doi: 10.1016/j.chest.2017.03.020 – ident: 2024102101035651000_54.4.1802244.26 doi: 10.1016/j.jaci.2013.08.044 – ident: 2024102101035651000_54.4.1802244.25 doi: 10.1371/journal.pone.0163139 – ident: 2024102101035651000_54.4.1802244.31 doi: 10.4049/jimmunol.1403045 – ident: 2024102101035651000_54.4.1802244.9 doi: 10.1046/j.1440-1711.2003.t01-1-01170.x – ident: 2024102101035651000_54.4.1802244.27 doi: 10.1086/323084 – ident: 2024102101035651000_54.4.1802244.39 doi: 10.1016/S0140-6736(09)61252-6 – ident: 2024102101035651000_54.4.1802244.3 doi: 10.1164/rccm.200210-1179OC – volume: 16 start-page: 582 year: 1997 ident: 2024102101035651000_54.4.1802244.29 article-title: Functional, morphological, and phenotypical differences between rat alveolar and interstitial macrophages publication-title: Am J Respir Cell Mol Biol doi: 10.1165/ajrcmb.16.5.9160840 – ident: 2024102101035651000_54.4.1802244.45 doi: 10.1164/rccm.201608-1714OC – volume: 58 start-page: 271 year: 2018 ident: 2024102101035651000_54.4.1802244.10 article-title: Reduced clearance of fungal spores by COPD GM-CSF and M-CSF derived macrophages publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2017-0351LE – ident: 2024102101035651000_54.4.1802244.7 doi: 10.1038/ni.3052 – ident: 2024102101035651000_54.4.1802244.28 doi: 10.1038/nmeth.2019 – ident: 2024102101035651000_54.4.1802244.34 doi: 10.1146/annurev.med.54.101601.152209 – volume: 2016 start-page: 7808576 year: 2016 ident: 2024102101035651000_54.4.1802244.24 article-title: The role of mitochondria and oxidative/antioxidative imbalance in pathobiology of chronic obstructive pulmonary disease publication-title: Oxid Med Cell Longev doi: 10.1155/2016/7808576 – ident: 2024102101035651000_54.4.1802244.8 doi: 10.1086/508428 – ident: 2024102101035651000_54.4.1802244.2 doi: 10.1056/NEJM200007273430407 – ident: 2024102101035651000_54.4.1802244.6 doi: 10.1111/resp.12734 – ident: 2024102101035651000_54.4.1802244.11 doi: 10.1183/09031936.00036709 – ident: 2024102101035651000_54.4.1802244.17 doi: 10.1586/17476348.2013.834252 – ident: 2024102101035651000_54.4.1802244.20 doi: 10.1136/thoraxjnl-2011-201183 – ident: 2024102101035651000_54.4.1802244.19 doi: 10.1016/j.jaci.2015.01.046 – ident: 2024102101035651000_54.4.1802244.36 doi: 10.3390/ijerph6020445 – ident: 2024102101035651000_54.4.1802244.22 doi: 10.1124/pr.56.4.2 – ident: 2024102101035651000_54.4.1802244.32 doi: 10.1016/j.immuni.2014.06.008 – ident: 2024102101035651000_54.4.1802244.33 doi: 10.1136/thoraxjnl-2015-206780 – volume: 11 start-page: 613 year: 2017 ident: 2024102101035651000_54.4.1802244.35 article-title: Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress publication-title: Redox Biol doi: 10.1016/j.redox.2016.12.035 – ident: 2024102101035651000_54.4.1802244.1 doi: 10.1016/S0140-6736(04)16866-9 – ident: 2024102101035651000_54.4.1802244.5 doi: 10.1378/chest.129.4.879 – ident: 2024102101035651000_54.4.1802244.21 doi: 10.1183/09031936.00112408 – ident: 2024102101035651000_54.4.1802244.41 doi: 10.1038/nature09973 – ident: 2024102101035651000_54.4.1802244.12 doi: 10.4049/jimmunol.1103426 – reference: 31601722 - Eur Respir J. 2019 Oct 10;54(4):1901641. doi: 10.1183/13993003.01641-2019. |
SSID | ssj0016431 |
Score | 2.578655 |
Snippet | Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1802244 |
SubjectTerms | Aged Bacteria Cell Survival Female Haemophilus influenzae Humans In Vitro Techniques Macrophages - immunology Macrophages - metabolism Macrophages - pathology Macrophages, Alveolar - immunology Macrophages, Alveolar - metabolism Macrophages, Alveolar - pathology Male Membrane Potential, Mitochondrial Microscopy, Confocal Middle Aged Mitochondria - metabolism Phagocytosis - immunology Pulmonary Disease, Chronic Obstructive - immunology Pulmonary Disease, Chronic Obstructive - metabolism Reactive Oxygen Species - metabolism Streptococcus pneumoniae |
Title | Defective bacterial phagocytosis is associated with dysfunctional mitochondria in COPD macrophages |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31320451 https://www.proquest.com/docview/2261245044 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSNNeEN8rsMlIvJWMJLbz8cg2pglUPsQm9hbZTrIO0WTqsofy13NnO04mdQiQoqhKaru6-_V8Z9_9TMjrREaVzkoR6CiSAUwBKlA6TQNecxGllShjQ_Y8-5Qcn_IPZ-Js2Iox1SWd2tO_1taV_I9W4RnoFatk_0GzvlN4AJ9Bv3AHDcP9r3R8WNXWXk2VJV3Gsqq5PG_1qmuRaQQu6eTfp5mXqyucy9wS4AL-0GAAmxLamgLAz18OpwuJ53pBPy6_8MeAKL94vxxt0Y9_qy350XOJB40YK7ICL3e6PyQmfoPJcu5r-kcrqb0ne7CUF-fDKu33-coe4TdrYUC3LOvWKaLcZ7zBNGNtK_hCAQtDNja-lkHagYyvt-kZcktga2y8h04HBxhYsz3S8uXCqBm5KJE0Z5jgfNph_-ouuRdDVIFm8ePXYdMJnLPIEVPBmG_XjLhFNvs-bvoxtwQnxkk5eUDuu-iCvrNQeUjuVM0jsjlz-ROPifKIoR4xdIwYCteAGIqIoTcQQ8eIoRcNRcTQEWKekNOj9ycHx4E7ZSPQTIRdAB4uuJ0QJ6dch0yA_4nF2bpGpkapcpHlSskyDHUcsSxldVJJlcVpWEqQTlzW7CnZaNqm2iYUQo2Y60RmXEiOrqjOs1RxKVjCWC7rCYl7mRXaUdDjSSg_CxOKZqzoZV4YmRco8wl54xtdWgaWP3_9Va-MAiwlbn_Jpmqvr4oY2fK4CDmfkGdWS77DXqvPb33zgmwNqH5JNrrldbUD_mindg2KfgMs8oYZ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defective+bacterial+phagocytosis+is+associated+with+dysfunctional+mitochondria+in+COPD+macrophages&rft.jtitle=The+European+respiratory+journal&rft.au=Belchamber%2C+Kylie+B+R&rft.au=Singh%2C+Richa&rft.au=Batista%2C+Craig+M&rft.au=Whyte%2C+Moira+K&rft.date=2019-10-01&rft.eissn=1399-3003&rft.volume=54&rft.issue=4&rft_id=info:doi/10.1183%2F13993003.02244-2018&rft_id=info%3Apmid%2F31320451&rft.externalDocID=31320451 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0903-1936&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0903-1936&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0903-1936&client=summon |