Reclaiming Inactive Lithium with a Triiodide/Iodide Redox Couple for Practical Lithium Metal Batteries

High‐energy‐density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by the consumption of electrolyte and active Li reservoir, seriously deteriorating the cyclability of batteries. Herein, a triiodide/iodide (I3−/...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 42; pp. 22990 - 22995
Main Authors Jin, Cheng‐Bin, Zhang, Xue‐Qiang, Sheng, Ou‐Wei, Sun, Shu‐Yu, Hou, Li‐Peng, Shi, Peng, Li, Bo‐Quan, Huang, Jia‐Qi, Tao, Xin‐Yong, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 11.10.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202110589

Cover

Loading…
Abstract High‐energy‐density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by the consumption of electrolyte and active Li reservoir, seriously deteriorating the cyclability of batteries. Herein, a triiodide/iodide (I3−/I−) redox couple initiated by stannic iodide (SnI4) is demonstrated to reclaim inactive Li. The reduction of I3− converts inactive Li into soluble LiI, which then diffuses to the cathode side. The oxidation of LiI by the delithiated cathode transforms cathode into the lithiation state and regenerates I3−, reclaiming Li ion from inactive Li. The regenerated I3− engages the further redox reactions. Furthermore, the formation of Sn mitigates the corrosion of I3− on active Li reservoir sacrificially. In working Li | LiNi0.5Co0.2Mn0.3O2 batteries, the accumulated inactive Li is significantly reclaimed by the reversible I3−/I− redox couple, improving the lifespan of batteries by twice. This work initiates a creative solution to reclaim inactive Li for prolonging the lifespan of practical Li metal batteries. A triiodide/iodide (I3−/I−) redox couple is introduced with a SnI4 initiator to reclaim inactive Li. The reduction of I3− converts inactive Li into soluble LiI, and the oxidation of LiI by a delithiated cathode realizes the restoration of Li ion in cathode from inactive Li. The regenerated I3− by oxidation engages the further redox reactions.
AbstractList High‐energy‐density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by the consumption of electrolyte and active Li reservoir, seriously deteriorating the cyclability of batteries. Herein, a triiodide/iodide (I3−/I−) redox couple initiated by stannic iodide (SnI4) is demonstrated to reclaim inactive Li. The reduction of I3− converts inactive Li into soluble LiI, which then diffuses to the cathode side. The oxidation of LiI by the delithiated cathode transforms cathode into the lithiation state and regenerates I3−, reclaiming Li ion from inactive Li. The regenerated I3− engages the further redox reactions. Furthermore, the formation of Sn mitigates the corrosion of I3− on active Li reservoir sacrificially. In working Li | LiNi0.5Co0.2Mn0.3O2 batteries, the accumulated inactive Li is significantly reclaimed by the reversible I3−/I− redox couple, improving the lifespan of batteries by twice. This work initiates a creative solution to reclaim inactive Li for prolonging the lifespan of practical Li metal batteries.
High‐energy‐density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by the consumption of electrolyte and active Li reservoir, seriously deteriorating the cyclability of batteries. Herein, a triiodide/iodide (I 3 − /I − ) redox couple initiated by stannic iodide (SnI 4 ) is demonstrated to reclaim inactive Li. The reduction of I 3 − converts inactive Li into soluble LiI, which then diffuses to the cathode side. The oxidation of LiI by the delithiated cathode transforms cathode into the lithiation state and regenerates I 3 − , reclaiming Li ion from inactive Li. The regenerated I 3 − engages the further redox reactions. Furthermore, the formation of Sn mitigates the corrosion of I 3 − on active Li reservoir sacrificially. In working Li | LiNi 0.5 Co 0.2 Mn 0.3 O 2 batteries, the accumulated inactive Li is significantly reclaimed by the reversible I 3 − /I − redox couple, improving the lifespan of batteries by twice. This work initiates a creative solution to reclaim inactive Li for prolonging the lifespan of practical Li metal batteries.
High‐energy‐density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by the consumption of electrolyte and active Li reservoir, seriously deteriorating the cyclability of batteries. Herein, a triiodide/iodide (I3−/I−) redox couple initiated by stannic iodide (SnI4) is demonstrated to reclaim inactive Li. The reduction of I3− converts inactive Li into soluble LiI, which then diffuses to the cathode side. The oxidation of LiI by the delithiated cathode transforms cathode into the lithiation state and regenerates I3−, reclaiming Li ion from inactive Li. The regenerated I3− engages the further redox reactions. Furthermore, the formation of Sn mitigates the corrosion of I3− on active Li reservoir sacrificially. In working Li | LiNi0.5Co0.2Mn0.3O2 batteries, the accumulated inactive Li is significantly reclaimed by the reversible I3−/I− redox couple, improving the lifespan of batteries by twice. This work initiates a creative solution to reclaim inactive Li for prolonging the lifespan of practical Li metal batteries. A triiodide/iodide (I3−/I−) redox couple is introduced with a SnI4 initiator to reclaim inactive Li. The reduction of I3− converts inactive Li into soluble LiI, and the oxidation of LiI by a delithiated cathode realizes the restoration of Li ion in cathode from inactive Li. The regenerated I3− by oxidation engages the further redox reactions.
High-energy-density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by the consumption of electrolyte and active Li reservoir, seriously deteriorating the cyclability of batteries. Herein, a triiodide/iodide (I3 - /I- ) redox couple initiated by stannic iodide (SnI4 ) is demonstrated to reclaim inactive Li. The reduction of I3 - converts inactive Li into soluble LiI, which then diffuses to the cathode side. The oxidation of LiI by the delithiated cathode transforms cathode into the lithiation state and regenerates I3 - , reclaiming Li ion from inactive Li. The regenerated I3 - engages the further redox reactions. Furthermore, the formation of Sn mitigates the corrosion of I3 - on active Li reservoir sacrificially. In working Li | LiNi0.5 Co0.2 Mn0.3 O2 batteries, the accumulated inactive Li is significantly reclaimed by the reversible I3 - /I- redox couple, improving the lifespan of batteries by twice. This work initiates a creative solution to reclaim inactive Li for prolonging the lifespan of practical Li metal batteries.High-energy-density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by the consumption of electrolyte and active Li reservoir, seriously deteriorating the cyclability of batteries. Herein, a triiodide/iodide (I3 - /I- ) redox couple initiated by stannic iodide (SnI4 ) is demonstrated to reclaim inactive Li. The reduction of I3 - converts inactive Li into soluble LiI, which then diffuses to the cathode side. The oxidation of LiI by the delithiated cathode transforms cathode into the lithiation state and regenerates I3 - , reclaiming Li ion from inactive Li. The regenerated I3 - engages the further redox reactions. Furthermore, the formation of Sn mitigates the corrosion of I3 - on active Li reservoir sacrificially. In working Li | LiNi0.5 Co0.2 Mn0.3 O2 batteries, the accumulated inactive Li is significantly reclaimed by the reversible I3 - /I- redox couple, improving the lifespan of batteries by twice. This work initiates a creative solution to reclaim inactive Li for prolonging the lifespan of practical Li metal batteries.
Author Shi, Peng
Huang, Jia‐Qi
Tao, Xin‐Yong
Jin, Cheng‐Bin
Zhang, Qiang
Hou, Li‐Peng
Sheng, Ou‐Wei
Li, Bo‐Quan
Zhang, Xue‐Qiang
Sun, Shu‐Yu
Author_xml – sequence: 1
  givenname: Cheng‐Bin
  orcidid: 0000-0002-0304-8814
  surname: Jin
  fullname: Jin, Cheng‐Bin
  organization: Tsinghua University
– sequence: 2
  givenname: Xue‐Qiang
  orcidid: 0000-0003-2856-1881
  surname: Zhang
  fullname: Zhang, Xue‐Qiang
  organization: Tsinghua University
– sequence: 3
  givenname: Ou‐Wei
  surname: Sheng
  fullname: Sheng, Ou‐Wei
  organization: Zhejiang University of Technology
– sequence: 4
  givenname: Shu‐Yu
  surname: Sun
  fullname: Sun, Shu‐Yu
  organization: Tsinghua University
– sequence: 5
  givenname: Li‐Peng
  surname: Hou
  fullname: Hou, Li‐Peng
  organization: Tsinghua University
– sequence: 6
  givenname: Peng
  surname: Shi
  fullname: Shi, Peng
  organization: Tsinghua University
– sequence: 7
  givenname: Bo‐Quan
  surname: Li
  fullname: Li, Bo‐Quan
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Xin‐Yong
  orcidid: 0000-0003-4084-7743
  surname: Tao
  fullname: Tao, Xin‐Yong
  organization: Zhejiang University of Technology
– sequence: 10
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkE1LAzEQhoMoqNWr54AXL1uTzWY3e9TiR6F-UOp5mWZnNbLd1CRr9d-bWlEQxNM7geeZDO8-2e5sh4QccTbkjKWn0BkcpizlnElVbpE9LlOeiKIQ23HOhEgKJfku2ff-OfJKsXyPNFPULZiF6R7puAMdzCvSiQlPpl_QVUwKdOaMsbWp8XT8GXSKtX2jI9svW6SNdfTerU0N7bd6gyG-ziEEdAb9AdlpoPV4-JUD8nB5MRtdJ5O7q_HobJJoIVmZAKuLHDNd8jnnfM5KlHldZyqvm3iuSEvQJbBMInIoZKmyOeSFhHmtQGQpSjEgJ5u9S2dfevShWhivsW2hQ9v7KpV5BDMlRUSPf6HPtnddvC5ShSqEYLG6ARluKO2s9w6baunMAtx7xVm1rr1a11591x6F7JegTYBgbBccmPZvrdxoK9Pi-z-fVGe344sf9wOLAplD
CitedBy_id crossref_primary_10_1002_ange_202301073
crossref_primary_10_1016_j_ensm_2021_11_033
crossref_primary_10_1016_j_jechem_2022_08_021
crossref_primary_10_1016_j_mser_2025_100955
crossref_primary_10_1002_aenm_202201800
crossref_primary_10_1002_adfm_202311925
crossref_primary_10_1002_adfm_202303427
crossref_primary_10_1016_j_ensm_2022_10_036
crossref_primary_10_1039_D3TA00096F
crossref_primary_10_1016_j_cej_2025_161472
crossref_primary_10_1002_anie_202301073
crossref_primary_10_1126_sciadv_abq3445
crossref_primary_10_1002_anie_202201406
crossref_primary_10_1016_S1872_5805_22_60573_0
crossref_primary_10_1039_D4TA03167A
crossref_primary_10_1002_anie_202207907
crossref_primary_10_1016_j_ensm_2025_104030
crossref_primary_10_1021_acs_nanolett_2c03291
crossref_primary_10_1021_acs_jpcc_3c02437
crossref_primary_10_1016_j_cclet_2021_12_064
crossref_primary_10_1016_j_cej_2023_145818
crossref_primary_10_1021_acs_iecr_2c00958
crossref_primary_10_1002_cey2_283
crossref_primary_10_1016_j_jpowsour_2022_232144
crossref_primary_10_1016_j_mattod_2024_06_001
crossref_primary_10_1038_s41467_023_44161_7
crossref_primary_10_1002_cssc_202400159
crossref_primary_10_1002_adfm_202314186
crossref_primary_10_1002_adma_202409489
crossref_primary_10_1002_ange_202114671
crossref_primary_10_1016_j_scib_2022_11_027
crossref_primary_10_1016_j_jechem_2021_12_020
crossref_primary_10_1002_ange_202207907
crossref_primary_10_1002_adsu_202300285
crossref_primary_10_1016_j_mtener_2022_100949
crossref_primary_10_1016_j_mtsust_2022_100187
crossref_primary_10_1002_ange_202201406
crossref_primary_10_1002_ange_202401055
crossref_primary_10_1038_s41467_023_39391_8
crossref_primary_10_1002_adfm_202204768
crossref_primary_10_1016_j_ensm_2024_103989
crossref_primary_10_1016_j_mtener_2023_101328
crossref_primary_10_1002_metm_6
crossref_primary_10_1016_j_cej_2022_140395
crossref_primary_10_1016_j_cej_2023_146890
crossref_primary_10_1016_j_ensm_2022_08_001
crossref_primary_10_1016_j_jechem_2024_07_043
crossref_primary_10_1016_j_jechem_2022_04_036
crossref_primary_10_1002_anie_202114671
crossref_primary_10_1016_j_jechem_2022_10_023
crossref_primary_10_1126_science_ads9691
crossref_primary_10_1002_aenm_202403092
crossref_primary_10_1002_adma_202409976
crossref_primary_10_2139_ssrn_4095925
crossref_primary_10_1039_D3CC03772J
crossref_primary_10_1039_D3CC03085G
crossref_primary_10_1002_smll_202407395
crossref_primary_10_1016_j_jechem_2022_02_041
crossref_primary_10_1002_batt_202400505
crossref_primary_10_1016_j_nanoen_2022_107716
crossref_primary_10_1002_chem_202400424
crossref_primary_10_1002_anie_202401055
crossref_primary_10_1002_adfm_202406080
crossref_primary_10_1016_j_ensm_2022_12_016
crossref_primary_10_1016_j_fmre_2022_11_005
crossref_primary_10_1016_j_mattod_2022_06_022
crossref_primary_10_1021_acssuschemeng_3c03565
crossref_primary_10_1002_adfm_202413888
crossref_primary_10_1002_wcms_1592
crossref_primary_10_1002_adfm_202111026
crossref_primary_10_1016_j_nanoen_2022_107993
Cites_doi 10.1021/acs.chemrev.7b00115
10.1016/j.jechem.2019.09.033
10.1038/s41557-018-0203-8
10.1002/anie.202103344
10.1016/j.jechem.2021.04.045
10.1039/C5EE03764F
10.1002/adfm.202100891
10.1016/j.jechem.2019.09.028
10.1002/ange.201801513
10.1002/ange.202008081
10.1002/sus2.4
10.1038/s41467-019-11544-8
10.1002/ente.202000700
10.1002/ange.202104671
10.1126/science.aam6014
10.1002/adma.201908293
10.1002/anie.202103303
10.1002/anie.201701290
10.1038/s41560-017-0047-2
10.1039/C5EE01958C
10.1016/j.ensm.2020.03.022
10.1038/nenergy.2017.119
10.1002/ange.202101976
10.1038/s41560-021-00787-9
10.1016/j.nanoen.2017.12.055
10.1002/ange.201911724
10.1002/inf2.12166
10.1002/ange.202103344
10.1016/j.nanoen.2017.05.015
10.1002/anie.202008081
10.1039/D0TA03270K
10.1038/s41560-021-00833-6
10.1038/s41467-017-00649-7
10.1002/ange.202102552
10.1038/s41467-021-21683-6
10.1002/ange.202103170
10.1002/adma.202000223
10.1002/ange.201701290
10.1002/aenm.201903645
10.1002/anie.202013993
10.1002/aenm.201901932
10.1038/s41467-020-14358-1
10.1002/anie.202101976
10.1002/anie.201911724
10.1002/sstr.202100018
10.1002/aenm.201902254
10.1039/D0EE02848G
10.1038/s41586-019-1481-z
10.1149/2.1441707jes
10.1039/C7TA00371D
10.1002/anie.202013812
10.1126/sciadv.1501038
10.1002/adma.201707629
10.1039/C7EE00954B
10.1002/anie.202012005
10.1002/anie.202103170
10.1021/acs.nanolett.5b02116
10.1002/ange.202013993
10.1002/adma.201902785
10.1038/s41560-019-0338-x
10.1002/anie.202102552
10.1038/s41560-021-00789-7
10.1038/nnano.2017.16
10.1002/ange.202013812
10.1126/science.aac7730
10.1002/sus2.6
10.1002/anie.201801513
10.1002/anie.202104671
10.1002/aenm.201900853
10.1002/ange.202012005
10.1002/ange.202103303
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202110589
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 22995
ExternalDocumentID 10_1002_anie_202110589
ANIE202110589
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: BX2021136 and 2021M691712
– fundername: the Seed Fund of Shanxi Research Institute for Clean Energy
  funderid: SXKYJF015
– fundername: Beijing Municipal Natural Science Foundation
  funderid: Z20J00043
– fundername: National Natural Science Foundation of China
  funderid: 52103342 and 21825501
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3509-a0d76e4c91b111b09e56dd486df880329ac9a045ee1a75984ba675abd8a342e53
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 03:49:52 EDT 2025
Sun Jul 13 02:50:08 EDT 2025
Tue Jul 01 01:18:07 EDT 2025
Thu Apr 24 23:12:56 EDT 2025
Wed Jan 22 16:27:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3509-a0d76e4c91b111b09e56dd486df880329ac9a045ee1a75984ba675abd8a342e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3929-1541
0000-0003-4084-7743
0000-0002-0304-8814
0000-0003-2856-1881
0000-0001-7394-9186
PQID 2578733077
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2563424853
proquest_journals_2578733077
crossref_primary_10_1002_anie_202110589
crossref_citationtrail_10_1002_anie_202110589
wiley_primary_10_1002_anie_202110589_ANIE202110589
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 11, 2021
PublicationDateYYYYMMDD 2021-10-11
PublicationDate_xml – month: 10
  year: 2021
  text: October 11, 2021
  day: 11
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2017; 5
2015; 15
2019; 9
2021; 6
2017; 8
2019; 4
2017; 2
2021; 3
2021; 2
2019; 31
2019; 11
2019; 10
2020 2020; 59 132
2022; 64
2020; 11
2020; 10
2020; 32
2017 2017; 56 129
2021; 1
2018; 45
2015; 8
2017; 358
2017; 117
2021; 14
2020; 8
2015; 350
2018; 3
2021; 31
2021; 12
2016; 2
2017; 37
2018 2018; 57 130
2017; 10
2017; 12
2020; 28
2021 2021; 60 133
2018; 30
2020; 45
2017; 164
2016; 9
2019; 572
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_72_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_70_2
e_1_2_6_19_2
e_1_2_6_13_1
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_32_3
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_1
e_1_2_6_38_3
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_76_2
e_1_2_6_36_3
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_64_1
e_1_2_6_20_2
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_49_2
e_1_2_6_22_1
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_50_3
e_1_2_6_52_2
e_1_2_6_75_2
e_1_2_6_52_3
e_1_2_6_54_1
e_1_2_6_31_1
e_1_2_6_71_1
e_1_2_6_18_2
e_1_2_6_39_3
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_16_3
e_1_2_6_14_2
e_1_2_6_56_2
e_1_2_6_14_3
e_1_2_6_37_1
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_21_1
e_1_2_6_40_3
e_1_2_6_40_2
e_1_2_6_61_1
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_46_3
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_48_3
e_1_2_6_65_2
e_1_2_6_44_2
e_1_2_6_65_3
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_44_3
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 60 133
  start-page: 7770 7849
  year: 2021 2021
  end-page: 7776 7855
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 17547 17688
  year: 2021 2021
  end-page: 17555 17696
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 14040 14159
  year: 2021 2021
  end-page: 14050 14169
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 1452
  year: 2021
  publication-title: Nat. Commun.
– volume: 9
  year: 2021
  publication-title: Energy Technol.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 60 133
  start-page: 19232 19381
  year: 2021 2021
  end-page: 19240 19389
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 13541
  year: 2020
  end-page: 13547
  publication-title: J. Mater. Chem. A
– volume: 60 133
  start-page: 16480 16616
  year: 2021 2021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 378
  year: 2021
  end-page: 387
  publication-title: Nat. Energy
– volume: 28
  start-page: 350
  year: 2020
  end-page: 356
  publication-title: Energy Storage Mater.
– volume: 164
  start-page: A1703
  year: 2017
  end-page: A1719
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 2664
  year: 2015
  end-page: 2667
  publication-title: Energy Environ. Sci.
– volume: 45
  start-page: 1
  year: 2020
  end-page: 6
  publication-title: J. Energy Chem.
– volume: 45
  start-page: 203
  year: 2018
  end-page: 209
  publication-title: Nano Energy
– volume: 60 133
  start-page: 16506 16642
  year: 2021 2021
  end-page: 16513 16649
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 572
  start-page: 511
  year: 2019
  end-page: 515
  publication-title: Nature
– volume: 9
  start-page: 917
  year: 2016
  end-page: 921
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 790
  year: 2021
  publication-title: Nat. Energy
– volume: 3
  start-page: 16
  year: 2018
  end-page: 21
  publication-title: Nat. Energy
– volume: 57 130
  start-page: 5301 5399
  year: 2018 2018
  end-page: 5305 5403
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 37
  start-page: 177
  year: 2017
  end-page: 186
  publication-title: Nano Energy
– volume: 3
  start-page: 155
  year: 2021
  end-page: 174
  publication-title: InfoMat
– volume: 6
  start-page: 487
  year: 2021
  end-page: 494
  publication-title: Nat. Energy
– volume: 1
  start-page: 38
  year: 2021
  end-page: 50
  publication-title: SusMat
– volume: 358
  start-page: 506
  year: 2017
  end-page: 510
  publication-title: Science
– volume: 8
  start-page: 527
  year: 2017
  publication-title: Nat. Commun.
– volume: 60 133
  start-page: 6600 6674
  year: 2021 2021
  end-page: 6608 6682
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  year: 2021
  publication-title: Small Struct.
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  publication-title: Chem. Rev.
– volume: 64
  start-page: 172
  year: 2022
  end-page: 178
  publication-title: J. Energy Chem.
– volume: 4
  start-page: 180
  year: 2019
  end-page: 186
  publication-title: Nat. Energy
– volume: 59 132
  start-page: 3252 3278
  year: 2020 2020
  end-page: 3257 3283
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 3543
  year: 2019
  publication-title: Nat. Commun.
– volume: 14
  start-page: 1326
  year: 2021
  end-page: 1379
  publication-title: Energy Environ. Sci.
– volume: 45
  start-page: 7
  year: 2020
  end-page: 17
  publication-title: J. Energy Chem.
– volume: 1
  start-page: 24
  year: 2021
  end-page: 37
  publication-title: SusMat
– volume: 11
  start-page: 382
  year: 2019
  end-page: 389
  publication-title: Nat. Chem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 11671
  year: 2017
  end-page: 11681
  publication-title: J. Mater. Chem. A
– volume: 60 133
  start-page: 10871 10966
  year: 2021 2021
  end-page: 10879 10974
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 350
  start-page: 530
  year: 2015
  end-page: 533
  publication-title: Science
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 60 133
  start-page: 3661 3705
  year: 2021 2021
  end-page: 3671 3715
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 59 132
  start-page: 18229 18386
  year: 2020 2020
  end-page: 18233 18390
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 17119
  year: 2017
  publication-title: Nat. Energy
– volume: 15
  start-page: 5982
  year: 2015
  end-page: 5987
  publication-title: Nano Lett.
– volume: 10
  start-page: 1828
  year: 2017
  end-page: 1842
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 488
  year: 2020
  publication-title: Nat. Commun.
– volume: 12
  start-page: 194
  year: 2017
  end-page: 206
  publication-title: Nat. Nanotechnol.
– volume: 56 129
  start-page: 7505 7613
  year: 2017 2017
  end-page: 7509 7617
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_6_6_2
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_6_19_2
  doi: 10.1016/j.jechem.2019.09.033
– ident: e_1_2_6_23_2
  doi: 10.1038/s41557-018-0203-8
– ident: e_1_2_6_68_1
– ident: e_1_2_6_31_1
– ident: e_1_2_6_38_2
  doi: 10.1002/anie.202103344
– ident: e_1_2_6_35_2
  doi: 10.1016/j.jechem.2021.04.045
– ident: e_1_2_6_37_1
– ident: e_1_2_6_67_1
  doi: 10.1039/C5EE03764F
– ident: e_1_2_6_4_2
  doi: 10.1002/adfm.202100891
– ident: e_1_2_6_71_1
– ident: e_1_2_6_34_2
  doi: 10.1016/j.jechem.2019.09.028
– ident: e_1_2_6_16_3
  doi: 10.1002/ange.201801513
– ident: e_1_2_6_22_1
– ident: e_1_2_6_32_3
  doi: 10.1002/ange.202008081
– ident: e_1_2_6_7_2
  doi: 10.1002/sus2.4
– ident: e_1_2_6_69_2
  doi: 10.1038/s41467-019-11544-8
– ident: e_1_2_6_24_2
  doi: 10.1002/ente.202000700
– ident: e_1_2_6_52_3
  doi: 10.1002/ange.202104671
– ident: e_1_2_6_59_2
  doi: 10.1126/science.aam6014
– ident: e_1_2_6_58_2
  doi: 10.1002/adma.201908293
– ident: e_1_2_6_36_2
  doi: 10.1002/anie.202103303
– ident: e_1_2_6_65_2
  doi: 10.1002/anie.201701290
– ident: e_1_2_6_10_2
  doi: 10.1038/s41560-017-0047-2
– ident: e_1_2_6_75_2
  doi: 10.1039/C5EE01958C
– ident: e_1_2_6_43_2
  doi: 10.1016/j.ensm.2020.03.022
– ident: e_1_2_6_42_2
  doi: 10.1038/nenergy.2017.119
– ident: e_1_2_6_40_3
  doi: 10.1002/ange.202101976
– ident: e_1_2_6_28_2
  doi: 10.1038/s41560-021-00787-9
– ident: e_1_2_6_47_1
– ident: e_1_2_6_12_2
  doi: 10.1016/j.nanoen.2017.12.055
– ident: e_1_2_6_48_3
  doi: 10.1002/ange.201911724
– ident: e_1_2_6_53_2
  doi: 10.1002/inf2.12166
– ident: e_1_2_6_38_3
  doi: 10.1002/ange.202103344
– ident: e_1_2_6_61_1
– ident: e_1_2_6_11_2
  doi: 10.1016/j.nanoen.2017.05.015
– ident: e_1_2_6_9_1
– ident: e_1_2_6_32_2
  doi: 10.1002/anie.202008081
– ident: e_1_2_6_57_2
  doi: 10.1039/D0TA03270K
– ident: e_1_2_6_30_2
  doi: 10.1038/s41560-021-00833-6
– ident: e_1_2_6_73_2
  doi: 10.1038/s41467-017-00649-7
– ident: e_1_2_6_39_3
  doi: 10.1002/ange.202102552
– ident: e_1_2_6_63_2
  doi: 10.1038/s41467-021-21683-6
– ident: e_1_2_6_46_3
  doi: 10.1002/ange.202103170
– ident: e_1_2_6_56_2
  doi: 10.1002/adma.202000223
– ident: e_1_2_6_65_3
  doi: 10.1002/ange.201701290
– ident: e_1_2_6_18_2
  doi: 10.1002/aenm.201903645
– ident: e_1_2_6_14_2
  doi: 10.1002/anie.202013993
– ident: e_1_2_6_29_2
  doi: 10.1002/aenm.201901932
– ident: e_1_2_6_55_2
  doi: 10.1038/s41467-020-14358-1
– ident: e_1_2_6_40_2
  doi: 10.1002/anie.202101976
– ident: e_1_2_6_48_2
  doi: 10.1002/anie.201911724
– ident: e_1_2_6_20_2
  doi: 10.1002/sstr.202100018
– ident: e_1_2_6_1_1
– ident: e_1_2_6_51_1
– ident: e_1_2_6_25_2
  doi: 10.1002/aenm.201902254
– ident: e_1_2_6_8_2
  doi: 10.1039/D0EE02848G
– ident: e_1_2_6_21_1
  doi: 10.1038/s41586-019-1481-z
– ident: e_1_2_6_33_2
  doi: 10.1149/2.1441707jes
– ident: e_1_2_6_62_2
  doi: 10.1039/C7TA00371D
– ident: e_1_2_6_50_2
  doi: 10.1002/anie.202013812
– ident: e_1_2_6_66_2
  doi: 10.1126/sciadv.1501038
– ident: e_1_2_6_74_1
– ident: e_1_2_6_64_1
– ident: e_1_2_6_45_2
  doi: 10.1002/adma.201707629
– ident: e_1_2_6_76_2
  doi: 10.1039/C7EE00954B
– ident: e_1_2_6_17_1
– ident: e_1_2_6_44_2
  doi: 10.1002/anie.202012005
– ident: e_1_2_6_46_2
  doi: 10.1002/anie.202103170
– ident: e_1_2_6_41_1
– ident: e_1_2_6_72_2
  doi: 10.1021/acs.nanolett.5b02116
– ident: e_1_2_6_14_3
  doi: 10.1002/ange.202013993
– ident: e_1_2_6_49_2
  doi: 10.1002/adma.201902785
– ident: e_1_2_6_5_1
– ident: e_1_2_6_2_2
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_6_39_2
  doi: 10.1002/anie.202102552
– ident: e_1_2_6_27_1
– ident: e_1_2_6_60_1
  doi: 10.1038/s41560-021-00789-7
– ident: e_1_2_6_13_1
– ident: e_1_2_6_3_2
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_6_50_3
  doi: 10.1002/ange.202013812
– ident: e_1_2_6_70_2
  doi: 10.1126/science.aac7730
– ident: e_1_2_6_15_2
  doi: 10.1002/sus2.6
– ident: e_1_2_6_16_2
  doi: 10.1002/anie.201801513
– ident: e_1_2_6_52_2
  doi: 10.1002/anie.202104671
– ident: e_1_2_6_26_2
  doi: 10.1002/aenm.201900853
– ident: e_1_2_6_54_1
– ident: e_1_2_6_44_3
  doi: 10.1002/ange.202012005
– ident: e_1_2_6_36_3
  doi: 10.1002/ange.202103303
SSID ssj0028806
Score 2.6098049
Snippet High‐energy‐density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by...
High-energy-density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22990
SubjectTerms Cathodes
I3−/I− redox couple
Iodides
Life span
Lithium
Lithium batteries
lithium metal anode
Oxidation
practical lithium batteries
reclaiming inactive lithium
Redox reactions
Reservoirs
Title Reclaiming Inactive Lithium with a Triiodide/Iodide Redox Couple for Practical Lithium Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202110589
https://www.proquest.com/docview/2578733077
https://www.proquest.com/docview/2563424853
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i_XFCoKntGl2kyZHKYoV20Npobewmx01WJOiDYi_3pm82goi6CkJ2SWbmd2ZbzaZbxi71AH6BEQiluujCUSDp6xAU0lArZ0I3RM4kvKd-wPvbizvJ-5kKYu_4IeoN9xoZeT2mha40u-tBWkoZWBjfEcBjOtTBh_9sEWoaFjzRzk4OYv0IiEsqkJfsTbaTmu1-6pXWkDNZcCae5zbbaaqsRY_mrw0s7luRp_faBz_8zI7bKuEo_y6mD-7bA2SPbbRrarA7bNHxJVTRaW_nngvUbl15A_x_DnOXjlt4nLFR29xnJrYQKuXH_gQTPrBu2k2mwJHVMwLViScDnXXPiDq5wW7JwbrB2x8ezPq3lllbQYrEogxLGWbjgcS1anRWmo7ANczRvqeeUShC9R5FCiEiwBt1XEDX2qFoYnSxldCOuCKQ7aepAkcMY4gzPeEtCWAlgYjKIlSaLtGGUSrENgNZlW6CaOSuJzqZ0zDgnLZCUl6YS29Bruq288Kyo4fW55Wqg7Lpfse5jZMoOnrNNhFfRulTl9SVAJpRm1wwEQGJxrMyfX6y5PC60Hvpr46_kunE7ZJ5-Q32-1Ttj5_y-AMAdFcn-eT_gu-EgBP
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED7x4wFe2NhAKyvDk5D2FJrGTpo8VgXUQtsHVKS9RXZ8sGhdUkEjIf567pImDKRpEjxFSWzFubPvvnNy3wEcm4h8AiERxw_JBJLB005kuCSgMV5C7gk9xfnOk2kwvFYXP_36b0LOhan4IZoNN14Zpb3mBc4b0p1n1lBOwaYAjyMYP4zWYZPLenMRg9OrhkHKo-lZJRhJ6XAd-pq30fU6L_u_9EvPYPNvyFr6nPMPYOrRVr-a_D4pluYkeXxF5Piu1_kIOytEKvrVFNqFNcw-wdagLgT3GW4IWs41V_-6FaNMlwZSjNPlr7T4I3gfV2gxu0vT3KYWO6PyIK7Q5g9ikBeLOQoCxqIiRqIZ0XSdIAF_URF8Ury-B9fnZ7PB0FmVZ3ASSTDD0a7tBahIo4YMpnEj9ANrVRjYG5K6JLUnkSbEiNjVPT8KldEUnWhjQy2Vh77ch40sz_ALCMJhYSCVqxCNshREKZJC17faEmDFyG2BUysnTlbc5VxCYx5XrMtezNKLG-m14EfTflGxdvyzZbvWdbxavfdxacYkWb9eC743t0nq_DFFZ5gX3IYGzHxwsgVeqdj_PCnuT0dnzdnBWzodwdZwNhnH49H08its83V2o91uGzaWdwUeEj5amm_lCngCyDUEaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-NAEB_8AL0X9byTq58rHNxTbJrdpMmjVIv1tIgo-BZ2s1MN9pLiNSD-9c4kTdQDOdCnkGSXbGZ2Z36zyfwG4KeJyCcQEnH8kEwgGTztRIZLAhrjJeSe0FOc73w-DE6u1emNf_Mqi7_ih2g23HhllPaaF_jEjtovpKGcgU3xHQcwfhjNw6IKaMUwLLpsCKQ8mp1VfpGUDpehr2kbXa_9tv9bt_SCNV8j1tLl9FdB14Ot_jS5Pyim5iB5-ofH8TNvswYrMzwqDqsJ9BXmMFuH5V5dBu4bjAhYjjXX_roVg0yX5lGcpdO7tPgjeBdXaHH1kKa5TS22B-VBXKLNH0UvLyZjFASLRUWLRPOh6XqOBPtFRe9J0fp3uO4fX_VOnFlxBieRBDIc7dpugIr0achcGjdCP7BWhYEdkdAlKT2JNOFFxI7u-lGojKbYRBsbaqk89OUGLGR5hj9AEAoLA6lchWiUpRBKkRQ6vtWW4CpGbgucWjdxMmMu5wIa47jiXPZill7cSK8Fv5r2k4qz492W27Wq49na_RuXRkyS7eu2YL-5TVLnTyk6w7zgNjRgZoOTLfBKvf7nSfHhcHDcnG1-pNMeLF0c9eOzwfD3Fnzhy-xDO51tWJg-FLhD4Ghqdsv5_wzIhAMh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reclaiming+Inactive+Lithium+with+a+Triiodide%2FIodide+Redox+Couple+for+Practical+Lithium+Metal+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jin%2C+Cheng-Bin&rft.au=Zhang%2C+Xue-Qiang&rft.au=Sheng%2C+Ou-Wei&rft.au=Sun%2C+Shu-Yu&rft.date=2021-10-11&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=42&rft.spage=22990&rft_id=info:doi/10.1002%2Fanie.202110589&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon