Topology induced anomalous plasmon modes in metallic Möbius nanorings
We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half‐integer numbers of resonant modes are observed due to the presence of an extra phase π provided by the topology of the Möbius nanostrip. Anomalous plasmon modes located at the non‐orientable surface...
Saved in:
Published in | Laser & photonics reviews Vol. 11; no. 2; pp. np - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half‐integer numbers of resonant modes are observed due to the presence of an extra phase π provided by the topology of the Möbius nanostrip. Anomalous plasmon modes located at the non‐orientable surface of the Möbius nanoring break the symmetry that exist in conventional ring cavities, thus enable far‐field excitation and emission as bright modes. The far‐field resonant wavelength as well as the feature of half‐integer mode numbers is constant to the change of charge distribution on the Möbius nanoring due to the topology of Möbius ring. Owing to the ultra‐small mode volume induced by the remaining dark feature, an extremely high sensitivity as well as a remarkable figure of merit is obtained in our numerical calculations for sensing performance. The topological metallic nanostructure provides a novel platform for the investigation of localized surface plasmon modes exhibiting unique phenomena for potential plasmonic applications.
In conventional metal nanostructures, plasmonic resonances are known to be determined by the structure size, geometry, and symmetry. This work reports topology induced anomalous plasmon modes in metallic Möbius nanorings. Half‐integer plasmon modes were observed in the Möbius rings, which cannot exist in conventional plasmonic rings. In addition, the higher‐order plasmon modes turn out to be bright in the Möbius nanorings, while they are supposed to be dark in conventional plasmonic‐rings. |
---|---|
AbstractList | Abstract
We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half‐integer numbers of resonant modes are observed due to the presence of an extra phase π provided by the topology of the Möbius nanostrip. Anomalous plasmon modes located at the non‐orientable surface of the Möbius nanoring break the symmetry that exist in conventional ring cavities, thus enable far‐field excitation and emission as bright modes. The far‐field resonant wavelength as well as the feature of half‐integer mode numbers is constant to the change of charge distribution on the Möbius nanoring due to the topology of Möbius ring. Owing to the ultra‐small mode volume induced by the remaining dark feature, an extremely high sensitivity as well as a remarkable figure of merit is obtained in our numerical calculations for sensing performance. The topological metallic nanostructure provides a novel platform for the investigation of localized surface plasmon modes exhibiting unique phenomena for potential plasmonic applications.
image We report on the theoretical investigation of plasmonic resonances in metallic Mobius nanorings. Half-integer numbers of resonant modes are observed due to the presence of an extra phase pi provided by the topology of the Mobius nanostrip. Anomalous plasmon modes located at the non-orientable surface of the Mobius nanoring break the symmetry that exist in conventional ring cavities, thus enable far-field excitation and emission as bright modes. The far-field resonant wavelength as well as the feature of half-integer mode numbers is constant to the change of charge distribution on the Mobius nanoring due to the topology of Mobius ring. Owing to the ultra-small mode volume induced by the remaining dark feature, an extremely high sensitivity as well as a remarkable figure of merit is obtained in our numerical calculations for sensing performance. The topological metallic nanostructure provides a novel platform for the investigation of localized surface plasmon modes exhibiting unique phenomena for potential plasmonic applications. In conventional metal nanostructures, plasmonic resonances are known to be determined by the structure size, geometry, and symmetry. This work reports topology induced anomalous plasmon modes in metallic Mobius nanorings. Half-integer plasmon modes were observed in the Mobius rings, which cannot exist in conventional plasmonic rings. In addition, the higher-order plasmon modes turn out to be bright in the Mobius nanorings, while they are supposed to be dark in conventional plasmonic-rings. We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half‐integer numbers of resonant modes are observed due to the presence of an extra phase π provided by the topology of the Möbius nanostrip. Anomalous plasmon modes located at the non‐orientable surface of the Möbius nanoring break the symmetry that exist in conventional ring cavities, thus enable far‐field excitation and emission as bright modes. The far‐field resonant wavelength as well as the feature of half‐integer mode numbers is constant to the change of charge distribution on the Möbius nanoring due to the topology of Möbius ring. Owing to the ultra‐small mode volume induced by the remaining dark feature, an extremely high sensitivity as well as a remarkable figure of merit is obtained in our numerical calculations for sensing performance. The topological metallic nanostructure provides a novel platform for the investigation of localized surface plasmon modes exhibiting unique phenomena for potential plasmonic applications. In conventional metal nanostructures, plasmonic resonances are known to be determined by the structure size, geometry, and symmetry. This work reports topology induced anomalous plasmon modes in metallic Möbius nanorings. Half‐integer plasmon modes were observed in the Möbius rings, which cannot exist in conventional plasmonic rings. In addition, the higher‐order plasmon modes turn out to be bright in the Möbius nanorings, while they are supposed to be dark in conventional plasmonic‐rings. We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half-integer numbers of resonant modes are observed due to the presence of an extra phase π provided by the topology of the Möbius nanostrip. Anomalous plasmon modes located at the non-orientable surface of the Möbius nanoring break the symmetry that exist in conventional ring cavities, thus enable far-field excitation and emission as bright modes. The far-field resonant wavelength as well as the feature of half-integer mode numbers is constant to the change of charge distribution on the Möbius nanoring due to the topology of Möbius ring. Owing to the ultra-small mode volume induced by the remaining dark feature, an extremely high sensitivity as well as a remarkable figure of merit is obtained in our numerical calculations for sensing performance. The topological metallic nanostructure provides a novel platform for the investigation of localized surface plasmon modes exhibiting unique phenomena for potential plasmonic applications. |
Author | Engemaier, Vivienne Schmidt, Oliver G. Ma, Libo Saei Ghareh Naz, Ehsan Giudicatti, Silvia Yin, Yin Li, Shilong |
Author_xml | – sequence: 1 givenname: Yin surname: Yin fullname: Yin, Yin email: y.yin@ifw-dresden.de organization: Technische Universität Chemnitz – sequence: 2 givenname: Shilong surname: Li fullname: Li, Shilong organization: Institute for Integrative Nanosciences – sequence: 3 givenname: Vivienne surname: Engemaier fullname: Engemaier, Vivienne organization: Institute for Integrative Nanosciences – sequence: 4 givenname: Ehsan surname: Saei Ghareh Naz fullname: Saei Ghareh Naz, Ehsan organization: Institute for Integrative Nanosciences – sequence: 5 givenname: Silvia surname: Giudicatti fullname: Giudicatti, Silvia organization: Institute for Integrative Nanosciences – sequence: 6 givenname: Libo surname: Ma fullname: Ma, Libo email: l.ma@ifw-dresden.de organization: Institute for Integrative Nanosciences – sequence: 7 givenname: Oliver G. surname: Schmidt fullname: Schmidt, Oliver G. organization: Technische Universität Chemnitz |
BookMark | eNqFkM1KAzEUhYNUsK1uXQ-4cTM1mZ_8LKVYFSoVqeuQSTIlJZOMSQfpi_kCvpgpFQU33s29l_udy-FMwMh5pwG4RHCGICxubO_DrIAIpwWxEzBGFJc5pYyNfmYKz8Akxi2EdSo8Bou17731m31mnBqkVplwvhPWDzHrrYidd1nnlY7pnnV6J6w1Mnv6_GhMIlyCg3GbeA5OW2GjvvjuU_C6uFvPH_Ll6v5xfrvMZVlDljek1oSUVV1LwkQLBWKsqSpVEoIZQVjVtMTJPxaNaoRCkFWNaGVb0UoJhUk5BdfHv33wb4OOO96ZKLW1wulkmSPKSpb0qEjo1R9064fgkrtEUVRgkkJI1OxIyeBjDLrlfTCdCHuOID_Eyg-x8p9Yk4AdBe_G6v0_NF8-r15-tV8OOX46 |
CitedBy_id | crossref_primary_10_1063_1_5082675 crossref_primary_10_1021_acs_jpcc_0c07388 crossref_primary_10_1364_OPTICA_474407 crossref_primary_10_1103_PhysRevB_103_245416 crossref_primary_10_1038_s41566_022_01107_7 crossref_primary_10_1038_s42005_023_01205_0 crossref_primary_10_1209_0295_5075_121_24001 crossref_primary_10_1103_PhysRevLett_127_203901 crossref_primary_10_1007_s11468_023_01905_x crossref_primary_10_1209_0295_5075_128_20002 crossref_primary_10_1002_smll_202202812 |
Cites_doi | 10.1103/PhysRevLett.101.247701 10.1002/lpor.201300207 10.1021/nl1008019 10.1103/PhysRevLett.105.266801 10.1103/PhysRevB.85.195438 10.1146/annurev.physchem.58.032806.104607 10.1038/nmat2495 10.1007/0-387-37825-1 10.1038/nphoton.2011.285 10.1103/PhysRevA.82.062118 10.1021/nl802509r 10.1038/nature01937 10.1002/smll.201001438 10.1016/j.nanoen.2011.09.002 10.1002/lpor.201600055 10.1103/PhysRevLett.90.057401 10.1021/nl203418c 10.1038/nmat2810 10.1038/nnano.2010.138 10.1038/nature04594 10.1021/nl300012m 10.1021/nl0701612 10.1103/PhysRevLett.101.047401 10.1038/nature01939 10.1103/PhysRevLett.90.027402 10.1103/PhysRevLett.100.066408 10.1103/PhysRevLett.105.235501 10.1021/nl401656e 10.1002/lpor.201400231 10.1021/cr100313v 10.1016/j.cplett.2008.04.126 10.1126/science.275.5303.1102 10.1038/nature08364 10.1038/35570 10.1002/lpor.201100027 10.1002/lpor.201400052 10.1063/1.3488020 |
ContentType | Journal Article |
Copyright | 2017 by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA |
Copyright_xml | – notice: 2017 by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.201600219 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 4321198435 10_1002_lpor_201600219 LPOR201600219 |
Genre | article |
GrantInformation_xml | – fundername: China Scholarship Council funderid: 201206090008 – fundername: Deutsche Forschungsgemeinschaft funderid: FOR 1713 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c3509-b75e773455c79af0a199b44d37769716d58366006abdbad1094bafcf484dad673 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Fri Aug 16 23:53:45 EDT 2024 Thu Oct 10 16:28:54 EDT 2024 Fri Aug 23 01:49:19 EDT 2024 Sat Aug 24 01:04:08 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3509-b75e773455c79af0a199b44d37769716d58366006abdbad1094bafcf484dad673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1881267005 |
PQPubID | 1016358 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1893900612 proquest_journals_1881267005 crossref_primary_10_1002_lpor_201600219 wiley_primary_10_1002_lpor_201600219_LPOR201600219 |
PublicationCentury | 2000 |
PublicationDate | March 2017 2017-03-00 20170301 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: March 2017 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 10 2010; 97 2010; 105 1997; 275 2016; 10 2007 2011; 11 2008; 8 2008; 101 2015; 9 2008; 100 2012; 12 2011; 7 2007; 58 2011; 111 2010; 82 1998; 391 2016; 7 2003; 90 2003; 424 2012; 1 2013; 13 2006; 440 2007; 7 2008; 458 2009; 8 2009; 461 2013 2012; 6 2014; 8 2010; 5 2010; 9 2012; 85 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 Ma L. (e_1_2_6_34_1) 2016; 7 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 9 start-page: 256 year: 2015 end-page: 262 publication-title: Laser Photon. Rev – volume: 8 start-page: 3983 year: 2008 end-page: 3988 publication-title: Nano Lett – volume: 10 start-page: 799 year: 2016 end-page: 806 publication-title: Laser Photon. Rev – volume: 11 start-page: 5524 year: 2011 end-page: 5530 publication-title: Nano Lett – volume: 6 start-page: 277 year: 2012 end-page: 295 publication-title: Laser Photon. Rev – volume: 97 start-page: 114101 year: 2010 publication-title: Appl. Phys. Lett – volume: 1 start-page: 25 year: 2012 end-page: 41 publication-title: Nano Energy – volume: 8 start-page: 758 year: 2009 end-page: 762 publication-title: Nat. Mater – volume: 101 start-page: 247701 year: 2008 publication-title: Phys. Rev. Lett – volume: 461 start-page: 629 year: 2009 end-page: 632 publication-title: Nature – volume: 6 start-page: 16 year: 2012 end-page: 24 publication-title: Nat. Photonics – volume: 111 start-page: 3828 year: 2011 end-page: 3857 publication-title: Chem. Rev – volume: 275 start-page: 1102 year: 1997 end-page: 1106 publication-title: Science – volume: 105 start-page: 266801 year: 2010 publication-title: Phys. Rev. Lett – year: 2007 – volume: 85 start-page: 195438 year: 2012 publication-title: Phys. Rev. B – volume: 7 start-page: 119 year: 2011 end-page: 125 publication-title: Small – volume: 100 start-page: 066408 year: 2008 publication-title: Phys. Rev. Lett – volume: 7 start-page: 1256 year: 2007 end-page: 1263 publication-title: Nano Lett. – volume: 90 start-page: 057401 year: 2003 publication-title: Phys. Rev. Lett – volume: 424 start-page: 824 year: 2003 end-page: 830 publication-title: Nature – volume: 440 start-page: 508 year: 2006 end-page: 511 publication-title: Nature – volume: 13 start-page: 3722 year: 2013 end-page: 3728 publication-title: Nano Lett – volume: 5 start-page: 477 year: 2010 end-page: 479 publication-title: Nat. Nanotech – volume: 8 start-page: 549 year: 2014 end-page: 561 publication-title: Laser Photon. Rev – volume: 458 start-page: 262 year: 2008 end-page: 266 publication-title: Chem. Phys. Lett – volume: 391 start-page: 667 year: 1998 end-page: 669 publication-title: Nature – volume: 9 start-page: 707 year: 2010 end-page: 715 publication-title: Nat. Mater – volume: 10 start-page: 1991 year: 2010 end-page: 1997 publication-title: Nano Lett – volume: 58 start-page: 267 year: 2007 end-page: 297 publication-title: Annu. Rev. Phys. Chem. – volume: 101 start-page: 047401 year: 2008 publication-title: Phys. Rev. Lett – volume: 82 start-page: 062118 year: 2010 publication-title: Phys. Rev. A – volume: 8 start-page: L65 year: 2014 end-page: L70 publication-title: Laser Photon. Rev – volume: 105 start-page: 235501 year: 2010 publication-title: Phys. Rev. Lett – volume: 424 start-page: 839 year: 2003 end-page: 846 publication-title: Nature – volume: 12 start-page: 1648 year: 2012 end-page: 1654 publication-title: Nano Lett – volume: 7 year: 2016 publication-title: Nat. Commun – volume: 90 start-page: 027402 year: 2003 publication-title: Phys. Rev. Lett – year: 2013 – ident: e_1_2_6_31_1 doi: 10.1103/PhysRevLett.101.247701 – ident: e_1_2_6_11_1 doi: 10.1002/lpor.201300207 – ident: e_1_2_6_28_1 doi: 10.1021/nl1008019 – ident: e_1_2_6_35_1 doi: 10.1103/PhysRevLett.105.266801 – ident: e_1_2_6_38_1 doi: 10.1103/PhysRevB.85.195438 – ident: e_1_2_6_17_1 doi: 10.1146/annurev.physchem.58.032806.104607 – ident: e_1_2_6_23_1 doi: 10.1038/nmat2495 – ident: e_1_2_6_2_1 doi: 10.1007/0-387-37825-1 – ident: e_1_2_6_9_1 doi: 10.1038/nphoton.2011.285 – ident: e_1_2_6_37_1 doi: 10.1103/PhysRevA.82.062118 – ident: e_1_2_6_25_1 doi: 10.1021/nl802509r – volume: 7 year: 2016 ident: e_1_2_6_34_1 publication-title: Nat. Commun contributor: fullname: Ma L. – ident: e_1_2_6_5_1 doi: 10.1038/nature01937 – ident: e_1_2_6_15_1 doi: 10.1002/smll.201001438 – ident: e_1_2_6_10_1 doi: 10.1016/j.nanoen.2011.09.002 – ident: e_1_2_6_19_1 doi: 10.1002/lpor.201600055 – ident: e_1_2_6_20_1 doi: 10.1103/PhysRevLett.90.057401 – ident: e_1_2_6_36_1 doi: 10.1021/nl203418c – ident: e_1_2_6_24_1 doi: 10.1038/nmat2810 – ident: e_1_2_6_33_1 doi: 10.1038/nnano.2010.138 – ident: e_1_2_6_7_1 doi: 10.1038/nature04594 – ident: e_1_2_6_16_1 doi: 10.1021/nl300012m – ident: e_1_2_6_14_1 doi: 10.1021/nl0701612 – ident: e_1_2_6_22_1 doi: 10.1103/PhysRevLett.101.047401 – ident: e_1_2_6_30_1 doi: 10.1038/nature01939 – ident: e_1_2_6_6_1 doi: 10.1103/PhysRevLett.90.027402 – ident: e_1_2_6_29_1 doi: 10.1103/PhysRevLett.100.066408 – ident: e_1_2_6_39_1 doi: 10.1103/PhysRevLett.105.235501 – ident: e_1_2_6_32_1 – ident: e_1_2_6_26_1 doi: 10.1021/nl401656e – ident: e_1_2_6_13_1 doi: 10.1002/lpor.201400231 – ident: e_1_2_6_18_1 doi: 10.1021/cr100313v – ident: e_1_2_6_21_1 doi: 10.1016/j.cplett.2008.04.126 – ident: e_1_2_6_3_1 doi: 10.1126/science.275.5303.1102 – ident: e_1_2_6_8_1 doi: 10.1038/nature08364 – ident: e_1_2_6_4_1 doi: 10.1038/35570 – ident: e_1_2_6_27_1 doi: 10.1002/lpor.201100027 – ident: e_1_2_6_12_1 doi: 10.1002/lpor.201400052 – ident: e_1_2_6_40_1 doi: 10.1063/1.3488020 |
SSID | ssj0055556 |
Score | 2.2942324 |
Snippet | We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half‐integer numbers of resonant modes are observed due to the... Abstract We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half‐integer numbers of resonant modes are observed... We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half-integer numbers of resonant modes are observed due to the... We report on the theoretical investigation of plasmonic resonances in metallic Mobius nanorings. Half-integer numbers of resonant modes are observed due to the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | np |
SubjectTerms | bright plasmon mode Charge distribution Constants dark plasmon mode half‐integer mode number Möbius ring Nanostructure Photonics Plasmonics Plasmons Symmetry Topology |
Title | Topology induced anomalous plasmon modes in metallic Möbius nanorings |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.201600219 https://www.proquest.com/docview/1881267005 https://search.proquest.com/docview/1893900612 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yJy--xfVFBMFTdzdN07RHURcRV0Vc2FvJpCmIu12xuwf9Yf4B_5iT9OHqRdBjSULTzEzzTTLzDSHHzKb9ChF5LsI1AOF7YALwBAuzjEGmY2azkQc34eUwuBqJ0UIWf8kP0Ry4Wctw_2tr4AqK7hdp6BjxqQ3NshdLjveTcWljus7vG_4onIQr38qikHvo6vVq1sae3_0-_Puu9AU1FwGr23H6q0TVcy0DTZ468xl09NsPGsf_fMwaWangKD0t9WedLJl8g6xW0JRWhl9skv5DWUzhlaIPj9qQUpVPJ2o8nRf0GQE4KjO1RXUKbKcTg4h-_Kjp4OMdHrFHjp3t-WGxRYb9i4ezS68qweBpjlDCAymMlDwQQstYZT2FIoUgSLmUoSWfSkXEQ5x0qCAFlTJ0FkFlOguiIFVpKPk2aeXT3OwQirJgGt1HrTTCSABlucoUGJ-ZTPIM2uSkFkHyXDJtJCWnsp_Y5Uma5WmT_VpCSWVxRcIihCo250i0yVHTjLZiL0BUbnA9sE_MYwfq2sR34vjlTcn13e1987T7l0F7ZNm3SMCFre2T1uxlbg4Qx8zg0OnqJ4XO6y8 |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB5V9FAuUAqI8NdFQuLkkLW9tnOsaKO0TQBFicTN2lmvpYjgIJwc4MF4AV6sM_5L6QWJHq3dldc7M95vdme-ATiVnParVOQUEa4-KtdB66OjZJCmElPTlZyNPLwM-hP_142qowk5F6bkh2gO3Ngyiv81GzgfSJ-vWENnBFA5Notvlpj48yPZvMfVG76PGgYpmkZRwFVGgeeQs9epeRs77vnr8a_3pRXY_BuyFntObxOwnm0ZanLbXi6wbZ7-IXL8r8_5DBsVIhXfShXagg82-wKbFToVle3n29Abl_UUHgW58aQQidDZ_E7P5stc3BMGJ30WXFcnp3ZxZwnUz6ZGDF-ecUo9MurMR4j5Dkx6P8YXfaeqwuAYj9CEg6GyYej5Spmwq9OOJqmi7ydeGAbMP5WoyAto0oHGBHUiyV9EnZrUj_xEJySSXVjL5pndA0HCkIY8SKMNIUlEzXRlGq0rbRp6KbbgrJZBfF-SbcQlrbIb8_LEzfK04LAWUVwZXR7LiNAKpx2pFpw0zWQufAeiM0vrQX26XrfAdS1wC3m88aZ4cH01ap723zPoK3zqj4eDePDz8vcBrLsMDIootkNYWzws7RHBmgUeF4r7Bzg870c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9EQXxxfuJ0agTBp25Lm7Tdo6jDj_mBONhbSdIExNkNuz3oH-Y_4D_mpe26zRdBH0sSmubumt8ld78DOKY27Zfz0MkiXJnkriM1kw6nvjFUGtWiNhv59s6_7LLrHu_NZPHn_BDlgZu1jOx_bQ18GJvGlDS0j_jUhmbZiyXL-7nEfIS_FhY9lgRSOIusfisNfc9BX685oW1suo358fPb0hRrziLWbMtpV0BMJptHmrzUxyNZVx8_eBz_8zVrsFrgUXKaK9A6LOhkAyoFNiWF5aeb0H7Kqym8E3TiUR1iIpLBq-gPxikZIgJHbSa2qk6K7eRVI6TvPyty-_Upn7FHgp3tAWK6Bd32xdPZpVPUYHCUh1jCkQHXQeAxzlXQEqYpUKaSsdgLAt-yT8U89HyctC9kLEVM0VuUwijDQhaL2A-8bVhMBoneAYKyoAr9RyUU4kgphSUrE1K7VJvAM7IKJxMRRMOcaiPKSZXdyC5PVC5PFWoTCUWFyaURDRGr2KQjXoWjshmNxd6AiETjemCfltfKUF0V3Ewcv7wp6jzcP5ZPu38ZdAjLD-ftqHN1d7MHK65FBVkIWw0WR29jvY-YZiQPMrX9Bncm7fY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+induced+anomalous+plasmon+modes+in+metallic+Mobius+nanorings&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Yin%2C+Yin&rft.au=Li%2C+Shilong&rft.au=Engemaier%2C+Vivienne&rft.au=Saei+Ghareh+Naz%2C+Ehsan&rft.date=2017-03-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=11&rft.issue=2&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1002%2Flpor.201600219&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |