Artificial intelligence enabled smart machining and machine tools

Artificial intelligence (AI) in machine tools offers diverse advantages, including learning and optimizing machining processes, compensating errors, saving energy, and preventing failures. Various AI techniques have been proposed and applied; however, many challenges still exist that inhibit the use...

Full description

Saved in:
Bibliographic Details
Published inJournal of mechanical science and technology Vol. 36; no. 1; pp. 1 - 23
Main Authors Chuo, Yu Sung, Lee, Ji Woong, Mun, Chang Hyeon, Noh, In Woong, Rezvani, Sina, Kim, Dong Chan, Lee, Jihyun, Lee, Sang Won, Park, Simon S.
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Mechanical Engineers 01.01.2022
Springer Nature B.V
대한기계학회
Subjects
Online AccessGet full text
ISSN1738-494X
1976-3824
DOI10.1007/s12206-021-1201-0

Cover

Loading…
Abstract Artificial intelligence (AI) in machine tools offers diverse advantages, including learning and optimizing machining processes, compensating errors, saving energy, and preventing failures. Various AI techniques have been proposed and applied; however, many challenges still exist that inhibit the use of AI for machining tasks. This paper deals with different types and usage of AI technologies in machining operations such as predictive modelling, parameter optimization and control, chatter stability, tool wear, and energy conservation. We discuss the challenges of AI technologies, such as data quality, transferability, explainability, and suggest future directions to overcome them.
AbstractList Artificial intelligence (AI) in machine tools offers diverse advantages, including learning and optimizing machining processes, compensating errors, saving energy, and preventing failures. Various AI techniques have been proposed and applied; however, many challenges still exist that inhibit the use of AI for machining tasks. This paper deals with different types and usage of AI technologies in machining operations such as predictive modelling, parameter optimization and control, chatter stability, tool wear, and energy conservation. We discuss the challenges of AI technologies, such as data quality, transferability, explainability, and suggest future directions to overcome them.
Artificial intelligence (AI) in machine tools offers diverse advantages, including learning and optimizing machining processes, compensating errors, saving energy, and preventing failures. Various AI techniques have been proposed and applied; however, many challenges still exist that inhibit the use of AI for machining tasks. This paper deals with different types and usage of AI technologies in machining operations such as predictive modelling, parameter optimization and control, chatter stability, tool wear, and energy conservation. We discuss the challenges of AI technologies, such as data quality, transferability, explainability, and suggest future directions to overcome them. KCI Citation Count: 2
Author Kim, Dong Chan
Lee, Jihyun
Park, Simon S.
Chuo, Yu Sung
Noh, In Woong
Mun, Chang Hyeon
Rezvani, Sina
Lee, Ji Woong
Lee, Sang Won
Author_xml – sequence: 1
  givenname: Yu Sung
  surname: Chuo
  fullname: Chuo, Yu Sung
  organization: Department of Mechanical and Manufacturing Engineering, University of Calgary
– sequence: 2
  givenname: Ji Woong
  surname: Lee
  fullname: Lee, Ji Woong
  organization: Department of Mechanical Engineering, Graduate School, Sungkyunk-wan University
– sequence: 3
  givenname: Chang Hyeon
  surname: Mun
  fullname: Mun, Chang Hyeon
  organization: Department of Mechanical Engineering, Ulsan National Institute of Science and Technology
– sequence: 4
  givenname: In Woong
  surname: Noh
  fullname: Noh, In Woong
  organization: Department of Mechanical Engineering, Graduate School, Sungkyunk-wan University
– sequence: 5
  givenname: Sina
  surname: Rezvani
  fullname: Rezvani, Sina
  organization: Department of Mechanical and Manufacturing Engineering, University of Calgary
– sequence: 6
  givenname: Dong Chan
  surname: Kim
  fullname: Kim, Dong Chan
  organization: Department of Mechanical Engineering, Ulsan National Institute of Science and Technology
– sequence: 7
  givenname: Jihyun
  surname: Lee
  fullname: Lee, Jihyun
  organization: Department of Mechanical and Manufacturing Engineering, University of Calgary
– sequence: 8
  givenname: Sang Won
  surname: Lee
  fullname: Lee, Sang Won
  organization: Department of Mechanical Engineering, Graduate School, Sungkyunk-wan University
– sequence: 9
  givenname: Simon S.
  surname: Park
  fullname: Park, Simon S.
  email: simon.park@ucalgary.ca
  organization: Department of Mechanical and Manufacturing Engineering, University of Calgary
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002804482$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE1LAzEQhoNUsK3-AG8Lnjys5muTzbEUPwqCIBW8hWyaXdNuk5qkB_-9qVsQBD3NBN5nMvNMwMh5ZwC4RPAGQchvI8IYshJiVCIMUQlPwBgJzkpSYzrKPSd1SQV9OwOTGNcQMkwRGoPZLCTbWm1VX1iXTN_bzjhtCuNU05tVEbcqpGKr9Lt11nWFcqvjyxTJ-z6eg9NW9dFcHOsUvN7fLeeP5dPzw2I-eyo1qWAqERLM1ARWQpGWasEVIhTXhhlGdFs1AtbUUKEJrBsNMeeUk0aLBleVYA1uyBRcD3NdaOVGW-mV_a6dl5sgZy_LhRQCCUpYzl4N2V3wH3sTk1z7fXB5PYlZ1kI5zrkpQENKBx9jMK3cBZvP_ZQIyoNVOViV2ao8WJUwM_wXo21SyXqXgrL9vyQeyJh_cZ0JPzv9DX0BdVaLMw
CitedBy_id crossref_primary_10_1007_s12206_024_0131_z
crossref_primary_10_1007_s12206_023_0131_4
crossref_primary_10_1016_j_jmapro_2022_12_019
crossref_primary_10_1016_j_measurement_2022_111520
crossref_primary_10_1007_s00170_023_11616_6
crossref_primary_10_1007_s40544_024_0879_2
crossref_primary_10_1016_j_rineng_2025_104457
crossref_primary_10_1007_s12206_022_0912_1
crossref_primary_10_3390_mi14030508
crossref_primary_10_3390_ma17235783
crossref_primary_10_1007_s11465_023_0752_4
crossref_primary_10_1051_matecconf_202440106004
crossref_primary_10_1007_s00170_022_08957_z
crossref_primary_10_1016_j_cirpj_2024_01_012
crossref_primary_10_1007_s43684_022_00039_x
crossref_primary_10_1016_j_eng_2024_04_024
crossref_primary_10_1080_00207543_2022_2122620
crossref_primary_10_1007_s00170_024_13652_2
crossref_primary_10_1007_s12541_024_01019_2
crossref_primary_10_3390_math12131923
crossref_primary_10_1007_s44163_023_00089_x
crossref_primary_10_1016_j_cirp_2024_04_088
crossref_primary_10_1007_s12541_023_00831_6
crossref_primary_10_1016_j_jii_2025_100783
Cites_doi 10.1109/SMC.2018.00244
10.1080/0951192X.2018.1550681
10.1007/s12541-019-00082-4
10.1007/978-3-030-27538-9_27
10.1007/s00170-019-04375-w
10.1016/j.procir.2015.03.043
10.1016/j.jmsy.2021.01.013
10.3390/app10072361
10.3390/jmmp3020045
10.1016/j.jmrt.2019.10.031
10.1080/09511920903225268
10.1080/10910344.2016.1191026
10.3390/s20174657
10.1093/nsr/nwx045
10.1016/j.precisioneng.2015.09.019
10.1016/j.procir.2016.09.033
10.1051/matecconf/201925203008
10.1007/s40747-016-0019-3
10.1080/00207543.2010.507608
10.1016/j.eng.2019.07.018
10.1016/j.ymssp.2006.07.016
10.1109/TII.2018.2864759
10.1016/S0890-6955(99)00009-7
10.1007/s10845-016-1206-1
10.1007/s00170-016-9254-4
10.1016/j.jmapro.2017.11.014
10.1109/JSYST.2015.2425793
10.3390/s16060795
10.1016/j.eswa.2009.06.103
10.1007/s00170-019-04788-7
10.1109/TMECH.2016.2620987
10.1016/j.asoc.2016.10.010
10.1016/j.energy.2018.08.105
10.1109/TR.2014.2299152
10.1590/S0100-73862002000100002
10.3390/s21010108
10.1007/s10845-008-0104-6
10.1007/s00170-011-3703-x
10.1177/0954405412458047
10.1007/s10845-013-0774-6
10.1007/s00170-020-06254-1
10.1016/j.cirp.2019.04.096
10.1016/j.cirp.2010.03.042
10.1016/j.cirpj.2011.07.003
10.1016/j.rcim.2020.101974
10.1007/978-3-030-02203-7_5
10.1016/j.ymssp.2021.107755
10.1016/j.procir.2018.08.253
10.1007/s00170-015-7317-6
10.1016/j.ymssp.2006.12.007
10.1109/COASE.2019.8843068
10.1016/j.ijmachtools.2009.02.003
10.1016/j.cie.2007.01.001
10.1016/j.jmatprotec.2009.11.007
10.3390/inventions3030041
10.1016/j.ymssp.2021.107617
10.1007/s40684-018-0057-y
10.1016/j.measurement.2020.108186
10.1007/s00170-020-06287-6
10.1016/j.cirpj.2019.11.003
10.1016/j.cag.2021.01.011
10.1016/j.ymssp.2017.11.016
10.1007/s00170-019-04807-7
10.3390/electronics10121429
10.1007/s40436-020-00342-x
10.1007/s00170-020-05449-w
10.1016/j.measurement.2019.02.062
10.1109/ACCESS.2019.2928141
10.1017/CBO9780511843723
10.1016/j.rcim.2016.12.009
10.1007/s00170-018-1768-5
10.1080/21693277.2016.1192517
10.1007/s10845-020-01559-0
10.1016/j.cie.2018.05.017
10.1016/j.eswa.2008.01.051
10.1016/j.jclepro.2016.03.101
10.1016/j.energy.2017.05.110
10.1007/s00170-015-7029-y
10.1016/S0924-0136(03)00687-3
10.1109/COASE.2009.5234094
10.1016/j.jmapro.2020.04.019
10.1016/j.precisioneng.2011.07.013
10.1016/j.jclepro.2020.123125
10.1007/s00170-018-3157-5
10.1109/ACCESS.2018.2837621
10.1016/j.cirpj.2019.04.002
10.1007/s00170-010-3133-1
10.1016/j.cirp.2012.05.008
10.1109/TII.2021.3073649
10.1016/j.jclepro.2014.10.008
10.1007/s00170-013-4998-6
10.1109/CISP.2015.7408020
10.1016/j.protcy.2015.02.008
10.1007/s00170-012-4380-0
10.1007/s10845-019-01526-4
10.1016/j.asoc.2015.02.037
10.1016/j.procir.2015.03.016
10.1016/j.rcim.2018.10.002
10.3390/ai1020008
10.1016/j.ymssp.2019.06.021
10.1016/j.jmsy.2020.06.012
10.1016/j.cirp.2010.05.010
10.1162/neco.2006.18.7.1527
10.1007/s00170-010-2520-y
10.1177/1077546313493919
10.1108/GS-08-2016-0021
10.1007/s12652-021-03378-4
10.1007/s10845-016-1228-8
10.1016/j.cirp.2020.05.008
10.1016/j.cie.2018.12.016
10.1016/S0890-6955(02)00045-7
10.1016/0890-6955(95)00040-2
10.1016/j.rcim.2019.101847
10.1007/s00170-011-3564-3
10.1016/j.jmsy.2016.08.006
10.1016/j.jmatprotec.2008.07.023
10.1016/j.ijmachtools.2016.04.007
10.1016/j.procir.2015.08.081
10.1007/s10845-010-0487-z
10.1177/0954405416639893
ContentType Journal Article
Copyright The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
7TB
8FD
FR3
ACYCR
DOI 10.1007/s12206-021-1201-0
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Korean Citation Index
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3824
EndPage 23
ExternalDocumentID oai_kci_go_kr_ARTI_9919436
10_1007_s12206_021_1201_0
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.UV
.VR
06D
0R~
0VY
1N0
2.D
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
6NX
8FE
8FG
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LLZTM
M7S
MA-
MK~
ML~
MZR
NDZJH
NF0
NPVJJ
NQJWS
O9-
P9P
PF0
PT4
PTHSS
Q2X
QOS
R89
R9I
RHV
ROL
RPX
RSV
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TDB
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8R
Z8T
Z8W
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
7TB
8FD
ABRTQ
FR3
AABYN
AAFGU
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADMVV
ADOXG
AEEQQ
AEFTE
AEKVL
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
SCV
UNUBA
ID FETCH-LOGICAL-c350t-1196e83059a3f4c97a13428e6e63cf5b9084e49c308bc0277473bc9b25596b2b3
IEDL.DBID U2A
ISSN 1738-494X
IngestDate Tue Nov 21 21:11:51 EST 2023
Fri Jul 25 12:20:34 EDT 2025
Tue Jul 01 04:23:35 EDT 2025
Thu Apr 24 22:57:27 EDT 2025
Fri Feb 21 02:46:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Industry 4.0
Machine tools
Artificial intelligence
Machine learning
Machining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-1196e83059a3f4c97a13428e6e63cf5b9084e49c308bc0277473bc9b25596b2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2619747294
PQPubID 326249
PageCount 23
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9919436
proquest_journals_2619747294
crossref_primary_10_1007_s12206_021_1201_0
crossref_citationtrail_10_1007_s12206_021_1201_0
springer_journals_10_1007_s12206_021_1201_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
2022-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Journal of mechanical science and technology
PublicationTitleAbbrev J Mech Sci Technol
PublicationYear 2022
Publisher Korean Society of Mechanical Engineers
Springer Nature B.V
대한기계학회
Publisher_xml – name: Korean Society of Mechanical Engineers
– name: Springer Nature B.V
– name: 대한기계학회
References GeissbauerRSchraufSBerttramPCheraghiFDigital Factories 2020 Shaping the Future of Manufacturing2017GermanyPricewaterhouse Coopers
G. Xu, M. Liu, J. Wang, Y. Ma, J. Wang, F. Li and W. Shen, Data-driven fault diagnostics and prognostics for predictive maintenance: a brief overview, IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada (2019) 103–108.
ElangovanMRamachandranK ISugumaranVStudies on Bayes classifier for condition monitoring of single point carbide tipped tool based on statistical and histogram featuresExpert Systems with Applications201037320592065
Z. Wei, B. Zhang and P. Liu, Object dimension measurement based on mask R-CNN, 12th International Conference on Intelligent Robotics and Applications, Shenyang, PRC (4) (2019) 320–330.
LiuZWangXZhangQHuangCEmpirical mode decomposition based hybrid ensemble model for electrical energy consumption forecasting of the cement grinding processMeasurement2019138314324
SerinGSenerBOzbayogluA MUnverH OReview of tool condition monitoring in machining and opportunities for deep learningThe International Journal of Advanced Manufacturing Technology20201093953974
SeifGThe 5 Clustering Algorithms Data Scientists Need to Know2018CanadaTowards Data Science
JordanM IMitchellT MReview-machine learning: trends, perspectives, and prospectsScience (Special Section: Artificial Intelligence)201534962452552601355.68227
SaglamHTool wear monitoring in bandsawing using neural networks and Taguchi’s design of experimentsThe International Journal of Advanced Manufacturing Technology201155969982
YesilliM CKhasawnehF AOttoAOn transfer learning for chatter detection in turning using wavelet packet transform and ensemble empirical mode decompositionCIRP Journal of Manufacturing Science and Technology202028118135
VoglG WWeissB AHeluMA review of diagnostic and prognostic capabilities and best practices for manufacturingJournal of Intelligent Manufacturing20193017995
KhaliliKVahidniaMImproving the accuracy of crack length measurement using machine visionProcedia Technology2015194855
StavropoulosPPapacharalampopoulosAVasiliadisEChryssolourisGTool wear predictability estimation in milling based on multi-sensorial dataThe International Journal of Advanced Manufacturing Technology201682509521
DunYZhuLYanBWangSA chatter detection method in milling of thin-walled TC4 alloy workpiece based on auto-encoding and hybrid clusteringMechanical Systems and Signal Processing2021158107755
ÜlkerETuranalpM EHalkaciH SAn artificial immune system approach to CNC tool path generationJournal of Intelligent Manufacturing20092016777
KarandikarJHoneycuttASchmitzTSmithSStability boundary and optimal operating parameter identification in milling using Bayesian learningJournal of Manufacturing Processes202056B12521262
OkohCRoyRMehnenJPredictive maintenance modelling for through-life engineering servicesProcedia CIRP201759196201
GuoQYangJWuHApplication of ACO-BPN to thermal error modeling of NC machine toolThe International Journal of Advanced Manufacturing Technology2010505–8667675
LoS PAn adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end millingJournal of Materials Processing Technology2003142665675
J. Liu, H. Gui and C. Ma, Digital twin system of thermal error control for a large-size gear profile grinder enabled by gated recurrent unit, Journal of Ambient Intelligence and Humanized Computing (2021).
LiuKSongLHanWCuiYWangYTime-varying error prediction and compensation for movement axis of CNC machine tool based on digital twinIEEE Transactions on Industrial Informatics2022181109117
BenkedjouhTMedjaherKZerhouniNRechakSHealth assessment and life prediction of cutting tools based on support vector regressionJournal of Intelligent Manufacturing2015262213223
HassaniHSilvaE SUngerSTajmazinaniMMacFeelySArtificial intelligence (AI) or intelligence augmentation (IA): what is the futureAI202012143155
MaCZhaoLMeiXShiHYangJThermal error compensation of high-speed spindle system based on a modified BP neural networkThe International Journal of Advanced Manufacturing Technology2017899–1230713085
CuiXZhaoJDongYThe effects of cutting parameters on tool life and wear mechanisms of CBN tool in high-speed face milling of hardened steelThe International Journal of Advanced Manufacturing Technology2013665955964
PandiyanVCaeserendraWTjahjowidodoTTanH HIn-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithmJournal of Manufacturing Processes201831199213
TranMLiuMTranQMilling chatter detection using scalogram and deep convolutional neural networkThe International Journal of Advanced Manufacturing Technology202010715051516
DouJXuCJiaoSLiBZhangJXuXAn unsupervised online monitoring method for tool wear using a sparse auto-encoderThe International Journal of Advanced Manufacturing Technology2020106524932507
KayaBOysuCErtuncH MOcakHA support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithmProceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture20122261118081818
LiWLiuTTime varying and condition adaptive hidden Markov model for tool wear state estimation and remaining useful life prediction in micro-millingMechanical Systems and Signal Processing2019131689702
ZhangYZhuKDuanXLiSTool wear estimation and life prognostics in milling: Model extension and generalizationMechanical Systems and Signal Processing2021155107617
CaiWZhangWHuXLiuYA hybrid information model based on long short-term memory network for tool condition monitoringJournal of Intelligent Manufacturing20203114971510
Okuma America Corporation, Energy-Efficient Machine Tool Technologies, For Any Size Shop [White paper], Charlotte, North Carolina, USA (2015).
C. Lin, T. Chen, L. Wang and H. Shuai, Health-based fault generative adversarial network for fault diagnosis in machine tools, Artificial Intelligence of Things Workshop in Association for the Advancement of Artificial Intelligence Conference, New York, USA (2020).
KantGSangwanK SPredictive modelling for energy consumption in machining using artificial neural networkProcedia CIRP201537205210
FujishimaMNarimatsuKIrinoNMoriMIbarakiSAdaptive thermal displacement compensation method based on deep learningCIRP Journal of Manufacturing Science and Technology2019252225
LiaoLKöttigFReview of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life predictionIEEE Transactions on Reliability2014631191207
ChenJHuPZhouHYangJXieJJiangYGaoZZhangCToward intelligent machine toolEngineering201954679690
WangK CTsengP CLinK MThermal error modeling of a machining center using grey system theory and adaptive network-based fuzzy inference systemInternational Journal Series C Mechanical Systems, Machine Elements and Manufacturing200649411791187
SihagNSangwanK SA systematic literature review on machine tool energy consumptionJournal of Cleaner Production2020275123125
KarayelDPrediction and control of surface roughness in CNC lathe using artificial neural networkJournal of Materials Processing Technology2009209731253137
LeiYLiNGuoLLiNYanTLinJMachinery health prognostics: a systematic review from data acquisition to RUL predictionMechanical Systems and Signal Processing2018104799834
Caldeirani FilhoJDinizA EInfluence of cutting conditions on tool life, tool wear and surface finish in the face milling processJournal of the Brazilian Society of Mechanical Sciences2002241014
GoodfellowIBengioYCourvilleADeep Learning2016Cambridge, Massachusetts, USAMIT Press1373.68009
LuoWHuTYeYZhangCWeiYA hybrid predictive maintenance approach for CNC machine tool driven by digital twinRobotics and Computer Integrated Manufacturing202065101974
ZhangXZhuQHeYXuYEnergy modeling using an effective latent variable based functional link learning machineEnergy2018162883891
ZuperlUCusFSurface roughness fuzzy inference system within the control simulation of end millingPrecision Engineering201643530543
LamraouiMBarakMThomasMEl BadouiMChatter detection in milling machines by neural network classification and feature selectionJournal of Vibration and Control201521712511266
YangFZhangWTaoLMaJTransfer learning strategies for deep learning-based PHM algorithmsApplied Sciences20201072361
MayrJJedrzejewskiJUhlmannEAlkan DonmezMKnappWHärtigFWendtKMoriwakiTShorePSchmittRBrecherCWürzTWegenerKThermal issues in machine toolsCIRP Annals — Manufacturing Technology2012612771791
ZhuKWongY SHongG SWavelet analysis of sensor signals for tool condition monitoring: a review and some new resultsInternational Journal of Machine Tools and Manufacture2009497537553
StephensonD AAgapiouJ SMetal Cutting Theory and Practice2006Boca Ranton, Florida, USACRC Press
KuntogluMAslanAPimenovD YUscaU ASalurEGuptaM KMikolajczykTGiasinKKaplonekWSharmaSA review of indirect tool condition monitoring systems and decision-making methods in turning: critical analysis and trendsSensors2021211108
ChaoSAltintasYChatter free tool orientations in 5-axis ball-end millingInternational Journal of Machine Tools and Manufacture20161068997
The British Standards Institution, BS EN 13306, Maintenance — Maintenance Terminology, London, UK (2010).
DenkenaBAbeleEBrecherCDittrichM AKaraSMoriMEnergy efficient machine toolsCIRP Annals-Manufacturing Technology202069646667
TuncL TSmart tool path generation for 5-axis ball-end milling of sculptured surfaces using process modelsRobotics and Computer-Integrated Manufacturing201956212221
TetiRJemielniakKO’donnellGDornfeldDAdvanced monitoring of machining operationsCIRP Annals2010592717739
International Standards Organization, ISO 13381-1, Condition Monitoring and Diagnostics of Machines — Prognostics — Part 1: General Guidelines, Geneva, Switzerland (2004).
HanSChoiH JChoiS KOhJ SFault diagnosis of planetary gear carrier packs: A class imbalance and multi-class classification problemInternational Journal of Precision Engine
C Ma (1201_CR38) 2017; 231
T Mohanraj (1201_CR106) 2020; 9
H Wang (1201_CR34) 2013; 69
A M Abdulshahed (1201_CR43) 2017; 7
X Cui (1201_CR92) 2013; 66
C Ma (1201_CR39) 2017; 89
G Y Zhao (1201_CR72) 2017; 133
P Stavropoulos (1201_CR115) 2016; 82
M Tran (1201_CR22) 2020; 107
B Kaya (1201_CR118) 2012; 226
R Teti (1201_CR103) 2010; 59
Y Zhang (1201_CR96) 2021; 155
F Yang (1201_CR137) 2020; 10
Z Yao (1201_CR21) 2010; 210
A M Abdulshahed (1201_CR41) 2016; 41
J Caldeirani Filho (1201_CR91) 2002; 24
M Lamraoui (1201_CR20) 2015; 21
K Zhu (1201_CR107) 2009; 49
R H L da Silva (1201_CR109) 2016; 20
1201_CR102
B Cuka (1201_CR105) 2017; 47
K Khalili (1201_CR49) 2015; 19
J Balic (1201_CR65) 2002; 42
Y Dun (1201_CR24) 2021; 158
Z W Zhang (1201_CR80) 2016; 137
K Xia (1201_CR8) 2021; 58
Q Guo (1201_CR30) 2010; 50
C Okoh (1201_CR84) 2017; 59
Y Zhou (1201_CR94) 2018; 96
W Chengyang (1201_CR45) 2021; 59
X Zhang (1201_CR76) 2018; 162
1201_CR97
A J Torabi (1201_CR114) 2016; 10
S Chao (1201_CR28) 2016; 106
H M Elattar (1201_CR88) 2016; 2
R Geissbauer (1201_CR1) 2017
J Vyroubal (1201_CR32) 2012; 36
Q Ren (1201_CR116) 2015; 31
T Benkedjouh (1201_CR119) 2015; 26
1201_CR48
W Caesarendra (1201_CR126) 2021; 10
1201_CR131
1201_CR132
J Chen (1201_CR141) 2019; 5
M Elangovan (1201_CR121) 2010; 37
S Han (1201_CR134) 2019; 20
S Shao (1201_CR136) 2019; 15
T Wuest (1201_CR13) 2016; 4
1201_CR47
M Liu (1201_CR99) 2020; 20
S Kline Jr. (1201_CR4) 2020
J Lipski (1201_CR59) 2019; 252
G Chhabra (1201_CR133) 2019; 11
Y Altintas (1201_CR16) 2012
U Zuperl (1201_CR61) 2012; 23
B Li (1201_CR68) 2020; 61
D Shi (1201_CR125) 2007; 21
H Hassani (1201_CR5) 2020; 1
C H Lo (1201_CR36) 1999; 39
W Li (1201_CR120) 2019; 131
Y Yuan (1201_CR29) 2017; 22
Y Zhang (1201_CR40) 2012; 59
M C Yesilli (1201_CR25) 2020; 28
I Goodfellow (1201_CR130) 2016
U Zuperl (1201_CR62) 2016; 43
H Ghaiebi (1201_CR66) 2007; 52
W H Hsieh (1201_CR100) 2012; 61
Y Fu (1201_CR19) 2015; 31
Z Jurkovic (1201_CR53) 2018; 29
W Luo (1201_CR123) 2020; 65
C W Chang (1201_CR12) 2018; 3
D D’Addona (1201_CR108) 2011; 4
M Fujishima (1201_CR35) 2019; 25
H Hanachi (1201_CR90) 2019; 101
M I Jordan (1201_CR7) 2015; 349
G Seif (1201_CR14) 2018
J Mayr (1201_CR31) 2012; 61
S P Lo (1201_CR51) 2003; 142
Z Liu (1201_CR77) 2019; 138
H Saglam (1201_CR124) 2011; 55
G Kant (1201_CR57) 2015; 31
P Liu (1201_CR44) 2021; 9
D A Stephenson (1201_CR93) 2006
B Roy (1201_CR135) 2020
S Yang (1201_CR37) 1996; 36
D Flum (1201_CR81) 2019
S Laddada (1201_CR122) 2019; 234
G Serin (1201_CR95) 2020; 109
R H Guerra (1201_CR56) 2019; 7
D Zhang (1201_CR23) 2015; 80
D Karayel (1201_CR60) 2009; 209
A Gouarir (1201_CR110) 2018; 77
A Iqbal (1201_CR3) 2020; 111
G Zhao (1201_CR75) 2014; 174
J Karandikar (1201_CR18) 2020; 56
H Oo (1201_CR127) 2020; 111
L T Tunc (1201_CR27) 2019; 68
H El-Mounayri (1201_CR64) 2010; 23
L C Moreira (1201_CR55) 2019; 127
Z H Zhou (1201_CR142) 2018; 5
M Wetmore (1201_CR2) 2016
1201_CR50
G Kant (1201_CR74) 2015; 37
E Ülker (1201_CR63) 2009; 20
S Shankar (1201_CR101) 2019; 32
K Liu (1201_CR46) 2022; 18
I Svalina (1201_CR54) 2017; 52
A T Abbas (1201_CR67) 2011; 49
N Sihag (1201_CR73) 2020; 275
C Zhang (1201_CR112) 2016; 16
A Kumar (1201_CR128) 2019; 128
J Dou (1201_CR129) 2020; 106
A Widodo (1201_CR140) 2007; 21
H Cherukuri (1201_CR17) 2019; 3
W Cai (1201_CR111) 2020; 31
S Wang (1201_CR58) 2015; 87
M Rausand (1201_CR83) 2003
M Kuntoglu (1201_CR104) 2021; 21
R Sawhney (1201_CR139) 2018
L Xu (1201_CR113) 2021; 32
Y Lei (1201_CR98) 2018; 104
1201_CR82
J Johnson (1201_CR6) 2020
B Li (1201_CR33) 2019; 105
L Maaten (1201_CR15) 2008; 9
1201_CR86
1201_CR87
K C Wang (1201_CR42) 2006; 49
A Vijayaraghavan (1201_CR71) 2010; 59
P Cao (1201_CR138) 2018; 6
G W Vogl (1201_CR85) 2019; 30
W H Ho (1201_CR52) 2009; 36
L Liao (1201_CR89) 2014; 63
G E Hinton (1201_CR10) 2006; 18
D H Kim (1201_CR11) 2018; 5
1201_CR70
B Denkena (1201_CR69) 2020; 69
V Pandiyan (1201_CR117) 2018; 31
1201_CR79
L T Tunc (1201_CR26) 2019; 56
1201_CR78
M Matulis (1201_CR9) 2021; 95
References_xml – reference: LiBTianXZhangMThermal error modeling of machine tool spindle based on the improved algorithm optimized BP neural networkThe International Journal of Advanced Manufacturing Technology2019105114971505
– reference: ZhangZ WTangR ZPengTTaoL YJiaSA method for minimizing the energy consumption of machining system: integration of process planning and schedulingJournal of Cleaner Production201613716471662
– reference: LeiYLiNGuoLLiNYanTLinJMachinery health prognostics: a systematic review from data acquisition to RUL predictionMechanical Systems and Signal Processing2018104799834
– reference: CaoPZhangSTangJPreprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learningIEEE Access201862624126253
– reference: KarandikarJHoneycuttASchmitzTSmithSStability boundary and optimal operating parameter identification in milling using Bayesian learningJournal of Manufacturing Processes202056B12521262
– reference: MohanrajTShankarSRajasekarRSakthivelN RPramanikATool condition monitoring techniques in milling process — a reviewJournal of Materials Research and Technology20209110321042
– reference: KlineSJr.2020 Capital Spending Machine Tools Survey2020USAGardner Intelligence
– reference: TetiRJemielniakKO’donnellGDornfeldDAdvanced monitoring of machining operationsCIRP Annals2010592717739
– reference: HanachiHYuWKimI YLiuJMechefskeC KHybrid data-driven physics-based model fusion framework for tool wear predictionThe International Journal of Advanced Manufacturing Technology2019101928612872
– reference: KayaBOysuCErtuncH MOcakHA support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithmProceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture20122261118081818
– reference: LoS PAn adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end millingJournal of Materials Processing Technology2003142665675
– reference: MaCZhaoLMeiXShiHYangJThermal error compensation of high-speed spindle system based on a modified BP neural networkThe International Journal of Advanced Manufacturing Technology2017899–1230713085
– reference: ElangovanMRamachandranK ISugumaranVStudies on Bayes classifier for condition monitoring of single point carbide tipped tool based on statistical and histogram featuresExpert Systems with Applications201037320592065
– reference: AltintasYManufacturing Automation20122nd Ed.New York, USACambridge University Press
– reference: LamraouiMBarakMThomasMEl BadouiMChatter detection in milling machines by neural network classification and feature selectionJournal of Vibration and Control201521712511266
– reference: CaiWZhangWHuXLiuYA hybrid information model based on long short-term memory network for tool condition monitoringJournal of Intelligent Manufacturing20203114971510
– reference: WuestTWeimerDIrgensCThobenK DMachine learning in manufacturing: advantages, challenges, and applicationsProduction & Manufacturing Research2016412345
– reference: OoHWangWLiuZTool wear monitoring system in belt grinding based on image-processing techniquesThe International Journal of Advanced Manufacturing Technology202011122152229
– reference: OkohCRoyRMehnenJPredictive maintenance modelling for through-life engineering servicesProcedia CIRP201759196201
– reference: KumarAChinnamR BTsengFAn HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting toolsComputers & Industrial Engineering201912810081014
– reference: ÜlkerETuranalpM EHalkaciH SAn artificial immune system approach to CNC tool path generationJournal of Intelligent Manufacturing20092016777
– reference: GoodfellowIBengioYCourvilleADeep Learning2016Cambridge, Massachusetts, USAMIT Press1373.68009
– reference: GuoQYangJWuHApplication of ACO-BPN to thermal error modeling of NC machine toolThe International Journal of Advanced Manufacturing Technology2010505–8667675
– reference: VoglG WWeissB AHeluMA review of diagnostic and prognostic capabilities and best practices for manufacturingJournal of Intelligent Manufacturing20193017995
– reference: GouarirAMartinez-ArellanoGTerrazasGBernadosPRatchevSIn-process tool wear prediction system based on machine learning techniques and force analysisProcedia CIRP201877501504
– reference: RoyBAll About Feature Scaling2020CanadaTowards Data Science
– reference: SihagNSangwanK SA systematic literature review on machine tool energy consumptionJournal of Cleaner Production2020275123125
– reference: KantGSangwanK SPredictive modelling and optimization of machining parameters to minimize surface roughness using artificial neural network coupled with genetic algorithmProcedia CIRP201531453458
– reference: LiuZWangXZhangQHuangCEmpirical mode decomposition based hybrid ensemble model for electrical energy consumption forecasting of the cement grinding processMeasurement2019138314324
– reference: International Standards Organization, ISO 13381-1, Condition Monitoring and Diagnostics of Machines — Prognostics — Part 1: General Guidelines, Geneva, Switzerland (2004).
– reference: ZhangYYangJJiangHMachine tool thermal error modeling and prediction by grey neural networkThe International Journal of Advanced Manufacturing Technology2012599–1210651072
– reference: LiBZhangHYePWangJTrajectory smoothing method using reinforcement learning for computer numerical control machine toolsRobotics and Computer-Integrated Manufacturing202061101847
– reference: FujishimaMNarimatsuKIrinoNMoriMIbarakiSAdaptive thermal displacement compensation method based on deep learningCIRP Journal of Manufacturing Science and Technology2019252225
– reference: ZhangCYaoXZhangJJinHTool condition monitoring and remaining useful life prognostic based on a wireless sensor in dry milling operationsSensors2016166795
– reference: Y. F. Li, X. X. Han and S. Y. Li, Non-contact dimension measurement of mechanical parts based on image processing, 8th International Congress on Image and Signal Processing (CISP), Shenyang, PRC (2015) 974–978.
– reference: TorabiA JErM JLiXLimB SPeenG OApplication of clustering methods for online tool condition monitoring and fault diagnosis in high-speed milling processesIEEE Systems Journal2016102721732
– reference: MaCZhaoLMeiXShiHYangJThermal error compensation based on genetic algorithm and artificial neural network of the shaft in the high-speed spindle systemProceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture20172315753767
– reference: ShiDGindyNTool wear predictive model based on least squares support vector machinesMechanical Systems and Signal Processing200721417991814
– reference: AbbasA TAlyM FHamzaKOptimum drilling path planning for a rectangular matrix of holes using ant colony optimizationInternational Journal of Production Research2011491958775891
– reference: BenkedjouhTMedjaherKZerhouniNRechakSHealth assessment and life prediction of cutting tools based on support vector regressionJournal of Intelligent Manufacturing2015262213223
– reference: G. Press, Cleaning big data: most time-consuming, least enjoyable data science task, survey says, Forbes (2016).
– reference: MatulisMHarveyCA robot arm digital twin utilizing reinforcement learningComputers and Graphics202195106114
– reference: SaglamHTool wear monitoring in bandsawing using neural networks and Taguchi’s design of experimentsThe International Journal of Advanced Manufacturing Technology201155969982
– reference: WangK CTsengP CLinK MThermal error modeling of a machining center using grey system theory and adaptive network-based fuzzy inference systemInternational Journal Series C Mechanical Systems, Machine Elements and Manufacturing200649411791187
– reference: ZhouZ HMachine learning challenges and impact: an interview with Thomas DietterichNational Science Review2018515458
– reference: YesilliM CKhasawnehF AOttoAOn transfer learning for chatter detection in turning using wavelet packet transform and ensemble empirical mode decompositionCIRP Journal of Manufacturing Science and Technology202028118135
– reference: ZhaoGZhaoQZhengGZhaiJSpecific energy consumption prediction method based on machine tool power measurementSensors & Transducers2014174115122
– reference: KhaliliKVahidniaMImproving the accuracy of crack length measurement using machine visionProcedia Technology2015194855
– reference: YaoZMeiDChenZOn-line chatter detection and identification based on wavelet and support vector machineJournal of Materials Processing Technology20102105713719
– reference: Caldeirani FilhoJDinizA EInfluence of cutting conditions on tool life, tool wear and surface finish in the face milling processJournal of the Brazilian Society of Mechanical Sciences2002241014
– reference: GuerraR HQuizaRVillalongaAArenasJCastanoFDigital twin-based optimization for ultraprecision motion systems with backlash and frictionIEEE Access201979346293472
– reference: JurkovicZCukorGBrezocnikMBrajkovicTA comparison of machine learning methods for cutting parameters prediction in high speed turning processJournal of Intelligent Manufacturing20182916831693
– reference: ElattarH MElminirH KRiadA MPrognostics: a literature reviewComplex & Intelligent Systems201622125154
– reference: ZhuKWongY SHongG SWavelet analysis of sensor signals for tool condition monitoring: a review and some new resultsInternational Journal of Machine Tools and Manufacture2009497537553
– reference: SeifGThe 5 Clustering Algorithms Data Scientists Need to Know2018CanadaTowards Data Science
– reference: CaesarendraWTriwiyantoTPandiyanVGlowaczAPermanaS D HTjahjowidodoTA CNN prediction method for belt grinding tool wear in a polishing process utilizing 3-axes force and vibration dataElectronics202110121429
– reference: R. Ak, M. M. Helu and S. Rachuri, Ensemble neural network model for predicting the energy consumption of a milling machine, Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, Massachusetts, USA (2015) 1–7.
– reference: El-MounayriHDengHA generic and innovative approach for integrated simulation and optimisation of end milling using solid modelling and neural networkInternational Journal of Computer Integrated Manufacturing20102314060
– reference: WangHWangLLiTHanJThermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering methodThe International Journal of Advanced Manufacturing Technology2013691–4121126
– reference: Y. Zhou, B. Sun, W. Sun and Z. Lei, Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process, Journal of Intelligent Manufacturing (2020).
– reference: ZhaoG YLiuZ YHeYCaoH JGuoY BEnergy consumption in machining: classification, prediction, and reduction strategyEnergy2017133142157
– reference: IqbalAZhaoGSuhaimiHHeNHussainGZhaoWReadiness of subtractive and additive manufacturing and their sustainable amalgamation from the perspective of Industry 4.0: a comprehensive reviewThe International Journal of Advanced Manufacturing Technology202011124752498
– reference: LaddadaSSi-ChaibM OBenkedjouhTDraiRTool wear condition monitoring based on wavelet transform and improved extreme learning machineProceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science2019234510571068
– reference: YangFZhangWTaoLMaJTransfer learning strategies for deep learning-based PHM algorithmsApplied Sciences20201072361
– reference: CherukuriHPerez-BernabeuESellesMSchmitzTMachining chatter prediction using a data learning modelJournal of Manufacturing Materials Processing2019324559
– reference: FuYZhangYQiaoHLiDZhouHLeopoldJAnalysis of feature extracting ability for cutting state monitoring using deep belief networksProcedia CIRP2015312934
– reference: RausandMHoylandASystem Reliability Theory: Models, Statistical Methods, and Applications2003New Jersey, USAJohn Wiley & Sons, Hoboken3961052.93001
– reference: YangSYuanJNiJThe improvement of thermal error modeling and compensation on machine tools by CMAC neural networkInternational Journal of Machine Tools and Manufacture1996364527537
– reference: HsiehW HLuM CChiouS JApplication of back-propagation neural network for spindle vibration-based tool wear monitoring in micro-millingThe International Journal of Advanced Manufacturing Technology2012615361
– reference: LuoWHuTYeYZhangCWeiYA hybrid predictive maintenance approach for CNC machine tool driven by digital twinRobotics and Computer Integrated Manufacturing202065101974
– reference: VijayaraghavanADornfeldDAutomated energy monitoring of machine toolsCIRP Annals20105912124
– reference: ChengyangWSitongXWanshengXSpindle thermal error prediction approach based on thermal infrared images: a deep learning methodJournal of Manufacturing Systems2021596780
– reference: JohnsonJ4 Types of AI2020Houston, Texas, USABMC
– reference: KimD HKimT J YWangXKimMQuanY JOhJ WMinS HKimHBhandariBYangIAhnS HSmart machining process using machine learning: A review and perspective on machining industryInternational Journal of Precision Engineering and Manufacturing-Green Technology20185555568
– reference: AbdulshahedA MLongstaffA PFletcherSPotdarAThermal error modelling of a gantry-type 5-axis machine tool using a grey neural network modelJournal of Manufacturing Systems201641130142
– reference: HassaniHSilvaE SUngerSTajmazinaniMMacFeelySArtificial intelligence (AI) or intelligence augmentation (IA): what is the futureAI202012143155
– reference: HanSChoiH JChoiS KOhJ SFault diagnosis of planetary gear carrier packs: A class imbalance and multi-class classification problemInternational Journal of Precision Engineering and Manufacturing201920167179
– reference: C. Ly, K. Tom, C. S. Byington, R. Patrick and G. J. Vachtsevanos, Fault diagnosis and failure prognosis for engineering systems: a global perspective, 2009 IEEE International Conference on Automation Science and Engineering, Bengalore, India (2009) 108–115.
– reference: LiuPDuZLiHDengMFengXYangJThermal error modeling based on BiLSTM deep learning for CNC machine toolAdvanced Manufacturing20219235249
– reference: StavropoulosPPapacharalampopoulosAVasiliadisEChryssolourisGTool wear predictability estimation in milling based on multi-sensorial dataThe International Journal of Advanced Manufacturing Technology201682509521
– reference: ZuperlUCusFReibenschuhMModeling and adaptive force control of milling by using artificial techniquesJournal of Intelligent Manufacturing201223518051815
– reference: XuLHuangCLiCWangJLiuHWangXEstimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machiningJournal of Intelligent Manufacturing2021327790
– reference: VyroubalJCompensation of machine tool thermal deformation in spindle axis direction based on decomposition methodPrecision Engineering2012361121127
– reference: J. Liu, H. Gui and C. Ma, Digital twin system of thermal error control for a large-size gear profile grinder enabled by gated recurrent unit, Journal of Ambient Intelligence and Humanized Computing (2021).
– reference: D’AddonaDSegretoTSimeoneATetiRANN tool wear modelling in the machining of nickel superalloy industrial productsCIRP Journal of Manufacturing Science and Technology2011413337
– reference: MoreiraL CLiL DLuXFitzpatrickM ESupervision controller for real-time surface quality assurance in CNC machining using artificial intelligenceComputers & Industrial Engineering2019127158168
– reference: Q. Xiao, C. Li, Y. Tang, Y. Du and Y. Kou, Deep learning based modeling for cutting energy consumed in CNC turning process, Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Miyazaki, Japan (2018) 1398–1403.
– reference: ZuperlUCusFSurface roughness fuzzy inference system within the control simulation of end millingPrecision Engineering201643530543
– reference: JordanM IMitchellT MReview-machine learning: trends, perspectives, and prospectsScience (Special Section: Artificial Intelligence)201534962452552601355.68227
– reference: HintonG EOsinderoSTehYA fast learning algorithm for deep belief netsNeural Computation20061871527155422244851106.68094
– reference: C. Lin, T. Chen, L. Wang and H. Shuai, Health-based fault generative adversarial network for fault diagnosis in machine tools, Artificial Intelligence of Things Workshop in Association for the Advancement of Artificial Intelligence Conference, New York, USA (2020).
– reference: KantGSangwanK SPredictive modelling for energy consumption in machining using artificial neural networkProcedia CIRP201537205210
– reference: DenkenaBAbeleEBrecherCDittrichM AKaraSMoriMEnergy efficient machine toolsCIRP Annals-Manufacturing Technology202069646667
– reference: KuntogluMAslanAPimenovD YUscaU ASalurEGuptaM KMikolajczykTGiasinKKaplonekWSharmaSA review of indirect tool condition monitoring systems and decision-making methods in turning: critical analysis and trendsSensors2021211108
– reference: TranMLiuMTranQMilling chatter detection using scalogram and deep convolutional neural networkThe International Journal of Advanced Manufacturing Technology202010715051516
– reference: CuiXZhaoJDongYThe effects of cutting parameters on tool life and wear mechanisms of CBN tool in high-speed face milling of hardened steelThe International Journal of Advanced Manufacturing Technology2013665955964
– reference: YuanYZhangH TWuYZhuTDingHBayesian learning-based model-predictive vibration control for thin-walled workpiece machining processesIEEE/ASME Transactions on Mechatronics2017221509520
– reference: da SilvaR H Lda SilvaM BHassuiAA probabilistic neural network applied in monitoring tool wear in the end milling operation via acoustic emission and cutting power signalsMachining Science and Technology2016203386405
– reference: ChhabraGVashishtVRanjanJA review on missing data value estimation using imputation algorithmJournal of Advanced Research in Dynamical and Control Systems2019117312318
– reference: Okuma America Corporation, Energy-Efficient Machine Tool Technologies, For Any Size Shop [White paper], Charlotte, North Carolina, USA (2015).
– reference: XiaKSaccoCKirkpatrickMSaidyCNguyenLKircalialiAHarikRA digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces, and intelligenceJournal of Manufacturing Systems202158B210230
– reference: ZhouYXueWReview of tool condition monitoring methods in milling processesThe International Journal of Advanced Manufacturing Technology201896525092523
– reference: ChangC WLeeH WLiuC HA review of artificial intelligence algorithms used for smart machine toolsInventions20183341
– reference: WangSLuXLiX XLiW DA systematic approach of process planning and scheduling optimization for sustainable machiningJournal of Cleaner Production201587914929
– reference: StephensonD AAgapiouJ SMetal Cutting Theory and Practice2006Boca Ranton, Florida, USACRC Press
– reference: ChaoSAltintasYChatter free tool orientations in 5-axis ball-end millingInternational Journal of Machine Tools and Manufacture20161068997
– reference: SerinGSenerBOzbayogluA MUnverH OReview of tool condition monitoring in machining and opportunities for deep learningThe International Journal of Advanced Manufacturing Technology20201093953974
– reference: The British Standards Institution, BS EN 13306, Maintenance — Maintenance Terminology, London, UK (2010).
– reference: G. Xu, M. Liu, J. Wang, Y. Ma, J. Wang, F. Li and W. Shen, Data-driven fault diagnostics and prognostics for predictive maintenance: a brief overview, IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada (2019) 103–108.
– reference: LiuKSongLHanWCuiYWangYTime-varying error prediction and compensation for movement axis of CNC machine tool based on digital twinIEEE Transactions on Industrial Informatics2022181109117
– reference: LoC HYuanJNiJOptimal temperature variable selection by grouping approach for thermal error modeling and compensationInternational Journal of Machine Tools and Manufacture199939913831396
– reference: GeissbauerRSchraufSBerttramPCheraghiFDigital Factories 2020 Shaping the Future of Manufacturing2017GermanyPricewaterhouse Coopers
– reference: ZhangDBiGSunZGuoYOnline monitoring of precision optics grinding using acoustic emission based on support vector machineInternational Journal of Advanced Manufacturing Technology201580761774
– reference: TuncL TZatarainMStability optimal selection of stock shape and tool axis in finishing of thin-wall partsCIRP Annals2019681401404
– reference: RenQBaronLBalazinskiMBotezRBigrasPTool wear assessment based on type-2 fuzzy uncertainty estimation on acoustic emissionApplied Soft Computing2015311424
– reference: LiWLiuTTime varying and condition adaptive hidden Markov model for tool wear state estimation and remaining useful life prediction in micro-millingMechanical Systems and Signal Processing2019131689702
– reference: MayrJJedrzejewskiJUhlmannEAlkan DonmezMKnappWHärtigFWendtKMoriwakiTShorePSchmittRBrecherCWürzTWegenerKThermal issues in machine toolsCIRP Annals — Manufacturing Technology2012612771791
– reference: ChenJHuPZhouHYangJXieJJiangYGaoZZhangCToward intelligent machine toolEngineering201954679690
– reference: WetmoreMIndustry 4.0: an Opportunity to Shine for Canadian Manufacturers2016CanadaPricewaterhouse Coopers
– reference: SawhneyRHuman in the Loop: Why We Will be Needed to Complement Artificial Intelligence2018London, UKThe London School of Economics and Political Science Business Review
– reference: DunYZhuLYanBWangSA chatter detection method in milling of thin-walled TC4 alloy workpiece based on auto-encoding and hybrid clusteringMechanical Systems and Signal Processing2021158107755
– reference: TuncL TSmart tool path generation for 5-axis ball-end milling of sculptured surfaces using process modelsRobotics and Computer-Integrated Manufacturing201956212221
– reference: Z. Wei, B. Zhang and P. Liu, Object dimension measurement based on mask R-CNN, 12th International Conference on Intelligent Robotics and Applications, Shenyang, PRC (4) (2019) 320–330.
– reference: FlumDSossenheimerJStückCAbeleEArmendiaMGhassempouriMOzturkEPeyssonFTowards energy-efficient machine tools through the development of the twin-control energy efficiency moduleTwin-Control2019Cham, SwitzerlandSpringer95108
– reference: DouJXuCJiaoSLiBZhangJXuXAn unsupervised online monitoring method for tool wear using a sparse auto-encoderThe International Journal of Advanced Manufacturing Technology2020106524932507
– reference: PandiyanVCaeserendraWTjahjowidodoTTanH HIn-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithmJournal of Manufacturing Processes201831199213
– reference: SvalinaISimunovicGSaricTLujicREvolutionary neuro-fuzzy system for surface roughness evaluationApplied Soft Computing201752593604
– reference: LiuMYaoXZhangJChenWJingXWangKMulti-sensor data fusion for remaining useful life prediction of machining tools by IABC-BPNN in dry milling operationsSensors202020174657
– reference: AbdulshahedA MLongstaffA PFletcherSA cuckoo search optimisation-based Grey prediction model for thermal error compensation on CNC machine toolsGrey Systems: Theory and Application201772146155
– reference: CukaBKimD WFuzzy logic based tool condition monitoring for end-millingRobotics and Computer-Integrated Manufacturing2017472236
– reference: ShaoSMcAleerSYanRBaldiPHighly accurate machine fault diagnosis using deep transfer learningIEEE Transactions on Industrial Informatics201915424462455
– reference: GhaiebiHSolimanpurMAn ant algorithm for optimization of hole-making operationsComputers & Industrial Engineering2007522308319
– reference: ZhangXZhuQHeYXuYEnergy modeling using an effective latent variable based functional link learning machineEnergy2018162883891
– reference: ShankarSMohanrajTRajasekarRPrediction of cutting tool wear during milling process using artificial intelligence techniquesInternational Journal of Computer Integrated Manufacturing2019322174182
– reference: MaatenLHintonGVisualizing data using t-SNEJournal of Machine Learning Research20089257926051225.68219
– reference: ZhangYZhuKDuanXLiSTool wear estimation and life prognostics in milling: Model extension and generalizationMechanical Systems and Signal Processing2021155107617
– reference: BalicJKorosecMIntelligent tool path generation for milling of free surfaces using neural networksInternational Journal of Machine Tools and Manufacture2002421011711179
– reference: HoW HTsaiJ TLinB TChouJ HAdaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithmExpert Systems with Applications200936232163222
– reference: LiaoLKöttigFReview of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life predictionIEEE Transactions on Reliability2014631191207
– reference: WidodoAYangB SSupport vector machine in machine condition monitoring and fault diagnosisMechanical Systems and Signal Processing200721625602574
– reference: LipskiJZaleskiKImplementation of artificial intelligence in optimization of technological processesMATEC Web of Conferences201925203008
– reference: KarayelDPrediction and control of surface roughness in CNC lathe using artificial neural networkJournal of Materials Processing Technology2009209731253137
– ident: 1201_CR131
– ident: 1201_CR79
  doi: 10.1109/SMC.2018.00244
– volume: 32
  start-page: 174
  issue: 2
  year: 2019
  ident: 1201_CR101
  publication-title: International Journal of Computer Integrated Manufacturing
  doi: 10.1080/0951192X.2018.1550681
– volume: 20
  start-page: 167
  year: 2019
  ident: 1201_CR134
  publication-title: International Journal of Precision Engineering and Manufacturing
  doi: 10.1007/s12541-019-00082-4
– ident: 1201_CR50
  doi: 10.1007/978-3-030-27538-9_27
– volume-title: Deep Learning
  year: 2016
  ident: 1201_CR130
– volume: 234
  start-page: 1057
  issue: 5
  year: 2019
  ident: 1201_CR122
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
– volume: 105
  start-page: 1497
  issue: 1
  year: 2019
  ident: 1201_CR33
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-019-04375-w
– volume: 31
  start-page: 453
  year: 2015
  ident: 1201_CR57
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2015.03.043
– volume: 59
  start-page: 67
  year: 2021
  ident: 1201_CR45
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2021.01.013
– volume: 10
  start-page: 2361
  issue: 7
  year: 2020
  ident: 1201_CR137
  publication-title: Applied Sciences
  doi: 10.3390/app10072361
– volume: 3
  start-page: 45
  issue: 2
  year: 2019
  ident: 1201_CR17
  publication-title: Journal of Manufacturing Materials Processing
  doi: 10.3390/jmmp3020045
– volume: 9
  start-page: 1032
  issue: 1
  year: 2020
  ident: 1201_CR106
  publication-title: Journal of Materials Research and Technology
  doi: 10.1016/j.jmrt.2019.10.031
– volume: 23
  start-page: 40
  issue: 1
  year: 2010
  ident: 1201_CR64
  publication-title: International Journal of Computer Integrated Manufacturing
  doi: 10.1080/09511920903225268
– volume: 20
  start-page: 386
  issue: 3
  year: 2016
  ident: 1201_CR109
  publication-title: Machining Science and Technology
  doi: 10.1080/10910344.2016.1191026
– volume: 20
  start-page: 4657
  issue: 17
  year: 2020
  ident: 1201_CR99
  publication-title: Sensors
  doi: 10.3390/s20174657
– volume: 5
  start-page: 54
  issue: 1
  year: 2018
  ident: 1201_CR142
  publication-title: National Science Review
  doi: 10.1093/nsr/nwx045
– volume: 43
  start-page: 530
  year: 2016
  ident: 1201_CR62
  publication-title: Precision Engineering
  doi: 10.1016/j.precisioneng.2015.09.019
– volume: 59
  start-page: 196
  year: 2017
  ident: 1201_CR84
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.09.033
– volume: 252
  start-page: 03008
  year: 2019
  ident: 1201_CR59
  publication-title: MATEC Web of Conferences
  doi: 10.1051/matecconf/201925203008
– volume: 2
  start-page: 125
  issue: 2
  year: 2016
  ident: 1201_CR88
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-016-0019-3
– volume: 49
  start-page: 5877
  issue: 19
  year: 2011
  ident: 1201_CR67
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2010.507608
– ident: 1201_CR82
– volume: 5
  start-page: 679
  issue: 4
  year: 2019
  ident: 1201_CR141
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.07.018
– volume: 21
  start-page: 1799
  issue: 4
  year: 2007
  ident: 1201_CR125
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2006.07.016
– volume: 15
  start-page: 2446
  issue: 4
  year: 2019
  ident: 1201_CR136
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2018.2864759
– volume: 39
  start-page: 1383
  issue: 9
  year: 1999
  ident: 1201_CR36
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/S0890-6955(99)00009-7
– volume: 29
  start-page: 1683
  year: 2018
  ident: 1201_CR53
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-016-1206-1
– volume-title: The 5 Clustering Algorithms Data Scientists Need to Know
  year: 2018
  ident: 1201_CR14
– volume: 89
  start-page: 3071
  issue: 9–12
  year: 2017
  ident: 1201_CR39
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-016-9254-4
– volume: 31
  start-page: 199
  year: 2018
  ident: 1201_CR117
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2017.11.014
– volume: 11
  start-page: 312
  issue: 7
  year: 2019
  ident: 1201_CR133
  publication-title: Journal of Advanced Research in Dynamical and Control Systems
– volume: 10
  start-page: 721
  issue: 2
  year: 2016
  ident: 1201_CR114
  publication-title: IEEE Systems Journal
  doi: 10.1109/JSYST.2015.2425793
– volume: 16
  start-page: 795
  issue: 6
  year: 2016
  ident: 1201_CR112
  publication-title: Sensors
  doi: 10.3390/s16060795
– volume: 37
  start-page: 2059
  issue: 3
  year: 2010
  ident: 1201_CR121
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.06.103
– volume: 106
  start-page: 2493
  issue: 5
  year: 2020
  ident: 1201_CR129
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-019-04788-7
– volume: 22
  start-page: 509
  issue: 1
  year: 2017
  ident: 1201_CR29
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2016.2620987
– volume: 52
  start-page: 593
  year: 2017
  ident: 1201_CR54
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.10.010
– volume: 162
  start-page: 883
  year: 2018
  ident: 1201_CR76
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.105
– volume: 63
  start-page: 191
  issue: 1
  year: 2014
  ident: 1201_CR89
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2014.2299152
– volume: 24
  start-page: 10
  year: 2002
  ident: 1201_CR91
  publication-title: Journal of the Brazilian Society of Mechanical Sciences
  doi: 10.1590/S0100-73862002000100002
– volume: 21
  start-page: 108
  issue: 1
  year: 2021
  ident: 1201_CR104
  publication-title: Sensors
  doi: 10.3390/s21010108
– ident: 1201_CR87
– volume: 20
  start-page: 67
  issue: 1
  year: 2009
  ident: 1201_CR63
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-008-0104-6
– volume: 61
  start-page: 53
  year: 2012
  ident: 1201_CR100
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-011-3703-x
– volume: 174
  start-page: 115
  year: 2014
  ident: 1201_CR75
  publication-title: Sensors & Transducers
– volume: 226
  start-page: 1808
  issue: 11
  year: 2012
  ident: 1201_CR118
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
  doi: 10.1177/0954405412458047
– volume: 26
  start-page: 213
  issue: 2
  year: 2015
  ident: 1201_CR119
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-013-0774-6
– volume: 111
  start-page: 2215
  year: 2020
  ident: 1201_CR127
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-020-06254-1
– volume: 68
  start-page: 401
  issue: 1
  year: 2019
  ident: 1201_CR27
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2019.04.096
– volume: 59
  start-page: 21
  issue: 1
  year: 2010
  ident: 1201_CR71
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2010.03.042
– volume: 4
  start-page: 33
  issue: 1
  year: 2011
  ident: 1201_CR108
  publication-title: CIRP Journal of Manufacturing Science and Technology
  doi: 10.1016/j.cirpj.2011.07.003
– volume: 65
  start-page: 101974
  year: 2020
  ident: 1201_CR123
  publication-title: Robotics and Computer Integrated Manufacturing
  doi: 10.1016/j.rcim.2020.101974
– start-page: 95
  volume-title: Twin-Control
  year: 2019
  ident: 1201_CR81
  doi: 10.1007/978-3-030-02203-7_5
– volume: 158
  start-page: 107755
  year: 2021
  ident: 1201_CR24
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2021.107755
– ident: 1201_CR78
– volume-title: Industry 4.0: an Opportunity to Shine for Canadian Manufacturers
  year: 2016
  ident: 1201_CR2
– volume: 77
  start-page: 501
  year: 2018
  ident: 1201_CR110
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.08.253
– volume: 82
  start-page: 509
  year: 2016
  ident: 1201_CR115
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-015-7317-6
– volume: 21
  start-page: 2560
  issue: 6
  year: 2007
  ident: 1201_CR140
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2006.12.007
– volume-title: Digital Factories 2020 Shaping the Future of Manufacturing
  year: 2017
  ident: 1201_CR1
– ident: 1201_CR97
  doi: 10.1109/COASE.2019.8843068
– volume: 49
  start-page: 537
  issue: 7
  year: 2009
  ident: 1201_CR107
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2009.02.003
– volume: 52
  start-page: 308
  issue: 2
  year: 2007
  ident: 1201_CR66
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2007.01.001
– volume: 210
  start-page: 713
  issue: 5
  year: 2010
  ident: 1201_CR21
  publication-title: Journal of Materials Processing Technology
  doi: 10.1016/j.jmatprotec.2009.11.007
– volume: 3
  start-page: 41
  issue: 3
  year: 2018
  ident: 1201_CR12
  publication-title: Inventions
  doi: 10.3390/inventions3030041
– volume: 155
  start-page: 107617
  year: 2021
  ident: 1201_CR96
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2021.107617
– volume: 5
  start-page: 555
  year: 2018
  ident: 1201_CR11
  publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology
  doi: 10.1007/s40684-018-0057-y
– ident: 1201_CR70
– ident: 1201_CR102
  doi: 10.1016/j.measurement.2020.108186
– volume: 111
  start-page: 2475
  year: 2020
  ident: 1201_CR3
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-020-06287-6
– volume: 28
  start-page: 118
  year: 2020
  ident: 1201_CR25
  publication-title: CIRP Journal of Manufacturing Science and Technology
  doi: 10.1016/j.cirpj.2019.11.003
– volume: 95
  start-page: 106
  year: 2021
  ident: 1201_CR9
  publication-title: Computers and Graphics
  doi: 10.1016/j.cag.2021.01.011
– volume: 104
  start-page: 799
  year: 2018
  ident: 1201_CR98
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.11.016
– volume: 107
  start-page: 1505
  year: 2020
  ident: 1201_CR22
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-019-04807-7
– volume: 10
  start-page: 1429
  issue: 12
  year: 2021
  ident: 1201_CR126
  publication-title: Electronics
  doi: 10.3390/electronics10121429
– volume: 9
  start-page: 235
  year: 2021
  ident: 1201_CR44
  publication-title: Advanced Manufacturing
  doi: 10.1007/s40436-020-00342-x
– volume: 109
  start-page: 953
  issue: 3
  year: 2020
  ident: 1201_CR95
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-020-05449-w
– volume: 138
  start-page: 314
  year: 2019
  ident: 1201_CR77
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.02.062
– volume-title: 2020 Capital Spending Machine Tools Survey
  year: 2020
  ident: 1201_CR4
– volume: 49
  start-page: 1179
  issue: 4
  year: 2006
  ident: 1201_CR42
  publication-title: International Journal Series C Mechanical Systems, Machine Elements and Manufacturing
– volume-title: Metal Cutting Theory and Practice
  year: 2006
  ident: 1201_CR93
– volume: 7
  start-page: 93462
  year: 2019
  ident: 1201_CR56
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928141
– volume-title: Human in the Loop: Why We Will be Needed to Complement Artificial Intelligence
  year: 2018
  ident: 1201_CR139
– volume-title: Manufacturing Automation
  year: 2012
  ident: 1201_CR16
  doi: 10.1017/CBO9780511843723
– volume: 47
  start-page: 22
  year: 2017
  ident: 1201_CR105
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2016.12.009
– volume: 96
  start-page: 2509
  issue: 5
  year: 2018
  ident: 1201_CR94
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-018-1768-5
– volume: 4
  start-page: 23
  issue: 1
  year: 2016
  ident: 1201_CR13
  publication-title: Production & Manufacturing Research
  doi: 10.1080/21693277.2016.1192517
– volume: 32
  start-page: 77
  year: 2021
  ident: 1201_CR113
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01559-0
– volume: 128
  start-page: 1008
  year: 2019
  ident: 1201_CR128
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.05.017
– volume: 36
  start-page: 3216
  issue: 2
  year: 2009
  ident: 1201_CR52
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.01.051
– volume: 137
  start-page: 1647
  year: 2016
  ident: 1201_CR80
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2016.03.101
– volume: 133
  start-page: 142
  year: 2017
  ident: 1201_CR72
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.110
– volume: 80
  start-page: 761
  year: 2015
  ident: 1201_CR23
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-015-7029-y
– volume: 142
  start-page: 665
  year: 2003
  ident: 1201_CR51
  publication-title: Journal of Materials Processing Technology
  doi: 10.1016/S0924-0136(03)00687-3
– ident: 1201_CR86
  doi: 10.1109/COASE.2009.5234094
– volume: 56
  start-page: 1252
  issue: B
  year: 2020
  ident: 1201_CR18
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2020.04.019
– volume: 36
  start-page: 121
  issue: 1
  year: 2012
  ident: 1201_CR32
  publication-title: Precision Engineering
  doi: 10.1016/j.precisioneng.2011.07.013
– volume-title: All About Feature Scaling
  year: 2020
  ident: 1201_CR135
– volume: 275
  start-page: 123125
  year: 2020
  ident: 1201_CR73
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2020.123125
– ident: 1201_CR132
– volume-title: 4 Types of AI
  year: 2020
  ident: 1201_CR6
– volume: 101
  start-page: 2861
  issue: 9
  year: 2019
  ident: 1201_CR90
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-018-3157-5
– volume: 6
  start-page: 26241
  year: 2018
  ident: 1201_CR138
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2837621
– volume: 25
  start-page: 22
  year: 2019
  ident: 1201_CR35
  publication-title: CIRP Journal of Manufacturing Science and Technology
  doi: 10.1016/j.cirpj.2019.04.002
– volume: 55
  start-page: 969
  year: 2011
  ident: 1201_CR124
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-010-3133-1
– volume: 61
  start-page: 771
  issue: 2
  year: 2012
  ident: 1201_CR31
  publication-title: CIRP Annals — Manufacturing Technology
  doi: 10.1016/j.cirp.2012.05.008
– start-page: 396
  volume-title: System Reliability Theory: Models, Statistical Methods, and Applications
  year: 2003
  ident: 1201_CR83
– volume: 18
  start-page: 109
  issue: 1
  year: 2022
  ident: 1201_CR46
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2021.3073649
– volume: 87
  start-page: 914
  year: 2015
  ident: 1201_CR58
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2014.10.008
– volume: 69
  start-page: 121
  issue: 1–4
  year: 2013
  ident: 1201_CR34
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-013-4998-6
– ident: 1201_CR48
  doi: 10.1109/CISP.2015.7408020
– volume: 19
  start-page: 48
  year: 2015
  ident: 1201_CR49
  publication-title: Procedia Technology
  doi: 10.1016/j.protcy.2015.02.008
– volume: 9
  start-page: 2579
  year: 2008
  ident: 1201_CR15
  publication-title: Journal of Machine Learning Research
– volume: 66
  start-page: 955
  issue: 5
  year: 2013
  ident: 1201_CR92
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-012-4380-0
– volume: 31
  start-page: 1497
  year: 2020
  ident: 1201_CR111
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-019-01526-4
– volume: 31
  start-page: 14
  year: 2015
  ident: 1201_CR116
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.02.037
– volume: 31
  start-page: 29
  year: 2015
  ident: 1201_CR19
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2015.03.016
– volume: 56
  start-page: 212
  year: 2019
  ident: 1201_CR26
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2018.10.002
– volume: 1
  start-page: 143
  issue: 2
  year: 2020
  ident: 1201_CR5
  publication-title: AI
  doi: 10.3390/ai1020008
– volume: 131
  start-page: 689
  year: 2019
  ident: 1201_CR120
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2019.06.021
– volume: 58
  start-page: 210
  issue: B
  year: 2021
  ident: 1201_CR8
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2020.06.012
– volume: 59
  start-page: 717
  issue: 2
  year: 2010
  ident: 1201_CR103
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2010.05.010
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 1201_CR10
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– volume: 50
  start-page: 667
  issue: 5–8
  year: 2010
  ident: 1201_CR30
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-010-2520-y
– volume: 21
  start-page: 1251
  issue: 7
  year: 2015
  ident: 1201_CR20
  publication-title: Journal of Vibration and Control
  doi: 10.1177/1077546313493919
– volume: 7
  start-page: 146
  issue: 2
  year: 2017
  ident: 1201_CR43
  publication-title: Grey Systems: Theory and Application
  doi: 10.1108/GS-08-2016-0021
– ident: 1201_CR47
  doi: 10.1007/s12652-021-03378-4
– volume: 30
  start-page: 79
  issue: 1
  year: 2019
  ident: 1201_CR85
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-016-1228-8
– volume: 69
  start-page: 646
  year: 2020
  ident: 1201_CR69
  publication-title: CIRP Annals-Manufacturing Technology
  doi: 10.1016/j.cirp.2020.05.008
– volume: 127
  start-page: 158
  year: 2019
  ident: 1201_CR55
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.12.016
– volume: 42
  start-page: 1171
  issue: 10
  year: 2002
  ident: 1201_CR65
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/S0890-6955(02)00045-7
– volume: 36
  start-page: 527
  issue: 4
  year: 1996
  ident: 1201_CR37
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/0890-6955(95)00040-2
– volume: 61
  start-page: 101847
  year: 2020
  ident: 1201_CR68
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2019.101847
– volume: 59
  start-page: 1065
  issue: 9–12
  year: 2012
  ident: 1201_CR40
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-011-3564-3
– volume: 41
  start-page: 130
  year: 2016
  ident: 1201_CR41
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2016.08.006
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  ident: 1201_CR7
  publication-title: Science (Special Section: Artificial Intelligence)
– volume: 209
  start-page: 3125
  issue: 7
  year: 2009
  ident: 1201_CR60
  publication-title: Journal of Materials Processing Technology
  doi: 10.1016/j.jmatprotec.2008.07.023
– volume: 106
  start-page: 89
  year: 2016
  ident: 1201_CR28
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2016.04.007
– volume: 37
  start-page: 205
  year: 2015
  ident: 1201_CR74
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2015.08.081
– volume: 23
  start-page: 1805
  issue: 5
  year: 2012
  ident: 1201_CR61
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-010-0487-z
– volume: 231
  start-page: 753
  issue: 5
  year: 2017
  ident: 1201_CR38
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
  doi: 10.1177/0954405416639893
SSID ssj0062411
Score 2.402654
SecondaryResourceType review_article
Snippet Artificial intelligence (AI) in machine tools offers diverse advantages, including learning and optimizing machining processes, compensating errors, saving...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial intelligence
Control
Control stability
Dynamical Systems
Energy conservation
Engineering
Industrial and Production Engineering
Invited Review Article
Machine tools
Machining
Mechanical Engineering
Optimization
Prediction models
Tool wear
Vibration
기계공학
Title Artificial intelligence enabled smart machining and machine tools
URI https://link.springer.com/article/10.1007/s12206-021-1201-0
https://www.proquest.com/docview/2619747294
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002804482
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Mechanical Science and Technology, 2022, 36(1), , pp.1-23
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RuOjB-BlRJIvxpFmytV1Zj0RB_MCLkuCpWbfOGGEYwP_f98YmYNTEU7O03bL30b6Pvl8BzoRlqZAU1zCcucLI1A1taFyUFWNVIoOmpYB-70F2--J2EAyKOu5pedq9TEnmK_Wi2I0x8n6Z7_qMfOB1qAboupNY91mrXH4lbkm5l9VETRZKDMpU5k-vWNmM1rNJumJnfkuN5jtOZxu2ClPRac15uwNrNtuFzSUAwT1oUeccA8J5XQLXdGxeEpU40xGKhjPKT0ziDCfKkuLJOrPxeDjdh36n_XTZdYtLEdyYB97M9VFlbIhaqiKeilg1I5-jC2GllTxOA6O8UFihYu6FJqYErWhyEytDroM0zPADqGTjzB6CE9mEsF0S3wSRQFKaVPEwTJBDLPWN4TXwSurouEAMp4srhnqBdUwE1UhQTQTVXg3Ov6a8z-Ey_hp8iiTXb_GrJpBral_G-m2i0ZS_0Wi4KsFlDeolR3ShXlNNbh_-GFOiBhcllxbdv37x6F-jj2GDUbFDHnCpQ2U2-bAnaILMTAOqrave_SO118937UYugp8tPNHo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT4MwFH_ReVAPfhvnJzGeNBhoS6HHxTg3t3mayTw1tBRjpmA2vPjX2zLq3KImOxFCC_R9tO_X1_4KcEEUSgk18xoCI5cImrqRioSrbUUoltAgVGZCv_dAW4_kfhAMqn3cY7va3aYky556utkNIYN-ke_6yGDgZVghGoIHNVhp3D11bm0HTPWgVOKsUPsyYWRgk5m_vWRmOFrORulMpDmXHC3HnOYm9O3fTpaaDK8_CnEtP-eIHBdszhZsVDGo05gYzTYsqWwH1n8wE-5CwzyckEs4Lz9YOx1V7rVKnPGbtjnnrVyKqWs4cZZUd8op8vx1vAePzdv-TcutTltwJQ68wvW1L6pIuz-LcUokC2Mfa2yiqKJYpoFgXkQUYRJ7kZAm80tCLCQTBpNQgQTeh1qWZ-oAnFglhjQm8UUQkwB5ImU4ihKtepT6QuA6eFboXFZU5OZEjFc-JVE20uFaOtxIh3t1uPyu8j7h4fiv8LnWJB_KF27Ys831OefDEdcYoc11RMwIpnU4tormld-OucGTumGIkTpcWb1NH__5xcOFSp_Baqvf6_Ju-6FzBGvI7KgoZ3WOoVaMPtSJjnMKcVrZ9Rfa1e5c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_cBNEH8ROnU4v4pJS1SZo1j0Mdmx_DBwd7C02bytjWjbX-_-a61m2igk-lJGnJfSR3udzvAK6ZJjHjeK6hKLGZ4rHta1_ZRlaUFhH3mhoP9F96vNNnjwNvUNQ5Tcvb7mVIcpHTgChNSdaYRXFjmfhGCHrCxLVdgv5wBTbNauzina4-aZVLMTfbU-5xNY1WM8EGZVjzp0-sbUyVZB6v2ZzfwqT57tPeg93CbLRaCz7vw4ZODmBnBUzwEFrYuMCDsIYrQJuWztOjIiudGDGxJvntSTPCCpKoeNNWNp2O0yPotx_e7jp2USDBDqnnZLZr1Ef7RmNFQGMWimbgUuNOaK45DWNPCcdnmomQOr4KMVjLmlSFQqEbwRVR9BiqyTTRJ2AFOkKcl8hVXsA84qhYUN-PDLdI7CpFa-CU1JFhgR6ORSzGcol7jASVhqASCSqdGtx8DZktoDP-6nxlSC5H4VAi4DU-36dyNJfGrO9KY8QKRnkN6iVHZKFqqUQX0EyMCFaD25JLy-Zf_3j6r96XsPV635bP3d7TGWwTzIHIz2HqUM3mH_rcWCaZusil7xOLytXv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+enabled+smart+machining+and+machine+tools&rft.jtitle=Journal+of+mechanical+science+and+technology&rft.au=Chuo%2C+Yu+Sung&rft.au=Lee%2C+Ji+Woong&rft.au=Mun%2C+Chang+Hyeon&rft.au=Noh%2C+In+Woong&rft.date=2022-01-01&rft.pub=Korean+Society+of+Mechanical+Engineers&rft.issn=1738-494X&rft.eissn=1976-3824&rft.volume=36&rft.issue=1&rft.spage=1&rft.epage=23&rft_id=info:doi/10.1007%2Fs12206-021-1201-0&rft.externalDocID=10_1007_s12206_021_1201_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-494X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-494X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-494X&client=summon