Topology induced anomalous plasmon modes in metallic Möbius nanorings

We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half‐integer numbers of resonant modes are observed due to the presence of an extra phase π provided by the topology of the Möbius nanostrip. Anomalous plasmon modes located at the non‐orientable surface...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 11; no. 2; pp. np - n/a
Main Authors Yin, Yin, Li, Shilong, Engemaier, Vivienne, Saei Ghareh Naz, Ehsan, Giudicatti, Silvia, Ma, Libo, Schmidt, Oliver G.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half‐integer numbers of resonant modes are observed due to the presence of an extra phase π provided by the topology of the Möbius nanostrip. Anomalous plasmon modes located at the non‐orientable surface of the Möbius nanoring break the symmetry that exist in conventional ring cavities, thus enable far‐field excitation and emission as bright modes. The far‐field resonant wavelength as well as the feature of half‐integer mode numbers is constant to the change of charge distribution on the Möbius nanoring due to the topology of Möbius ring. Owing to the ultra‐small mode volume induced by the remaining dark feature, an extremely high sensitivity as well as a remarkable figure of merit is obtained in our numerical calculations for sensing performance. The topological metallic nanostructure provides a novel platform for the investigation of localized surface plasmon modes exhibiting unique phenomena for potential plasmonic applications. In conventional metal nanostructures, plasmonic resonances are known to be determined by the structure size, geometry, and symmetry. This work reports topology induced anomalous plasmon modes in metallic Möbius nanorings. Half‐integer plasmon modes were observed in the Möbius rings, which cannot exist in conventional plasmonic rings. In addition, the higher‐order plasmon modes turn out to be bright in the Möbius nanorings, while they are supposed to be dark in conventional plasmonic‐rings.
AbstractList Abstract We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half‐integer numbers of resonant modes are observed due to the presence of an extra phase π provided by the topology of the Möbius nanostrip. Anomalous plasmon modes located at the non‐orientable surface of the Möbius nanoring break the symmetry that exist in conventional ring cavities, thus enable far‐field excitation and emission as bright modes. The far‐field resonant wavelength as well as the feature of half‐integer mode numbers is constant to the change of charge distribution on the Möbius nanoring due to the topology of Möbius ring. Owing to the ultra‐small mode volume induced by the remaining dark feature, an extremely high sensitivity as well as a remarkable figure of merit is obtained in our numerical calculations for sensing performance. The topological metallic nanostructure provides a novel platform for the investigation of localized surface plasmon modes exhibiting unique phenomena for potential plasmonic applications. image
We report on the theoretical investigation of plasmonic resonances in metallic Mobius nanorings. Half-integer numbers of resonant modes are observed due to the presence of an extra phase pi provided by the topology of the Mobius nanostrip. Anomalous plasmon modes located at the non-orientable surface of the Mobius nanoring break the symmetry that exist in conventional ring cavities, thus enable far-field excitation and emission as bright modes. The far-field resonant wavelength as well as the feature of half-integer mode numbers is constant to the change of charge distribution on the Mobius nanoring due to the topology of Mobius ring. Owing to the ultra-small mode volume induced by the remaining dark feature, an extremely high sensitivity as well as a remarkable figure of merit is obtained in our numerical calculations for sensing performance. The topological metallic nanostructure provides a novel platform for the investigation of localized surface plasmon modes exhibiting unique phenomena for potential plasmonic applications. In conventional metal nanostructures, plasmonic resonances are known to be determined by the structure size, geometry, and symmetry. This work reports topology induced anomalous plasmon modes in metallic Mobius nanorings. Half-integer plasmon modes were observed in the Mobius rings, which cannot exist in conventional plasmonic rings. In addition, the higher-order plasmon modes turn out to be bright in the Mobius nanorings, while they are supposed to be dark in conventional plasmonic-rings.
We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half‐integer numbers of resonant modes are observed due to the presence of an extra phase π provided by the topology of the Möbius nanostrip. Anomalous plasmon modes located at the non‐orientable surface of the Möbius nanoring break the symmetry that exist in conventional ring cavities, thus enable far‐field excitation and emission as bright modes. The far‐field resonant wavelength as well as the feature of half‐integer mode numbers is constant to the change of charge distribution on the Möbius nanoring due to the topology of Möbius ring. Owing to the ultra‐small mode volume induced by the remaining dark feature, an extremely high sensitivity as well as a remarkable figure of merit is obtained in our numerical calculations for sensing performance. The topological metallic nanostructure provides a novel platform for the investigation of localized surface plasmon modes exhibiting unique phenomena for potential plasmonic applications. In conventional metal nanostructures, plasmonic resonances are known to be determined by the structure size, geometry, and symmetry. This work reports topology induced anomalous plasmon modes in metallic Möbius nanorings. Half‐integer plasmon modes were observed in the Möbius rings, which cannot exist in conventional plasmonic rings. In addition, the higher‐order plasmon modes turn out to be bright in the Möbius nanorings, while they are supposed to be dark in conventional plasmonic‐rings.
We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half-integer numbers of resonant modes are observed due to the presence of an extra phase π provided by the topology of the Möbius nanostrip. Anomalous plasmon modes located at the non-orientable surface of the Möbius nanoring break the symmetry that exist in conventional ring cavities, thus enable far-field excitation and emission as bright modes. The far-field resonant wavelength as well as the feature of half-integer mode numbers is constant to the change of charge distribution on the Möbius nanoring due to the topology of Möbius ring. Owing to the ultra-small mode volume induced by the remaining dark feature, an extremely high sensitivity as well as a remarkable figure of merit is obtained in our numerical calculations for sensing performance. The topological metallic nanostructure provides a novel platform for the investigation of localized surface plasmon modes exhibiting unique phenomena for potential plasmonic applications.
Author Engemaier, Vivienne
Schmidt, Oliver G.
Ma, Libo
Saei Ghareh Naz, Ehsan
Giudicatti, Silvia
Yin, Yin
Li, Shilong
Author_xml – sequence: 1
  givenname: Yin
  surname: Yin
  fullname: Yin, Yin
  email: y.yin@ifw-dresden.de
  organization: Technische Universität Chemnitz
– sequence: 2
  givenname: Shilong
  surname: Li
  fullname: Li, Shilong
  organization: Institute for Integrative Nanosciences
– sequence: 3
  givenname: Vivienne
  surname: Engemaier
  fullname: Engemaier, Vivienne
  organization: Institute for Integrative Nanosciences
– sequence: 4
  givenname: Ehsan
  surname: Saei Ghareh Naz
  fullname: Saei Ghareh Naz, Ehsan
  organization: Institute for Integrative Nanosciences
– sequence: 5
  givenname: Silvia
  surname: Giudicatti
  fullname: Giudicatti, Silvia
  organization: Institute for Integrative Nanosciences
– sequence: 6
  givenname: Libo
  surname: Ma
  fullname: Ma, Libo
  email: l.ma@ifw-dresden.de
  organization: Institute for Integrative Nanosciences
– sequence: 7
  givenname: Oliver G.
  surname: Schmidt
  fullname: Schmidt, Oliver G.
  organization: Technische Universität Chemnitz
BookMark eNqFkM1KAzEUhYNUsK1uXQ-4cTM1mZ_8LKVYFSoVqeuQSTIlJZOMSQfpi_kCvpgpFQU33s29l_udy-FMwMh5pwG4RHCGICxubO_DrIAIpwWxEzBGFJc5pYyNfmYKz8Akxi2EdSo8Bou17731m31mnBqkVplwvhPWDzHrrYidd1nnlY7pnnV6J6w1Mnv6_GhMIlyCg3GbeA5OW2GjvvjuU_C6uFvPH_Ll6v5xfrvMZVlDljek1oSUVV1LwkQLBWKsqSpVEoIZQVjVtMTJPxaNaoRCkFWNaGVb0UoJhUk5BdfHv33wb4OOO96ZKLW1wulkmSPKSpb0qEjo1R9064fgkrtEUVRgkkJI1OxIyeBjDLrlfTCdCHuOID_Eyg-x8p9Yk4AdBe_G6v0_NF8-r15-tV8OOX46
CitedBy_id crossref_primary_10_1063_1_5082675
crossref_primary_10_1021_acs_jpcc_0c07388
crossref_primary_10_1364_OPTICA_474407
crossref_primary_10_1103_PhysRevB_103_245416
crossref_primary_10_1038_s41566_022_01107_7
crossref_primary_10_1038_s42005_023_01205_0
crossref_primary_10_1209_0295_5075_121_24001
crossref_primary_10_1103_PhysRevLett_127_203901
crossref_primary_10_1007_s11468_023_01905_x
crossref_primary_10_1209_0295_5075_128_20002
crossref_primary_10_1002_smll_202202812
Cites_doi 10.1103/PhysRevLett.101.247701
10.1002/lpor.201300207
10.1021/nl1008019
10.1103/PhysRevLett.105.266801
10.1103/PhysRevB.85.195438
10.1146/annurev.physchem.58.032806.104607
10.1038/nmat2495
10.1007/0-387-37825-1
10.1038/nphoton.2011.285
10.1103/PhysRevA.82.062118
10.1021/nl802509r
10.1038/nature01937
10.1002/smll.201001438
10.1016/j.nanoen.2011.09.002
10.1002/lpor.201600055
10.1103/PhysRevLett.90.057401
10.1021/nl203418c
10.1038/nmat2810
10.1038/nnano.2010.138
10.1038/nature04594
10.1021/nl300012m
10.1021/nl0701612
10.1103/PhysRevLett.101.047401
10.1038/nature01939
10.1103/PhysRevLett.90.027402
10.1103/PhysRevLett.100.066408
10.1103/PhysRevLett.105.235501
10.1021/nl401656e
10.1002/lpor.201400231
10.1021/cr100313v
10.1016/j.cplett.2008.04.126
10.1126/science.275.5303.1102
10.1038/nature08364
10.1038/35570
10.1002/lpor.201100027
10.1002/lpor.201400052
10.1063/1.3488020
ContentType Journal Article
Copyright 2017 by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA
Copyright_xml – notice: 2017 by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.201600219
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Solid State and Superconductivity Abstracts

Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 4321198435
10_1002_lpor_201600219
LPOR201600219
Genre article
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 201206090008
– fundername: Deutsche Forschungsgemeinschaft
  funderid: FOR 1713
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c3509-b75e773455c79af0a199b44d37769716d58366006abdbad1094bafcf484dad673
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Fri Aug 16 23:53:45 EDT 2024
Thu Oct 10 16:28:54 EDT 2024
Fri Aug 23 01:49:19 EDT 2024
Sat Aug 24 01:04:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3509-b75e773455c79af0a199b44d37769716d58366006abdbad1094bafcf484dad673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1881267005
PQPubID 1016358
PageCount 6
ParticipantIDs proquest_miscellaneous_1893900612
proquest_journals_1881267005
crossref_primary_10_1002_lpor_201600219
wiley_primary_10_1002_lpor_201600219_LPOR201600219
PublicationCentury 2000
PublicationDate March 2017
2017-03-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: March 2017
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2010; 97
2010; 105
1997; 275
2016; 10
2007
2011; 11
2008; 8
2008; 101
2015; 9
2008; 100
2012; 12
2011; 7
2007; 58
2011; 111
2010; 82
1998; 391
2016; 7
2003; 90
2003; 424
2012; 1
2013; 13
2006; 440
2007; 7
2008; 458
2009; 8
2009; 461
2013
2012; 6
2014; 8
2010; 5
2010; 9
2012; 85
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
Ma L. (e_1_2_6_34_1) 2016; 7
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 9
  start-page: 256
  year: 2015
  end-page: 262
  publication-title: Laser Photon. Rev
– volume: 8
  start-page: 3983
  year: 2008
  end-page: 3988
  publication-title: Nano Lett
– volume: 10
  start-page: 799
  year: 2016
  end-page: 806
  publication-title: Laser Photon. Rev
– volume: 11
  start-page: 5524
  year: 2011
  end-page: 5530
  publication-title: Nano Lett
– volume: 6
  start-page: 277
  year: 2012
  end-page: 295
  publication-title: Laser Photon. Rev
– volume: 97
  start-page: 114101
  year: 2010
  publication-title: Appl. Phys. Lett
– volume: 1
  start-page: 25
  year: 2012
  end-page: 41
  publication-title: Nano Energy
– volume: 8
  start-page: 758
  year: 2009
  end-page: 762
  publication-title: Nat. Mater
– volume: 101
  start-page: 247701
  year: 2008
  publication-title: Phys. Rev. Lett
– volume: 461
  start-page: 629
  year: 2009
  end-page: 632
  publication-title: Nature
– volume: 6
  start-page: 16
  year: 2012
  end-page: 24
  publication-title: Nat. Photonics
– volume: 111
  start-page: 3828
  year: 2011
  end-page: 3857
  publication-title: Chem. Rev
– volume: 275
  start-page: 1102
  year: 1997
  end-page: 1106
  publication-title: Science
– volume: 105
  start-page: 266801
  year: 2010
  publication-title: Phys. Rev. Lett
– year: 2007
– volume: 85
  start-page: 195438
  year: 2012
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 119
  year: 2011
  end-page: 125
  publication-title: Small
– volume: 100
  start-page: 066408
  year: 2008
  publication-title: Phys. Rev. Lett
– volume: 7
  start-page: 1256
  year: 2007
  end-page: 1263
  publication-title: Nano Lett.
– volume: 90
  start-page: 057401
  year: 2003
  publication-title: Phys. Rev. Lett
– volume: 424
  start-page: 824
  year: 2003
  end-page: 830
  publication-title: Nature
– volume: 440
  start-page: 508
  year: 2006
  end-page: 511
  publication-title: Nature
– volume: 13
  start-page: 3722
  year: 2013
  end-page: 3728
  publication-title: Nano Lett
– volume: 5
  start-page: 477
  year: 2010
  end-page: 479
  publication-title: Nat. Nanotech
– volume: 8
  start-page: 549
  year: 2014
  end-page: 561
  publication-title: Laser Photon. Rev
– volume: 458
  start-page: 262
  year: 2008
  end-page: 266
  publication-title: Chem. Phys. Lett
– volume: 391
  start-page: 667
  year: 1998
  end-page: 669
  publication-title: Nature
– volume: 9
  start-page: 707
  year: 2010
  end-page: 715
  publication-title: Nat. Mater
– volume: 10
  start-page: 1991
  year: 2010
  end-page: 1997
  publication-title: Nano Lett
– volume: 58
  start-page: 267
  year: 2007
  end-page: 297
  publication-title: Annu. Rev. Phys. Chem.
– volume: 101
  start-page: 047401
  year: 2008
  publication-title: Phys. Rev. Lett
– volume: 82
  start-page: 062118
  year: 2010
  publication-title: Phys. Rev. A
– volume: 8
  start-page: L65
  year: 2014
  end-page: L70
  publication-title: Laser Photon. Rev
– volume: 105
  start-page: 235501
  year: 2010
  publication-title: Phys. Rev. Lett
– volume: 424
  start-page: 839
  year: 2003
  end-page: 846
  publication-title: Nature
– volume: 12
  start-page: 1648
  year: 2012
  end-page: 1654
  publication-title: Nano Lett
– volume: 7
  year: 2016
  publication-title: Nat. Commun
– volume: 90
  start-page: 027402
  year: 2003
  publication-title: Phys. Rev. Lett
– year: 2013
– ident: e_1_2_6_31_1
  doi: 10.1103/PhysRevLett.101.247701
– ident: e_1_2_6_11_1
  doi: 10.1002/lpor.201300207
– ident: e_1_2_6_28_1
  doi: 10.1021/nl1008019
– ident: e_1_2_6_35_1
  doi: 10.1103/PhysRevLett.105.266801
– ident: e_1_2_6_38_1
  doi: 10.1103/PhysRevB.85.195438
– ident: e_1_2_6_17_1
  doi: 10.1146/annurev.physchem.58.032806.104607
– ident: e_1_2_6_23_1
  doi: 10.1038/nmat2495
– ident: e_1_2_6_2_1
  doi: 10.1007/0-387-37825-1
– ident: e_1_2_6_9_1
  doi: 10.1038/nphoton.2011.285
– ident: e_1_2_6_37_1
  doi: 10.1103/PhysRevA.82.062118
– ident: e_1_2_6_25_1
  doi: 10.1021/nl802509r
– volume: 7
  year: 2016
  ident: e_1_2_6_34_1
  publication-title: Nat. Commun
  contributor:
    fullname: Ma L.
– ident: e_1_2_6_5_1
  doi: 10.1038/nature01937
– ident: e_1_2_6_15_1
  doi: 10.1002/smll.201001438
– ident: e_1_2_6_10_1
  doi: 10.1016/j.nanoen.2011.09.002
– ident: e_1_2_6_19_1
  doi: 10.1002/lpor.201600055
– ident: e_1_2_6_20_1
  doi: 10.1103/PhysRevLett.90.057401
– ident: e_1_2_6_36_1
  doi: 10.1021/nl203418c
– ident: e_1_2_6_24_1
  doi: 10.1038/nmat2810
– ident: e_1_2_6_33_1
  doi: 10.1038/nnano.2010.138
– ident: e_1_2_6_7_1
  doi: 10.1038/nature04594
– ident: e_1_2_6_16_1
  doi: 10.1021/nl300012m
– ident: e_1_2_6_14_1
  doi: 10.1021/nl0701612
– ident: e_1_2_6_22_1
  doi: 10.1103/PhysRevLett.101.047401
– ident: e_1_2_6_30_1
  doi: 10.1038/nature01939
– ident: e_1_2_6_6_1
  doi: 10.1103/PhysRevLett.90.027402
– ident: e_1_2_6_29_1
  doi: 10.1103/PhysRevLett.100.066408
– ident: e_1_2_6_39_1
  doi: 10.1103/PhysRevLett.105.235501
– ident: e_1_2_6_32_1
– ident: e_1_2_6_26_1
  doi: 10.1021/nl401656e
– ident: e_1_2_6_13_1
  doi: 10.1002/lpor.201400231
– ident: e_1_2_6_18_1
  doi: 10.1021/cr100313v
– ident: e_1_2_6_21_1
  doi: 10.1016/j.cplett.2008.04.126
– ident: e_1_2_6_3_1
  doi: 10.1126/science.275.5303.1102
– ident: e_1_2_6_8_1
  doi: 10.1038/nature08364
– ident: e_1_2_6_4_1
  doi: 10.1038/35570
– ident: e_1_2_6_27_1
  doi: 10.1002/lpor.201100027
– ident: e_1_2_6_12_1
  doi: 10.1002/lpor.201400052
– ident: e_1_2_6_40_1
  doi: 10.1063/1.3488020
SSID ssj0055556
Score 2.2942324
Snippet We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half‐integer numbers of resonant modes are observed due to the...
Abstract We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half‐integer numbers of resonant modes are observed...
We report on the theoretical investigation of plasmonic resonances in metallic Möbius nanorings. Half-integer numbers of resonant modes are observed due to the...
We report on the theoretical investigation of plasmonic resonances in metallic Mobius nanorings. Half-integer numbers of resonant modes are observed due to the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage np
SubjectTerms bright plasmon mode
Charge distribution
Constants
dark plasmon mode
half‐integer mode number
Möbius ring
Nanostructure
Photonics
Plasmonics
Plasmons
Symmetry
Topology
Title Topology induced anomalous plasmon modes in metallic Möbius nanorings
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.201600219
https://www.proquest.com/docview/1881267005
https://search.proquest.com/docview/1893900612
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yJy--xfVFBMFTdzdN07RHURcRV0Vc2FvJpCmIu12xuwf9Yf4B_5iT9OHqRdBjSULTzEzzTTLzDSHHzKb9ChF5LsI1AOF7YALwBAuzjEGmY2azkQc34eUwuBqJ0UIWf8kP0Ry4Wctw_2tr4AqK7hdp6BjxqQ3NshdLjveTcWljus7vG_4onIQr38qikHvo6vVq1sae3_0-_Puu9AU1FwGr23H6q0TVcy0DTZ468xl09NsPGsf_fMwaWangKD0t9WedLJl8g6xW0JRWhl9skv5DWUzhlaIPj9qQUpVPJ2o8nRf0GQE4KjO1RXUKbKcTg4h-_Kjp4OMdHrFHjp3t-WGxRYb9i4ezS68qweBpjlDCAymMlDwQQstYZT2FIoUgSLmUoSWfSkXEQ5x0qCAFlTJ0FkFlOguiIFVpKPk2aeXT3OwQirJgGt1HrTTCSABlucoUGJ-ZTPIM2uSkFkHyXDJtJCWnsp_Y5Uma5WmT_VpCSWVxRcIihCo250i0yVHTjLZiL0BUbnA9sE_MYwfq2sR34vjlTcn13e1987T7l0F7ZNm3SMCFre2T1uxlbg4Qx8zg0OnqJ4XO6y8
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB5V9FAuUAqI8NdFQuLkkLW9tnOsaKO0TQBFicTN2lmvpYjgIJwc4MF4AV6sM_5L6QWJHq3dldc7M95vdme-ATiVnParVOQUEa4-KtdB66OjZJCmElPTlZyNPLwM-hP_142qowk5F6bkh2gO3Ngyiv81GzgfSJ-vWENnBFA5Notvlpj48yPZvMfVG76PGgYpmkZRwFVGgeeQs9epeRs77vnr8a_3pRXY_BuyFntObxOwnm0ZanLbXi6wbZ7-IXL8r8_5DBsVIhXfShXagg82-wKbFToVle3n29Abl_UUHgW58aQQidDZ_E7P5stc3BMGJ30WXFcnp3ZxZwnUz6ZGDF-ecUo9MurMR4j5Dkx6P8YXfaeqwuAYj9CEg6GyYej5Spmwq9OOJqmi7ydeGAbMP5WoyAto0oHGBHUiyV9EnZrUj_xEJySSXVjL5pndA0HCkIY8SKMNIUlEzXRlGq0rbRp6KbbgrJZBfF-SbcQlrbIb8_LEzfK04LAWUVwZXR7LiNAKpx2pFpw0zWQufAeiM0vrQX26XrfAdS1wC3m88aZ4cH01ap723zPoK3zqj4eDePDz8vcBrLsMDIootkNYWzws7RHBmgUeF4r7Bzg870c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9EQXxxfuJ0agTBp25Lm7Tdo6jDj_mBONhbSdIExNkNuz3oH-Y_4D_mpe26zRdBH0sSmubumt8ld78DOKY27Zfz0MkiXJnkriM1kw6nvjFUGtWiNhv59s6_7LLrHu_NZPHn_BDlgZu1jOx_bQ18GJvGlDS0j_jUhmbZiyXL-7nEfIS_FhY9lgRSOIusfisNfc9BX685oW1suo358fPb0hRrziLWbMtpV0BMJptHmrzUxyNZVx8_eBz_8zVrsFrgUXKaK9A6LOhkAyoFNiWF5aeb0H7Kqym8E3TiUR1iIpLBq-gPxikZIgJHbSa2qk6K7eRVI6TvPyty-_Upn7FHgp3tAWK6Bd32xdPZpVPUYHCUh1jCkQHXQeAxzlXQEqYpUKaSsdgLAt-yT8U89HyctC9kLEVM0VuUwijDQhaL2A-8bVhMBoneAYKyoAr9RyUU4kgphSUrE1K7VJvAM7IKJxMRRMOcaiPKSZXdyC5PVC5PFWoTCUWFyaURDRGr2KQjXoWjshmNxd6AiETjemCfltfKUF0V3Ewcv7wp6jzcP5ZPu38ZdAjLD-ftqHN1d7MHK65FBVkIWw0WR29jvY-YZiQPMrX9Bncm7fY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+induced+anomalous+plasmon+modes+in+metallic+Mobius+nanorings&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Yin%2C+Yin&rft.au=Li%2C+Shilong&rft.au=Engemaier%2C+Vivienne&rft.au=Saei+Ghareh+Naz%2C+Ehsan&rft.date=2017-03-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=11&rft.issue=2&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1002%2Flpor.201600219&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon