A Review of Optimal Energy Management Strategies Using Machine Learning Techniques for Hybrid Electric Vehicles

A hybrid electric vehicle (HEV) is defined as a vehicle that has two or more power sources, the hybrid electric vehicle is a representative eco-friendly vehicle because it can operate efficiently with each power source and requires only a small sized electric power source. However, it is not possibl...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of automotive technology Vol. 22; no. 5; pp. 1437 - 1452
Main Authors Song, Changhee, Kim, Kiyoung, Sung, Donghwan, Kim, Kyunghyun, Yang, Hyunjun, Lee, Heeyun, Cho, Gu Young, Cha, Suk Won
Format Journal Article
LanguageEnglish
Published Seoul The Korean Society of Automotive Engineers 01.10.2021
Springer Nature B.V
한국자동차공학회
Subjects
Online AccessGet full text
ISSN1229-9138
1976-3832
DOI10.1007/s12239-021-0125-0

Cover

Abstract A hybrid electric vehicle (HEV) is defined as a vehicle that has two or more power sources, the hybrid electric vehicle is a representative eco-friendly vehicle because it can operate efficiently with each power source and requires only a small sized electric power source. However, it is not possible to develop high efficiency HEVs without an effective energy management system (EMS), a well-designed EMS is vital in HEVs because they need to manage two power sources. Motivated by this, there are continuing efforts being made to research and establish suitable energy management strategies in order to develop high efficiency HEVs. In the past, many energy management strategies for HEVs were developed based on optimal control theory. Recently, various kinds of machine learning technologies have been applied to HEV EMS development based on breakthroughs in the fields of machine learning and artificial intelligence (AI). Machine learning is a field of research that allows computers to perform arbitrary tasks guided by data rather than explicit programming. Machine learning can be classified into supervised learning, reinforcement learning (semi-supervised learning), and unsupervised learning depending on how the training data is structured. In this study, we look at cases and studies in which machine learning techniques from each category were used to develop HEV energy management strategies.
AbstractList A hybrid electric vehicle (HEV) is defined as a vehicle that has two or more power sources, the hybrid electric vehicle is a representative eco-friendly vehicle because it can operate efficiently with each power source and requires only a small sized electric power source. However, it is not possible to develop high efficiency HEVs without an effective energy management system (EMS), a well-designed EMS is vital in HEVs because they need to manage two power sources. Motivated by this, there are continuing efforts being made to research and establish suitable energy management strategies in order to develop high efficiency HEVs. In the past, many energy management strategies for HEVs were developed based on optimal control theory. Recently, various kinds of machine learning technologies have been applied to HEV EMS development based on breakthroughs in the fields of machine learning and artificial intelligence (AI). Machine learning is a field of research that allows computers to perform arbitrary tasks guided by data rather than explicit programming. Machine learning can be classified into supervised learning, reinforcement learning (semi-supervised learning), and unsupervised learning depending on how the training data is structured. In this study, we look at cases and studies in which machine learning techniques from each category were used to develop HEV energy management strategies.
A hybrid electric vehicle (HEV) is defined as a vehicle that has two or more power sources, the hybrid electric vehicle is a representative eco-friendly vehicle because it can operate efficiently with each power source and requires only a small sized electric power source. However, it is not possible to develop high efficiency HEVs without an effective energy management system (EMS), a well-designed EMS is vital in HEVs because they need to manage two power sources. Motivated by this, there are continuing efforts being made to research and establish suitable energy management strategies in order to develop high efficiency HEVs. In the past, many energy management strategies for HEVs were developed based on optimal control theory. Recently, various kinds of machine learning technologies have been applied to HEV EMS development based on breakthroughs in the fields of machine learning and artificial intelligence (AI). Machine learning is a field of research that allows computers to perform arbitrary tasks guided by data rather than explicit programming. Machine learning can be classified into supervised learning, reinforcement learning (semi-supervised learning), and unsupervised learning depending on how the training data is structured. In this study, we look at cases and studies in which machine learning techniques from each category were used to develop HEV energy management strategies. KCI Citation Count: 12
Author Yang, Hyunjun
Kim, Kiyoung
Song, Changhee
Sung, Donghwan
Kim, Kyunghyun
Cho, Gu Young
Cha, Suk Won
Lee, Heeyun
Author_xml – sequence: 1
  givenname: Changhee
  surname: Song
  fullname: Song, Changhee
  organization: Department of Mechanical Engineering, Seoul National University
– sequence: 2
  givenname: Kiyoung
  surname: Kim
  fullname: Kim, Kiyoung
  organization: Department of Mechanical Engineering, Seoul National University
– sequence: 3
  givenname: Donghwan
  surname: Sung
  fullname: Sung, Donghwan
  organization: Department of Mechanical Engineering, Seoul National University
– sequence: 4
  givenname: Kyunghyun
  surname: Kim
  fullname: Kim, Kyunghyun
  organization: Department of Mechanical Engineering, Seoul National University
– sequence: 5
  givenname: Hyunjun
  surname: Yang
  fullname: Yang, Hyunjun
  organization: Department of Mechanical Engineering, Seoul National University
– sequence: 6
  givenname: Heeyun
  surname: Lee
  fullname: Lee, Heeyun
  organization: Department of Mechanical Engineering, Seoul National University
– sequence: 7
  givenname: Gu Young
  surname: Cho
  fullname: Cho, Gu Young
  organization: Department of Mechanical Engineering, Dankook University
– sequence: 8
  givenname: Suk Won
  surname: Cha
  fullname: Cha, Suk Won
  email: swcha@snu.ac.kr
  organization: Department of Mechanical Engineering, Seoul National University, Institute of Advanced Machines and Design, Seoul National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002757645$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kV1LHDEUhkOxULX9Ab0L9KoXY_M5M7lcZK3CFsGuvQ0xezIbHZM1iZX992YcQRDaqxOS5wnnnPcIHYQYAKGvlJxQQrofmTLGVUMYbQhlsiEf0CFVXdvwnrODemZMNYry_hM6yvmWENlSTg5RXOAr-OvhCUeHL3fF35sRLwOkYY9_mWAGuIdQ8O-STIHBQ8bX2YehvtmtD4BXYFKYLtZgt8E_PFbCxYTP9zfJb_ByBFuSt_gPbL0dIX9GH50ZM3x5rcfo-my5Pj1vVpc_L04Xq8ZySUpDiXLSKdpTsEKy1nZCdtxyYQWnbCOsMUK4nvVCMW6dgE3HFWOis4xLIxk_Rt_nf0Ny-s56HY1_qUPUd0kvrtYXWvWtaLmo7LeZ3aU4DVD0bXxMobanmexaqQgXE9XNlE0x5wROW19M8THU3fhRU6KnJPSchK5J6CkJTapJ35m7VPec9v912OzkyoYB0ltP_5aeAWvamyI
CitedBy_id crossref_primary_10_3390_electronics12020445
crossref_primary_10_1007_s40684_022_00476_2
crossref_primary_10_1109_TTE_2024_3356196
crossref_primary_10_1109_TTE_2024_3377809
crossref_primary_10_3390_en17236069
crossref_primary_10_1186_s10033_024_01026_4
crossref_primary_10_1016_j_rser_2023_113873
crossref_primary_10_1007_s12239_023_0024_7
crossref_primary_10_1016_j_engappai_2025_110166
crossref_primary_10_1016_j_est_2024_112151
crossref_primary_10_1016_j_treng_2025_100308
crossref_primary_10_1016_j_energy_2024_133196
crossref_primary_10_1016_j_ijhydene_2022_03_036
crossref_primary_10_1016_j_ijhydene_2023_11_030
crossref_primary_10_3390_electronics11020181
crossref_primary_10_1177_09544070241275724
crossref_primary_10_1016_j_ijhydene_2022_09_083
crossref_primary_10_1016_j_jer_2024_01_016
crossref_primary_10_1541_ieejjia_22004507
crossref_primary_10_1016_j_geits_2022_100061
crossref_primary_10_3390_en18010010
crossref_primary_10_1016_j_heliyon_2023_e23394
crossref_primary_10_3390_hydrogen6020020
crossref_primary_10_3934_mbe_2023330
crossref_primary_10_7467_KSAE_2022_30_10_785
crossref_primary_10_1155_2023_6684018
crossref_primary_10_1007_s00202_024_02488_4
crossref_primary_10_1007_s12239_022_0133_8
Cites_doi 10.1007/s12239-008-0007-8
10.1016/j.apenergy.2017.11.072
10.3390/en13092278
10.3390/en13010202
10.1016/j.energy.2018.08.139
10.1007/s40684-017-0011-4
10.1109/TCST.2008.919447
10.1109/TCST.2015.2498141
10.3390/en11082054
10.3390/vehicles2020015
10.1038/nature24270
10.1016/j.energy.2020.117495
10.1109/TCST.2017.2740836
10.1016/j.epsr.2020.106962
10.1007/s12239-015-0092-4
10.1038/s41586-019-1724-z
10.1016/j.apenergy.2014.09.026
10.1109/TCST.2003.815606
10.1109/TPEL.2006.872372
10.1109/TMECH.2017.2707338
10.1038/s41598-017-16684-9
10.1016/j.rser.2015.03.093
10.1038/nature14236
10.1016/j.apenergy.2015.01.021
10.3390/su10062060
10.1109/TVT.2015.2504325
10.1109/ACCESS.2020.3047497
10.3182/20140824-6-ZA-1003.01868
10.3390/en11010089
10.1109/TCST.2010.2047860
10.1109/TVT.2009.2027710
10.4271/2016-01-1243
10.1016/j.apenergy.2016.12.112
10.1016/j.egypro.2017.03.674
10.1016/j.jpowsour.2013.09.110
10.1016/j.apenergy.2019.04.021
10.1016/j.apenergy.2017.01.045
10.1109/ACCESS.2020.2986373
10.1016/j.enconman.2019.05.038
10.1109/TITS.2017.2729621
10.1016/j.apenergy.2018.11.003
10.1016/j.apenergy.2017.07.059
10.3390/en9050341
10.3390/app8020187
10.3166/ejc.11.509-524
10.1080/00423110412331291553
10.1016/j.ijhydene.2018.06.072
10.1007/978-1-4615-3618-5
10.1049/iet-its.2014.0075
10.1016/j.apenergy.2013.11.002
10.1109/TFUZZ.2017.2779424
10.1109/JPROC.2007.892492
10.1109/TII.2020.3015748
10.1109/TTE.2015.2471180
10.1504/IJEHV.2007.014448
10.4236/wjet.2015.33C032
10.1109/TII.2018.2880897
10.3390/app8122494
10.1016/j.ijhydene.2018.04.038
10.1016/j.jfranklin.2006.02.015
10.1109/TIA.2006.877736
10.1109/TVT.2012.2217362
10.1016/j.matcom.2006.06.016
10.1016/j.ijhydene.2018.10.115
10.1109/TVT.2018.2881057
10.1109/ACCESS.2020.3022944
10.1016/j.enconman.2019.03.090
10.3182/20140824-6-ZA-1003.02375
10.1109/TVT.2005.844685
10.1016/j.apenergy.2018.03.104
10.1016/j.apenergy.2019.113708
10.1016/j.jfranklin.2017.12.039
10.1016/j.apenergy.2018.01.070
10.3390/wevj8010274
10.3390/en13020426
10.1016/j.apenergy.2018.12.032
10.3390/en5041175
10.1016/j.egypro.2016.11.087
10.3390/en9060420
10.1016/j.energy.2020.117297
10.4271/970294
10.1109/TCST.2014.2361294
10.4271/2009-01-1332
10.1109/TCST.2014.2359176
10.1109/ChiCC.2014.6896612
10.1109/ICCAD.2014.7001326
10.1109/VTC.2002.1002989
10.1109/PEDSTC.2011.5742461
10.4271/2009-36-0328
10.1109/ICCAD.2015.7372628
10.1109/CIVVS.2009.4938720
10.23919/ACC45564.2020.9147479
10.5220/0006573000610072
10.1109/ASPDAC.2018.8297305
10.1201/9781420054002
10.1109/ITNEC48623.2020.9085070
10.4271/2019-01-1051
10.1109/AIM.2019.8868667
10.1109/IEVC.2012.6183284
10.4271/2019-01-1212
10.1109/ACC.2001.945787
10.1109/ICNN.1995.488968
10.5220/0007364701340144
10.1109/VPPC.2007.4544143
ContentType Journal Article
Copyright KSAE 2021
KSAE 2021.
Copyright_xml – notice: KSAE 2021
– notice: KSAE 2021.
DBID AAYXX
CITATION
3V.
7TB
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
K60
K6~
KB.
L.-
M0C
M2P
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
ACYCR
DOI 10.1007/s12239-021-0125-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (UHCL Subscription)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Materials Science Database (NC LIVE)
ABI/INFORM Professional Advanced
ABI/INFORM Global
Science Database (ProQuest)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Korean Citation Index
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ABI/INFORM Global (Corporate)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3832
EndPage 1452
ExternalDocumentID oai_kci_go_kr_ARTI_9864634
10_1007_s12239_021_0125_0
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.UV
.VR
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
6NX
7WY
88I
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D1I
DBRKI
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GW5
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
KB.
KC.
KOV
KVFHK
LLZTM
M0C
M2P
M4Y
MA-
MK~
ML~
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P9P
PDBOC
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TDB
TR2
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
7TB
7XB
8FD
8FK
ABRTQ
FR3
L.-
PKEHL
PQEST
PQGLB
PQUKI
Q9U
AAFGU
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
UNUBA
ID FETCH-LOGICAL-c350t-109f5f9181ec4526c74573c34c4312d4caa44f8284923cf4ed7392247c235a523
IEDL.DBID U2A
ISSN 1229-9138
IngestDate Tue Jun 25 21:11:02 EDT 2024
Fri Jul 25 19:29:02 EDT 2025
Tue Jul 01 02:44:15 EDT 2025
Thu Apr 24 22:52:08 EDT 2025
Fri Feb 21 02:48:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Optimal control theory
Energy management strategy
Hybrid electric vehicle
Artificial intelligence
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-109f5f9181ec4526c74573c34c4312d4caa44f8284923cf4ed7392247c235a523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2576590344
PQPubID 54404
PageCount 16
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9864634
proquest_journals_2576590344
crossref_citationtrail_10_1007_s12239_021_0125_0
crossref_primary_10_1007_s12239_021_0125_0
springer_journals_10_1007_s12239_021_0125_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211000
2021-10-00
20211001
2021-10
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Dordrecht
PublicationTitle International journal of automotive technology
PublicationTitleAbbrev Int.J Automot. Technol
PublicationYear 2021
Publisher The Korean Society of Automotive Engineers
Springer Nature B.V
한국자동차공학회
Publisher_xml – name: The Korean Society of Automotive Engineers
– name: Springer Nature B.V
– name: 한국자동차공학회
References Han, He, Wu, Peng, Li (CR21) 2019; 254
Rezaei, Burl, Zhou (CR73) 2017; 26
Zhang, Deng (CR108) 2016; 9
Vagg, Akehurst, Brace, Ash (CR85) 2015; 24
Xie, Hu, Xin, Brighton (CR102) 2019; 236
Abdelsalam, Cui (CR1) 2012; 5
Montazeri-Gh, Fotouhi, Naderpour (CR58) 2011; 225
Liu, Peng (CR50) 2008; 16
Harold, Prakash, Hofinan (CR22) 2020; 2
Kim, Cha, Peng (CR31) 2010; 19
Murphey, Park, Kiliaris, Kuang, Masrur, Phillips, Wang (CR60) 2012; 62
Chen, Hu, Wu, Xiao, Shen, Liu (CR5) 2018; 8
Wu, He, Peng, Li, Li (CR96) 2018; 222
Choi (CR7) 2019
Lee, Song, Kim, Cha (CR38) 2020; 8
Pei, Hu, Yang, Tang, Hou, Cao (CR69) 2018; 214
Sun, Hu, Moura, Sun (CR79) 2014; 23
Lin, Jeon, Peng, Lee (CR42) 2004; 42
Geng, Jin, Zhang (CR17) 2019; 44
CR33
Tian, Wang, Lu, Huang, Tian (CR84) 2017; 19
Chia, Lee, Shafiabady, Isa (CR6) 2015; 137
Denis, Dubois, Desrochers (CR10) 2015; 9
CR30
Son, Kim, Hwang, Kim (CR77) 2018; 11
Xie, Hu, Qi, Lang (CR101) 2018; 163
Zhang, Tao (CR109) 2017; 26
Park, Chen, Kiliaris, Kuang, Masrur, Phillips, Murphey (CR68) 2009; 58
Li, Ravey, N’Diaye, Djerdir (CR40) 2019; 192
Zeng, Cai, Kou, Gao, Qin (CR115) 2018; 10
CR49
CR48
CR47
CR46
CR45
Miller (CR56) 2006; 21
Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton, Chen, Lillicrap, Hui, Sifre, van den Driessche, Graepel, Hassabis (CR75) 2017; 550
Asadi, Vahidi (CR3) 2010; 19
Shabbir, Evangelou (CR74) 2019; 235
Xie, He, Peng (CR100) 2017; 196
Ou, Yuan, Choi, Yang, Jung, Kim (CR65) 2018; 43
Son, Kim (CR76) 2016; 9
Pérez, Bossio, Moitre, García (CR70) 2006; 73
Tang, Rizzoni, Onori (CR83) 2015; 1
Han, Jiao, Zhang (CR20) 2020; 13
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, Petersen, Beattie, Sadik, Antonoglou, King, Kumaran, Wierstra, Legg, Hassabis (CR57) 2015; 518
Hwang, Chen (CR24) 2020; 13
Liu, Yu, Guo, Qin, Zou (CR53) 2018; 15
CR54
CR51
Hofman, Steinbuch, Van Druten, Serrarens (CR27) 2007; 1
Nguyen, German, Trovão, Bouscayrol (CR62) 2018; 68
Ehsani, Gao, Miller (CR12) 2007; 95
Hou, Ouyang, Xu, Wang (CR28) 2014; 115
Li, Huang, Chen, Yan, Shang, Li (CR41) 2019; 44
Plötz, Funke, Jochem, Wietschel (CR71) 2017; 7
Zheng, Xu, Park, Lim, Cha (CR111) 2014; 248
Chambon, Curran, Huff, Love, Post, Wagner, Jackson, Green (CR4) 2017; 191
Finesso, Spessa, Venditti (CR14) 2016; 5
Zheng, He, Shen, Jiang (CR112) 2020; 13
Mayur, Gerard, Schott, Bessler (CR55) 2018; 11
CR67
CR66
Tan, Zhang, Peng, Jiang, Wu (CR82) 2019; 195
Kim, Lee (CR32) 2015; 16
Musardo, Rizzoni, Guezennec, Staccia (CR61) 2005; 11
Hu, Li, Xu, Zahid, Qin, Li (CR29) 2018; 8
He, Cao, Peng (CR25) 2017; 105
Onori, Tribioli (CR64) 2015; 147
Guo, Liu, Tang, Tang, Zhang, Tan, Jin (CR19) 2020; 8
CR78
CR114
CR110
Xiong, Cao, Yu (CR103) 2018; 211
CR8
Lee, Kang, Park, Cha (CR37) 2016; 8
Vinyals, Babuschkin, Czarnecki, Mathieu, Dudzik, Chung, Choi, Powell, Ewalds, Georgiev, Oh, Horgan, Kroiss, Danihelka, Huang, Sifre, Cai, Agapiou, Jaderberg, Vezhnevets, Leblond, Pohlen, Dalibard, Budden, Sulsky, Molloy, Paine, Gulcehre, Wang, Pfaff, Wu, Ring, Yogatama, Wünsch, McKinney, Smith, Schaul, Lillicrap, Kavukcuoglu, Hassabis, Apps, Silver (CR88) 2019; 575
CR9
Aljohani, Ebrahim, Mohammed (CR2) 2021; 192
CR87
Langari, Won (CR34) 2005; 54
Lee, Cha (CR35) 2020; 9
CR18
CR16
CR15
Xu, Zhang, Fan, Bao, Wang, Huang, Chin, Li (CR104) 2020; 199
CR13
Lian, Peng, Wu, Tan, Zhang (CR44) 2020; 197
CR11
CR98
Wang, Tan, Wu, Peng (CR93) 2020; 17
CR95
CR94
CR92
CR91
Lin, Peng, Grizzle, Kang (CR43) 2003; 11
CR90
Wu, Zhang, Cui (CR97) 2008; 9
Sun, Moura, Hu, Hedrick, Sun (CR80) 2014; 23
Wang, Wang, Wang, Zeng (CR89) 2018; 355
Sutton, Barto (CR81) 1992
Lee, Jeong, Park, Cha (CR36) 2017; 4
Hoeijimakes, Ferreira (CR26) 2006; 42
Liu, Hu, Li, Cao (CR52) 2017; 22
Pourabdollah, Murgovski, Grauers, Egardt (CR72) 2014; 47
Zhang, Yan, Du (CR107) 2015; 48
Yang, Zhu (CR105) 2016; 65
Leroy, Vidal-Naquet, Tona (CR39) 2014; 47
CR23
Niu (CR63) 2015; 3
Venditti (CR86) 2016; 101
Wu, Tan, Peng, Zhang, He (CR99) 2019; 247
Zhuang, Zhang, Li, Wang, Yin (CR113) 2017; 204
Montazeri-Gh, Poursamad, Ghalichi (CR59) 2006; 343
CR106
C C Lin (125_CR42) 2004; 42
M Montazeri-Gh (125_CR59) 2006; 343
125_CR87
Q Li (125_CR41) 2019; 44
B Asadi (125_CR3) 2010; 19
R Xiong (125_CR103) 2018; 211
H Lee (125_CR37) 2016; 8
X Han (125_CR21) 2019; 254
L Niu (125_CR63) 2015; 3
H Son (125_CR76) 2016; 9
M Venditti (125_CR86) 2016; 101
P Chambon (125_CR4) 2017; 191
H Y Hwang (125_CR24) 2020; 13
C C Lin (125_CR43) 2003; 11
H He (125_CR25) 2017; 105
Z Chen (125_CR5) 2018; 8
Y Zheng (125_CR112) 2020; 13
125_CR13
P Plötz (125_CR71) 2017; 7
125_CR15
125_CR16
H Lee (125_CR38) 2020; 8
125_CR98
125_CR11
D Silver (125_CR75) 2017; 550
125_CR94
125_CR95
R S Sutton (125_CR81) 1992
Y Wu (125_CR99) 2019; 247
125_CR90
125_CR91
125_CR92
O Vinyals (125_CR88) 2019; 575
T M Aljohani (125_CR2) 2021; 192
N Kim (125_CR31) 2010; 19
R Zhang (125_CR109) 2017; 26
H Li (125_CR40) 2019; 192
C Sun (125_CR80) 2014; 23
125_CR66
125_CR67
C H Zheng (125_CR111) 2014; 248
B H Nguyen (125_CR62) 2018; 68
C Musardo (125_CR61) 2005; 11
R Langari (125_CR34) 2005; 54
W Zhuang (125_CR113) 2017; 204
R Lian (125_CR44) 2020; 197
L Tang (125_CR83) 2015; 1
K Ou (125_CR65) 2018; 43
M Mayur (125_CR55) 2018; 11
M Montazeri-Gh (125_CR58) 2011; 225
125_CR8
125_CR9
125_CR78
H Tian (125_CR84) 2017; 19
Y Y Chia (125_CR6) 2015; 137
T Liu (125_CR53) 2018; 15
T Liu (125_CR52) 2017; 22
J Wu (125_CR97) 2008; 9
J Choi (125_CR7) 2019
J Xu (125_CR104) 2020; 199
C Vagg (125_CR85) 2015; 24
Y Hu (125_CR29) 2018; 8
H Tan (125_CR82) 2019; 195
J Wu (125_CR96) 2018; 222
125_CR46
S Xie (125_CR100) 2017; 196
125_CR47
Y Zeng (125_CR115) 2018; 10
X Guo (125_CR19) 2020; 8
125_CR48
125_CR49
C Geng (125_CR17) 2019; 44
125_CR45
T Hofman (125_CR27) 2007; 1
M Pourabdollah (125_CR72) 2014; 47
N Denis (125_CR10) 2015; 9
J M Miller (125_CR56) 2006; 21
L V Pérez (125_CR70) 2006; 73
J Liu (125_CR50) 2008; 16
M Ehsani (125_CR12) 2007; 95
T Leroy (125_CR39) 2014; 47
Y L Murphey (125_CR60) 2012; 62
H Lee (125_CR36) 2017; 4
J Park (125_CR68) 2009; 58
125_CR54
M J Hoeijimakes (125_CR26) 2006; 42
125_CR51
Q Zhang (125_CR108) 2016; 9
C Sun (125_CR79) 2014; 23
C K Harold (125_CR22) 2020; 2
W Shabbir (125_CR74) 2019; 235
J Yang (125_CR105) 2016; 65
T Y Kim (125_CR32) 2015; 16
125_CR110
125_CR23
H Son (125_CR77) 2018; 11
S Xie (125_CR101) 2018; 163
P Zhang (125_CR107) 2015; 48
125_CR114
H Pei (125_CR69) 2018; 214
S Onori (125_CR64) 2015; 147
S Xie (125_CR102) 2019; 236
J Wang (125_CR89) 2018; 355
125_CR18
125_CR33
R Finesso (125_CR14) 2016; 5
C Hou (125_CR28) 2014; 115
125_CR30
Y Wang (125_CR93) 2020; 17
H Lee (125_CR35) 2020; 9
125_CR106
A A Abdelsalam (125_CR1) 2012; 5
L Han (125_CR20) 2020; 13
A Rezaei (125_CR73) 2017; 26
V Mnih (125_CR57) 2015; 518
References_xml – ident: CR45
– volume: 9
  start-page: 53
  issue: 1
  year: 2008
  end-page: 69
  ident: CR97
  article-title: PSO algorithm-based parameter optimization for HEV powertrain and its control strategy
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-008-0007-8
– volume: 211
  start-page: 538
  year: 2018
  end-page: 548
  ident: CR103
  article-title: Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.11.072
– volume: 13
  start-page: 2278
  issue: 9
  year: 2020
  ident: CR24
  article-title: Optimized fuel economy control of power-split hybrid electric vehicle with particle swarm optimization
  publication-title: Energies
  doi: 10.3390/en13092278
– ident: CR16
– volume: 13
  start-page: 202
  issue: 1
  year: 2020
  ident: CR20
  article-title: Recurrent neural network-based adaptive energy management control strategy of plug-in hybrid electric vehicles considering battery aging
  publication-title: Energies
  doi: 10.3390/en13010202
– ident: CR51
– volume: 163
  start-page: 837
  year: 2018
  end-page: 848
  ident: CR101
  article-title: An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.139
– volume: 4
  start-page: 79
  issue: 1
  year: 2017
  end-page: 86
  ident: CR36
  article-title: Energy management strategy of hybrid electric vehicle using battery state of charge trajectory information
  publication-title: Int. J. Precision Engineering and Manufacturing-Green Technology
  doi: 10.1007/s40684-017-0011-4
– volume: 16
  start-page: 1242
  issue: 6
  year: 2008
  end-page: 1251
  ident: CR50
  article-title: Modeling and control of a power-split hybrid vehicle
  publication-title: IEEE Trans. Control Systems Technology
  doi: 10.1109/TCST.2008.919447
– volume: 24
  start-page: 853
  issue: 3
  year: 2015
  end-page: 866
  ident: CR85
  article-title: Stochastic dynamic programming in the real-world control of hybrid electric vehicles
  publication-title: IEEE Trans. Control Systems Technology
  doi: 10.1109/TCST.2015.2498141
– volume: 11
  start-page: 2054
  issue: 8
  year: 2018
  ident: CR55
  article-title: Lifetime prediction of a polymer electrolyte membrane fuel cell under automotive load cycling using a physically-based catalyst degradation model
  publication-title: Energies
  doi: 10.3390/en11082054
– volume: 2
  start-page: 267
  issue: 2
  year: 2020
  end-page: 286
  ident: CR22
  article-title: Powertrain control for hybrid-electric vehicles using supervised machine learning
  publication-title: Vehicles
  doi: 10.3390/vehicles2020015
– ident: CR54
– volume: 550
  start-page: 354
  issue: 7676
  year: 2017
  end-page: 359
  ident: CR75
  article-title: Mastering the game of Go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– ident: CR8
– volume: 199
  start-page: 117495
  year: 2020
  ident: CR104
  article-title: Modelling and control of vehicle integrated thermal management system of PEM fuel cell vehicle
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117495
– ident: CR106
– volume: 26
  start-page: 2198
  issue: 6
  year: 2017
  end-page: 2205
  ident: CR73
  article-title: Estimation of the ECMS equivalent factor bounds for hybrid electric vehicles
  publication-title: IEEE Trans. Control Systems Technology
  doi: 10.1109/TCST.2017.2740836
– volume: 192
  start-page: 106962
  year: 2021
  ident: CR2
  article-title: Real-time metadata-driven routing optimization for electric vehicle energy consumption minimization using deep reinforcement learning and Markov chain model
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2020.106962
– volume: 16
  start-page: 903
  issue: 6
  year: 2015
  end-page: 912
  ident: CR32
  article-title: Combustion and emission characteristics of wood pyrolysis oil-butanol blended fuels in a DI diesel engine
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-015-0092-4
– volume: 575
  start-page: 350
  issue: 7782
  year: 2019
  end-page: 354
  ident: CR88
  article-title: Grandmaster level in StarCraft II using multi-agent reinforcement learning
  publication-title: Nature
  doi: 10.1038/s41586-019-1724-z
– volume: 137
  start-page: 588
  year: 2015
  end-page: 602
  ident: CR6
  article-title: A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2014.09.026
– volume: 11
  start-page: 839
  issue: 6
  year: 2003
  end-page: 849
  ident: CR43
  article-title: Power management strategy for a parallel hybrid electric truck
  publication-title: IEEE Trans. Control Systems Technology
  doi: 10.1109/TCST.2003.815606
– ident: CR92
– volume: 21
  start-page: 756
  issue: 3
  year: 2006
  end-page: 767
  ident: CR56
  article-title: Hybrid electric vehicle propulsion system architectures of the e-CVT type
  publication-title: IEEE Trans. Power Electronics
  doi: 10.1109/TPEL.2006.872372
– ident: CR11
– volume: 22
  start-page: 1497
  issue: 4
  year: 2017
  end-page: 1507
  ident: CR52
  article-title: Reinforcement learning optimized look-ahead energy management of a parallel hybrid electric vehicle
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2017.2707338
– year: 2019
  ident: CR7
  publication-title: Energy management strategy for hybrid vehicles based on time series prediction model considering driving characteristics
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 6
  ident: CR71
  article-title: CO mitigation potential of plug-in hybrid electric vehicles larger than expected
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-16684-9
– volume: 48
  start-page: 88
  year: 2015
  end-page: 104
  ident: CR107
  article-title: A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2015.03.093
– ident: CR18
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  end-page: 533
  ident: CR57
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 147
  start-page: 224
  year: 2015
  end-page: 234
  ident: CR64
  article-title: Adaptive Pontryagin’s Minimum Principle supervisory controller design for the plug-in hybrid GM Chevrolet Volt
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2015.01.021
– ident: CR66
– ident: CR91
– ident: CR47
– volume: 10
  start-page: 2060
  issue: 6
  year: 2018
  ident: CR115
  article-title: Energy management for plug-in hybrid electric vehicle based on adaptive simplified-ECMS
  publication-title: Sustainability
  doi: 10.3390/su10062060
– volume: 65
  start-page: 4700
  issue: 6
  year: 2016
  end-page: 4713
  ident: CR105
  article-title: Stochastic predictive boundary management for a hybrid powertrain
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2015.2504325
– ident: CR30
– volume: 9
  start-page: 860
  year: 2020
  end-page: 871
  ident: CR35
  article-title: Reinforcement learning based on equivalent consumption minimization strategy for optimal control of hybrid electric vehicles
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047497
– volume: 47
  start-page: 4813
  issue: 3
  year: 2014
  end-page: 4818
  ident: CR39
  article-title: Stochastic dynamic programming based energy management of HEV’s: an experimental validation
  publication-title: IFAC Proc. Volumes
  doi: 10.3182/20140824-6-ZA-1003.01868
– volume: 11
  start-page: 89
  issue: 1
  year: 2018
  ident: CR77
  article-title: Development of an advanced rule-based control strategy for a PHEV using machine learning
  publication-title: Energies
  doi: 10.3390/en11010089
– volume: 19
  start-page: 707
  issue: 3
  year: 2010
  end-page: 714
  ident: CR3
  article-title: Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time
  publication-title: IEEE Trans. Control Systems Technology
  doi: 10.1109/TCST.2010.2047860
– ident: CR33
– volume: 58
  start-page: 4741
  issue: 9
  year: 2009
  end-page: 4756
  ident: CR68
  article-title: Intelligent vehicle power control based on machine learning of optimal control parameters and prediction of road type and traffic congestion
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2009.2027710
– volume: 5
  start-page: 308
  issue: 2
  year: 2016
  end-page: 327
  ident: CR14
  article-title: An unsupervised machine-learning technique for the definition of a rule-based control strategy in a complex HEV
  publication-title: SAE Int. J. Alternative Powertrains
  doi: 10.4271/2016-01-1243
– volume: 196
  start-page: 279
  year: 2017
  end-page: 288
  ident: CR100
  article-title: An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2016.12.112
– volume: 105
  start-page: 2348
  year: 2017
  end-page: 2353
  ident: CR25
  article-title: Online prediction with variable horizon for vehicle’s future driving-cycle
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.674
– volume: 248
  start-page: 533
  year: 2014
  end-page: 544
  ident: CR111
  article-title: Prolonging fuel cell stack lifetime based on Pontryagin’s Minimum Principle in fuel cell hybrid vehicles and its economic influence evaluation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.09.110
– ident: CR94
– volume: 247
  start-page: 454
  year: 2019
  end-page: 466
  ident: CR99
  article-title: Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.04.021
– volume: 191
  start-page: 99
  year: 2017
  end-page: 110
  ident: CR4
  article-title: Development of a range-extended electric vehicle powertrain for an integrated energy systems research printed utility vehicle
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.01.045
– volume: 8
  start-page: 67112
  year: 2020
  end-page: 67123
  ident: CR38
  article-title: Comparative analysis of energy management strategies for HEV: Dynamic programming and reinforcement learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986373
– volume: 195
  start-page: 548
  year: 2019
  end-page: 560
  ident: CR82
  article-title: Energy management of hybrid electric bus based on deep reinforcement learning in continuous state and action space
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2019.05.038
– ident: CR13
– ident: CR114
– volume: 19
  start-page: 1607
  issue: 5
  year: 2017
  end-page: 1617
  ident: CR84
  article-title: Adaptive fuzzy logic energy management strategy based on reasonable SOC reference curve for online control of plug-in hybrid electric city bus
  publication-title: IEEE Trans. Intelligent Transportation Systems
  doi: 10.1109/TITS.2017.2729621
– volume: 235
  start-page: 761
  year: 2019
  end-page: 775
  ident: CR74
  article-title: Threshold-changing control strategy for series hybrid electric vehicles
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2018.11.003
– volume: 204
  start-page: 476
  year: 2017
  end-page: 488
  ident: CR113
  article-title: Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.07.059
– volume: 9
  start-page: 341
  issue: 5
  year: 2016
  ident: CR108
  article-title: An adaptive energy management system for electric vehicles based on driving cycle identification and wavelet transform
  publication-title: Energies
  doi: 10.3390/en9050341
– volume: 8
  start-page: 187
  year: 2018
  ident: CR29
  article-title: Energy management strategy for a hybrid electric vehicle based on deep reinforcement learning
  publication-title: Applied Sciences
  doi: 10.3390/app8020187
– volume: 11
  start-page: 509
  issue: 4–5
  year: 2005
  end-page: 524
  ident: CR61
  article-title: A-ECMS: An adaptive algorithm for hybrid electric vehicle energy management
  publication-title: European J. Control
  doi: 10.3166/ejc.11.509-524
– ident: CR49
– volume: 42
  start-page: 41
  issue: 1–2
  year: 2004
  end-page: 58
  ident: CR42
  article-title: Driving pattern recognition for control of hybrid electric trucks
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423110412331291553
– volume: 43
  start-page: 15433
  issue: 32
  year: 2018
  end-page: 15444
  ident: CR65
  article-title: Optimized power management based on adaptive-PMP algorithm for a stationary PEM fuel cell/battery hybrid system
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.06.072
– year: 1992
  ident: CR81
  publication-title: Reinforcement learning: An introduction
  doi: 10.1007/978-1-4615-3618-5
– ident: CR87
– volume: 9
  start-page: 30
  issue: 1
  year: 2015
  end-page: 37
  ident: CR10
  article-title: Fuzzy-based blended control for the energy management of a parallel plug-in hybrid electric vehicle
  publication-title: IET Intelligent Transport Systems
  doi: 10.1049/iet-its.2014.0075
– volume: 115
  start-page: 174
  year: 2014
  end-page: 189
  ident: CR28
  article-title: Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2013.11.002
– volume: 26
  start-page: 1833
  issue: 4
  year: 2017
  end-page: 1843
  ident: CR109
  article-title: GA-based fuzzy energy management system for FC/SC-powered HEV considering H consumption and load variation
  publication-title: IEEE Trans. Fuzzy Systems
  doi: 10.1109/TFUZZ.2017.2779424
– volume: 95
  start-page: 719
  issue: 4
  year: 2007
  end-page: 728
  ident: CR12
  article-title: Hybrid electric vehicles: Architecture and motor drives
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2007.892492
– volume: 23
  start-page: 1075
  issue: 3
  year: 2014
  end-page: 1086
  ident: CR80
  article-title: Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles
  publication-title: IEEE Trans. Control Systems Technology
– volume: 17
  start-page: 3857
  issue: 6
  year: 2020
  end-page: 3868
  ident: CR93
  article-title: Hybrid electric vehicle energy management with computer vision and deep reinforcement learning
  publication-title: IEEE Trans. Industrial Informatics
  doi: 10.1109/TII.2020.3015748
– volume: 19
  start-page: 1279
  issue: 5
  year: 2010
  end-page: 1287
  ident: CR31
  article-title: Optimal control of hybrid electric vehicles based on Pontryagin’s minimum principle
  publication-title: IEEE Trans. Control Systems Technology
– volume: 225
  start-page: 1301
  issue: 6
  year: 2011
  end-page: 1317
  ident: CR58
  article-title: Driving patterns clustering based on driving features analysis
  publication-title: Proc. Institution of Mechanical Engineers, Part C: J. Mechanical Engineering Science
– volume: 1
  start-page: 211
  issue: 3
  year: 2015
  end-page: 222
  ident: CR83
  article-title: Energy management strategy for HEVs including battery life optimization
  publication-title: IEEE Trans. Transportation Electrification
  doi: 10.1109/TTE.2015.2471180
– ident: CR46
– volume: 1
  start-page: 71
  issue: 1
  year: 2007
  end-page: 94
  ident: CR27
  article-title: Rule-based energy management strategies for hybrid vehicles
  publication-title: Int. J. Electric and Hybrid Vehicles
  doi: 10.1504/IJEHV.2007.014448
– ident: CR67
– ident: CR15
– volume: 3
  start-page: 215
  issue: 03
  year: 2015
  ident: CR63
  article-title: Intelligent HEV fuzzy logic control strategy based on identification and prediction of drive cycle and driving trend
  publication-title: World J. Engineering and Technology
  doi: 10.4236/wjet.2015.33C032
– volume: 15
  start-page: 4352
  issue: 7
  year: 2018
  end-page: 4361
  ident: CR53
  article-title: Online energy management for multimode plug-in hybrid electric vehicles
  publication-title: IEEE Trans. Industrial Informatics
  doi: 10.1109/TII.2018.2880897
– ident: CR9
– volume: 8
  start-page: 2494
  issue: 12
  year: 2018
  ident: CR5
  article-title: Energy management for a power-split plug-in hybrid electric vehicle based on reinforcement learning
  publication-title: Applied Sciences
  doi: 10.3390/app8122494
– volume: 44
  start-page: 408
  issue: 1
  year: 2019
  end-page: 420
  ident: CR17
  article-title: Simulation research on a novel control strategy for fuel cell extended-range vehicles
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.04.038
– volume: 343
  start-page: 420
  issue: 4–5
  year: 2006
  end-page: 435
  ident: CR59
  article-title: Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles
  publication-title: J. Franklin Institute
  doi: 10.1016/j.jfranklin.2006.02.015
– volume: 42
  start-page: 1092
  issue: 4
  year: 2006
  end-page: 1100
  ident: CR26
  article-title: The electrical variable transmission
  publication-title: IEEE on Industry Application
  doi: 10.1109/TIA.2006.877736
– ident: CR78
– volume: 62
  start-page: 69
  issue: 1
  year: 2012
  end-page: 79
  ident: CR60
  article-title: Intelligent hybrid vehicle power control—Part II: Online intelligent energy management
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2012.2217362
– volume: 73
  start-page: 244
  issue: 1–4
  year: 2006
  end-page: 254
  ident: CR70
  article-title: Optimization of power management in a hybrid electric vehicle using dynamic programming
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2006.06.016
– volume: 44
  start-page: 5454
  issue: 11
  year: 2019
  end-page: 5461
  ident: CR41
  article-title: Regenerative braking energy recovery strategy based on Pontryagin’s minimum principle for fell cell/supercapacitor hybrid locomotive
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.115
– volume: 68
  start-page: 203
  issue: 1
  year: 2018
  end-page: 212
  ident: CR62
  article-title: Real-time energy management of battery/supercapacitor electric vehicles based on an adaptation of Pontryagjn’s minimum principle
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2018.2881057
– ident: CR95
– volume: 8
  start-page: 165837
  year: 2020
  end-page: 165848
  ident: CR19
  article-title: Transfer deep reinforcement learning-enabled energy management strategy for hybrid tracked vehicle
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022944
– volume: 23
  start-page: 1197
  issue: 3
  year: 2014
  end-page: 1204
  ident: CR79
  article-title: Velocity predictors for predictive energy management in hybrid electric vehicles
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 192
  start-page: 133
  year: 2019
  end-page: 149
  ident: CR40
  article-title: Online adaptive equivalent consumption minimization strategy for fuel cell hybrid electric vehicle considering power sources degradation
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2019.03.090
– volume: 47
  start-page: 6606
  issue: 3
  year: 2014
  end-page: 6611
  ident: CR72
  article-title: An iterative dynamic programming/convex optimization procedure for optimal sizing and energy management of PHEVs
  publication-title: IFAC Proc. Volumes
  doi: 10.3182/20140824-6-ZA-1003.02375
– ident: CR98
– ident: CR23
– volume: 54
  start-page: 925
  issue: 3
  year: 2005
  end-page: 934
  ident: CR34
  article-title: Intelligent energy management agent for a parallel hybrid vehicle-part I: system architecture and design of the driving situation identification process
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2005.844685
– ident: CR48
– volume: 222
  start-page: 799
  year: 2018
  end-page: 811
  ident: CR96
  article-title: Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2018.03.104
– ident: CR90
– volume: 254
  start-page: 113708
  year: 2019
  ident: CR21
  article-title: Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.113708
– volume: 355
  start-page: 2283
  issue: 5
  year: 2018
  end-page: 2312
  ident: CR89
  article-title: Control rules extraction and parameters optimization of energy management for bus series-parallel AMT hybrid powertrain
  publication-title: J. Franklin Institute
  doi: 10.1016/j.jfranklin.2017.12.039
– volume: 214
  start-page: 103
  year: 2018
  end-page: 116
  ident: CR69
  article-title: Configuration optimization for improving fuel efficiency of power split hybrid powertrains with a single planetary gear
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2018.01.070
– volume: 8
  start-page: 274
  issue: 1
  year: 2016
  end-page: 280
  ident: CR37
  article-title: Study on power management strategy of HEV using dynamic programming
  publication-title: World Electric Vehicle J.
  doi: 10.3390/wevj8010274
– volume: 13
  start-page: 426
  issue: 2
  year: 2020
  ident: CR112
  article-title: Energy control strategy of fuel cell hybrid electric vehicle based on working conditions identification by least square support vector machine
  publication-title: Energies
  doi: 10.3390/en13020426
– volume: 236
  start-page: 893
  year: 2019
  end-page: 905
  ident: CR102
  article-title: Pontryagin’s minimum principle based model predictive control of energy management for a plug-in hybrid electric bus
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2018.12.032
– ident: CR110
– volume: 5
  start-page: 1175
  issue: 4
  year: 2012
  end-page: 1198
  ident: CR1
  article-title: A fuzzy logic global power management strategy for hybrid electric vehicles based on a permanent magnet electric variable transmission
  publication-title: Energies
  doi: 10.3390/en5041175
– volume: 101
  start-page: 685
  year: 2016
  end-page: 692
  ident: CR86
  article-title: Analysis of the performance of different machine learning techniques for the definition of rule-based control strategies in a parallel HEV
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2016.11.087
– volume: 9
  start-page: 420
  issue: 6
  year: 2016
  ident: CR76
  article-title: Development of near optimal rule-based control for plug-in hybrid electric vehicles taking into account drivetrain component losses
  publication-title: Energies
  doi: 10.3390/en9060420
– volume: 197
  start-page: 117297
  year: 2020
  ident: CR44
  article-title: Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117297
– ident: 125_CR16
  doi: 10.4271/970294
– volume: 9
  start-page: 420
  issue: 6
  year: 2016
  ident: 125_CR76
  publication-title: Energies
  doi: 10.3390/en9060420
– volume: 23
  start-page: 1075
  issue: 3
  year: 2014
  ident: 125_CR80
  publication-title: IEEE Trans. Control Systems Technology
  doi: 10.1109/TCST.2014.2361294
– volume: 16
  start-page: 903
  issue: 6
  year: 2015
  ident: 125_CR32
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-015-0092-4
– ident: 125_CR33
– ident: 125_CR54
  doi: 10.4271/2009-01-1332
– volume: 54
  start-page: 925
  issue: 3
  year: 2005
  ident: 125_CR34
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2005.844685
– volume: 58
  start-page: 4741
  issue: 9
  year: 2009
  ident: 125_CR68
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2009.2027710
– ident: 125_CR18
– volume: 236
  start-page: 893
  year: 2019
  ident: 125_CR102
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2018.12.032
– volume: 43
  start-page: 15433
  issue: 32
  year: 2018
  ident: 125_CR65
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.06.072
– ident: 125_CR94
– volume: 248
  start-page: 533
  year: 2014
  ident: 125_CR111
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.09.110
– volume: 355
  start-page: 2283
  issue: 5
  year: 2018
  ident: 125_CR89
  publication-title: J. Franklin Institute
  doi: 10.1016/j.jfranklin.2017.12.039
– volume: 550
  start-page: 354
  issue: 7676
  year: 2017
  ident: 125_CR75
  publication-title: Nature
  doi: 10.1038/nature24270
– volume: 4
  start-page: 79
  issue: 1
  year: 2017
  ident: 125_CR36
  publication-title: Int. J. Precision Engineering and Manufacturing-Green Technology
  doi: 10.1007/s40684-017-0011-4
– volume: 47
  start-page: 6606
  issue: 3
  year: 2014
  ident: 125_CR72
  publication-title: IFAC Proc. Volumes
  doi: 10.3182/20140824-6-ZA-1003.02375
– volume: 26
  start-page: 1833
  issue: 4
  year: 2017
  ident: 125_CR109
  publication-title: IEEE Trans. Fuzzy Systems
  doi: 10.1109/TFUZZ.2017.2779424
– volume: 147
  start-page: 224
  year: 2015
  ident: 125_CR64
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2015.01.021
– volume: 62
  start-page: 69
  issue: 1
  year: 2012
  ident: 125_CR60
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2012.2217362
– volume: 19
  start-page: 1607
  issue: 5
  year: 2017
  ident: 125_CR84
  publication-title: IEEE Trans. Intelligent Transportation Systems
  doi: 10.1109/TITS.2017.2729621
– volume: 48
  start-page: 88
  year: 2015
  ident: 125_CR107
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2015.03.093
– volume: 137
  start-page: 588
  year: 2015
  ident: 125_CR6
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2014.09.026
– ident: 125_CR106
– volume: 11
  start-page: 2054
  issue: 8
  year: 2018
  ident: 125_CR55
  publication-title: Energies
  doi: 10.3390/en11082054
– volume: 2
  start-page: 267
  issue: 2
  year: 2020
  ident: 125_CR22
  publication-title: Vehicles
  doi: 10.3390/vehicles2020015
– volume: 1
  start-page: 211
  issue: 3
  year: 2015
  ident: 125_CR83
  publication-title: IEEE Trans. Transportation Electrification
  doi: 10.1109/TTE.2015.2471180
– volume: 214
  start-page: 103
  year: 2018
  ident: 125_CR69
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2018.01.070
– volume: 13
  start-page: 202
  issue: 1
  year: 2020
  ident: 125_CR20
  publication-title: Energies
  doi: 10.3390/en13010202
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 125_CR71
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-16684-9
– volume: 47
  start-page: 4813
  issue: 3
  year: 2014
  ident: 125_CR39
  publication-title: IFAC Proc. Volumes
  doi: 10.3182/20140824-6-ZA-1003.01868
– volume: 15
  start-page: 4352
  issue: 7
  year: 2018
  ident: 125_CR53
  publication-title: IEEE Trans. Industrial Informatics
  doi: 10.1109/TII.2018.2880897
– volume: 115
  start-page: 174
  year: 2014
  ident: 125_CR28
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2013.11.002
– volume: 10
  start-page: 2060
  issue: 6
  year: 2018
  ident: 125_CR115
  publication-title: Sustainability
  doi: 10.3390/su10062060
– volume: 9
  start-page: 860
  year: 2020
  ident: 125_CR35
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047497
– volume: 13
  start-page: 2278
  issue: 9
  year: 2020
  ident: 125_CR24
  publication-title: Energies
  doi: 10.3390/en13092278
– volume: 11
  start-page: 89
  issue: 1
  year: 2018
  ident: 125_CR77
  publication-title: Energies
  doi: 10.3390/en11010089
– volume: 65
  start-page: 4700
  issue: 6
  year: 2016
  ident: 125_CR105
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2015.2504325
– volume: 23
  start-page: 1197
  issue: 3
  year: 2014
  ident: 125_CR79
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2014.2359176
– volume: 197
  start-page: 117297
  year: 2020
  ident: 125_CR44
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117297
– ident: 125_CR78
  doi: 10.1109/ChiCC.2014.6896612
– volume: 195
  start-page: 548
  year: 2019
  ident: 125_CR82
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2019.05.038
– volume: 44
  start-page: 408
  issue: 1
  year: 2019
  ident: 125_CR17
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.04.038
– volume: 254
  start-page: 113708
  year: 2019
  ident: 125_CR21
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.113708
– volume: 44
  start-page: 5454
  issue: 11
  year: 2019
  ident: 125_CR41
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.115
– volume: 17
  start-page: 3857
  issue: 6
  year: 2020
  ident: 125_CR93
  publication-title: IEEE Trans. Industrial Informatics
  doi: 10.1109/TII.2020.3015748
– ident: 125_CR49
  doi: 10.1109/ICCAD.2014.7001326
– volume: 204
  start-page: 476
  year: 2017
  ident: 125_CR113
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.07.059
– ident: 125_CR66
  doi: 10.1109/VTC.2002.1002989
– volume-title: Energy management strategy for hybrid vehicles based on time series prediction model considering driving characteristics
  year: 2019
  ident: 125_CR7
– ident: 125_CR9
  doi: 10.1109/PEDSTC.2011.5742461
– volume: 26
  start-page: 2198
  issue: 6
  year: 2017
  ident: 125_CR73
  publication-title: IEEE Trans. Control Systems Technology
  doi: 10.1109/TCST.2017.2740836
– volume: 105
  start-page: 2348
  year: 2017
  ident: 125_CR25
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.674
– volume: 11
  start-page: 509
  issue: 4–5
  year: 2005
  ident: 125_CR61
  publication-title: European J. Control
  doi: 10.3166/ejc.11.509-524
– volume: 5
  start-page: 308
  issue: 2
  year: 2016
  ident: 125_CR14
  publication-title: SAE Int. J. Alternative Powertrains
  doi: 10.4271/2016-01-1243
– volume: 16
  start-page: 1242
  issue: 6
  year: 2008
  ident: 125_CR50
  publication-title: IEEE Trans. Control Systems Technology
  doi: 10.1109/TCST.2008.919447
– volume: 19
  start-page: 707
  issue: 3
  year: 2010
  ident: 125_CR3
  publication-title: IEEE Trans. Control Systems Technology
  doi: 10.1109/TCST.2010.2047860
– volume: 192
  start-page: 106962
  year: 2021
  ident: 125_CR2
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2020.106962
– ident: 125_CR8
  doi: 10.4271/2009-36-0328
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 125_CR57
  publication-title: Nature
  doi: 10.1038/nature14236
– volume-title: Reinforcement learning: An introduction
  year: 1992
  ident: 125_CR81
  doi: 10.1007/978-1-4615-3618-5
– ident: 125_CR47
– ident: 125_CR95
– volume: 9
  start-page: 30
  issue: 1
  year: 2015
  ident: 125_CR10
  publication-title: IET Intelligent Transport Systems
  doi: 10.1049/iet-its.2014.0075
– volume: 9
  start-page: 341
  issue: 5
  year: 2016
  ident: 125_CR108
  publication-title: Energies
  doi: 10.3390/en9050341
– volume: 5
  start-page: 1175
  issue: 4
  year: 2012
  ident: 125_CR1
  publication-title: Energies
  doi: 10.3390/en5041175
– volume: 196
  start-page: 279
  year: 2017
  ident: 125_CR100
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2016.12.112
– ident: 125_CR48
  doi: 10.1109/ICCAD.2015.7372628
– volume: 222
  start-page: 799
  year: 2018
  ident: 125_CR96
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2018.03.104
– volume: 9
  start-page: 53
  issue: 1
  year: 2008
  ident: 125_CR97
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-008-0007-8
– volume: 247
  start-page: 454
  year: 2019
  ident: 125_CR99
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.04.021
– volume: 101
  start-page: 685
  year: 2016
  ident: 125_CR86
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2016.11.087
– ident: 125_CR13
  doi: 10.1109/CIVVS.2009.4938720
– volume: 8
  start-page: 67112
  year: 2020
  ident: 125_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986373
– volume: 22
  start-page: 1497
  issue: 4
  year: 2017
  ident: 125_CR52
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2017.2707338
– volume: 3
  start-page: 215
  issue: 03
  year: 2015
  ident: 125_CR63
  publication-title: World J. Engineering and Technology
  doi: 10.4236/wjet.2015.33C032
– ident: 125_CR114
  doi: 10.23919/ACC45564.2020.9147479
– ident: 125_CR23
– ident: 125_CR98
– volume: 163
  start-page: 837
  year: 2018
  ident: 125_CR101
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.139
– volume: 13
  start-page: 426
  issue: 2
  year: 2020
  ident: 125_CR112
  publication-title: Energies
  doi: 10.3390/en13020426
– volume: 192
  start-page: 133
  year: 2019
  ident: 125_CR40
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2019.03.090
– ident: 125_CR46
  doi: 10.5220/0006573000610072
– ident: 125_CR110
  doi: 10.1109/ASPDAC.2018.8297305
– ident: 125_CR11
  doi: 10.1201/9781420054002
– volume: 235
  start-page: 761
  year: 2019
  ident: 125_CR74
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2018.11.003
– volume: 68
  start-page: 203
  issue: 1
  year: 2018
  ident: 125_CR62
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2018.2881057
– volume: 199
  start-page: 117495
  year: 2020
  ident: 125_CR104
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117495
– ident: 125_CR92
  doi: 10.1109/ITNEC48623.2020.9085070
– volume: 8
  start-page: 274
  issue: 1
  year: 2016
  ident: 125_CR37
  publication-title: World Electric Vehicle J.
  doi: 10.3390/wevj8010274
– volume: 575
  start-page: 350
  issue: 7782
  year: 2019
  ident: 125_CR88
  publication-title: Nature
  doi: 10.1038/s41586-019-1724-z
– volume: 21
  start-page: 756
  issue: 3
  year: 2006
  ident: 125_CR56
  publication-title: IEEE Trans. Power Electronics
  doi: 10.1109/TPEL.2006.872372
– volume: 73
  start-page: 244
  issue: 1–4
  year: 2006
  ident: 125_CR70
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2006.06.016
– ident: 125_CR51
  doi: 10.4271/2019-01-1051
– volume: 191
  start-page: 99
  year: 2017
  ident: 125_CR4
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.01.045
– volume: 95
  start-page: 719
  issue: 4
  year: 2007
  ident: 125_CR12
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2007.892492
– volume: 343
  start-page: 420
  issue: 4–5
  year: 2006
  ident: 125_CR59
  publication-title: J. Franklin Institute
  doi: 10.1016/j.jfranklin.2006.02.015
– volume: 11
  start-page: 839
  issue: 6
  year: 2003
  ident: 125_CR43
  publication-title: IEEE Trans. Control Systems Technology
  doi: 10.1109/TCST.2003.815606
– ident: 125_CR90
  doi: 10.1109/AIM.2019.8868667
– ident: 125_CR91
  doi: 10.1109/IEVC.2012.6183284
– ident: 125_CR15
  doi: 10.4271/2019-01-1212
– ident: 125_CR67
  doi: 10.1109/ACC.2001.945787
– ident: 125_CR30
  doi: 10.1109/ICNN.1995.488968
– volume: 211
  start-page: 538
  year: 2018
  ident: 125_CR103
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.11.072
– volume: 24
  start-page: 853
  issue: 3
  year: 2015
  ident: 125_CR85
  publication-title: IEEE Trans. Control Systems Technology
  doi: 10.1109/TCST.2015.2498141
– volume: 8
  start-page: 2494
  issue: 12
  year: 2018
  ident: 125_CR5
  publication-title: Applied Sciences
  doi: 10.3390/app8122494
– volume: 1
  start-page: 71
  issue: 1
  year: 2007
  ident: 125_CR27
  publication-title: Int. J. Electric and Hybrid Vehicles
  doi: 10.1504/IJEHV.2007.014448
– volume: 8
  start-page: 187
  year: 2018
  ident: 125_CR29
  publication-title: Applied Sciences
  doi: 10.3390/app8020187
– volume: 19
  start-page: 1279
  issue: 5
  year: 2010
  ident: 125_CR31
  publication-title: IEEE Trans. Control Systems Technology
– volume: 42
  start-page: 1092
  issue: 4
  year: 2006
  ident: 125_CR26
  publication-title: IEEE on Industry Application
  doi: 10.1109/TIA.2006.877736
– ident: 125_CR45
  doi: 10.5220/0007364701340144
– volume: 225
  start-page: 1301
  issue: 6
  year: 2011
  ident: 125_CR58
  publication-title: Proc. Institution of Mechanical Engineers, Part C: J. Mechanical Engineering Science
– volume: 42
  start-page: 41
  issue: 1–2
  year: 2004
  ident: 125_CR42
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423110412331291553
– volume: 8
  start-page: 165837
  year: 2020
  ident: 125_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022944
– ident: 125_CR87
  doi: 10.1109/VPPC.2007.4544143
SSID ssj0056130
Score 2.3869767
Snippet A hybrid electric vehicle (HEV) is defined as a vehicle that has two or more power sources, the hybrid electric vehicle is a representative eco-friendly...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1437
SubjectTerms Artificial intelligence
Automotive Engineering
Control theory
Electric vehicles
Energy management
Engineering
Hybrid electric vehicles
Machine learning
Optimal control
Power sources
자동차공학
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEG4EX_TB-DOiaBrjk6ZxbC1jT4YYEH3QFzC8NdutRYIyBHzwv_eubCIm8rSHtltyd7v7rr1-x9glZlUIVEGJNLGRkL71RJzWGiIOQgClVJiCq_J9qnd68rGv-vmG2ywvqyx8onPUaQa0R35DwFhFRFB3O_kQ1DWKTlfzFholtlnDSEN23mjfF57YYWNKuHw_ohPmRnGq6a7OYVyMBBUooItWwluJS6Xx1K5Azj-npC74tHfZTo4aeXOh5j22Ycb7bPsXl-ABy5p8sc_PM8uf0RG844KWu9nHlzUuvGCjNTPuqgVwjKopDc-JVge8W7C6zjgCWt75ojtdvOXa5QyBv5hXV0l3yHrtVveuI_JuCgIC5c3R30ZW2QgjugHqKw6hVGEAgQTEEH4qIY6ltJiAEWUbWGnSELGTL0PwAxVjvnrEyuNsbI4Zr9VsBCaQJsEIbxMEnXWcJ8MwjhObJI0K8wpZasipxqnjxZtekiST-DWKX5P4tVdhVz9LJguejXWTL1BBegRDTezY9BxkejTVmAM8aCKcrweywqqF_nT-X8700ooq7LrQ6XL43y-erH_ZKdvyyZRckV-VlefTT3OGYGWenDuL_AbxmeJ_
  priority: 102
  providerName: ProQuest
Title A Review of Optimal Energy Management Strategies Using Machine Learning Techniques for Hybrid Electric Vehicles
URI https://link.springer.com/article/10.1007/s12239-021-0125-0
https://www.proquest.com/docview/2576590344
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002757645
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Journal of Automotive Technology, 2021, 22(5), 123, pp.1437-1452
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT8IwEL4IvOiD8WdEkTTGJ80S2FrGHtEMUBM0Rgw-NVvXqkHBAD7433tXVlGjJj7toe2W9Nq773Z33wEcoleFQFUJL0tN5HHf1Lwkqze9JAiVEkKEmbJZvr1Gt8_PB2KQ13FPXba7C0laTb0odkNLFnmUUoBKVXjop5cEuu50G_t-y6lfC4jJy_L9iMLKTRfK_OkVX4xRYTQxX3Dmt9CotTjtNVjNoSJrzWW7Dkt6tAErnwgEN2HcYvOf-2xs2CXe_mdcENtyPrZIbGGOglZPmU0RwDFKodQsZ1e9ZzeOynXKEMWy7hsVcrHY9sh5VOxWP9j0uS3ot-Ob066Xt1DwVCBqM1SykREmQjOuFTUTVyEXYaACrhA4-BlXScK5Qa-LeNqU4ToLETD5PFR-IBJ0UrehOBqP9A6wet1ESgdcp2jWTYpIs4HzeBgmSWrStFmGmttLqXJ-cWpz8SQXzMi0_RK3X9L2y1oZjj6WvMzJNf6afIACkkP1KIkSm573YzmcSAT-Z5JY5hsBL0PFyU_ml3EqyacSEXEbluHYyXQx_OsXd_81ew-W6TTOE_0qUJxNXvU-ApZZWoVCs92pQqnVubuI8XkS966uq_bYvgPtPeLy
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9AAcUPkSgQIrBBfQCme9G8cHhAqkSmgJCKWot6093i1V27hNUqH-qf5GZjZeQpHorScf1mtLs-OZN56ZNwAvKaoioIpGVqXPpVY-kUXV6ckizRCNMVmFocp31B3s6M-7ZncFLmIvDJdVRpsYDHVVI_8jf8vA2ORMUPf-5FTy1CjOrsYRGgu12HLnvyhkm70bfqLzfaXUZn_8cSCbqQISU5PMye7k3vicPJtDnq-NmTZZiqlG8qWq0lgUWnsKRJi6DL12VUYYQukMVWoKw0QHZPJXNXe0tmD1Q3_07Xu0_QGNc4inVM457V7Mo4ZmPfLEueSSCHIKRiaXPOGNydRfArn_5GWDu9tcgzsNThUbC8W6Cytucg9u_8VeeB_qDbHILIjai69keo5pQz_0EoplVY2I_LduJkJ9Aq1x_aYTDbXrvhhHHtmZIAgtBufcRSb6YUDPAYof7meo3XsAO9ci6YfQmtQT9whEp-NzdKl2JWEKXxLM7dJ9OsuKovRl2WtDEmVpsSE35xkbR3ZJy8zityR-y-K3SRte_9lysmD2uOrmF3RA9hAPLPNx83W_todTS1HH0DLFfTfVbViP52cbSzCzS71tw5t4psvl_77x8dUPew43B-Mv23Z7ONp6ArcUq1UoMVyH1nx65p4SVJqXzxr9FLB33Z_Eb0RCHmM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2VIiE4ID7VQKEWggvI6sZrx9kDqiqakFBUOLSoN7M7a5eqkC1JEOpf49d1xlk3FIneetrDfknj2Zk3O89vAF5SVUVAFY2sq1BIrUImy7rbl2VuEY0xtsbI8t3rjQ70h0NzuAJ_0l4YplWmmBgDdd0g_yPfZGBsChao2wwtLeLzznDr9KfkCVLcaU3jNBYusuvPflP5Nns73qG1fqXUcLD_biTbCQMSc5PNKQYVwYSCspxHnrWNVhubY66R8qqqNZal1oGKEpYxw6B9bQlPKG1R5aY0LHpA4f-mzW3BhV9_-D5lgYjLudhTquDudj91VOO2PcrJhWRyBKUHI7NLOfHGZBouwd1_OrQx8Q3vwd0WsYrthYvdhxU_eQB3_tIxfAjNtlj0GEQTxCcKQj_ohkHcVSiW_BqRlHD9TESmAp1jJqcXrcjrkdhPirIzQWBajM54P5kYxFE9xyi--G-RxfcIDq7Fzo9hddJM_BqIbjcU6HPtK0IXoSLA26PrtLVlWYWq6ncgS7Z02Mqc87SN724p0Mzmd2R-x-Z3WQdeX9xyutD4uOriF7RA7gSPHStz8_GocSdTR_XH2LHYfS_XHVhP6-famDBzSw_uwJu0psvT_33jk6sftgG36ENwH8d7u0_htmKvilzDdVidT3_5Z4SZ5tXz6JwCvl7313AO4EUhMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Optimal+Energy+Management+Strategies+Using+Machine+Learning+Techniques+for+Hybrid+Electric+Vehicles&rft.jtitle=International+journal+of+automotive+technology&rft.au=Song%2C+Changhee&rft.au=Kim%2C+Kiyoung&rft.au=Sung%2C+Donghwan&rft.au=Kim%2C+Kyunghyun&rft.date=2021-10-01&rft.issn=1229-9138&rft.eissn=1976-3832&rft.volume=22&rft.issue=5&rft.spage=1437&rft.epage=1452&rft_id=info:doi/10.1007%2Fs12239-021-0125-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12239_021_0125_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-9138&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-9138&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-9138&client=summon