Artificial intelligence enabled smart machining and machine tools
Artificial intelligence (AI) in machine tools offers diverse advantages, including learning and optimizing machining processes, compensating errors, saving energy, and preventing failures. Various AI techniques have been proposed and applied; however, many challenges still exist that inhibit the use...
Saved in:
Published in | Journal of mechanical science and technology Vol. 36; no. 1; pp. 1 - 23 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Society of Mechanical Engineers
01.01.2022
Springer Nature B.V 대한기계학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1738-494X 1976-3824 |
DOI | 10.1007/s12206-021-1201-0 |
Cover
Loading…
Abstract | Artificial intelligence (AI) in machine tools offers diverse advantages, including learning and optimizing machining processes, compensating errors, saving energy, and preventing failures. Various AI techniques have been proposed and applied; however, many challenges still exist that inhibit the use of AI for machining tasks. This paper deals with different types and usage of AI technologies in machining operations such as predictive modelling, parameter optimization and control, chatter stability, tool wear, and energy conservation. We discuss the challenges of AI technologies, such as data quality, transferability, explainability, and suggest future directions to overcome them. |
---|---|
AbstractList | Artificial intelligence (AI) in machine tools offers diverse advantages, including learning and optimizing machining processes, compensating errors, saving energy, and preventing failures. Various AI techniques have been proposed and applied; however, many challenges still exist that inhibit the use of AI for machining tasks. This paper deals with different types and usage of AI technologies in machining operations such as predictive modelling, parameter optimization and control, chatter stability, tool wear, and energy conservation. We discuss the challenges of AI technologies, such as data quality, transferability, explainability, and suggest future directions to overcome them. Artificial intelligence (AI) in machine tools offers diverse advantages, including learning and optimizing machining processes, compensating errors, saving energy, and preventing failures. Various AI techniques have been proposed and applied; however, many challenges still exist that inhibit the use of AI for machining tasks. This paper deals with different types and usage of AI technologies in machining operations such as predictive modelling, parameter optimization and control, chatter stability, tool wear, and energy conservation. We discuss the challenges of AI technologies, such as data quality, transferability, explainability, and suggest future directions to overcome them. KCI Citation Count: 2 |
Author | Kim, Dong Chan Lee, Jihyun Park, Simon S. Chuo, Yu Sung Noh, In Woong Mun, Chang Hyeon Rezvani, Sina Lee, Ji Woong Lee, Sang Won |
Author_xml | – sequence: 1 givenname: Yu Sung surname: Chuo fullname: Chuo, Yu Sung organization: Department of Mechanical and Manufacturing Engineering, University of Calgary – sequence: 2 givenname: Ji Woong surname: Lee fullname: Lee, Ji Woong organization: Department of Mechanical Engineering, Graduate School, Sungkyunk-wan University – sequence: 3 givenname: Chang Hyeon surname: Mun fullname: Mun, Chang Hyeon organization: Department of Mechanical Engineering, Ulsan National Institute of Science and Technology – sequence: 4 givenname: In Woong surname: Noh fullname: Noh, In Woong organization: Department of Mechanical Engineering, Graduate School, Sungkyunk-wan University – sequence: 5 givenname: Sina surname: Rezvani fullname: Rezvani, Sina organization: Department of Mechanical and Manufacturing Engineering, University of Calgary – sequence: 6 givenname: Dong Chan surname: Kim fullname: Kim, Dong Chan organization: Department of Mechanical Engineering, Ulsan National Institute of Science and Technology – sequence: 7 givenname: Jihyun surname: Lee fullname: Lee, Jihyun organization: Department of Mechanical and Manufacturing Engineering, University of Calgary – sequence: 8 givenname: Sang Won surname: Lee fullname: Lee, Sang Won organization: Department of Mechanical Engineering, Graduate School, Sungkyunk-wan University – sequence: 9 givenname: Simon S. surname: Park fullname: Park, Simon S. email: simon.park@ucalgary.ca organization: Department of Mechanical and Manufacturing Engineering, University of Calgary |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002804482$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8Lnjys5muTzbEUPwqCIBW8hWyaXdNuk5qkB_-9qVsQBD3NBN5nMvNMwMh5ZwC4RPAGQchvI8IYshJiVCIMUQlPwBgJzkpSYzrKPSd1SQV9OwOTGNcQMkwRGoPZLCTbWm1VX1iXTN_bzjhtCuNU05tVEbcqpGKr9Lt11nWFcqvjyxTJ-z6eg9NW9dFcHOsUvN7fLeeP5dPzw2I-eyo1qWAqERLM1ARWQpGWasEVIhTXhhlGdFs1AtbUUKEJrBsNMeeUk0aLBleVYA1uyBRcD3NdaOVGW-mV_a6dl5sgZy_LhRQCCUpYzl4N2V3wH3sTk1z7fXB5PYlZ1kI5zrkpQENKBx9jMK3cBZvP_ZQIyoNVOViV2ao8WJUwM_wXo21SyXqXgrL9vyQeyJh_cZ0JPzv9DX0BdVaLMw |
CitedBy_id | crossref_primary_10_1007_s12206_024_0131_z crossref_primary_10_1007_s12206_023_0131_4 crossref_primary_10_1016_j_jmapro_2022_12_019 crossref_primary_10_1016_j_measurement_2022_111520 crossref_primary_10_1007_s00170_023_11616_6 crossref_primary_10_1007_s40544_024_0879_2 crossref_primary_10_1016_j_rineng_2025_104457 crossref_primary_10_1007_s12206_022_0912_1 crossref_primary_10_3390_mi14030508 crossref_primary_10_3390_ma17235783 crossref_primary_10_1007_s11465_023_0752_4 crossref_primary_10_1051_matecconf_202440106004 crossref_primary_10_1007_s00170_022_08957_z crossref_primary_10_1016_j_cirpj_2024_01_012 crossref_primary_10_1007_s43684_022_00039_x crossref_primary_10_1016_j_eng_2024_04_024 crossref_primary_10_1080_00207543_2022_2122620 crossref_primary_10_1007_s00170_024_13652_2 crossref_primary_10_1007_s12541_024_01019_2 crossref_primary_10_3390_math12131923 crossref_primary_10_1007_s44163_023_00089_x crossref_primary_10_1016_j_cirp_2024_04_088 crossref_primary_10_1007_s12541_023_00831_6 crossref_primary_10_1016_j_jii_2025_100783 |
Cites_doi | 10.1109/SMC.2018.00244 10.1080/0951192X.2018.1550681 10.1007/s12541-019-00082-4 10.1007/978-3-030-27538-9_27 10.1007/s00170-019-04375-w 10.1016/j.procir.2015.03.043 10.1016/j.jmsy.2021.01.013 10.3390/app10072361 10.3390/jmmp3020045 10.1016/j.jmrt.2019.10.031 10.1080/09511920903225268 10.1080/10910344.2016.1191026 10.3390/s20174657 10.1093/nsr/nwx045 10.1016/j.precisioneng.2015.09.019 10.1016/j.procir.2016.09.033 10.1051/matecconf/201925203008 10.1007/s40747-016-0019-3 10.1080/00207543.2010.507608 10.1016/j.eng.2019.07.018 10.1016/j.ymssp.2006.07.016 10.1109/TII.2018.2864759 10.1016/S0890-6955(99)00009-7 10.1007/s10845-016-1206-1 10.1007/s00170-016-9254-4 10.1016/j.jmapro.2017.11.014 10.1109/JSYST.2015.2425793 10.3390/s16060795 10.1016/j.eswa.2009.06.103 10.1007/s00170-019-04788-7 10.1109/TMECH.2016.2620987 10.1016/j.asoc.2016.10.010 10.1016/j.energy.2018.08.105 10.1109/TR.2014.2299152 10.1590/S0100-73862002000100002 10.3390/s21010108 10.1007/s10845-008-0104-6 10.1007/s00170-011-3703-x 10.1177/0954405412458047 10.1007/s10845-013-0774-6 10.1007/s00170-020-06254-1 10.1016/j.cirp.2019.04.096 10.1016/j.cirp.2010.03.042 10.1016/j.cirpj.2011.07.003 10.1016/j.rcim.2020.101974 10.1007/978-3-030-02203-7_5 10.1016/j.ymssp.2021.107755 10.1016/j.procir.2018.08.253 10.1007/s00170-015-7317-6 10.1016/j.ymssp.2006.12.007 10.1109/COASE.2019.8843068 10.1016/j.ijmachtools.2009.02.003 10.1016/j.cie.2007.01.001 10.1016/j.jmatprotec.2009.11.007 10.3390/inventions3030041 10.1016/j.ymssp.2021.107617 10.1007/s40684-018-0057-y 10.1016/j.measurement.2020.108186 10.1007/s00170-020-06287-6 10.1016/j.cirpj.2019.11.003 10.1016/j.cag.2021.01.011 10.1016/j.ymssp.2017.11.016 10.1007/s00170-019-04807-7 10.3390/electronics10121429 10.1007/s40436-020-00342-x 10.1007/s00170-020-05449-w 10.1016/j.measurement.2019.02.062 10.1109/ACCESS.2019.2928141 10.1017/CBO9780511843723 10.1016/j.rcim.2016.12.009 10.1007/s00170-018-1768-5 10.1080/21693277.2016.1192517 10.1007/s10845-020-01559-0 10.1016/j.cie.2018.05.017 10.1016/j.eswa.2008.01.051 10.1016/j.jclepro.2016.03.101 10.1016/j.energy.2017.05.110 10.1007/s00170-015-7029-y 10.1016/S0924-0136(03)00687-3 10.1109/COASE.2009.5234094 10.1016/j.jmapro.2020.04.019 10.1016/j.precisioneng.2011.07.013 10.1016/j.jclepro.2020.123125 10.1007/s00170-018-3157-5 10.1109/ACCESS.2018.2837621 10.1016/j.cirpj.2019.04.002 10.1007/s00170-010-3133-1 10.1016/j.cirp.2012.05.008 10.1109/TII.2021.3073649 10.1016/j.jclepro.2014.10.008 10.1007/s00170-013-4998-6 10.1109/CISP.2015.7408020 10.1016/j.protcy.2015.02.008 10.1007/s00170-012-4380-0 10.1007/s10845-019-01526-4 10.1016/j.asoc.2015.02.037 10.1016/j.procir.2015.03.016 10.1016/j.rcim.2018.10.002 10.3390/ai1020008 10.1016/j.ymssp.2019.06.021 10.1016/j.jmsy.2020.06.012 10.1016/j.cirp.2010.05.010 10.1162/neco.2006.18.7.1527 10.1007/s00170-010-2520-y 10.1177/1077546313493919 10.1108/GS-08-2016-0021 10.1007/s12652-021-03378-4 10.1007/s10845-016-1228-8 10.1016/j.cirp.2020.05.008 10.1016/j.cie.2018.12.016 10.1016/S0890-6955(02)00045-7 10.1016/0890-6955(95)00040-2 10.1016/j.rcim.2019.101847 10.1007/s00170-011-3564-3 10.1016/j.jmsy.2016.08.006 10.1016/j.jmatprotec.2008.07.023 10.1016/j.ijmachtools.2016.04.007 10.1016/j.procir.2015.08.081 10.1007/s10845-010-0487-z 10.1177/0954405416639893 |
ContentType | Journal Article |
Copyright | The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION 7TB 8FD FR3 ACYCR |
DOI | 10.1007/s12206-021-1201-0 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Korean Citation Index |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1976-3824 |
EndPage | 23 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9919436 10_1007_s12206_021_1201_0 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .UV .VR 06D 0R~ 0VY 1N0 2.D 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 6NX 8FE 8FG 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LLZTM M7S MA- MK~ ML~ MZR NDZJH NF0 NPVJJ NQJWS O9- P9P PF0 PT4 PTHSS Q2X QOS R89 R9I RHV ROL RPX RSV S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TDB TSG TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8R Z8T Z8W ZMTXR ZZE ~A9 AAPKM AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT 7TB 8FD ABRTQ FR3 AABYN AAFGU AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADMVV ADOXG AEEQQ AEFTE AEKVL AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC SCV UNUBA |
ID | FETCH-LOGICAL-c350t-1196e83059a3f4c97a13428e6e63cf5b9084e49c308bc0277473bc9b25596b2b3 |
IEDL.DBID | U2A |
ISSN | 1738-494X |
IngestDate | Tue Nov 21 21:11:51 EST 2023 Fri Jul 25 12:20:34 EDT 2025 Tue Jul 01 04:23:35 EDT 2025 Thu Apr 24 22:57:27 EDT 2025 Fri Feb 21 02:46:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Industry 4.0 Machine tools Artificial intelligence Machine learning Machining |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-1196e83059a3f4c97a13428e6e63cf5b9084e49c308bc0277473bc9b25596b2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2619747294 |
PQPubID | 326249 |
PageCount | 23 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9919436 proquest_journals_2619747294 crossref_primary_10_1007_s12206_021_1201_0 crossref_citationtrail_10_1007_s12206_021_1201_0 springer_journals_10_1007_s12206_021_1201_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 20220101 2022-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Journal of mechanical science and technology |
PublicationTitleAbbrev | J Mech Sci Technol |
PublicationYear | 2022 |
Publisher | Korean Society of Mechanical Engineers Springer Nature B.V 대한기계학회 |
Publisher_xml | – name: Korean Society of Mechanical Engineers – name: Springer Nature B.V – name: 대한기계학회 |
References | GeissbauerRSchraufSBerttramPCheraghiFDigital Factories 2020 Shaping the Future of Manufacturing2017GermanyPricewaterhouse Coopers G. Xu, M. Liu, J. Wang, Y. Ma, J. Wang, F. Li and W. Shen, Data-driven fault diagnostics and prognostics for predictive maintenance: a brief overview, IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada (2019) 103–108. ElangovanMRamachandranK ISugumaranVStudies on Bayes classifier for condition monitoring of single point carbide tipped tool based on statistical and histogram featuresExpert Systems with Applications201037320592065 Z. Wei, B. Zhang and P. Liu, Object dimension measurement based on mask R-CNN, 12th International Conference on Intelligent Robotics and Applications, Shenyang, PRC (4) (2019) 320–330. LiuZWangXZhangQHuangCEmpirical mode decomposition based hybrid ensemble model for electrical energy consumption forecasting of the cement grinding processMeasurement2019138314324 SerinGSenerBOzbayogluA MUnverH OReview of tool condition monitoring in machining and opportunities for deep learningThe International Journal of Advanced Manufacturing Technology20201093953974 SeifGThe 5 Clustering Algorithms Data Scientists Need to Know2018CanadaTowards Data Science JordanM IMitchellT MReview-machine learning: trends, perspectives, and prospectsScience (Special Section: Artificial Intelligence)201534962452552601355.68227 SaglamHTool wear monitoring in bandsawing using neural networks and Taguchi’s design of experimentsThe International Journal of Advanced Manufacturing Technology201155969982 YesilliM CKhasawnehF AOttoAOn transfer learning for chatter detection in turning using wavelet packet transform and ensemble empirical mode decompositionCIRP Journal of Manufacturing Science and Technology202028118135 VoglG WWeissB AHeluMA review of diagnostic and prognostic capabilities and best practices for manufacturingJournal of Intelligent Manufacturing20193017995 KhaliliKVahidniaMImproving the accuracy of crack length measurement using machine visionProcedia Technology2015194855 StavropoulosPPapacharalampopoulosAVasiliadisEChryssolourisGTool wear predictability estimation in milling based on multi-sensorial dataThe International Journal of Advanced Manufacturing Technology201682509521 DunYZhuLYanBWangSA chatter detection method in milling of thin-walled TC4 alloy workpiece based on auto-encoding and hybrid clusteringMechanical Systems and Signal Processing2021158107755 ÜlkerETuranalpM EHalkaciH SAn artificial immune system approach to CNC tool path generationJournal of Intelligent Manufacturing20092016777 KarandikarJHoneycuttASchmitzTSmithSStability boundary and optimal operating parameter identification in milling using Bayesian learningJournal of Manufacturing Processes202056B12521262 OkohCRoyRMehnenJPredictive maintenance modelling for through-life engineering servicesProcedia CIRP201759196201 GuoQYangJWuHApplication of ACO-BPN to thermal error modeling of NC machine toolThe International Journal of Advanced Manufacturing Technology2010505–8667675 LoS PAn adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end millingJournal of Materials Processing Technology2003142665675 J. Liu, H. Gui and C. Ma, Digital twin system of thermal error control for a large-size gear profile grinder enabled by gated recurrent unit, Journal of Ambient Intelligence and Humanized Computing (2021). LiuKSongLHanWCuiYWangYTime-varying error prediction and compensation for movement axis of CNC machine tool based on digital twinIEEE Transactions on Industrial Informatics2022181109117 BenkedjouhTMedjaherKZerhouniNRechakSHealth assessment and life prediction of cutting tools based on support vector regressionJournal of Intelligent Manufacturing2015262213223 HassaniHSilvaE SUngerSTajmazinaniMMacFeelySArtificial intelligence (AI) or intelligence augmentation (IA): what is the futureAI202012143155 MaCZhaoLMeiXShiHYangJThermal error compensation of high-speed spindle system based on a modified BP neural networkThe International Journal of Advanced Manufacturing Technology2017899–1230713085 CuiXZhaoJDongYThe effects of cutting parameters on tool life and wear mechanisms of CBN tool in high-speed face milling of hardened steelThe International Journal of Advanced Manufacturing Technology2013665955964 PandiyanVCaeserendraWTjahjowidodoTTanH HIn-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithmJournal of Manufacturing Processes201831199213 TranMLiuMTranQMilling chatter detection using scalogram and deep convolutional neural networkThe International Journal of Advanced Manufacturing Technology202010715051516 DouJXuCJiaoSLiBZhangJXuXAn unsupervised online monitoring method for tool wear using a sparse auto-encoderThe International Journal of Advanced Manufacturing Technology2020106524932507 KayaBOysuCErtuncH MOcakHA support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithmProceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture20122261118081818 LiWLiuTTime varying and condition adaptive hidden Markov model for tool wear state estimation and remaining useful life prediction in micro-millingMechanical Systems and Signal Processing2019131689702 ZhangYZhuKDuanXLiSTool wear estimation and life prognostics in milling: Model extension and generalizationMechanical Systems and Signal Processing2021155107617 CaiWZhangWHuXLiuYA hybrid information model based on long short-term memory network for tool condition monitoringJournal of Intelligent Manufacturing20203114971510 Okuma America Corporation, Energy-Efficient Machine Tool Technologies, For Any Size Shop [White paper], Charlotte, North Carolina, USA (2015). C. Lin, T. Chen, L. Wang and H. Shuai, Health-based fault generative adversarial network for fault diagnosis in machine tools, Artificial Intelligence of Things Workshop in Association for the Advancement of Artificial Intelligence Conference, New York, USA (2020). KantGSangwanK SPredictive modelling for energy consumption in machining using artificial neural networkProcedia CIRP201537205210 FujishimaMNarimatsuKIrinoNMoriMIbarakiSAdaptive thermal displacement compensation method based on deep learningCIRP Journal of Manufacturing Science and Technology2019252225 LiaoLKöttigFReview of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life predictionIEEE Transactions on Reliability2014631191207 ChenJHuPZhouHYangJXieJJiangYGaoZZhangCToward intelligent machine toolEngineering201954679690 WangK CTsengP CLinK MThermal error modeling of a machining center using grey system theory and adaptive network-based fuzzy inference systemInternational Journal Series C Mechanical Systems, Machine Elements and Manufacturing200649411791187 SihagNSangwanK SA systematic literature review on machine tool energy consumptionJournal of Cleaner Production2020275123125 KarayelDPrediction and control of surface roughness in CNC lathe using artificial neural networkJournal of Materials Processing Technology2009209731253137 LeiYLiNGuoLLiNYanTLinJMachinery health prognostics: a systematic review from data acquisition to RUL predictionMechanical Systems and Signal Processing2018104799834 Caldeirani FilhoJDinizA EInfluence of cutting conditions on tool life, tool wear and surface finish in the face milling processJournal of the Brazilian Society of Mechanical Sciences2002241014 GoodfellowIBengioYCourvilleADeep Learning2016Cambridge, Massachusetts, USAMIT Press1373.68009 LuoWHuTYeYZhangCWeiYA hybrid predictive maintenance approach for CNC machine tool driven by digital twinRobotics and Computer Integrated Manufacturing202065101974 ZhangXZhuQHeYXuYEnergy modeling using an effective latent variable based functional link learning machineEnergy2018162883891 ZuperlUCusFSurface roughness fuzzy inference system within the control simulation of end millingPrecision Engineering201643530543 LamraouiMBarakMThomasMEl BadouiMChatter detection in milling machines by neural network classification and feature selectionJournal of Vibration and Control201521712511266 YangFZhangWTaoLMaJTransfer learning strategies for deep learning-based PHM algorithmsApplied Sciences20201072361 MayrJJedrzejewskiJUhlmannEAlkan DonmezMKnappWHärtigFWendtKMoriwakiTShorePSchmittRBrecherCWürzTWegenerKThermal issues in machine toolsCIRP Annals — Manufacturing Technology2012612771791 ZhuKWongY SHongG SWavelet analysis of sensor signals for tool condition monitoring: a review and some new resultsInternational Journal of Machine Tools and Manufacture2009497537553 StephensonD AAgapiouJ SMetal Cutting Theory and Practice2006Boca Ranton, Florida, USACRC Press KuntogluMAslanAPimenovD YUscaU ASalurEGuptaM KMikolajczykTGiasinKKaplonekWSharmaSA review of indirect tool condition monitoring systems and decision-making methods in turning: critical analysis and trendsSensors2021211108 ChaoSAltintasYChatter free tool orientations in 5-axis ball-end millingInternational Journal of Machine Tools and Manufacture20161068997 The British Standards Institution, BS EN 13306, Maintenance — Maintenance Terminology, London, UK (2010). DenkenaBAbeleEBrecherCDittrichM AKaraSMoriMEnergy efficient machine toolsCIRP Annals-Manufacturing Technology202069646667 TuncL TSmart tool path generation for 5-axis ball-end milling of sculptured surfaces using process modelsRobotics and Computer-Integrated Manufacturing201956212221 TetiRJemielniakKO’donnellGDornfeldDAdvanced monitoring of machining operationsCIRP Annals2010592717739 International Standards Organization, ISO 13381-1, Condition Monitoring and Diagnostics of Machines — Prognostics — Part 1: General Guidelines, Geneva, Switzerland (2004). HanSChoiH JChoiS KOhJ SFault diagnosis of planetary gear carrier packs: A class imbalance and multi-class classification problemInternational Journal of Precision Engine C Ma (1201_CR38) 2017; 231 T Mohanraj (1201_CR106) 2020; 9 H Wang (1201_CR34) 2013; 69 A M Abdulshahed (1201_CR43) 2017; 7 X Cui (1201_CR92) 2013; 66 C Ma (1201_CR39) 2017; 89 G Y Zhao (1201_CR72) 2017; 133 P Stavropoulos (1201_CR115) 2016; 82 M Tran (1201_CR22) 2020; 107 B Kaya (1201_CR118) 2012; 226 R Teti (1201_CR103) 2010; 59 Y Zhang (1201_CR96) 2021; 155 F Yang (1201_CR137) 2020; 10 Z Yao (1201_CR21) 2010; 210 A M Abdulshahed (1201_CR41) 2016; 41 J Caldeirani Filho (1201_CR91) 2002; 24 M Lamraoui (1201_CR20) 2015; 21 K Zhu (1201_CR107) 2009; 49 R H L da Silva (1201_CR109) 2016; 20 1201_CR102 B Cuka (1201_CR105) 2017; 47 K Khalili (1201_CR49) 2015; 19 J Balic (1201_CR65) 2002; 42 Y Dun (1201_CR24) 2021; 158 Z W Zhang (1201_CR80) 2016; 137 K Xia (1201_CR8) 2021; 58 Q Guo (1201_CR30) 2010; 50 C Okoh (1201_CR84) 2017; 59 Y Zhou (1201_CR94) 2018; 96 W Chengyang (1201_CR45) 2021; 59 X Zhang (1201_CR76) 2018; 162 1201_CR97 A J Torabi (1201_CR114) 2016; 10 S Chao (1201_CR28) 2016; 106 H M Elattar (1201_CR88) 2016; 2 R Geissbauer (1201_CR1) 2017 J Vyroubal (1201_CR32) 2012; 36 Q Ren (1201_CR116) 2015; 31 T Benkedjouh (1201_CR119) 2015; 26 1201_CR48 W Caesarendra (1201_CR126) 2021; 10 1201_CR131 1201_CR132 J Chen (1201_CR141) 2019; 5 M Elangovan (1201_CR121) 2010; 37 S Han (1201_CR134) 2019; 20 S Shao (1201_CR136) 2019; 15 T Wuest (1201_CR13) 2016; 4 1201_CR47 M Liu (1201_CR99) 2020; 20 S Kline Jr. (1201_CR4) 2020 J Lipski (1201_CR59) 2019; 252 G Chhabra (1201_CR133) 2019; 11 Y Altintas (1201_CR16) 2012 U Zuperl (1201_CR61) 2012; 23 B Li (1201_CR68) 2020; 61 D Shi (1201_CR125) 2007; 21 H Hassani (1201_CR5) 2020; 1 C H Lo (1201_CR36) 1999; 39 W Li (1201_CR120) 2019; 131 Y Yuan (1201_CR29) 2017; 22 Y Zhang (1201_CR40) 2012; 59 M C Yesilli (1201_CR25) 2020; 28 I Goodfellow (1201_CR130) 2016 U Zuperl (1201_CR62) 2016; 43 H Ghaiebi (1201_CR66) 2007; 52 W H Hsieh (1201_CR100) 2012; 61 Y Fu (1201_CR19) 2015; 31 Z Jurkovic (1201_CR53) 2018; 29 W Luo (1201_CR123) 2020; 65 C W Chang (1201_CR12) 2018; 3 D D’Addona (1201_CR108) 2011; 4 M Fujishima (1201_CR35) 2019; 25 H Hanachi (1201_CR90) 2019; 101 M I Jordan (1201_CR7) 2015; 349 G Seif (1201_CR14) 2018 J Mayr (1201_CR31) 2012; 61 S P Lo (1201_CR51) 2003; 142 Z Liu (1201_CR77) 2019; 138 H Saglam (1201_CR124) 2011; 55 G Kant (1201_CR57) 2015; 31 P Liu (1201_CR44) 2021; 9 D A Stephenson (1201_CR93) 2006 B Roy (1201_CR135) 2020 S Yang (1201_CR37) 1996; 36 D Flum (1201_CR81) 2019 S Laddada (1201_CR122) 2019; 234 G Serin (1201_CR95) 2020; 109 R H Guerra (1201_CR56) 2019; 7 D Zhang (1201_CR23) 2015; 80 D Karayel (1201_CR60) 2009; 209 A Gouarir (1201_CR110) 2018; 77 A Iqbal (1201_CR3) 2020; 111 G Zhao (1201_CR75) 2014; 174 J Karandikar (1201_CR18) 2020; 56 H Oo (1201_CR127) 2020; 111 L T Tunc (1201_CR27) 2019; 68 H El-Mounayri (1201_CR64) 2010; 23 L C Moreira (1201_CR55) 2019; 127 Z H Zhou (1201_CR142) 2018; 5 M Wetmore (1201_CR2) 2016 1201_CR50 G Kant (1201_CR74) 2015; 37 E Ülker (1201_CR63) 2009; 20 S Shankar (1201_CR101) 2019; 32 K Liu (1201_CR46) 2022; 18 I Svalina (1201_CR54) 2017; 52 A T Abbas (1201_CR67) 2011; 49 N Sihag (1201_CR73) 2020; 275 C Zhang (1201_CR112) 2016; 16 A Kumar (1201_CR128) 2019; 128 J Dou (1201_CR129) 2020; 106 A Widodo (1201_CR140) 2007; 21 H Cherukuri (1201_CR17) 2019; 3 W Cai (1201_CR111) 2020; 31 S Wang (1201_CR58) 2015; 87 M Rausand (1201_CR83) 2003 M Kuntoglu (1201_CR104) 2021; 21 R Sawhney (1201_CR139) 2018 L Xu (1201_CR113) 2021; 32 Y Lei (1201_CR98) 2018; 104 1201_CR82 J Johnson (1201_CR6) 2020 B Li (1201_CR33) 2019; 105 L Maaten (1201_CR15) 2008; 9 1201_CR86 1201_CR87 K C Wang (1201_CR42) 2006; 49 A Vijayaraghavan (1201_CR71) 2010; 59 P Cao (1201_CR138) 2018; 6 G W Vogl (1201_CR85) 2019; 30 W H Ho (1201_CR52) 2009; 36 L Liao (1201_CR89) 2014; 63 G E Hinton (1201_CR10) 2006; 18 D H Kim (1201_CR11) 2018; 5 1201_CR70 B Denkena (1201_CR69) 2020; 69 V Pandiyan (1201_CR117) 2018; 31 1201_CR79 L T Tunc (1201_CR26) 2019; 56 1201_CR78 M Matulis (1201_CR9) 2021; 95 |
References_xml | – reference: LiBTianXZhangMThermal error modeling of machine tool spindle based on the improved algorithm optimized BP neural networkThe International Journal of Advanced Manufacturing Technology2019105114971505 – reference: ZhangZ WTangR ZPengTTaoL YJiaSA method for minimizing the energy consumption of machining system: integration of process planning and schedulingJournal of Cleaner Production201613716471662 – reference: LeiYLiNGuoLLiNYanTLinJMachinery health prognostics: a systematic review from data acquisition to RUL predictionMechanical Systems and Signal Processing2018104799834 – reference: CaoPZhangSTangJPreprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learningIEEE Access201862624126253 – reference: KarandikarJHoneycuttASchmitzTSmithSStability boundary and optimal operating parameter identification in milling using Bayesian learningJournal of Manufacturing Processes202056B12521262 – reference: MohanrajTShankarSRajasekarRSakthivelN RPramanikATool condition monitoring techniques in milling process — a reviewJournal of Materials Research and Technology20209110321042 – reference: KlineSJr.2020 Capital Spending Machine Tools Survey2020USAGardner Intelligence – reference: TetiRJemielniakKO’donnellGDornfeldDAdvanced monitoring of machining operationsCIRP Annals2010592717739 – reference: HanachiHYuWKimI YLiuJMechefskeC KHybrid data-driven physics-based model fusion framework for tool wear predictionThe International Journal of Advanced Manufacturing Technology2019101928612872 – reference: KayaBOysuCErtuncH MOcakHA support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithmProceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture20122261118081818 – reference: LoS PAn adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end millingJournal of Materials Processing Technology2003142665675 – reference: MaCZhaoLMeiXShiHYangJThermal error compensation of high-speed spindle system based on a modified BP neural networkThe International Journal of Advanced Manufacturing Technology2017899–1230713085 – reference: ElangovanMRamachandranK ISugumaranVStudies on Bayes classifier for condition monitoring of single point carbide tipped tool based on statistical and histogram featuresExpert Systems with Applications201037320592065 – reference: AltintasYManufacturing Automation20122nd Ed.New York, USACambridge University Press – reference: LamraouiMBarakMThomasMEl BadouiMChatter detection in milling machines by neural network classification and feature selectionJournal of Vibration and Control201521712511266 – reference: CaiWZhangWHuXLiuYA hybrid information model based on long short-term memory network for tool condition monitoringJournal of Intelligent Manufacturing20203114971510 – reference: WuestTWeimerDIrgensCThobenK DMachine learning in manufacturing: advantages, challenges, and applicationsProduction & Manufacturing Research2016412345 – reference: OoHWangWLiuZTool wear monitoring system in belt grinding based on image-processing techniquesThe International Journal of Advanced Manufacturing Technology202011122152229 – reference: OkohCRoyRMehnenJPredictive maintenance modelling for through-life engineering servicesProcedia CIRP201759196201 – reference: KumarAChinnamR BTsengFAn HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting toolsComputers & Industrial Engineering201912810081014 – reference: ÜlkerETuranalpM EHalkaciH SAn artificial immune system approach to CNC tool path generationJournal of Intelligent Manufacturing20092016777 – reference: GoodfellowIBengioYCourvilleADeep Learning2016Cambridge, Massachusetts, USAMIT Press1373.68009 – reference: GuoQYangJWuHApplication of ACO-BPN to thermal error modeling of NC machine toolThe International Journal of Advanced Manufacturing Technology2010505–8667675 – reference: VoglG WWeissB AHeluMA review of diagnostic and prognostic capabilities and best practices for manufacturingJournal of Intelligent Manufacturing20193017995 – reference: GouarirAMartinez-ArellanoGTerrazasGBernadosPRatchevSIn-process tool wear prediction system based on machine learning techniques and force analysisProcedia CIRP201877501504 – reference: RoyBAll About Feature Scaling2020CanadaTowards Data Science – reference: SihagNSangwanK SA systematic literature review on machine tool energy consumptionJournal of Cleaner Production2020275123125 – reference: KantGSangwanK SPredictive modelling and optimization of machining parameters to minimize surface roughness using artificial neural network coupled with genetic algorithmProcedia CIRP201531453458 – reference: LiuZWangXZhangQHuangCEmpirical mode decomposition based hybrid ensemble model for electrical energy consumption forecasting of the cement grinding processMeasurement2019138314324 – reference: International Standards Organization, ISO 13381-1, Condition Monitoring and Diagnostics of Machines — Prognostics — Part 1: General Guidelines, Geneva, Switzerland (2004). – reference: ZhangYYangJJiangHMachine tool thermal error modeling and prediction by grey neural networkThe International Journal of Advanced Manufacturing Technology2012599–1210651072 – reference: LiBZhangHYePWangJTrajectory smoothing method using reinforcement learning for computer numerical control machine toolsRobotics and Computer-Integrated Manufacturing202061101847 – reference: FujishimaMNarimatsuKIrinoNMoriMIbarakiSAdaptive thermal displacement compensation method based on deep learningCIRP Journal of Manufacturing Science and Technology2019252225 – reference: ZhangCYaoXZhangJJinHTool condition monitoring and remaining useful life prognostic based on a wireless sensor in dry milling operationsSensors2016166795 – reference: Y. F. Li, X. X. Han and S. Y. Li, Non-contact dimension measurement of mechanical parts based on image processing, 8th International Congress on Image and Signal Processing (CISP), Shenyang, PRC (2015) 974–978. – reference: TorabiA JErM JLiXLimB SPeenG OApplication of clustering methods for online tool condition monitoring and fault diagnosis in high-speed milling processesIEEE Systems Journal2016102721732 – reference: MaCZhaoLMeiXShiHYangJThermal error compensation based on genetic algorithm and artificial neural network of the shaft in the high-speed spindle systemProceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture20172315753767 – reference: ShiDGindyNTool wear predictive model based on least squares support vector machinesMechanical Systems and Signal Processing200721417991814 – reference: AbbasA TAlyM FHamzaKOptimum drilling path planning for a rectangular matrix of holes using ant colony optimizationInternational Journal of Production Research2011491958775891 – reference: BenkedjouhTMedjaherKZerhouniNRechakSHealth assessment and life prediction of cutting tools based on support vector regressionJournal of Intelligent Manufacturing2015262213223 – reference: G. Press, Cleaning big data: most time-consuming, least enjoyable data science task, survey says, Forbes (2016). – reference: MatulisMHarveyCA robot arm digital twin utilizing reinforcement learningComputers and Graphics202195106114 – reference: SaglamHTool wear monitoring in bandsawing using neural networks and Taguchi’s design of experimentsThe International Journal of Advanced Manufacturing Technology201155969982 – reference: WangK CTsengP CLinK MThermal error modeling of a machining center using grey system theory and adaptive network-based fuzzy inference systemInternational Journal Series C Mechanical Systems, Machine Elements and Manufacturing200649411791187 – reference: ZhouZ HMachine learning challenges and impact: an interview with Thomas DietterichNational Science Review2018515458 – reference: YesilliM CKhasawnehF AOttoAOn transfer learning for chatter detection in turning using wavelet packet transform and ensemble empirical mode decompositionCIRP Journal of Manufacturing Science and Technology202028118135 – reference: ZhaoGZhaoQZhengGZhaiJSpecific energy consumption prediction method based on machine tool power measurementSensors & Transducers2014174115122 – reference: KhaliliKVahidniaMImproving the accuracy of crack length measurement using machine visionProcedia Technology2015194855 – reference: YaoZMeiDChenZOn-line chatter detection and identification based on wavelet and support vector machineJournal of Materials Processing Technology20102105713719 – reference: Caldeirani FilhoJDinizA EInfluence of cutting conditions on tool life, tool wear and surface finish in the face milling processJournal of the Brazilian Society of Mechanical Sciences2002241014 – reference: GuerraR HQuizaRVillalongaAArenasJCastanoFDigital twin-based optimization for ultraprecision motion systems with backlash and frictionIEEE Access201979346293472 – reference: JurkovicZCukorGBrezocnikMBrajkovicTA comparison of machine learning methods for cutting parameters prediction in high speed turning processJournal of Intelligent Manufacturing20182916831693 – reference: ElattarH MElminirH KRiadA MPrognostics: a literature reviewComplex & Intelligent Systems201622125154 – reference: ZhuKWongY SHongG SWavelet analysis of sensor signals for tool condition monitoring: a review and some new resultsInternational Journal of Machine Tools and Manufacture2009497537553 – reference: SeifGThe 5 Clustering Algorithms Data Scientists Need to Know2018CanadaTowards Data Science – reference: CaesarendraWTriwiyantoTPandiyanVGlowaczAPermanaS D HTjahjowidodoTA CNN prediction method for belt grinding tool wear in a polishing process utilizing 3-axes force and vibration dataElectronics202110121429 – reference: R. Ak, M. M. Helu and S. Rachuri, Ensemble neural network model for predicting the energy consumption of a milling machine, Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, Massachusetts, USA (2015) 1–7. – reference: El-MounayriHDengHA generic and innovative approach for integrated simulation and optimisation of end milling using solid modelling and neural networkInternational Journal of Computer Integrated Manufacturing20102314060 – reference: WangHWangLLiTHanJThermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering methodThe International Journal of Advanced Manufacturing Technology2013691–4121126 – reference: Y. Zhou, B. Sun, W. Sun and Z. Lei, Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process, Journal of Intelligent Manufacturing (2020). – reference: ZhaoG YLiuZ YHeYCaoH JGuoY BEnergy consumption in machining: classification, prediction, and reduction strategyEnergy2017133142157 – reference: IqbalAZhaoGSuhaimiHHeNHussainGZhaoWReadiness of subtractive and additive manufacturing and their sustainable amalgamation from the perspective of Industry 4.0: a comprehensive reviewThe International Journal of Advanced Manufacturing Technology202011124752498 – reference: LaddadaSSi-ChaibM OBenkedjouhTDraiRTool wear condition monitoring based on wavelet transform and improved extreme learning machineProceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science2019234510571068 – reference: YangFZhangWTaoLMaJTransfer learning strategies for deep learning-based PHM algorithmsApplied Sciences20201072361 – reference: CherukuriHPerez-BernabeuESellesMSchmitzTMachining chatter prediction using a data learning modelJournal of Manufacturing Materials Processing2019324559 – reference: FuYZhangYQiaoHLiDZhouHLeopoldJAnalysis of feature extracting ability for cutting state monitoring using deep belief networksProcedia CIRP2015312934 – reference: RausandMHoylandASystem Reliability Theory: Models, Statistical Methods, and Applications2003New Jersey, USAJohn Wiley & Sons, Hoboken3961052.93001 – reference: YangSYuanJNiJThe improvement of thermal error modeling and compensation on machine tools by CMAC neural networkInternational Journal of Machine Tools and Manufacture1996364527537 – reference: HsiehW HLuM CChiouS JApplication of back-propagation neural network for spindle vibration-based tool wear monitoring in micro-millingThe International Journal of Advanced Manufacturing Technology2012615361 – reference: LuoWHuTYeYZhangCWeiYA hybrid predictive maintenance approach for CNC machine tool driven by digital twinRobotics and Computer Integrated Manufacturing202065101974 – reference: VijayaraghavanADornfeldDAutomated energy monitoring of machine toolsCIRP Annals20105912124 – reference: ChengyangWSitongXWanshengXSpindle thermal error prediction approach based on thermal infrared images: a deep learning methodJournal of Manufacturing Systems2021596780 – reference: JohnsonJ4 Types of AI2020Houston, Texas, USABMC – reference: KimD HKimT J YWangXKimMQuanY JOhJ WMinS HKimHBhandariBYangIAhnS HSmart machining process using machine learning: A review and perspective on machining industryInternational Journal of Precision Engineering and Manufacturing-Green Technology20185555568 – reference: AbdulshahedA MLongstaffA PFletcherSPotdarAThermal error modelling of a gantry-type 5-axis machine tool using a grey neural network modelJournal of Manufacturing Systems201641130142 – reference: HassaniHSilvaE SUngerSTajmazinaniMMacFeelySArtificial intelligence (AI) or intelligence augmentation (IA): what is the futureAI202012143155 – reference: HanSChoiH JChoiS KOhJ SFault diagnosis of planetary gear carrier packs: A class imbalance and multi-class classification problemInternational Journal of Precision Engineering and Manufacturing201920167179 – reference: C. Ly, K. Tom, C. S. Byington, R. Patrick and G. J. Vachtsevanos, Fault diagnosis and failure prognosis for engineering systems: a global perspective, 2009 IEEE International Conference on Automation Science and Engineering, Bengalore, India (2009) 108–115. – reference: LiuPDuZLiHDengMFengXYangJThermal error modeling based on BiLSTM deep learning for CNC machine toolAdvanced Manufacturing20219235249 – reference: StavropoulosPPapacharalampopoulosAVasiliadisEChryssolourisGTool wear predictability estimation in milling based on multi-sensorial dataThe International Journal of Advanced Manufacturing Technology201682509521 – reference: ZuperlUCusFReibenschuhMModeling and adaptive force control of milling by using artificial techniquesJournal of Intelligent Manufacturing201223518051815 – reference: XuLHuangCLiCWangJLiuHWangXEstimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machiningJournal of Intelligent Manufacturing2021327790 – reference: VyroubalJCompensation of machine tool thermal deformation in spindle axis direction based on decomposition methodPrecision Engineering2012361121127 – reference: J. Liu, H. Gui and C. Ma, Digital twin system of thermal error control for a large-size gear profile grinder enabled by gated recurrent unit, Journal of Ambient Intelligence and Humanized Computing (2021). – reference: D’AddonaDSegretoTSimeoneATetiRANN tool wear modelling in the machining of nickel superalloy industrial productsCIRP Journal of Manufacturing Science and Technology2011413337 – reference: MoreiraL CLiL DLuXFitzpatrickM ESupervision controller for real-time surface quality assurance in CNC machining using artificial intelligenceComputers & Industrial Engineering2019127158168 – reference: Q. Xiao, C. Li, Y. Tang, Y. Du and Y. Kou, Deep learning based modeling for cutting energy consumed in CNC turning process, Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Miyazaki, Japan (2018) 1398–1403. – reference: ZuperlUCusFSurface roughness fuzzy inference system within the control simulation of end millingPrecision Engineering201643530543 – reference: JordanM IMitchellT MReview-machine learning: trends, perspectives, and prospectsScience (Special Section: Artificial Intelligence)201534962452552601355.68227 – reference: HintonG EOsinderoSTehYA fast learning algorithm for deep belief netsNeural Computation20061871527155422244851106.68094 – reference: C. Lin, T. Chen, L. Wang and H. Shuai, Health-based fault generative adversarial network for fault diagnosis in machine tools, Artificial Intelligence of Things Workshop in Association for the Advancement of Artificial Intelligence Conference, New York, USA (2020). – reference: KantGSangwanK SPredictive modelling for energy consumption in machining using artificial neural networkProcedia CIRP201537205210 – reference: DenkenaBAbeleEBrecherCDittrichM AKaraSMoriMEnergy efficient machine toolsCIRP Annals-Manufacturing Technology202069646667 – reference: KuntogluMAslanAPimenovD YUscaU ASalurEGuptaM KMikolajczykTGiasinKKaplonekWSharmaSA review of indirect tool condition monitoring systems and decision-making methods in turning: critical analysis and trendsSensors2021211108 – reference: TranMLiuMTranQMilling chatter detection using scalogram and deep convolutional neural networkThe International Journal of Advanced Manufacturing Technology202010715051516 – reference: CuiXZhaoJDongYThe effects of cutting parameters on tool life and wear mechanisms of CBN tool in high-speed face milling of hardened steelThe International Journal of Advanced Manufacturing Technology2013665955964 – reference: YuanYZhangH TWuYZhuTDingHBayesian learning-based model-predictive vibration control for thin-walled workpiece machining processesIEEE/ASME Transactions on Mechatronics2017221509520 – reference: da SilvaR H Lda SilvaM BHassuiAA probabilistic neural network applied in monitoring tool wear in the end milling operation via acoustic emission and cutting power signalsMachining Science and Technology2016203386405 – reference: ChhabraGVashishtVRanjanJA review on missing data value estimation using imputation algorithmJournal of Advanced Research in Dynamical and Control Systems2019117312318 – reference: Okuma America Corporation, Energy-Efficient Machine Tool Technologies, For Any Size Shop [White paper], Charlotte, North Carolina, USA (2015). – reference: XiaKSaccoCKirkpatrickMSaidyCNguyenLKircalialiAHarikRA digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces, and intelligenceJournal of Manufacturing Systems202158B210230 – reference: ZhouYXueWReview of tool condition monitoring methods in milling processesThe International Journal of Advanced Manufacturing Technology201896525092523 – reference: ChangC WLeeH WLiuC HA review of artificial intelligence algorithms used for smart machine toolsInventions20183341 – reference: WangSLuXLiX XLiW DA systematic approach of process planning and scheduling optimization for sustainable machiningJournal of Cleaner Production201587914929 – reference: StephensonD AAgapiouJ SMetal Cutting Theory and Practice2006Boca Ranton, Florida, USACRC Press – reference: ChaoSAltintasYChatter free tool orientations in 5-axis ball-end millingInternational Journal of Machine Tools and Manufacture20161068997 – reference: SerinGSenerBOzbayogluA MUnverH OReview of tool condition monitoring in machining and opportunities for deep learningThe International Journal of Advanced Manufacturing Technology20201093953974 – reference: The British Standards Institution, BS EN 13306, Maintenance — Maintenance Terminology, London, UK (2010). – reference: G. Xu, M. Liu, J. Wang, Y. Ma, J. Wang, F. Li and W. Shen, Data-driven fault diagnostics and prognostics for predictive maintenance: a brief overview, IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada (2019) 103–108. – reference: LiuKSongLHanWCuiYWangYTime-varying error prediction and compensation for movement axis of CNC machine tool based on digital twinIEEE Transactions on Industrial Informatics2022181109117 – reference: LoC HYuanJNiJOptimal temperature variable selection by grouping approach for thermal error modeling and compensationInternational Journal of Machine Tools and Manufacture199939913831396 – reference: GeissbauerRSchraufSBerttramPCheraghiFDigital Factories 2020 Shaping the Future of Manufacturing2017GermanyPricewaterhouse Coopers – reference: ZhangDBiGSunZGuoYOnline monitoring of precision optics grinding using acoustic emission based on support vector machineInternational Journal of Advanced Manufacturing Technology201580761774 – reference: TuncL TZatarainMStability optimal selection of stock shape and tool axis in finishing of thin-wall partsCIRP Annals2019681401404 – reference: RenQBaronLBalazinskiMBotezRBigrasPTool wear assessment based on type-2 fuzzy uncertainty estimation on acoustic emissionApplied Soft Computing2015311424 – reference: LiWLiuTTime varying and condition adaptive hidden Markov model for tool wear state estimation and remaining useful life prediction in micro-millingMechanical Systems and Signal Processing2019131689702 – reference: MayrJJedrzejewskiJUhlmannEAlkan DonmezMKnappWHärtigFWendtKMoriwakiTShorePSchmittRBrecherCWürzTWegenerKThermal issues in machine toolsCIRP Annals — Manufacturing Technology2012612771791 – reference: ChenJHuPZhouHYangJXieJJiangYGaoZZhangCToward intelligent machine toolEngineering201954679690 – reference: WetmoreMIndustry 4.0: an Opportunity to Shine for Canadian Manufacturers2016CanadaPricewaterhouse Coopers – reference: SawhneyRHuman in the Loop: Why We Will be Needed to Complement Artificial Intelligence2018London, UKThe London School of Economics and Political Science Business Review – reference: DunYZhuLYanBWangSA chatter detection method in milling of thin-walled TC4 alloy workpiece based on auto-encoding and hybrid clusteringMechanical Systems and Signal Processing2021158107755 – reference: TuncL TSmart tool path generation for 5-axis ball-end milling of sculptured surfaces using process modelsRobotics and Computer-Integrated Manufacturing201956212221 – reference: Z. Wei, B. Zhang and P. Liu, Object dimension measurement based on mask R-CNN, 12th International Conference on Intelligent Robotics and Applications, Shenyang, PRC (4) (2019) 320–330. – reference: FlumDSossenheimerJStückCAbeleEArmendiaMGhassempouriMOzturkEPeyssonFTowards energy-efficient machine tools through the development of the twin-control energy efficiency moduleTwin-Control2019Cham, SwitzerlandSpringer95108 – reference: DouJXuCJiaoSLiBZhangJXuXAn unsupervised online monitoring method for tool wear using a sparse auto-encoderThe International Journal of Advanced Manufacturing Technology2020106524932507 – reference: PandiyanVCaeserendraWTjahjowidodoTTanH HIn-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithmJournal of Manufacturing Processes201831199213 – reference: SvalinaISimunovicGSaricTLujicREvolutionary neuro-fuzzy system for surface roughness evaluationApplied Soft Computing201752593604 – reference: LiuMYaoXZhangJChenWJingXWangKMulti-sensor data fusion for remaining useful life prediction of machining tools by IABC-BPNN in dry milling operationsSensors202020174657 – reference: AbdulshahedA MLongstaffA PFletcherSA cuckoo search optimisation-based Grey prediction model for thermal error compensation on CNC machine toolsGrey Systems: Theory and Application201772146155 – reference: CukaBKimD WFuzzy logic based tool condition monitoring for end-millingRobotics and Computer-Integrated Manufacturing2017472236 – reference: ShaoSMcAleerSYanRBaldiPHighly accurate machine fault diagnosis using deep transfer learningIEEE Transactions on Industrial Informatics201915424462455 – reference: GhaiebiHSolimanpurMAn ant algorithm for optimization of hole-making operationsComputers & Industrial Engineering2007522308319 – reference: ZhangXZhuQHeYXuYEnergy modeling using an effective latent variable based functional link learning machineEnergy2018162883891 – reference: ShankarSMohanrajTRajasekarRPrediction of cutting tool wear during milling process using artificial intelligence techniquesInternational Journal of Computer Integrated Manufacturing2019322174182 – reference: MaatenLHintonGVisualizing data using t-SNEJournal of Machine Learning Research20089257926051225.68219 – reference: ZhangYZhuKDuanXLiSTool wear estimation and life prognostics in milling: Model extension and generalizationMechanical Systems and Signal Processing2021155107617 – reference: BalicJKorosecMIntelligent tool path generation for milling of free surfaces using neural networksInternational Journal of Machine Tools and Manufacture2002421011711179 – reference: HoW HTsaiJ TLinB TChouJ HAdaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithmExpert Systems with Applications200936232163222 – reference: LiaoLKöttigFReview of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life predictionIEEE Transactions on Reliability2014631191207 – reference: WidodoAYangB SSupport vector machine in machine condition monitoring and fault diagnosisMechanical Systems and Signal Processing200721625602574 – reference: LipskiJZaleskiKImplementation of artificial intelligence in optimization of technological processesMATEC Web of Conferences201925203008 – reference: KarayelDPrediction and control of surface roughness in CNC lathe using artificial neural networkJournal of Materials Processing Technology2009209731253137 – ident: 1201_CR131 – ident: 1201_CR79 doi: 10.1109/SMC.2018.00244 – volume: 32 start-page: 174 issue: 2 year: 2019 ident: 1201_CR101 publication-title: International Journal of Computer Integrated Manufacturing doi: 10.1080/0951192X.2018.1550681 – volume: 20 start-page: 167 year: 2019 ident: 1201_CR134 publication-title: International Journal of Precision Engineering and Manufacturing doi: 10.1007/s12541-019-00082-4 – ident: 1201_CR50 doi: 10.1007/978-3-030-27538-9_27 – volume-title: Deep Learning year: 2016 ident: 1201_CR130 – volume: 234 start-page: 1057 issue: 5 year: 2019 ident: 1201_CR122 publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – volume: 105 start-page: 1497 issue: 1 year: 2019 ident: 1201_CR33 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-019-04375-w – volume: 31 start-page: 453 year: 2015 ident: 1201_CR57 publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.03.043 – volume: 59 start-page: 67 year: 2021 ident: 1201_CR45 publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2021.01.013 – volume: 10 start-page: 2361 issue: 7 year: 2020 ident: 1201_CR137 publication-title: Applied Sciences doi: 10.3390/app10072361 – volume: 3 start-page: 45 issue: 2 year: 2019 ident: 1201_CR17 publication-title: Journal of Manufacturing Materials Processing doi: 10.3390/jmmp3020045 – volume: 9 start-page: 1032 issue: 1 year: 2020 ident: 1201_CR106 publication-title: Journal of Materials Research and Technology doi: 10.1016/j.jmrt.2019.10.031 – volume: 23 start-page: 40 issue: 1 year: 2010 ident: 1201_CR64 publication-title: International Journal of Computer Integrated Manufacturing doi: 10.1080/09511920903225268 – volume: 20 start-page: 386 issue: 3 year: 2016 ident: 1201_CR109 publication-title: Machining Science and Technology doi: 10.1080/10910344.2016.1191026 – volume: 20 start-page: 4657 issue: 17 year: 2020 ident: 1201_CR99 publication-title: Sensors doi: 10.3390/s20174657 – volume: 5 start-page: 54 issue: 1 year: 2018 ident: 1201_CR142 publication-title: National Science Review doi: 10.1093/nsr/nwx045 – volume: 43 start-page: 530 year: 2016 ident: 1201_CR62 publication-title: Precision Engineering doi: 10.1016/j.precisioneng.2015.09.019 – volume: 59 start-page: 196 year: 2017 ident: 1201_CR84 publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.09.033 – volume: 252 start-page: 03008 year: 2019 ident: 1201_CR59 publication-title: MATEC Web of Conferences doi: 10.1051/matecconf/201925203008 – volume: 2 start-page: 125 issue: 2 year: 2016 ident: 1201_CR88 publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-016-0019-3 – volume: 49 start-page: 5877 issue: 19 year: 2011 ident: 1201_CR67 publication-title: International Journal of Production Research doi: 10.1080/00207543.2010.507608 – ident: 1201_CR82 – volume: 5 start-page: 679 issue: 4 year: 2019 ident: 1201_CR141 publication-title: Engineering doi: 10.1016/j.eng.2019.07.018 – volume: 21 start-page: 1799 issue: 4 year: 2007 ident: 1201_CR125 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2006.07.016 – volume: 15 start-page: 2446 issue: 4 year: 2019 ident: 1201_CR136 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2018.2864759 – volume: 39 start-page: 1383 issue: 9 year: 1999 ident: 1201_CR36 publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/S0890-6955(99)00009-7 – volume: 29 start-page: 1683 year: 2018 ident: 1201_CR53 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-016-1206-1 – volume-title: The 5 Clustering Algorithms Data Scientists Need to Know year: 2018 ident: 1201_CR14 – volume: 89 start-page: 3071 issue: 9–12 year: 2017 ident: 1201_CR39 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-016-9254-4 – volume: 31 start-page: 199 year: 2018 ident: 1201_CR117 publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2017.11.014 – volume: 11 start-page: 312 issue: 7 year: 2019 ident: 1201_CR133 publication-title: Journal of Advanced Research in Dynamical and Control Systems – volume: 10 start-page: 721 issue: 2 year: 2016 ident: 1201_CR114 publication-title: IEEE Systems Journal doi: 10.1109/JSYST.2015.2425793 – volume: 16 start-page: 795 issue: 6 year: 2016 ident: 1201_CR112 publication-title: Sensors doi: 10.3390/s16060795 – volume: 37 start-page: 2059 issue: 3 year: 2010 ident: 1201_CR121 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.06.103 – volume: 106 start-page: 2493 issue: 5 year: 2020 ident: 1201_CR129 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-019-04788-7 – volume: 22 start-page: 509 issue: 1 year: 2017 ident: 1201_CR29 publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2016.2620987 – volume: 52 start-page: 593 year: 2017 ident: 1201_CR54 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.10.010 – volume: 162 start-page: 883 year: 2018 ident: 1201_CR76 publication-title: Energy doi: 10.1016/j.energy.2018.08.105 – volume: 63 start-page: 191 issue: 1 year: 2014 ident: 1201_CR89 publication-title: IEEE Transactions on Reliability doi: 10.1109/TR.2014.2299152 – volume: 24 start-page: 10 year: 2002 ident: 1201_CR91 publication-title: Journal of the Brazilian Society of Mechanical Sciences doi: 10.1590/S0100-73862002000100002 – volume: 21 start-page: 108 issue: 1 year: 2021 ident: 1201_CR104 publication-title: Sensors doi: 10.3390/s21010108 – ident: 1201_CR87 – volume: 20 start-page: 67 issue: 1 year: 2009 ident: 1201_CR63 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-008-0104-6 – volume: 61 start-page: 53 year: 2012 ident: 1201_CR100 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-011-3703-x – volume: 174 start-page: 115 year: 2014 ident: 1201_CR75 publication-title: Sensors & Transducers – volume: 226 start-page: 1808 issue: 11 year: 2012 ident: 1201_CR118 publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture doi: 10.1177/0954405412458047 – volume: 26 start-page: 213 issue: 2 year: 2015 ident: 1201_CR119 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-013-0774-6 – volume: 111 start-page: 2215 year: 2020 ident: 1201_CR127 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-020-06254-1 – volume: 68 start-page: 401 issue: 1 year: 2019 ident: 1201_CR27 publication-title: CIRP Annals doi: 10.1016/j.cirp.2019.04.096 – volume: 59 start-page: 21 issue: 1 year: 2010 ident: 1201_CR71 publication-title: CIRP Annals doi: 10.1016/j.cirp.2010.03.042 – volume: 4 start-page: 33 issue: 1 year: 2011 ident: 1201_CR108 publication-title: CIRP Journal of Manufacturing Science and Technology doi: 10.1016/j.cirpj.2011.07.003 – volume: 65 start-page: 101974 year: 2020 ident: 1201_CR123 publication-title: Robotics and Computer Integrated Manufacturing doi: 10.1016/j.rcim.2020.101974 – start-page: 95 volume-title: Twin-Control year: 2019 ident: 1201_CR81 doi: 10.1007/978-3-030-02203-7_5 – volume: 158 start-page: 107755 year: 2021 ident: 1201_CR24 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2021.107755 – ident: 1201_CR78 – volume-title: Industry 4.0: an Opportunity to Shine for Canadian Manufacturers year: 2016 ident: 1201_CR2 – volume: 77 start-page: 501 year: 2018 ident: 1201_CR110 publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.08.253 – volume: 82 start-page: 509 year: 2016 ident: 1201_CR115 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-015-7317-6 – volume: 21 start-page: 2560 issue: 6 year: 2007 ident: 1201_CR140 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2006.12.007 – volume-title: Digital Factories 2020 Shaping the Future of Manufacturing year: 2017 ident: 1201_CR1 – ident: 1201_CR97 doi: 10.1109/COASE.2019.8843068 – volume: 49 start-page: 537 issue: 7 year: 2009 ident: 1201_CR107 publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2009.02.003 – volume: 52 start-page: 308 issue: 2 year: 2007 ident: 1201_CR66 publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2007.01.001 – volume: 210 start-page: 713 issue: 5 year: 2010 ident: 1201_CR21 publication-title: Journal of Materials Processing Technology doi: 10.1016/j.jmatprotec.2009.11.007 – volume: 3 start-page: 41 issue: 3 year: 2018 ident: 1201_CR12 publication-title: Inventions doi: 10.3390/inventions3030041 – volume: 155 start-page: 107617 year: 2021 ident: 1201_CR96 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2021.107617 – volume: 5 start-page: 555 year: 2018 ident: 1201_CR11 publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology doi: 10.1007/s40684-018-0057-y – ident: 1201_CR70 – ident: 1201_CR102 doi: 10.1016/j.measurement.2020.108186 – volume: 111 start-page: 2475 year: 2020 ident: 1201_CR3 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-020-06287-6 – volume: 28 start-page: 118 year: 2020 ident: 1201_CR25 publication-title: CIRP Journal of Manufacturing Science and Technology doi: 10.1016/j.cirpj.2019.11.003 – volume: 95 start-page: 106 year: 2021 ident: 1201_CR9 publication-title: Computers and Graphics doi: 10.1016/j.cag.2021.01.011 – volume: 104 start-page: 799 year: 2018 ident: 1201_CR98 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.11.016 – volume: 107 start-page: 1505 year: 2020 ident: 1201_CR22 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-019-04807-7 – volume: 10 start-page: 1429 issue: 12 year: 2021 ident: 1201_CR126 publication-title: Electronics doi: 10.3390/electronics10121429 – volume: 9 start-page: 235 year: 2021 ident: 1201_CR44 publication-title: Advanced Manufacturing doi: 10.1007/s40436-020-00342-x – volume: 109 start-page: 953 issue: 3 year: 2020 ident: 1201_CR95 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-020-05449-w – volume: 138 start-page: 314 year: 2019 ident: 1201_CR77 publication-title: Measurement doi: 10.1016/j.measurement.2019.02.062 – volume-title: 2020 Capital Spending Machine Tools Survey year: 2020 ident: 1201_CR4 – volume: 49 start-page: 1179 issue: 4 year: 2006 ident: 1201_CR42 publication-title: International Journal Series C Mechanical Systems, Machine Elements and Manufacturing – volume-title: Metal Cutting Theory and Practice year: 2006 ident: 1201_CR93 – volume: 7 start-page: 93462 year: 2019 ident: 1201_CR56 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928141 – volume-title: Human in the Loop: Why We Will be Needed to Complement Artificial Intelligence year: 2018 ident: 1201_CR139 – volume-title: Manufacturing Automation year: 2012 ident: 1201_CR16 doi: 10.1017/CBO9780511843723 – volume: 47 start-page: 22 year: 2017 ident: 1201_CR105 publication-title: Robotics and Computer-Integrated Manufacturing doi: 10.1016/j.rcim.2016.12.009 – volume: 96 start-page: 2509 issue: 5 year: 2018 ident: 1201_CR94 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-018-1768-5 – volume: 4 start-page: 23 issue: 1 year: 2016 ident: 1201_CR13 publication-title: Production & Manufacturing Research doi: 10.1080/21693277.2016.1192517 – volume: 32 start-page: 77 year: 2021 ident: 1201_CR113 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-020-01559-0 – volume: 128 start-page: 1008 year: 2019 ident: 1201_CR128 publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.05.017 – volume: 36 start-page: 3216 issue: 2 year: 2009 ident: 1201_CR52 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.01.051 – volume: 137 start-page: 1647 year: 2016 ident: 1201_CR80 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2016.03.101 – volume: 133 start-page: 142 year: 2017 ident: 1201_CR72 publication-title: Energy doi: 10.1016/j.energy.2017.05.110 – volume: 80 start-page: 761 year: 2015 ident: 1201_CR23 publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-015-7029-y – volume: 142 start-page: 665 year: 2003 ident: 1201_CR51 publication-title: Journal of Materials Processing Technology doi: 10.1016/S0924-0136(03)00687-3 – ident: 1201_CR86 doi: 10.1109/COASE.2009.5234094 – volume: 56 start-page: 1252 issue: B year: 2020 ident: 1201_CR18 publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2020.04.019 – volume: 36 start-page: 121 issue: 1 year: 2012 ident: 1201_CR32 publication-title: Precision Engineering doi: 10.1016/j.precisioneng.2011.07.013 – volume-title: All About Feature Scaling year: 2020 ident: 1201_CR135 – volume: 275 start-page: 123125 year: 2020 ident: 1201_CR73 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2020.123125 – ident: 1201_CR132 – volume-title: 4 Types of AI year: 2020 ident: 1201_CR6 – volume: 101 start-page: 2861 issue: 9 year: 2019 ident: 1201_CR90 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-018-3157-5 – volume: 6 start-page: 26241 year: 2018 ident: 1201_CR138 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2837621 – volume: 25 start-page: 22 year: 2019 ident: 1201_CR35 publication-title: CIRP Journal of Manufacturing Science and Technology doi: 10.1016/j.cirpj.2019.04.002 – volume: 55 start-page: 969 year: 2011 ident: 1201_CR124 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-010-3133-1 – volume: 61 start-page: 771 issue: 2 year: 2012 ident: 1201_CR31 publication-title: CIRP Annals — Manufacturing Technology doi: 10.1016/j.cirp.2012.05.008 – start-page: 396 volume-title: System Reliability Theory: Models, Statistical Methods, and Applications year: 2003 ident: 1201_CR83 – volume: 18 start-page: 109 issue: 1 year: 2022 ident: 1201_CR46 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2021.3073649 – volume: 87 start-page: 914 year: 2015 ident: 1201_CR58 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2014.10.008 – volume: 69 start-page: 121 issue: 1–4 year: 2013 ident: 1201_CR34 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-013-4998-6 – ident: 1201_CR48 doi: 10.1109/CISP.2015.7408020 – volume: 19 start-page: 48 year: 2015 ident: 1201_CR49 publication-title: Procedia Technology doi: 10.1016/j.protcy.2015.02.008 – volume: 9 start-page: 2579 year: 2008 ident: 1201_CR15 publication-title: Journal of Machine Learning Research – volume: 66 start-page: 955 issue: 5 year: 2013 ident: 1201_CR92 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-012-4380-0 – volume: 31 start-page: 1497 year: 2020 ident: 1201_CR111 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-019-01526-4 – volume: 31 start-page: 14 year: 2015 ident: 1201_CR116 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.02.037 – volume: 31 start-page: 29 year: 2015 ident: 1201_CR19 publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.03.016 – volume: 56 start-page: 212 year: 2019 ident: 1201_CR26 publication-title: Robotics and Computer-Integrated Manufacturing doi: 10.1016/j.rcim.2018.10.002 – volume: 1 start-page: 143 issue: 2 year: 2020 ident: 1201_CR5 publication-title: AI doi: 10.3390/ai1020008 – volume: 131 start-page: 689 year: 2019 ident: 1201_CR120 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2019.06.021 – volume: 58 start-page: 210 issue: B year: 2021 ident: 1201_CR8 publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2020.06.012 – volume: 59 start-page: 717 issue: 2 year: 2010 ident: 1201_CR103 publication-title: CIRP Annals doi: 10.1016/j.cirp.2010.05.010 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 1201_CR10 publication-title: Neural Computation doi: 10.1162/neco.2006.18.7.1527 – volume: 50 start-page: 667 issue: 5–8 year: 2010 ident: 1201_CR30 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-010-2520-y – volume: 21 start-page: 1251 issue: 7 year: 2015 ident: 1201_CR20 publication-title: Journal of Vibration and Control doi: 10.1177/1077546313493919 – volume: 7 start-page: 146 issue: 2 year: 2017 ident: 1201_CR43 publication-title: Grey Systems: Theory and Application doi: 10.1108/GS-08-2016-0021 – ident: 1201_CR47 doi: 10.1007/s12652-021-03378-4 – volume: 30 start-page: 79 issue: 1 year: 2019 ident: 1201_CR85 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-016-1228-8 – volume: 69 start-page: 646 year: 2020 ident: 1201_CR69 publication-title: CIRP Annals-Manufacturing Technology doi: 10.1016/j.cirp.2020.05.008 – volume: 127 start-page: 158 year: 2019 ident: 1201_CR55 publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.12.016 – volume: 42 start-page: 1171 issue: 10 year: 2002 ident: 1201_CR65 publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/S0890-6955(02)00045-7 – volume: 36 start-page: 527 issue: 4 year: 1996 ident: 1201_CR37 publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/0890-6955(95)00040-2 – volume: 61 start-page: 101847 year: 2020 ident: 1201_CR68 publication-title: Robotics and Computer-Integrated Manufacturing doi: 10.1016/j.rcim.2019.101847 – volume: 59 start-page: 1065 issue: 9–12 year: 2012 ident: 1201_CR40 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-011-3564-3 – volume: 41 start-page: 130 year: 2016 ident: 1201_CR41 publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2016.08.006 – volume: 349 start-page: 255 issue: 6245 year: 2015 ident: 1201_CR7 publication-title: Science (Special Section: Artificial Intelligence) – volume: 209 start-page: 3125 issue: 7 year: 2009 ident: 1201_CR60 publication-title: Journal of Materials Processing Technology doi: 10.1016/j.jmatprotec.2008.07.023 – volume: 106 start-page: 89 year: 2016 ident: 1201_CR28 publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2016.04.007 – volume: 37 start-page: 205 year: 2015 ident: 1201_CR74 publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.08.081 – volume: 23 start-page: 1805 issue: 5 year: 2012 ident: 1201_CR61 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-010-0487-z – volume: 231 start-page: 753 issue: 5 year: 2017 ident: 1201_CR38 publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture doi: 10.1177/0954405416639893 |
SSID | ssj0062411 |
Score | 2.402654 |
SecondaryResourceType | review_article |
Snippet | Artificial intelligence (AI) in machine tools offers diverse advantages, including learning and optimizing machining processes, compensating errors, saving... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial intelligence Control Control stability Dynamical Systems Energy conservation Engineering Industrial and Production Engineering Invited Review Article Machine tools Machining Mechanical Engineering Optimization Prediction models Tool wear Vibration 기계공학 |
Title | Artificial intelligence enabled smart machining and machine tools |
URI | https://link.springer.com/article/10.1007/s12206-021-1201-0 https://www.proquest.com/docview/2619747294 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002804482 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Mechanical Science and Technology, 2022, 36(1), , pp.1-23 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RuOjB-BlRJIvxpFmytV1Zj0RB_MCLkuCpWbfOGGEYwP_f98YmYNTEU7O03bL30b6Pvl8BzoRlqZAU1zCcucLI1A1taFyUFWNVIoOmpYB-70F2--J2EAyKOu5pedq9TEnmK_Wi2I0x8n6Z7_qMfOB1qAboupNY91mrXH4lbkm5l9VETRZKDMpU5k-vWNmM1rNJumJnfkuN5jtOZxu2ClPRac15uwNrNtuFzSUAwT1oUeccA8J5XQLXdGxeEpU40xGKhjPKT0ziDCfKkuLJOrPxeDjdh36n_XTZdYtLEdyYB97M9VFlbIhaqiKeilg1I5-jC2GllTxOA6O8UFihYu6FJqYErWhyEytDroM0zPADqGTjzB6CE9mEsF0S3wSRQFKaVPEwTJBDLPWN4TXwSurouEAMp4srhnqBdUwE1UhQTQTVXg3Ov6a8z-Ey_hp8iiTXb_GrJpBral_G-m2i0ZS_0Wi4KsFlDeolR3ShXlNNbh_-GFOiBhcllxbdv37x6F-jj2GDUbFDHnCpQ2U2-bAnaILMTAOqrave_SO118937UYugp8tPNHo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT4MwFH_ReVAPfhvnJzGeNBhoS6HHxTg3t3mayTw1tBRjpmA2vPjX2zLq3KImOxFCC_R9tO_X1_4KcEEUSgk18xoCI5cImrqRioSrbUUoltAgVGZCv_dAW4_kfhAMqn3cY7va3aYky556utkNIYN-ke_6yGDgZVghGoIHNVhp3D11bm0HTPWgVOKsUPsyYWRgk5m_vWRmOFrORulMpDmXHC3HnOYm9O3fTpaaDK8_CnEtP-eIHBdszhZsVDGo05gYzTYsqWwH1n8wE-5CwzyckEs4Lz9YOx1V7rVKnPGbtjnnrVyKqWs4cZZUd8op8vx1vAePzdv-TcutTltwJQ68wvW1L6pIuz-LcUokC2Mfa2yiqKJYpoFgXkQUYRJ7kZAm80tCLCQTBpNQgQTeh1qWZ-oAnFglhjQm8UUQkwB5ImU4ihKtepT6QuA6eFboXFZU5OZEjFc-JVE20uFaOtxIh3t1uPyu8j7h4fiv8LnWJB_KF27Ys831OefDEdcYoc11RMwIpnU4tormld-OucGTumGIkTpcWb1NH__5xcOFSp_Baqvf6_Ju-6FzBGvI7KgoZ3WOoVaMPtSJjnMKcVrZ9Rfa1e5c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_cBNEH8ROnU4v4pJS1SZo1j0Mdmx_DBwd7C02bytjWjbX-_-a61m2igk-lJGnJfSR3udzvAK6ZJjHjeK6hKLGZ4rHta1_ZRlaUFhH3mhoP9F96vNNnjwNvUNQ5Tcvb7mVIcpHTgChNSdaYRXFjmfhGCHrCxLVdgv5wBTbNauzina4-aZVLMTfbU-5xNY1WM8EGZVjzp0-sbUyVZB6v2ZzfwqT57tPeg93CbLRaCz7vw4ZODmBnBUzwEFrYuMCDsIYrQJuWztOjIiudGDGxJvntSTPCCpKoeNNWNp2O0yPotx_e7jp2USDBDqnnZLZr1Ef7RmNFQGMWimbgUuNOaK45DWNPCcdnmomQOr4KMVjLmlSFQqEbwRVR9BiqyTTRJ2AFOkKcl8hVXsA84qhYUN-PDLdI7CpFa-CU1JFhgR6ORSzGcol7jASVhqASCSqdGtx8DZktoDP-6nxlSC5H4VAi4DU-36dyNJfGrO9KY8QKRnkN6iVHZKFqqUQX0EyMCFaD25JLy-Zf_3j6r96XsPV635bP3d7TGWwTzIHIz2HqUM3mH_rcWCaZusil7xOLytXv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+enabled+smart+machining+and+machine+tools&rft.jtitle=Journal+of+mechanical+science+and+technology&rft.au=Chuo%2C+Yu+Sung&rft.au=Lee%2C+Ji+Woong&rft.au=Mun%2C+Chang+Hyeon&rft.au=Noh%2C+In+Woong&rft.date=2022-01-01&rft.pub=Korean+Society+of+Mechanical+Engineers&rft.issn=1738-494X&rft.eissn=1976-3824&rft.volume=36&rft.issue=1&rft.spage=1&rft.epage=23&rft_id=info:doi/10.1007%2Fs12206-021-1201-0&rft.externalDocID=10_1007_s12206_021_1201_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-494X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-494X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-494X&client=summon |