A Review of Optimal Energy Management Strategies Using Machine Learning Techniques for Hybrid Electric Vehicles
A hybrid electric vehicle (HEV) is defined as a vehicle that has two or more power sources, the hybrid electric vehicle is a representative eco-friendly vehicle because it can operate efficiently with each power source and requires only a small sized electric power source. However, it is not possibl...
Saved in:
Published in | International journal of automotive technology Vol. 22; no. 5; pp. 1437 - 1452 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Society of Automotive Engineers
01.10.2021
Springer Nature B.V 한국자동차공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1229-9138 1976-3832 |
DOI | 10.1007/s12239-021-0125-0 |
Cover
Abstract | A hybrid electric vehicle (HEV) is defined as a vehicle that has two or more power sources, the hybrid electric vehicle is a representative eco-friendly vehicle because it can operate efficiently with each power source and requires only a small sized electric power source. However, it is not possible to develop high efficiency HEVs without an effective energy management system (EMS), a well-designed EMS is vital in HEVs because they need to manage two power sources. Motivated by this, there are continuing efforts being made to research and establish suitable energy management strategies in order to develop high efficiency HEVs. In the past, many energy management strategies for HEVs were developed based on optimal control theory. Recently, various kinds of machine learning technologies have been applied to HEV EMS development based on breakthroughs in the fields of machine learning and artificial intelligence (AI). Machine learning is a field of research that allows computers to perform arbitrary tasks guided by data rather than explicit programming. Machine learning can be classified into supervised learning, reinforcement learning (semi-supervised learning), and unsupervised learning depending on how the training data is structured. In this study, we look at cases and studies in which machine learning techniques from each category were used to develop HEV energy management strategies. |
---|---|
AbstractList | A hybrid electric vehicle (HEV) is defined as a vehicle that has two or more power sources, the hybrid electric vehicle is a representative eco-friendly vehicle because it can operate efficiently with each power source and requires only a small sized electric power source. However, it is not possible to develop high efficiency HEVs without an effective energy management system (EMS), a well-designed EMS is vital in HEVs because they need to manage two power sources. Motivated by this, there are continuing efforts being made to research and establish suitable energy management strategies in order to develop high efficiency HEVs. In the past, many energy management strategies for HEVs were developed based on optimal control theory. Recently, various kinds of machine learning technologies have been applied to HEV EMS development based on breakthroughs in the fields of machine learning and artificial intelligence (AI). Machine learning is a field of research that allows computers to perform arbitrary tasks guided by data rather than explicit programming. Machine learning can be classified into supervised learning, reinforcement learning (semi-supervised learning), and unsupervised learning depending on how the training data is structured. In this study, we look at cases and studies in which machine learning techniques from each category were used to develop HEV energy management strategies. A hybrid electric vehicle (HEV) is defined as a vehicle that has two or more power sources, the hybrid electric vehicle is a representative eco-friendly vehicle because it can operate efficiently with each power source and requires only a small sized electric power source. However, it is not possible to develop high efficiency HEVs without an effective energy management system (EMS), a well-designed EMS is vital in HEVs because they need to manage two power sources. Motivated by this, there are continuing efforts being made to research and establish suitable energy management strategies in order to develop high efficiency HEVs. In the past, many energy management strategies for HEVs were developed based on optimal control theory. Recently, various kinds of machine learning technologies have been applied to HEV EMS development based on breakthroughs in the fields of machine learning and artificial intelligence (AI). Machine learning is a field of research that allows computers to perform arbitrary tasks guided by data rather than explicit programming. Machine learning can be classified into supervised learning, reinforcement learning (semi-supervised learning), and unsupervised learning depending on how the training data is structured. In this study, we look at cases and studies in which machine learning techniques from each category were used to develop HEV energy management strategies. KCI Citation Count: 12 |
Author | Yang, Hyunjun Kim, Kiyoung Song, Changhee Sung, Donghwan Kim, Kyunghyun Cho, Gu Young Cha, Suk Won Lee, Heeyun |
Author_xml | – sequence: 1 givenname: Changhee surname: Song fullname: Song, Changhee organization: Department of Mechanical Engineering, Seoul National University – sequence: 2 givenname: Kiyoung surname: Kim fullname: Kim, Kiyoung organization: Department of Mechanical Engineering, Seoul National University – sequence: 3 givenname: Donghwan surname: Sung fullname: Sung, Donghwan organization: Department of Mechanical Engineering, Seoul National University – sequence: 4 givenname: Kyunghyun surname: Kim fullname: Kim, Kyunghyun organization: Department of Mechanical Engineering, Seoul National University – sequence: 5 givenname: Hyunjun surname: Yang fullname: Yang, Hyunjun organization: Department of Mechanical Engineering, Seoul National University – sequence: 6 givenname: Heeyun surname: Lee fullname: Lee, Heeyun organization: Department of Mechanical Engineering, Seoul National University – sequence: 7 givenname: Gu Young surname: Cho fullname: Cho, Gu Young organization: Department of Mechanical Engineering, Dankook University – sequence: 8 givenname: Suk Won surname: Cha fullname: Cha, Suk Won email: swcha@snu.ac.kr organization: Department of Mechanical Engineering, Seoul National University, Institute of Advanced Machines and Design, Seoul National University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002757645$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kV1LHDEUhkOxULX9Ab0L9KoXY_M5M7lcZK3CFsGuvQ0xezIbHZM1iZX992YcQRDaqxOS5wnnnPcIHYQYAKGvlJxQQrofmTLGVUMYbQhlsiEf0CFVXdvwnrODemZMNYry_hM6yvmWENlSTg5RXOAr-OvhCUeHL3fF35sRLwOkYY9_mWAGuIdQ8O-STIHBQ8bX2YehvtmtD4BXYFKYLtZgt8E_PFbCxYTP9zfJb_ByBFuSt_gPbL0dIX9GH50ZM3x5rcfo-my5Pj1vVpc_L04Xq8ZySUpDiXLSKdpTsEKy1nZCdtxyYQWnbCOsMUK4nvVCMW6dgE3HFWOis4xLIxk_Rt_nf0Ny-s56HY1_qUPUd0kvrtYXWvWtaLmo7LeZ3aU4DVD0bXxMobanmexaqQgXE9XNlE0x5wROW19M8THU3fhRU6KnJPSchK5J6CkJTapJ35m7VPec9v912OzkyoYB0ltP_5aeAWvamyI |
CitedBy_id | crossref_primary_10_3390_electronics12020445 crossref_primary_10_1007_s40684_022_00476_2 crossref_primary_10_1109_TTE_2024_3356196 crossref_primary_10_1109_TTE_2024_3377809 crossref_primary_10_3390_en17236069 crossref_primary_10_1186_s10033_024_01026_4 crossref_primary_10_1016_j_rser_2023_113873 crossref_primary_10_1007_s12239_023_0024_7 crossref_primary_10_1016_j_engappai_2025_110166 crossref_primary_10_1016_j_est_2024_112151 crossref_primary_10_1016_j_treng_2025_100308 crossref_primary_10_1016_j_energy_2024_133196 crossref_primary_10_1016_j_ijhydene_2022_03_036 crossref_primary_10_1016_j_ijhydene_2023_11_030 crossref_primary_10_3390_electronics11020181 crossref_primary_10_1177_09544070241275724 crossref_primary_10_1016_j_ijhydene_2022_09_083 crossref_primary_10_1016_j_jer_2024_01_016 crossref_primary_10_1541_ieejjia_22004507 crossref_primary_10_1016_j_geits_2022_100061 crossref_primary_10_3390_en18010010 crossref_primary_10_1016_j_heliyon_2023_e23394 crossref_primary_10_3390_hydrogen6020020 crossref_primary_10_3934_mbe_2023330 crossref_primary_10_7467_KSAE_2022_30_10_785 crossref_primary_10_1155_2023_6684018 crossref_primary_10_1007_s00202_024_02488_4 crossref_primary_10_1007_s12239_022_0133_8 |
Cites_doi | 10.1007/s12239-008-0007-8 10.1016/j.apenergy.2017.11.072 10.3390/en13092278 10.3390/en13010202 10.1016/j.energy.2018.08.139 10.1007/s40684-017-0011-4 10.1109/TCST.2008.919447 10.1109/TCST.2015.2498141 10.3390/en11082054 10.3390/vehicles2020015 10.1038/nature24270 10.1016/j.energy.2020.117495 10.1109/TCST.2017.2740836 10.1016/j.epsr.2020.106962 10.1007/s12239-015-0092-4 10.1038/s41586-019-1724-z 10.1016/j.apenergy.2014.09.026 10.1109/TCST.2003.815606 10.1109/TPEL.2006.872372 10.1109/TMECH.2017.2707338 10.1038/s41598-017-16684-9 10.1016/j.rser.2015.03.093 10.1038/nature14236 10.1016/j.apenergy.2015.01.021 10.3390/su10062060 10.1109/TVT.2015.2504325 10.1109/ACCESS.2020.3047497 10.3182/20140824-6-ZA-1003.01868 10.3390/en11010089 10.1109/TCST.2010.2047860 10.1109/TVT.2009.2027710 10.4271/2016-01-1243 10.1016/j.apenergy.2016.12.112 10.1016/j.egypro.2017.03.674 10.1016/j.jpowsour.2013.09.110 10.1016/j.apenergy.2019.04.021 10.1016/j.apenergy.2017.01.045 10.1109/ACCESS.2020.2986373 10.1016/j.enconman.2019.05.038 10.1109/TITS.2017.2729621 10.1016/j.apenergy.2018.11.003 10.1016/j.apenergy.2017.07.059 10.3390/en9050341 10.3390/app8020187 10.3166/ejc.11.509-524 10.1080/00423110412331291553 10.1016/j.ijhydene.2018.06.072 10.1007/978-1-4615-3618-5 10.1049/iet-its.2014.0075 10.1016/j.apenergy.2013.11.002 10.1109/TFUZZ.2017.2779424 10.1109/JPROC.2007.892492 10.1109/TII.2020.3015748 10.1109/TTE.2015.2471180 10.1504/IJEHV.2007.014448 10.4236/wjet.2015.33C032 10.1109/TII.2018.2880897 10.3390/app8122494 10.1016/j.ijhydene.2018.04.038 10.1016/j.jfranklin.2006.02.015 10.1109/TIA.2006.877736 10.1109/TVT.2012.2217362 10.1016/j.matcom.2006.06.016 10.1016/j.ijhydene.2018.10.115 10.1109/TVT.2018.2881057 10.1109/ACCESS.2020.3022944 10.1016/j.enconman.2019.03.090 10.3182/20140824-6-ZA-1003.02375 10.1109/TVT.2005.844685 10.1016/j.apenergy.2018.03.104 10.1016/j.apenergy.2019.113708 10.1016/j.jfranklin.2017.12.039 10.1016/j.apenergy.2018.01.070 10.3390/wevj8010274 10.3390/en13020426 10.1016/j.apenergy.2018.12.032 10.3390/en5041175 10.1016/j.egypro.2016.11.087 10.3390/en9060420 10.1016/j.energy.2020.117297 10.4271/970294 10.1109/TCST.2014.2361294 10.4271/2009-01-1332 10.1109/TCST.2014.2359176 10.1109/ChiCC.2014.6896612 10.1109/ICCAD.2014.7001326 10.1109/VTC.2002.1002989 10.1109/PEDSTC.2011.5742461 10.4271/2009-36-0328 10.1109/ICCAD.2015.7372628 10.1109/CIVVS.2009.4938720 10.23919/ACC45564.2020.9147479 10.5220/0006573000610072 10.1109/ASPDAC.2018.8297305 10.1201/9781420054002 10.1109/ITNEC48623.2020.9085070 10.4271/2019-01-1051 10.1109/AIM.2019.8868667 10.1109/IEVC.2012.6183284 10.4271/2019-01-1212 10.1109/ACC.2001.945787 10.1109/ICNN.1995.488968 10.5220/0007364701340144 10.1109/VPPC.2007.4544143 |
ContentType | Journal Article |
Copyright | KSAE 2021 KSAE 2021. |
Copyright_xml | – notice: KSAE 2021 – notice: KSAE 2021. |
DBID | AAYXX CITATION 3V. 7TB 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU D1I DWQXO FR3 FRNLG F~G GNUQQ HCIFZ K60 K6~ KB. L.- M0C M2P PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U ACYCR |
DOI | 10.1007/s12239-021-0125-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (UHCL Subscription) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Materials Science Database (NC LIVE) ABI/INFORM Professional Advanced ABI/INFORM Global Science Database (ProQuest) Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Korean Citation Index |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea Materials Science Database ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1976-3832 |
EndPage | 1452 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9864634 10_1007_s12239_021_0125_0 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .UV .VR 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 6NX 7WY 88I 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP CZ9 D1I DBRKI DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GW5 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ I-F IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ K60 K6~ KB. KC. KOV KVFHK LLZTM M0C M2P M4Y MA- MK~ ML~ MZR NPVJJ NQJWS NU0 O9- O9J P9P PDBOC PF0 PQBIZ PQBZA PQQKQ PROAC PT4 Q2X QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TDB TR2 TSG TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z7Z Z83 Z88 ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT 7TB 7XB 8FD 8FK ABRTQ FR3 L.- PKEHL PQEST PQGLB PQUKI Q9U AAFGU ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC UNUBA |
ID | FETCH-LOGICAL-c350t-109f5f9181ec4526c74573c34c4312d4caa44f8284923cf4ed7392247c235a523 |
IEDL.DBID | U2A |
ISSN | 1229-9138 |
IngestDate | Tue Jun 25 21:11:02 EDT 2024 Fri Jul 25 19:29:02 EDT 2025 Tue Jul 01 02:44:15 EDT 2025 Thu Apr 24 22:52:08 EDT 2025 Fri Feb 21 02:48:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Optimal control theory Energy management strategy Hybrid electric vehicle Artificial intelligence Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-109f5f9181ec4526c74573c34c4312d4caa44f8284923cf4ed7392247c235a523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2576590344 |
PQPubID | 54404 |
PageCount | 16 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9864634 proquest_journals_2576590344 crossref_citationtrail_10_1007_s12239_021_0125_0 crossref_primary_10_1007_s12239_021_0125_0 springer_journals_10_1007_s12239_021_0125_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211000 2021-10-00 20211001 2021-10 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211000 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Dordrecht |
PublicationTitle | International journal of automotive technology |
PublicationTitleAbbrev | Int.J Automot. Technol |
PublicationYear | 2021 |
Publisher | The Korean Society of Automotive Engineers Springer Nature B.V 한국자동차공학회 |
Publisher_xml | – name: The Korean Society of Automotive Engineers – name: Springer Nature B.V – name: 한국자동차공학회 |
References | Han, He, Wu, Peng, Li (CR21) 2019; 254 Rezaei, Burl, Zhou (CR73) 2017; 26 Zhang, Deng (CR108) 2016; 9 Vagg, Akehurst, Brace, Ash (CR85) 2015; 24 Xie, Hu, Xin, Brighton (CR102) 2019; 236 Abdelsalam, Cui (CR1) 2012; 5 Montazeri-Gh, Fotouhi, Naderpour (CR58) 2011; 225 Liu, Peng (CR50) 2008; 16 Harold, Prakash, Hofinan (CR22) 2020; 2 Kim, Cha, Peng (CR31) 2010; 19 Murphey, Park, Kiliaris, Kuang, Masrur, Phillips, Wang (CR60) 2012; 62 Chen, Hu, Wu, Xiao, Shen, Liu (CR5) 2018; 8 Wu, He, Peng, Li, Li (CR96) 2018; 222 Choi (CR7) 2019 Lee, Song, Kim, Cha (CR38) 2020; 8 Pei, Hu, Yang, Tang, Hou, Cao (CR69) 2018; 214 Sun, Hu, Moura, Sun (CR79) 2014; 23 Lin, Jeon, Peng, Lee (CR42) 2004; 42 Geng, Jin, Zhang (CR17) 2019; 44 CR33 Tian, Wang, Lu, Huang, Tian (CR84) 2017; 19 Chia, Lee, Shafiabady, Isa (CR6) 2015; 137 Denis, Dubois, Desrochers (CR10) 2015; 9 CR30 Son, Kim, Hwang, Kim (CR77) 2018; 11 Xie, Hu, Qi, Lang (CR101) 2018; 163 Zhang, Tao (CR109) 2017; 26 Park, Chen, Kiliaris, Kuang, Masrur, Phillips, Murphey (CR68) 2009; 58 Li, Ravey, N’Diaye, Djerdir (CR40) 2019; 192 Zeng, Cai, Kou, Gao, Qin (CR115) 2018; 10 CR49 CR48 CR47 CR46 CR45 Miller (CR56) 2006; 21 Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton, Chen, Lillicrap, Hui, Sifre, van den Driessche, Graepel, Hassabis (CR75) 2017; 550 Asadi, Vahidi (CR3) 2010; 19 Shabbir, Evangelou (CR74) 2019; 235 Xie, He, Peng (CR100) 2017; 196 Ou, Yuan, Choi, Yang, Jung, Kim (CR65) 2018; 43 Son, Kim (CR76) 2016; 9 Pérez, Bossio, Moitre, García (CR70) 2006; 73 Tang, Rizzoni, Onori (CR83) 2015; 1 Han, Jiao, Zhang (CR20) 2020; 13 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, Petersen, Beattie, Sadik, Antonoglou, King, Kumaran, Wierstra, Legg, Hassabis (CR57) 2015; 518 Hwang, Chen (CR24) 2020; 13 Liu, Yu, Guo, Qin, Zou (CR53) 2018; 15 CR54 CR51 Hofman, Steinbuch, Van Druten, Serrarens (CR27) 2007; 1 Nguyen, German, Trovão, Bouscayrol (CR62) 2018; 68 Ehsani, Gao, Miller (CR12) 2007; 95 Hou, Ouyang, Xu, Wang (CR28) 2014; 115 Li, Huang, Chen, Yan, Shang, Li (CR41) 2019; 44 Plötz, Funke, Jochem, Wietschel (CR71) 2017; 7 Zheng, Xu, Park, Lim, Cha (CR111) 2014; 248 Chambon, Curran, Huff, Love, Post, Wagner, Jackson, Green (CR4) 2017; 191 Finesso, Spessa, Venditti (CR14) 2016; 5 Zheng, He, Shen, Jiang (CR112) 2020; 13 Mayur, Gerard, Schott, Bessler (CR55) 2018; 11 CR67 CR66 Tan, Zhang, Peng, Jiang, Wu (CR82) 2019; 195 Kim, Lee (CR32) 2015; 16 Musardo, Rizzoni, Guezennec, Staccia (CR61) 2005; 11 Hu, Li, Xu, Zahid, Qin, Li (CR29) 2018; 8 He, Cao, Peng (CR25) 2017; 105 Onori, Tribioli (CR64) 2015; 147 Guo, Liu, Tang, Tang, Zhang, Tan, Jin (CR19) 2020; 8 CR78 CR114 CR110 Xiong, Cao, Yu (CR103) 2018; 211 CR8 Lee, Kang, Park, Cha (CR37) 2016; 8 Vinyals, Babuschkin, Czarnecki, Mathieu, Dudzik, Chung, Choi, Powell, Ewalds, Georgiev, Oh, Horgan, Kroiss, Danihelka, Huang, Sifre, Cai, Agapiou, Jaderberg, Vezhnevets, Leblond, Pohlen, Dalibard, Budden, Sulsky, Molloy, Paine, Gulcehre, Wang, Pfaff, Wu, Ring, Yogatama, Wünsch, McKinney, Smith, Schaul, Lillicrap, Kavukcuoglu, Hassabis, Apps, Silver (CR88) 2019; 575 CR9 Aljohani, Ebrahim, Mohammed (CR2) 2021; 192 CR87 Langari, Won (CR34) 2005; 54 Lee, Cha (CR35) 2020; 9 CR18 CR16 CR15 Xu, Zhang, Fan, Bao, Wang, Huang, Chin, Li (CR104) 2020; 199 CR13 Lian, Peng, Wu, Tan, Zhang (CR44) 2020; 197 CR11 CR98 Wang, Tan, Wu, Peng (CR93) 2020; 17 CR95 CR94 CR92 CR91 Lin, Peng, Grizzle, Kang (CR43) 2003; 11 CR90 Wu, Zhang, Cui (CR97) 2008; 9 Sun, Moura, Hu, Hedrick, Sun (CR80) 2014; 23 Wang, Wang, Wang, Zeng (CR89) 2018; 355 Sutton, Barto (CR81) 1992 Lee, Jeong, Park, Cha (CR36) 2017; 4 Hoeijimakes, Ferreira (CR26) 2006; 42 Liu, Hu, Li, Cao (CR52) 2017; 22 Pourabdollah, Murgovski, Grauers, Egardt (CR72) 2014; 47 Zhang, Yan, Du (CR107) 2015; 48 Yang, Zhu (CR105) 2016; 65 Leroy, Vidal-Naquet, Tona (CR39) 2014; 47 CR23 Niu (CR63) 2015; 3 Venditti (CR86) 2016; 101 Wu, Tan, Peng, Zhang, He (CR99) 2019; 247 Zhuang, Zhang, Li, Wang, Yin (CR113) 2017; 204 Montazeri-Gh, Poursamad, Ghalichi (CR59) 2006; 343 CR106 C C Lin (125_CR42) 2004; 42 M Montazeri-Gh (125_CR59) 2006; 343 125_CR87 Q Li (125_CR41) 2019; 44 B Asadi (125_CR3) 2010; 19 R Xiong (125_CR103) 2018; 211 H Lee (125_CR37) 2016; 8 X Han (125_CR21) 2019; 254 L Niu (125_CR63) 2015; 3 H Son (125_CR76) 2016; 9 M Venditti (125_CR86) 2016; 101 P Chambon (125_CR4) 2017; 191 H Y Hwang (125_CR24) 2020; 13 C C Lin (125_CR43) 2003; 11 H He (125_CR25) 2017; 105 Z Chen (125_CR5) 2018; 8 Y Zheng (125_CR112) 2020; 13 125_CR13 P Plötz (125_CR71) 2017; 7 125_CR15 125_CR16 H Lee (125_CR38) 2020; 8 125_CR98 125_CR11 D Silver (125_CR75) 2017; 550 125_CR94 125_CR95 R S Sutton (125_CR81) 1992 Y Wu (125_CR99) 2019; 247 125_CR90 125_CR91 125_CR92 O Vinyals (125_CR88) 2019; 575 T M Aljohani (125_CR2) 2021; 192 N Kim (125_CR31) 2010; 19 R Zhang (125_CR109) 2017; 26 H Li (125_CR40) 2019; 192 C Sun (125_CR80) 2014; 23 125_CR66 125_CR67 C H Zheng (125_CR111) 2014; 248 B H Nguyen (125_CR62) 2018; 68 C Musardo (125_CR61) 2005; 11 R Langari (125_CR34) 2005; 54 W Zhuang (125_CR113) 2017; 204 R Lian (125_CR44) 2020; 197 L Tang (125_CR83) 2015; 1 K Ou (125_CR65) 2018; 43 M Mayur (125_CR55) 2018; 11 M Montazeri-Gh (125_CR58) 2011; 225 125_CR8 125_CR9 125_CR78 H Tian (125_CR84) 2017; 19 Y Y Chia (125_CR6) 2015; 137 T Liu (125_CR53) 2018; 15 T Liu (125_CR52) 2017; 22 J Wu (125_CR97) 2008; 9 J Choi (125_CR7) 2019 J Xu (125_CR104) 2020; 199 C Vagg (125_CR85) 2015; 24 Y Hu (125_CR29) 2018; 8 H Tan (125_CR82) 2019; 195 J Wu (125_CR96) 2018; 222 125_CR46 S Xie (125_CR100) 2017; 196 125_CR47 Y Zeng (125_CR115) 2018; 10 X Guo (125_CR19) 2020; 8 125_CR48 125_CR49 C Geng (125_CR17) 2019; 44 125_CR45 T Hofman (125_CR27) 2007; 1 M Pourabdollah (125_CR72) 2014; 47 N Denis (125_CR10) 2015; 9 J M Miller (125_CR56) 2006; 21 L V Pérez (125_CR70) 2006; 73 J Liu (125_CR50) 2008; 16 M Ehsani (125_CR12) 2007; 95 T Leroy (125_CR39) 2014; 47 Y L Murphey (125_CR60) 2012; 62 H Lee (125_CR36) 2017; 4 J Park (125_CR68) 2009; 58 125_CR54 M J Hoeijimakes (125_CR26) 2006; 42 125_CR51 Q Zhang (125_CR108) 2016; 9 C Sun (125_CR79) 2014; 23 C K Harold (125_CR22) 2020; 2 W Shabbir (125_CR74) 2019; 235 J Yang (125_CR105) 2016; 65 T Y Kim (125_CR32) 2015; 16 125_CR110 125_CR23 H Son (125_CR77) 2018; 11 S Xie (125_CR101) 2018; 163 P Zhang (125_CR107) 2015; 48 125_CR114 H Pei (125_CR69) 2018; 214 S Onori (125_CR64) 2015; 147 S Xie (125_CR102) 2019; 236 J Wang (125_CR89) 2018; 355 125_CR18 125_CR33 R Finesso (125_CR14) 2016; 5 C Hou (125_CR28) 2014; 115 125_CR30 Y Wang (125_CR93) 2020; 17 H Lee (125_CR35) 2020; 9 125_CR106 A A Abdelsalam (125_CR1) 2012; 5 L Han (125_CR20) 2020; 13 A Rezaei (125_CR73) 2017; 26 V Mnih (125_CR57) 2015; 518 |
References_xml | – ident: CR45 – volume: 9 start-page: 53 issue: 1 year: 2008 end-page: 69 ident: CR97 article-title: PSO algorithm-based parameter optimization for HEV powertrain and its control strategy publication-title: Int. J. Automotive Technology doi: 10.1007/s12239-008-0007-8 – volume: 211 start-page: 538 year: 2018 end-page: 548 ident: CR103 article-title: Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.11.072 – volume: 13 start-page: 2278 issue: 9 year: 2020 ident: CR24 article-title: Optimized fuel economy control of power-split hybrid electric vehicle with particle swarm optimization publication-title: Energies doi: 10.3390/en13092278 – ident: CR16 – volume: 13 start-page: 202 issue: 1 year: 2020 ident: CR20 article-title: Recurrent neural network-based adaptive energy management control strategy of plug-in hybrid electric vehicles considering battery aging publication-title: Energies doi: 10.3390/en13010202 – ident: CR51 – volume: 163 start-page: 837 year: 2018 end-page: 848 ident: CR101 article-title: An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles publication-title: Energy doi: 10.1016/j.energy.2018.08.139 – volume: 4 start-page: 79 issue: 1 year: 2017 end-page: 86 ident: CR36 article-title: Energy management strategy of hybrid electric vehicle using battery state of charge trajectory information publication-title: Int. J. Precision Engineering and Manufacturing-Green Technology doi: 10.1007/s40684-017-0011-4 – volume: 16 start-page: 1242 issue: 6 year: 2008 end-page: 1251 ident: CR50 article-title: Modeling and control of a power-split hybrid vehicle publication-title: IEEE Trans. Control Systems Technology doi: 10.1109/TCST.2008.919447 – volume: 24 start-page: 853 issue: 3 year: 2015 end-page: 866 ident: CR85 article-title: Stochastic dynamic programming in the real-world control of hybrid electric vehicles publication-title: IEEE Trans. Control Systems Technology doi: 10.1109/TCST.2015.2498141 – volume: 11 start-page: 2054 issue: 8 year: 2018 ident: CR55 article-title: Lifetime prediction of a polymer electrolyte membrane fuel cell under automotive load cycling using a physically-based catalyst degradation model publication-title: Energies doi: 10.3390/en11082054 – volume: 2 start-page: 267 issue: 2 year: 2020 end-page: 286 ident: CR22 article-title: Powertrain control for hybrid-electric vehicles using supervised machine learning publication-title: Vehicles doi: 10.3390/vehicles2020015 – ident: CR54 – volume: 550 start-page: 354 issue: 7676 year: 2017 end-page: 359 ident: CR75 article-title: Mastering the game of Go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – ident: CR8 – volume: 199 start-page: 117495 year: 2020 ident: CR104 article-title: Modelling and control of vehicle integrated thermal management system of PEM fuel cell vehicle publication-title: Energy doi: 10.1016/j.energy.2020.117495 – ident: CR106 – volume: 26 start-page: 2198 issue: 6 year: 2017 end-page: 2205 ident: CR73 article-title: Estimation of the ECMS equivalent factor bounds for hybrid electric vehicles publication-title: IEEE Trans. Control Systems Technology doi: 10.1109/TCST.2017.2740836 – volume: 192 start-page: 106962 year: 2021 ident: CR2 article-title: Real-time metadata-driven routing optimization for electric vehicle energy consumption minimization using deep reinforcement learning and Markov chain model publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2020.106962 – volume: 16 start-page: 903 issue: 6 year: 2015 end-page: 912 ident: CR32 article-title: Combustion and emission characteristics of wood pyrolysis oil-butanol blended fuels in a DI diesel engine publication-title: Int. J. Automotive Technology doi: 10.1007/s12239-015-0092-4 – volume: 575 start-page: 350 issue: 7782 year: 2019 end-page: 354 ident: CR88 article-title: Grandmaster level in StarCraft II using multi-agent reinforcement learning publication-title: Nature doi: 10.1038/s41586-019-1724-z – volume: 137 start-page: 588 year: 2015 end-page: 602 ident: CR6 article-title: A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine publication-title: Applied Energy doi: 10.1016/j.apenergy.2014.09.026 – volume: 11 start-page: 839 issue: 6 year: 2003 end-page: 849 ident: CR43 article-title: Power management strategy for a parallel hybrid electric truck publication-title: IEEE Trans. Control Systems Technology doi: 10.1109/TCST.2003.815606 – ident: CR92 – volume: 21 start-page: 756 issue: 3 year: 2006 end-page: 767 ident: CR56 article-title: Hybrid electric vehicle propulsion system architectures of the e-CVT type publication-title: IEEE Trans. Power Electronics doi: 10.1109/TPEL.2006.872372 – ident: CR11 – volume: 22 start-page: 1497 issue: 4 year: 2017 end-page: 1507 ident: CR52 article-title: Reinforcement learning optimized look-ahead energy management of a parallel hybrid electric vehicle publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2017.2707338 – year: 2019 ident: CR7 publication-title: Energy management strategy for hybrid vehicles based on time series prediction model considering driving characteristics – volume: 7 start-page: 1 issue: 1 year: 2017 end-page: 6 ident: CR71 article-title: CO mitigation potential of plug-in hybrid electric vehicles larger than expected publication-title: Scientific Reports doi: 10.1038/s41598-017-16684-9 – volume: 48 start-page: 88 year: 2015 end-page: 104 ident: CR107 article-title: A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2015.03.093 – ident: CR18 – volume: 518 start-page: 529 issue: 7540 year: 2015 end-page: 533 ident: CR57 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 147 start-page: 224 year: 2015 end-page: 234 ident: CR64 article-title: Adaptive Pontryagin’s Minimum Principle supervisory controller design for the plug-in hybrid GM Chevrolet Volt publication-title: Applied Energy doi: 10.1016/j.apenergy.2015.01.021 – ident: CR66 – ident: CR91 – ident: CR47 – volume: 10 start-page: 2060 issue: 6 year: 2018 ident: CR115 article-title: Energy management for plug-in hybrid electric vehicle based on adaptive simplified-ECMS publication-title: Sustainability doi: 10.3390/su10062060 – volume: 65 start-page: 4700 issue: 6 year: 2016 end-page: 4713 ident: CR105 article-title: Stochastic predictive boundary management for a hybrid powertrain publication-title: IEEE Trans. Vehicular Technology doi: 10.1109/TVT.2015.2504325 – ident: CR30 – volume: 9 start-page: 860 year: 2020 end-page: 871 ident: CR35 article-title: Reinforcement learning based on equivalent consumption minimization strategy for optimal control of hybrid electric vehicles publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3047497 – volume: 47 start-page: 4813 issue: 3 year: 2014 end-page: 4818 ident: CR39 article-title: Stochastic dynamic programming based energy management of HEV’s: an experimental validation publication-title: IFAC Proc. Volumes doi: 10.3182/20140824-6-ZA-1003.01868 – volume: 11 start-page: 89 issue: 1 year: 2018 ident: CR77 article-title: Development of an advanced rule-based control strategy for a PHEV using machine learning publication-title: Energies doi: 10.3390/en11010089 – volume: 19 start-page: 707 issue: 3 year: 2010 end-page: 714 ident: CR3 article-title: Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time publication-title: IEEE Trans. Control Systems Technology doi: 10.1109/TCST.2010.2047860 – ident: CR33 – volume: 58 start-page: 4741 issue: 9 year: 2009 end-page: 4756 ident: CR68 article-title: Intelligent vehicle power control based on machine learning of optimal control parameters and prediction of road type and traffic congestion publication-title: IEEE Trans. Vehicular Technology doi: 10.1109/TVT.2009.2027710 – volume: 5 start-page: 308 issue: 2 year: 2016 end-page: 327 ident: CR14 article-title: An unsupervised machine-learning technique for the definition of a rule-based control strategy in a complex HEV publication-title: SAE Int. J. Alternative Powertrains doi: 10.4271/2016-01-1243 – volume: 196 start-page: 279 year: 2017 end-page: 288 ident: CR100 article-title: An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses publication-title: Applied Energy doi: 10.1016/j.apenergy.2016.12.112 – volume: 105 start-page: 2348 year: 2017 end-page: 2353 ident: CR25 article-title: Online prediction with variable horizon for vehicle’s future driving-cycle publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.674 – volume: 248 start-page: 533 year: 2014 end-page: 544 ident: CR111 article-title: Prolonging fuel cell stack lifetime based on Pontryagin’s Minimum Principle in fuel cell hybrid vehicles and its economic influence evaluation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.09.110 – ident: CR94 – volume: 247 start-page: 454 year: 2019 end-page: 466 ident: CR99 article-title: Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.04.021 – volume: 191 start-page: 99 year: 2017 end-page: 110 ident: CR4 article-title: Development of a range-extended electric vehicle powertrain for an integrated energy systems research printed utility vehicle publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.01.045 – volume: 8 start-page: 67112 year: 2020 end-page: 67123 ident: CR38 article-title: Comparative analysis of energy management strategies for HEV: Dynamic programming and reinforcement learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986373 – volume: 195 start-page: 548 year: 2019 end-page: 560 ident: CR82 article-title: Energy management of hybrid electric bus based on deep reinforcement learning in continuous state and action space publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2019.05.038 – ident: CR13 – ident: CR114 – volume: 19 start-page: 1607 issue: 5 year: 2017 end-page: 1617 ident: CR84 article-title: Adaptive fuzzy logic energy management strategy based on reasonable SOC reference curve for online control of plug-in hybrid electric city bus publication-title: IEEE Trans. Intelligent Transportation Systems doi: 10.1109/TITS.2017.2729621 – volume: 235 start-page: 761 year: 2019 end-page: 775 ident: CR74 article-title: Threshold-changing control strategy for series hybrid electric vehicles publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.11.003 – volume: 204 start-page: 476 year: 2017 end-page: 488 ident: CR113 article-title: Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.07.059 – volume: 9 start-page: 341 issue: 5 year: 2016 ident: CR108 article-title: An adaptive energy management system for electric vehicles based on driving cycle identification and wavelet transform publication-title: Energies doi: 10.3390/en9050341 – volume: 8 start-page: 187 year: 2018 ident: CR29 article-title: Energy management strategy for a hybrid electric vehicle based on deep reinforcement learning publication-title: Applied Sciences doi: 10.3390/app8020187 – volume: 11 start-page: 509 issue: 4–5 year: 2005 end-page: 524 ident: CR61 article-title: A-ECMS: An adaptive algorithm for hybrid electric vehicle energy management publication-title: European J. Control doi: 10.3166/ejc.11.509-524 – ident: CR49 – volume: 42 start-page: 41 issue: 1–2 year: 2004 end-page: 58 ident: CR42 article-title: Driving pattern recognition for control of hybrid electric trucks publication-title: Vehicle System Dynamics doi: 10.1080/00423110412331291553 – volume: 43 start-page: 15433 issue: 32 year: 2018 end-page: 15444 ident: CR65 article-title: Optimized power management based on adaptive-PMP algorithm for a stationary PEM fuel cell/battery hybrid system publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.06.072 – year: 1992 ident: CR81 publication-title: Reinforcement learning: An introduction doi: 10.1007/978-1-4615-3618-5 – ident: CR87 – volume: 9 start-page: 30 issue: 1 year: 2015 end-page: 37 ident: CR10 article-title: Fuzzy-based blended control for the energy management of a parallel plug-in hybrid electric vehicle publication-title: IET Intelligent Transport Systems doi: 10.1049/iet-its.2014.0075 – volume: 115 start-page: 174 year: 2014 end-page: 189 ident: CR28 article-title: Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles publication-title: Applied Energy doi: 10.1016/j.apenergy.2013.11.002 – volume: 26 start-page: 1833 issue: 4 year: 2017 end-page: 1843 ident: CR109 article-title: GA-based fuzzy energy management system for FC/SC-powered HEV considering H consumption and load variation publication-title: IEEE Trans. Fuzzy Systems doi: 10.1109/TFUZZ.2017.2779424 – volume: 95 start-page: 719 issue: 4 year: 2007 end-page: 728 ident: CR12 article-title: Hybrid electric vehicles: Architecture and motor drives publication-title: Proc. IEEE doi: 10.1109/JPROC.2007.892492 – volume: 23 start-page: 1075 issue: 3 year: 2014 end-page: 1086 ident: CR80 article-title: Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles publication-title: IEEE Trans. Control Systems Technology – volume: 17 start-page: 3857 issue: 6 year: 2020 end-page: 3868 ident: CR93 article-title: Hybrid electric vehicle energy management with computer vision and deep reinforcement learning publication-title: IEEE Trans. Industrial Informatics doi: 10.1109/TII.2020.3015748 – volume: 19 start-page: 1279 issue: 5 year: 2010 end-page: 1287 ident: CR31 article-title: Optimal control of hybrid electric vehicles based on Pontryagin’s minimum principle publication-title: IEEE Trans. Control Systems Technology – volume: 225 start-page: 1301 issue: 6 year: 2011 end-page: 1317 ident: CR58 article-title: Driving patterns clustering based on driving features analysis publication-title: Proc. Institution of Mechanical Engineers, Part C: J. Mechanical Engineering Science – volume: 1 start-page: 211 issue: 3 year: 2015 end-page: 222 ident: CR83 article-title: Energy management strategy for HEVs including battery life optimization publication-title: IEEE Trans. Transportation Electrification doi: 10.1109/TTE.2015.2471180 – ident: CR46 – volume: 1 start-page: 71 issue: 1 year: 2007 end-page: 94 ident: CR27 article-title: Rule-based energy management strategies for hybrid vehicles publication-title: Int. J. Electric and Hybrid Vehicles doi: 10.1504/IJEHV.2007.014448 – ident: CR67 – ident: CR15 – volume: 3 start-page: 215 issue: 03 year: 2015 ident: CR63 article-title: Intelligent HEV fuzzy logic control strategy based on identification and prediction of drive cycle and driving trend publication-title: World J. Engineering and Technology doi: 10.4236/wjet.2015.33C032 – volume: 15 start-page: 4352 issue: 7 year: 2018 end-page: 4361 ident: CR53 article-title: Online energy management for multimode plug-in hybrid electric vehicles publication-title: IEEE Trans. Industrial Informatics doi: 10.1109/TII.2018.2880897 – ident: CR9 – volume: 8 start-page: 2494 issue: 12 year: 2018 ident: CR5 article-title: Energy management for a power-split plug-in hybrid electric vehicle based on reinforcement learning publication-title: Applied Sciences doi: 10.3390/app8122494 – volume: 44 start-page: 408 issue: 1 year: 2019 end-page: 420 ident: CR17 article-title: Simulation research on a novel control strategy for fuel cell extended-range vehicles publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.04.038 – volume: 343 start-page: 420 issue: 4–5 year: 2006 end-page: 435 ident: CR59 article-title: Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles publication-title: J. Franklin Institute doi: 10.1016/j.jfranklin.2006.02.015 – volume: 42 start-page: 1092 issue: 4 year: 2006 end-page: 1100 ident: CR26 article-title: The electrical variable transmission publication-title: IEEE on Industry Application doi: 10.1109/TIA.2006.877736 – ident: CR78 – volume: 62 start-page: 69 issue: 1 year: 2012 end-page: 79 ident: CR60 article-title: Intelligent hybrid vehicle power control—Part II: Online intelligent energy management publication-title: IEEE Trans. Vehicular Technology doi: 10.1109/TVT.2012.2217362 – volume: 73 start-page: 244 issue: 1–4 year: 2006 end-page: 254 ident: CR70 article-title: Optimization of power management in a hybrid electric vehicle using dynamic programming publication-title: Mathematics and Computers in Simulation doi: 10.1016/j.matcom.2006.06.016 – volume: 44 start-page: 5454 issue: 11 year: 2019 end-page: 5461 ident: CR41 article-title: Regenerative braking energy recovery strategy based on Pontryagin’s minimum principle for fell cell/supercapacitor hybrid locomotive publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.115 – volume: 68 start-page: 203 issue: 1 year: 2018 end-page: 212 ident: CR62 article-title: Real-time energy management of battery/supercapacitor electric vehicles based on an adaptation of Pontryagjn’s minimum principle publication-title: IEEE Trans. Vehicular Technology doi: 10.1109/TVT.2018.2881057 – ident: CR95 – volume: 8 start-page: 165837 year: 2020 end-page: 165848 ident: CR19 article-title: Transfer deep reinforcement learning-enabled energy management strategy for hybrid tracked vehicle publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3022944 – volume: 23 start-page: 1197 issue: 3 year: 2014 end-page: 1204 ident: CR79 article-title: Velocity predictors for predictive energy management in hybrid electric vehicles publication-title: IEEE Transactions on Control Systems Technology – volume: 192 start-page: 133 year: 2019 end-page: 149 ident: CR40 article-title: Online adaptive equivalent consumption minimization strategy for fuel cell hybrid electric vehicle considering power sources degradation publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2019.03.090 – volume: 47 start-page: 6606 issue: 3 year: 2014 end-page: 6611 ident: CR72 article-title: An iterative dynamic programming/convex optimization procedure for optimal sizing and energy management of PHEVs publication-title: IFAC Proc. Volumes doi: 10.3182/20140824-6-ZA-1003.02375 – ident: CR98 – ident: CR23 – volume: 54 start-page: 925 issue: 3 year: 2005 end-page: 934 ident: CR34 article-title: Intelligent energy management agent for a parallel hybrid vehicle-part I: system architecture and design of the driving situation identification process publication-title: IEEE Trans. Vehicular Technology doi: 10.1109/TVT.2005.844685 – ident: CR48 – volume: 222 start-page: 799 year: 2018 end-page: 811 ident: CR96 article-title: Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.03.104 – ident: CR90 – volume: 254 start-page: 113708 year: 2019 ident: CR21 article-title: Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.113708 – volume: 355 start-page: 2283 issue: 5 year: 2018 end-page: 2312 ident: CR89 article-title: Control rules extraction and parameters optimization of energy management for bus series-parallel AMT hybrid powertrain publication-title: J. Franklin Institute doi: 10.1016/j.jfranklin.2017.12.039 – volume: 214 start-page: 103 year: 2018 end-page: 116 ident: CR69 article-title: Configuration optimization for improving fuel efficiency of power split hybrid powertrains with a single planetary gear publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.01.070 – volume: 8 start-page: 274 issue: 1 year: 2016 end-page: 280 ident: CR37 article-title: Study on power management strategy of HEV using dynamic programming publication-title: World Electric Vehicle J. doi: 10.3390/wevj8010274 – volume: 13 start-page: 426 issue: 2 year: 2020 ident: CR112 article-title: Energy control strategy of fuel cell hybrid electric vehicle based on working conditions identification by least square support vector machine publication-title: Energies doi: 10.3390/en13020426 – volume: 236 start-page: 893 year: 2019 end-page: 905 ident: CR102 article-title: Pontryagin’s minimum principle based model predictive control of energy management for a plug-in hybrid electric bus publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.12.032 – ident: CR110 – volume: 5 start-page: 1175 issue: 4 year: 2012 end-page: 1198 ident: CR1 article-title: A fuzzy logic global power management strategy for hybrid electric vehicles based on a permanent magnet electric variable transmission publication-title: Energies doi: 10.3390/en5041175 – volume: 101 start-page: 685 year: 2016 end-page: 692 ident: CR86 article-title: Analysis of the performance of different machine learning techniques for the definition of rule-based control strategies in a parallel HEV publication-title: Energy Procedia doi: 10.1016/j.egypro.2016.11.087 – volume: 9 start-page: 420 issue: 6 year: 2016 ident: CR76 article-title: Development of near optimal rule-based control for plug-in hybrid electric vehicles taking into account drivetrain component losses publication-title: Energies doi: 10.3390/en9060420 – volume: 197 start-page: 117297 year: 2020 ident: CR44 article-title: Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle publication-title: Energy doi: 10.1016/j.energy.2020.117297 – ident: 125_CR16 doi: 10.4271/970294 – volume: 9 start-page: 420 issue: 6 year: 2016 ident: 125_CR76 publication-title: Energies doi: 10.3390/en9060420 – volume: 23 start-page: 1075 issue: 3 year: 2014 ident: 125_CR80 publication-title: IEEE Trans. Control Systems Technology doi: 10.1109/TCST.2014.2361294 – volume: 16 start-page: 903 issue: 6 year: 2015 ident: 125_CR32 publication-title: Int. J. Automotive Technology doi: 10.1007/s12239-015-0092-4 – ident: 125_CR33 – ident: 125_CR54 doi: 10.4271/2009-01-1332 – volume: 54 start-page: 925 issue: 3 year: 2005 ident: 125_CR34 publication-title: IEEE Trans. Vehicular Technology doi: 10.1109/TVT.2005.844685 – volume: 58 start-page: 4741 issue: 9 year: 2009 ident: 125_CR68 publication-title: IEEE Trans. Vehicular Technology doi: 10.1109/TVT.2009.2027710 – ident: 125_CR18 – volume: 236 start-page: 893 year: 2019 ident: 125_CR102 publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.12.032 – volume: 43 start-page: 15433 issue: 32 year: 2018 ident: 125_CR65 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.06.072 – ident: 125_CR94 – volume: 248 start-page: 533 year: 2014 ident: 125_CR111 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.09.110 – volume: 355 start-page: 2283 issue: 5 year: 2018 ident: 125_CR89 publication-title: J. Franklin Institute doi: 10.1016/j.jfranklin.2017.12.039 – volume: 550 start-page: 354 issue: 7676 year: 2017 ident: 125_CR75 publication-title: Nature doi: 10.1038/nature24270 – volume: 4 start-page: 79 issue: 1 year: 2017 ident: 125_CR36 publication-title: Int. J. Precision Engineering and Manufacturing-Green Technology doi: 10.1007/s40684-017-0011-4 – volume: 47 start-page: 6606 issue: 3 year: 2014 ident: 125_CR72 publication-title: IFAC Proc. Volumes doi: 10.3182/20140824-6-ZA-1003.02375 – volume: 26 start-page: 1833 issue: 4 year: 2017 ident: 125_CR109 publication-title: IEEE Trans. Fuzzy Systems doi: 10.1109/TFUZZ.2017.2779424 – volume: 147 start-page: 224 year: 2015 ident: 125_CR64 publication-title: Applied Energy doi: 10.1016/j.apenergy.2015.01.021 – volume: 62 start-page: 69 issue: 1 year: 2012 ident: 125_CR60 publication-title: IEEE Trans. Vehicular Technology doi: 10.1109/TVT.2012.2217362 – volume: 19 start-page: 1607 issue: 5 year: 2017 ident: 125_CR84 publication-title: IEEE Trans. Intelligent Transportation Systems doi: 10.1109/TITS.2017.2729621 – volume: 48 start-page: 88 year: 2015 ident: 125_CR107 publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2015.03.093 – volume: 137 start-page: 588 year: 2015 ident: 125_CR6 publication-title: Applied Energy doi: 10.1016/j.apenergy.2014.09.026 – ident: 125_CR106 – volume: 11 start-page: 2054 issue: 8 year: 2018 ident: 125_CR55 publication-title: Energies doi: 10.3390/en11082054 – volume: 2 start-page: 267 issue: 2 year: 2020 ident: 125_CR22 publication-title: Vehicles doi: 10.3390/vehicles2020015 – volume: 1 start-page: 211 issue: 3 year: 2015 ident: 125_CR83 publication-title: IEEE Trans. Transportation Electrification doi: 10.1109/TTE.2015.2471180 – volume: 214 start-page: 103 year: 2018 ident: 125_CR69 publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.01.070 – volume: 13 start-page: 202 issue: 1 year: 2020 ident: 125_CR20 publication-title: Energies doi: 10.3390/en13010202 – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 125_CR71 publication-title: Scientific Reports doi: 10.1038/s41598-017-16684-9 – volume: 47 start-page: 4813 issue: 3 year: 2014 ident: 125_CR39 publication-title: IFAC Proc. Volumes doi: 10.3182/20140824-6-ZA-1003.01868 – volume: 15 start-page: 4352 issue: 7 year: 2018 ident: 125_CR53 publication-title: IEEE Trans. Industrial Informatics doi: 10.1109/TII.2018.2880897 – volume: 115 start-page: 174 year: 2014 ident: 125_CR28 publication-title: Applied Energy doi: 10.1016/j.apenergy.2013.11.002 – volume: 10 start-page: 2060 issue: 6 year: 2018 ident: 125_CR115 publication-title: Sustainability doi: 10.3390/su10062060 – volume: 9 start-page: 860 year: 2020 ident: 125_CR35 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3047497 – volume: 13 start-page: 2278 issue: 9 year: 2020 ident: 125_CR24 publication-title: Energies doi: 10.3390/en13092278 – volume: 11 start-page: 89 issue: 1 year: 2018 ident: 125_CR77 publication-title: Energies doi: 10.3390/en11010089 – volume: 65 start-page: 4700 issue: 6 year: 2016 ident: 125_CR105 publication-title: IEEE Trans. Vehicular Technology doi: 10.1109/TVT.2015.2504325 – volume: 23 start-page: 1197 issue: 3 year: 2014 ident: 125_CR79 publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2014.2359176 – volume: 197 start-page: 117297 year: 2020 ident: 125_CR44 publication-title: Energy doi: 10.1016/j.energy.2020.117297 – ident: 125_CR78 doi: 10.1109/ChiCC.2014.6896612 – volume: 195 start-page: 548 year: 2019 ident: 125_CR82 publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2019.05.038 – volume: 44 start-page: 408 issue: 1 year: 2019 ident: 125_CR17 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.04.038 – volume: 254 start-page: 113708 year: 2019 ident: 125_CR21 publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.113708 – volume: 44 start-page: 5454 issue: 11 year: 2019 ident: 125_CR41 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.115 – volume: 17 start-page: 3857 issue: 6 year: 2020 ident: 125_CR93 publication-title: IEEE Trans. Industrial Informatics doi: 10.1109/TII.2020.3015748 – ident: 125_CR49 doi: 10.1109/ICCAD.2014.7001326 – volume: 204 start-page: 476 year: 2017 ident: 125_CR113 publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.07.059 – ident: 125_CR66 doi: 10.1109/VTC.2002.1002989 – volume-title: Energy management strategy for hybrid vehicles based on time series prediction model considering driving characteristics year: 2019 ident: 125_CR7 – ident: 125_CR9 doi: 10.1109/PEDSTC.2011.5742461 – volume: 26 start-page: 2198 issue: 6 year: 2017 ident: 125_CR73 publication-title: IEEE Trans. Control Systems Technology doi: 10.1109/TCST.2017.2740836 – volume: 105 start-page: 2348 year: 2017 ident: 125_CR25 publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.674 – volume: 11 start-page: 509 issue: 4–5 year: 2005 ident: 125_CR61 publication-title: European J. Control doi: 10.3166/ejc.11.509-524 – volume: 5 start-page: 308 issue: 2 year: 2016 ident: 125_CR14 publication-title: SAE Int. J. Alternative Powertrains doi: 10.4271/2016-01-1243 – volume: 16 start-page: 1242 issue: 6 year: 2008 ident: 125_CR50 publication-title: IEEE Trans. Control Systems Technology doi: 10.1109/TCST.2008.919447 – volume: 19 start-page: 707 issue: 3 year: 2010 ident: 125_CR3 publication-title: IEEE Trans. Control Systems Technology doi: 10.1109/TCST.2010.2047860 – volume: 192 start-page: 106962 year: 2021 ident: 125_CR2 publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2020.106962 – ident: 125_CR8 doi: 10.4271/2009-36-0328 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 125_CR57 publication-title: Nature doi: 10.1038/nature14236 – volume-title: Reinforcement learning: An introduction year: 1992 ident: 125_CR81 doi: 10.1007/978-1-4615-3618-5 – ident: 125_CR47 – ident: 125_CR95 – volume: 9 start-page: 30 issue: 1 year: 2015 ident: 125_CR10 publication-title: IET Intelligent Transport Systems doi: 10.1049/iet-its.2014.0075 – volume: 9 start-page: 341 issue: 5 year: 2016 ident: 125_CR108 publication-title: Energies doi: 10.3390/en9050341 – volume: 5 start-page: 1175 issue: 4 year: 2012 ident: 125_CR1 publication-title: Energies doi: 10.3390/en5041175 – volume: 196 start-page: 279 year: 2017 ident: 125_CR100 publication-title: Applied Energy doi: 10.1016/j.apenergy.2016.12.112 – ident: 125_CR48 doi: 10.1109/ICCAD.2015.7372628 – volume: 222 start-page: 799 year: 2018 ident: 125_CR96 publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.03.104 – volume: 9 start-page: 53 issue: 1 year: 2008 ident: 125_CR97 publication-title: Int. J. Automotive Technology doi: 10.1007/s12239-008-0007-8 – volume: 247 start-page: 454 year: 2019 ident: 125_CR99 publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.04.021 – volume: 101 start-page: 685 year: 2016 ident: 125_CR86 publication-title: Energy Procedia doi: 10.1016/j.egypro.2016.11.087 – ident: 125_CR13 doi: 10.1109/CIVVS.2009.4938720 – volume: 8 start-page: 67112 year: 2020 ident: 125_CR38 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986373 – volume: 22 start-page: 1497 issue: 4 year: 2017 ident: 125_CR52 publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2017.2707338 – volume: 3 start-page: 215 issue: 03 year: 2015 ident: 125_CR63 publication-title: World J. Engineering and Technology doi: 10.4236/wjet.2015.33C032 – ident: 125_CR114 doi: 10.23919/ACC45564.2020.9147479 – ident: 125_CR23 – ident: 125_CR98 – volume: 163 start-page: 837 year: 2018 ident: 125_CR101 publication-title: Energy doi: 10.1016/j.energy.2018.08.139 – volume: 13 start-page: 426 issue: 2 year: 2020 ident: 125_CR112 publication-title: Energies doi: 10.3390/en13020426 – volume: 192 start-page: 133 year: 2019 ident: 125_CR40 publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2019.03.090 – ident: 125_CR46 doi: 10.5220/0006573000610072 – ident: 125_CR110 doi: 10.1109/ASPDAC.2018.8297305 – ident: 125_CR11 doi: 10.1201/9781420054002 – volume: 235 start-page: 761 year: 2019 ident: 125_CR74 publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.11.003 – volume: 68 start-page: 203 issue: 1 year: 2018 ident: 125_CR62 publication-title: IEEE Trans. Vehicular Technology doi: 10.1109/TVT.2018.2881057 – volume: 199 start-page: 117495 year: 2020 ident: 125_CR104 publication-title: Energy doi: 10.1016/j.energy.2020.117495 – ident: 125_CR92 doi: 10.1109/ITNEC48623.2020.9085070 – volume: 8 start-page: 274 issue: 1 year: 2016 ident: 125_CR37 publication-title: World Electric Vehicle J. doi: 10.3390/wevj8010274 – volume: 575 start-page: 350 issue: 7782 year: 2019 ident: 125_CR88 publication-title: Nature doi: 10.1038/s41586-019-1724-z – volume: 21 start-page: 756 issue: 3 year: 2006 ident: 125_CR56 publication-title: IEEE Trans. Power Electronics doi: 10.1109/TPEL.2006.872372 – volume: 73 start-page: 244 issue: 1–4 year: 2006 ident: 125_CR70 publication-title: Mathematics and Computers in Simulation doi: 10.1016/j.matcom.2006.06.016 – ident: 125_CR51 doi: 10.4271/2019-01-1051 – volume: 191 start-page: 99 year: 2017 ident: 125_CR4 publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.01.045 – volume: 95 start-page: 719 issue: 4 year: 2007 ident: 125_CR12 publication-title: Proc. IEEE doi: 10.1109/JPROC.2007.892492 – volume: 343 start-page: 420 issue: 4–5 year: 2006 ident: 125_CR59 publication-title: J. Franklin Institute doi: 10.1016/j.jfranklin.2006.02.015 – volume: 11 start-page: 839 issue: 6 year: 2003 ident: 125_CR43 publication-title: IEEE Trans. Control Systems Technology doi: 10.1109/TCST.2003.815606 – ident: 125_CR90 doi: 10.1109/AIM.2019.8868667 – ident: 125_CR91 doi: 10.1109/IEVC.2012.6183284 – ident: 125_CR15 doi: 10.4271/2019-01-1212 – ident: 125_CR67 doi: 10.1109/ACC.2001.945787 – ident: 125_CR30 doi: 10.1109/ICNN.1995.488968 – volume: 211 start-page: 538 year: 2018 ident: 125_CR103 publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.11.072 – volume: 24 start-page: 853 issue: 3 year: 2015 ident: 125_CR85 publication-title: IEEE Trans. Control Systems Technology doi: 10.1109/TCST.2015.2498141 – volume: 8 start-page: 2494 issue: 12 year: 2018 ident: 125_CR5 publication-title: Applied Sciences doi: 10.3390/app8122494 – volume: 1 start-page: 71 issue: 1 year: 2007 ident: 125_CR27 publication-title: Int. J. Electric and Hybrid Vehicles doi: 10.1504/IJEHV.2007.014448 – volume: 8 start-page: 187 year: 2018 ident: 125_CR29 publication-title: Applied Sciences doi: 10.3390/app8020187 – volume: 19 start-page: 1279 issue: 5 year: 2010 ident: 125_CR31 publication-title: IEEE Trans. Control Systems Technology – volume: 42 start-page: 1092 issue: 4 year: 2006 ident: 125_CR26 publication-title: IEEE on Industry Application doi: 10.1109/TIA.2006.877736 – ident: 125_CR45 doi: 10.5220/0007364701340144 – volume: 225 start-page: 1301 issue: 6 year: 2011 ident: 125_CR58 publication-title: Proc. Institution of Mechanical Engineers, Part C: J. Mechanical Engineering Science – volume: 42 start-page: 41 issue: 1–2 year: 2004 ident: 125_CR42 publication-title: Vehicle System Dynamics doi: 10.1080/00423110412331291553 – volume: 8 start-page: 165837 year: 2020 ident: 125_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3022944 – ident: 125_CR87 doi: 10.1109/VPPC.2007.4544143 |
SSID | ssj0056130 |
Score | 2.3869767 |
Snippet | A hybrid electric vehicle (HEV) is defined as a vehicle that has two or more power sources, the hybrid electric vehicle is a representative eco-friendly... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1437 |
SubjectTerms | Artificial intelligence Automotive Engineering Control theory Electric vehicles Energy management Engineering Hybrid electric vehicles Machine learning Optimal control Power sources 자동차공학 |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEG4EX_TB-DOiaBrjk6ZxbC1jT4YYEH3QFzC8NdutRYIyBHzwv_eubCIm8rSHtltyd7v7rr1-x9glZlUIVEGJNLGRkL71RJzWGiIOQgClVJiCq_J9qnd68rGv-vmG2ywvqyx8onPUaQa0R35DwFhFRFB3O_kQ1DWKTlfzFholtlnDSEN23mjfF57YYWNKuHw_ohPmRnGq6a7OYVyMBBUooItWwluJS6Xx1K5Azj-npC74tHfZTo4aeXOh5j22Ycb7bPsXl-ABy5p8sc_PM8uf0RG844KWu9nHlzUuvGCjNTPuqgVwjKopDc-JVge8W7C6zjgCWt75ojtdvOXa5QyBv5hXV0l3yHrtVveuI_JuCgIC5c3R30ZW2QgjugHqKw6hVGEAgQTEEH4qIY6ltJiAEWUbWGnSELGTL0PwAxVjvnrEyuNsbI4Zr9VsBCaQJsEIbxMEnXWcJ8MwjhObJI0K8wpZasipxqnjxZtekiST-DWKX5P4tVdhVz9LJguejXWTL1BBegRDTezY9BxkejTVmAM8aCKcrweywqqF_nT-X8700ooq7LrQ6XL43y-erH_ZKdvyyZRckV-VlefTT3OGYGWenDuL_AbxmeJ_ priority: 102 providerName: ProQuest |
Title | A Review of Optimal Energy Management Strategies Using Machine Learning Techniques for Hybrid Electric Vehicles |
URI | https://link.springer.com/article/10.1007/s12239-021-0125-0 https://www.proquest.com/docview/2576590344 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002757645 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | International Journal of Automotive Technology, 2021, 22(5), 123, pp.1437-1452 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT8IwEL4IvOiD8WdEkTTGJ80S2FrGHtEMUBM0Rgw-NVvXqkHBAD7433tXVlGjJj7toe2W9Nq773Z33wEcoleFQFUJL0tN5HHf1Lwkqze9JAiVEkKEmbJZvr1Gt8_PB2KQ13FPXba7C0laTb0odkNLFnmUUoBKVXjop5cEuu50G_t-y6lfC4jJy_L9iMLKTRfK_OkVX4xRYTQxX3Dmt9CotTjtNVjNoSJrzWW7Dkt6tAErnwgEN2HcYvOf-2xs2CXe_mdcENtyPrZIbGGOglZPmU0RwDFKodQsZ1e9ZzeOynXKEMWy7hsVcrHY9sh5VOxWP9j0uS3ot-Ob066Xt1DwVCBqM1SykREmQjOuFTUTVyEXYaACrhA4-BlXScK5Qa-LeNqU4ToLETD5PFR-IBJ0UrehOBqP9A6wet1ESgdcp2jWTYpIs4HzeBgmSWrStFmGmttLqXJ-cWpz8SQXzMi0_RK3X9L2y1oZjj6WvMzJNf6afIACkkP1KIkSm573YzmcSAT-Z5JY5hsBL0PFyU_ml3EqyacSEXEbluHYyXQx_OsXd_81ew-W6TTOE_0qUJxNXvU-ApZZWoVCs92pQqnVubuI8XkS966uq_bYvgPtPeLy |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9AAcUPkSgQIrBBfQCme9G8cHhAqkSmgJCKWot6093i1V27hNUqH-qf5GZjZeQpHorScf1mtLs-OZN56ZNwAvKaoioIpGVqXPpVY-kUXV6ckizRCNMVmFocp31B3s6M-7ZncFLmIvDJdVRpsYDHVVI_8jf8vA2ORMUPf-5FTy1CjOrsYRGgu12HLnvyhkm70bfqLzfaXUZn_8cSCbqQISU5PMye7k3vicPJtDnq-NmTZZiqlG8qWq0lgUWnsKRJi6DL12VUYYQukMVWoKw0QHZPJXNXe0tmD1Q3_07Xu0_QGNc4inVM457V7Mo4ZmPfLEueSSCHIKRiaXPOGNydRfArn_5GWDu9tcgzsNThUbC8W6Cytucg9u_8VeeB_qDbHILIjai69keo5pQz_0EoplVY2I_LduJkJ9Aq1x_aYTDbXrvhhHHtmZIAgtBufcRSb6YUDPAYof7meo3XsAO9ci6YfQmtQT9whEp-NzdKl2JWEKXxLM7dJ9OsuKovRl2WtDEmVpsSE35xkbR3ZJy8zityR-y-K3SRte_9lysmD2uOrmF3RA9hAPLPNx83W_todTS1HH0DLFfTfVbViP52cbSzCzS71tw5t4psvl_77x8dUPew43B-Mv23Z7ONp6ArcUq1UoMVyH1nx65p4SVJqXzxr9FLB33Z_Eb0RCHmM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2VIiE4ID7VQKEWggvI6sZrx9kDqiqakFBUOLSoN7M7a5eqkC1JEOpf49d1xlk3FIneetrDfknj2Zk3O89vAF5SVUVAFY2sq1BIrUImy7rbl2VuEY0xtsbI8t3rjQ70h0NzuAJ_0l4YplWmmBgDdd0g_yPfZGBsChao2wwtLeLzznDr9KfkCVLcaU3jNBYusuvPflP5Nns73qG1fqXUcLD_biTbCQMSc5PNKQYVwYSCspxHnrWNVhubY66R8qqqNZal1oGKEpYxw6B9bQlPKG1R5aY0LHpA4f-mzW3BhV9_-D5lgYjLudhTquDudj91VOO2PcrJhWRyBKUHI7NLOfHGZBouwd1_OrQx8Q3vwd0WsYrthYvdhxU_eQB3_tIxfAjNtlj0GEQTxCcKQj_ohkHcVSiW_BqRlHD9TESmAp1jJqcXrcjrkdhPirIzQWBajM54P5kYxFE9xyi--G-RxfcIDq7Fzo9hddJM_BqIbjcU6HPtK0IXoSLA26PrtLVlWYWq6ncgS7Z02Mqc87SN724p0Mzmd2R-x-Z3WQdeX9xyutD4uOriF7RA7gSPHStz8_GocSdTR_XH2LHYfS_XHVhP6-famDBzSw_uwJu0psvT_33jk6sftgG36ENwH8d7u0_htmKvilzDdVidT3_5Z4SZ5tXz6JwCvl7313AO4EUhMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Optimal+Energy+Management+Strategies+Using+Machine+Learning+Techniques+for+Hybrid+Electric+Vehicles&rft.jtitle=International+journal+of+automotive+technology&rft.au=Song%2C+Changhee&rft.au=Kim%2C+Kiyoung&rft.au=Sung%2C+Donghwan&rft.au=Kim%2C+Kyunghyun&rft.date=2021-10-01&rft.issn=1229-9138&rft.eissn=1976-3832&rft.volume=22&rft.issue=5&rft.spage=1437&rft.epage=1452&rft_id=info:doi/10.1007%2Fs12239-021-0125-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12239_021_0125_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-9138&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-9138&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-9138&client=summon |