Reclaiming Inactive Lithium with a Triiodide/Iodide Redox Couple for Practical Lithium Metal Batteries
High‐energy‐density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by the consumption of electrolyte and active Li reservoir, seriously deteriorating the cyclability of batteries. Herein, a triiodide/iodide (I3−/...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 42; pp. 22990 - 22995 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
11.10.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202110589 |
Cover
Loading…
Abstract | High‐energy‐density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by the consumption of electrolyte and active Li reservoir, seriously deteriorating the cyclability of batteries. Herein, a triiodide/iodide (I3−/I−) redox couple initiated by stannic iodide (SnI4) is demonstrated to reclaim inactive Li. The reduction of I3− converts inactive Li into soluble LiI, which then diffuses to the cathode side. The oxidation of LiI by the delithiated cathode transforms cathode into the lithiation state and regenerates I3−, reclaiming Li ion from inactive Li. The regenerated I3− engages the further redox reactions. Furthermore, the formation of Sn mitigates the corrosion of I3− on active Li reservoir sacrificially. In working Li | LiNi0.5Co0.2Mn0.3O2 batteries, the accumulated inactive Li is significantly reclaimed by the reversible I3−/I− redox couple, improving the lifespan of batteries by twice. This work initiates a creative solution to reclaim inactive Li for prolonging the lifespan of practical Li metal batteries.
A triiodide/iodide (I3−/I−) redox couple is introduced with a SnI4 initiator to reclaim inactive Li. The reduction of I3− converts inactive Li into soluble LiI, and the oxidation of LiI by a delithiated cathode realizes the restoration of Li ion in cathode from inactive Li. The regenerated I3− by oxidation engages the further redox reactions. |
---|---|
AbstractList | High‐energy‐density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by the consumption of electrolyte and active Li reservoir, seriously deteriorating the cyclability of batteries. Herein, a triiodide/iodide (I3−/I−) redox couple initiated by stannic iodide (SnI4) is demonstrated to reclaim inactive Li. The reduction of I3− converts inactive Li into soluble LiI, which then diffuses to the cathode side. The oxidation of LiI by the delithiated cathode transforms cathode into the lithiation state and regenerates I3−, reclaiming Li ion from inactive Li. The regenerated I3− engages the further redox reactions. Furthermore, the formation of Sn mitigates the corrosion of I3− on active Li reservoir sacrificially. In working Li | LiNi0.5Co0.2Mn0.3O2 batteries, the accumulated inactive Li is significantly reclaimed by the reversible I3−/I− redox couple, improving the lifespan of batteries by twice. This work initiates a creative solution to reclaim inactive Li for prolonging the lifespan of practical Li metal batteries. High‐energy‐density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by the consumption of electrolyte and active Li reservoir, seriously deteriorating the cyclability of batteries. Herein, a triiodide/iodide (I 3 − /I − ) redox couple initiated by stannic iodide (SnI 4 ) is demonstrated to reclaim inactive Li. The reduction of I 3 − converts inactive Li into soluble LiI, which then diffuses to the cathode side. The oxidation of LiI by the delithiated cathode transforms cathode into the lithiation state and regenerates I 3 − , reclaiming Li ion from inactive Li. The regenerated I 3 − engages the further redox reactions. Furthermore, the formation of Sn mitigates the corrosion of I 3 − on active Li reservoir sacrificially. In working Li | LiNi 0.5 Co 0.2 Mn 0.3 O 2 batteries, the accumulated inactive Li is significantly reclaimed by the reversible I 3 − /I − redox couple, improving the lifespan of batteries by twice. This work initiates a creative solution to reclaim inactive Li for prolonging the lifespan of practical Li metal batteries. High‐energy‐density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by the consumption of electrolyte and active Li reservoir, seriously deteriorating the cyclability of batteries. Herein, a triiodide/iodide (I3−/I−) redox couple initiated by stannic iodide (SnI4) is demonstrated to reclaim inactive Li. The reduction of I3− converts inactive Li into soluble LiI, which then diffuses to the cathode side. The oxidation of LiI by the delithiated cathode transforms cathode into the lithiation state and regenerates I3−, reclaiming Li ion from inactive Li. The regenerated I3− engages the further redox reactions. Furthermore, the formation of Sn mitigates the corrosion of I3− on active Li reservoir sacrificially. In working Li | LiNi0.5Co0.2Mn0.3O2 batteries, the accumulated inactive Li is significantly reclaimed by the reversible I3−/I− redox couple, improving the lifespan of batteries by twice. This work initiates a creative solution to reclaim inactive Li for prolonging the lifespan of practical Li metal batteries. A triiodide/iodide (I3−/I−) redox couple is introduced with a SnI4 initiator to reclaim inactive Li. The reduction of I3− converts inactive Li into soluble LiI, and the oxidation of LiI by a delithiated cathode realizes the restoration of Li ion in cathode from inactive Li. The regenerated I3− by oxidation engages the further redox reactions. High-energy-density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by the consumption of electrolyte and active Li reservoir, seriously deteriorating the cyclability of batteries. Herein, a triiodide/iodide (I3 - /I- ) redox couple initiated by stannic iodide (SnI4 ) is demonstrated to reclaim inactive Li. The reduction of I3 - converts inactive Li into soluble LiI, which then diffuses to the cathode side. The oxidation of LiI by the delithiated cathode transforms cathode into the lithiation state and regenerates I3 - , reclaiming Li ion from inactive Li. The regenerated I3 - engages the further redox reactions. Furthermore, the formation of Sn mitigates the corrosion of I3 - on active Li reservoir sacrificially. In working Li | LiNi0.5 Co0.2 Mn0.3 O2 batteries, the accumulated inactive Li is significantly reclaimed by the reversible I3 - /I- redox couple, improving the lifespan of batteries by twice. This work initiates a creative solution to reclaim inactive Li for prolonging the lifespan of practical Li metal batteries.High-energy-density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by the consumption of electrolyte and active Li reservoir, seriously deteriorating the cyclability of batteries. Herein, a triiodide/iodide (I3 - /I- ) redox couple initiated by stannic iodide (SnI4 ) is demonstrated to reclaim inactive Li. The reduction of I3 - converts inactive Li into soluble LiI, which then diffuses to the cathode side. The oxidation of LiI by the delithiated cathode transforms cathode into the lithiation state and regenerates I3 - , reclaiming Li ion from inactive Li. The regenerated I3 - engages the further redox reactions. Furthermore, the formation of Sn mitigates the corrosion of I3 - on active Li reservoir sacrificially. In working Li | LiNi0.5 Co0.2 Mn0.3 O2 batteries, the accumulated inactive Li is significantly reclaimed by the reversible I3 - /I- redox couple, improving the lifespan of batteries by twice. This work initiates a creative solution to reclaim inactive Li for prolonging the lifespan of practical Li metal batteries. |
Author | Shi, Peng Huang, Jia‐Qi Tao, Xin‐Yong Jin, Cheng‐Bin Zhang, Qiang Hou, Li‐Peng Sheng, Ou‐Wei Li, Bo‐Quan Zhang, Xue‐Qiang Sun, Shu‐Yu |
Author_xml | – sequence: 1 givenname: Cheng‐Bin orcidid: 0000-0002-0304-8814 surname: Jin fullname: Jin, Cheng‐Bin organization: Tsinghua University – sequence: 2 givenname: Xue‐Qiang orcidid: 0000-0003-2856-1881 surname: Zhang fullname: Zhang, Xue‐Qiang organization: Tsinghua University – sequence: 3 givenname: Ou‐Wei surname: Sheng fullname: Sheng, Ou‐Wei organization: Zhejiang University of Technology – sequence: 4 givenname: Shu‐Yu surname: Sun fullname: Sun, Shu‐Yu organization: Tsinghua University – sequence: 5 givenname: Li‐Peng surname: Hou fullname: Hou, Li‐Peng organization: Tsinghua University – sequence: 6 givenname: Peng surname: Shi fullname: Shi, Peng organization: Tsinghua University – sequence: 7 givenname: Bo‐Quan surname: Li fullname: Li, Bo‐Quan organization: Beijing Institute of Technology – sequence: 8 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi organization: Beijing Institute of Technology – sequence: 9 givenname: Xin‐Yong orcidid: 0000-0003-4084-7743 surname: Tao fullname: Tao, Xin‐Yong organization: Zhejiang University of Technology – sequence: 10 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkE1LAzEQhoMoqNWr54AXL1uTzWY3e9TiR6F-UOp5mWZnNbLd1CRr9d-bWlEQxNM7geeZDO8-2e5sh4QccTbkjKWn0BkcpizlnElVbpE9LlOeiKIQ23HOhEgKJfku2ff-OfJKsXyPNFPULZiF6R7puAMdzCvSiQlPpl_QVUwKdOaMsbWp8XT8GXSKtX2jI9svW6SNdfTerU0N7bd6gyG-ziEEdAb9AdlpoPV4-JUD8nB5MRtdJ5O7q_HobJJoIVmZAKuLHDNd8jnnfM5KlHldZyqvm3iuSEvQJbBMInIoZKmyOeSFhHmtQGQpSjEgJ5u9S2dfevShWhivsW2hQ9v7KpV5BDMlRUSPf6HPtnddvC5ShSqEYLG6ARluKO2s9w6baunMAtx7xVm1rr1a11591x6F7JegTYBgbBccmPZvrdxoK9Pi-z-fVGe344sf9wOLAplD |
CitedBy_id | crossref_primary_10_1002_ange_202301073 crossref_primary_10_1016_j_ensm_2021_11_033 crossref_primary_10_1016_j_jechem_2022_08_021 crossref_primary_10_1016_j_mser_2025_100955 crossref_primary_10_1002_aenm_202201800 crossref_primary_10_1002_adfm_202311925 crossref_primary_10_1002_adfm_202303427 crossref_primary_10_1016_j_ensm_2022_10_036 crossref_primary_10_1039_D3TA00096F crossref_primary_10_1016_j_cej_2025_161472 crossref_primary_10_1002_anie_202301073 crossref_primary_10_1126_sciadv_abq3445 crossref_primary_10_1002_anie_202201406 crossref_primary_10_1016_S1872_5805_22_60573_0 crossref_primary_10_1039_D4TA03167A crossref_primary_10_1002_anie_202207907 crossref_primary_10_1016_j_ensm_2025_104030 crossref_primary_10_1021_acs_nanolett_2c03291 crossref_primary_10_1021_acs_jpcc_3c02437 crossref_primary_10_1016_j_cclet_2021_12_064 crossref_primary_10_1016_j_cej_2023_145818 crossref_primary_10_1021_acs_iecr_2c00958 crossref_primary_10_1002_cey2_283 crossref_primary_10_1016_j_jpowsour_2022_232144 crossref_primary_10_1016_j_mattod_2024_06_001 crossref_primary_10_1038_s41467_023_44161_7 crossref_primary_10_1002_cssc_202400159 crossref_primary_10_1002_adfm_202314186 crossref_primary_10_1002_adma_202409489 crossref_primary_10_1002_ange_202114671 crossref_primary_10_1016_j_scib_2022_11_027 crossref_primary_10_1016_j_jechem_2021_12_020 crossref_primary_10_1002_ange_202207907 crossref_primary_10_1002_adsu_202300285 crossref_primary_10_1016_j_mtener_2022_100949 crossref_primary_10_1016_j_mtsust_2022_100187 crossref_primary_10_1002_ange_202201406 crossref_primary_10_1002_ange_202401055 crossref_primary_10_1038_s41467_023_39391_8 crossref_primary_10_1002_adfm_202204768 crossref_primary_10_1016_j_ensm_2024_103989 crossref_primary_10_1016_j_mtener_2023_101328 crossref_primary_10_1002_metm_6 crossref_primary_10_1016_j_cej_2022_140395 crossref_primary_10_1016_j_cej_2023_146890 crossref_primary_10_1016_j_ensm_2022_08_001 crossref_primary_10_1016_j_jechem_2024_07_043 crossref_primary_10_1016_j_jechem_2022_04_036 crossref_primary_10_1002_anie_202114671 crossref_primary_10_1016_j_jechem_2022_10_023 crossref_primary_10_1126_science_ads9691 crossref_primary_10_1002_aenm_202403092 crossref_primary_10_1002_adma_202409976 crossref_primary_10_2139_ssrn_4095925 crossref_primary_10_1039_D3CC03772J crossref_primary_10_1039_D3CC03085G crossref_primary_10_1002_smll_202407395 crossref_primary_10_1016_j_jechem_2022_02_041 crossref_primary_10_1002_batt_202400505 crossref_primary_10_1016_j_nanoen_2022_107716 crossref_primary_10_1002_chem_202400424 crossref_primary_10_1002_anie_202401055 crossref_primary_10_1002_adfm_202406080 crossref_primary_10_1016_j_ensm_2022_12_016 crossref_primary_10_1016_j_fmre_2022_11_005 crossref_primary_10_1016_j_mattod_2022_06_022 crossref_primary_10_1021_acssuschemeng_3c03565 crossref_primary_10_1002_adfm_202413888 crossref_primary_10_1002_wcms_1592 crossref_primary_10_1002_adfm_202111026 crossref_primary_10_1016_j_nanoen_2022_107993 |
Cites_doi | 10.1021/acs.chemrev.7b00115 10.1016/j.jechem.2019.09.033 10.1038/s41557-018-0203-8 10.1002/anie.202103344 10.1016/j.jechem.2021.04.045 10.1039/C5EE03764F 10.1002/adfm.202100891 10.1016/j.jechem.2019.09.028 10.1002/ange.201801513 10.1002/ange.202008081 10.1002/sus2.4 10.1038/s41467-019-11544-8 10.1002/ente.202000700 10.1002/ange.202104671 10.1126/science.aam6014 10.1002/adma.201908293 10.1002/anie.202103303 10.1002/anie.201701290 10.1038/s41560-017-0047-2 10.1039/C5EE01958C 10.1016/j.ensm.2020.03.022 10.1038/nenergy.2017.119 10.1002/ange.202101976 10.1038/s41560-021-00787-9 10.1016/j.nanoen.2017.12.055 10.1002/ange.201911724 10.1002/inf2.12166 10.1002/ange.202103344 10.1016/j.nanoen.2017.05.015 10.1002/anie.202008081 10.1039/D0TA03270K 10.1038/s41560-021-00833-6 10.1038/s41467-017-00649-7 10.1002/ange.202102552 10.1038/s41467-021-21683-6 10.1002/ange.202103170 10.1002/adma.202000223 10.1002/ange.201701290 10.1002/aenm.201903645 10.1002/anie.202013993 10.1002/aenm.201901932 10.1038/s41467-020-14358-1 10.1002/anie.202101976 10.1002/anie.201911724 10.1002/sstr.202100018 10.1002/aenm.201902254 10.1039/D0EE02848G 10.1038/s41586-019-1481-z 10.1149/2.1441707jes 10.1039/C7TA00371D 10.1002/anie.202013812 10.1126/sciadv.1501038 10.1002/adma.201707629 10.1039/C7EE00954B 10.1002/anie.202012005 10.1002/anie.202103170 10.1021/acs.nanolett.5b02116 10.1002/ange.202013993 10.1002/adma.201902785 10.1038/s41560-019-0338-x 10.1002/anie.202102552 10.1038/s41560-021-00789-7 10.1038/nnano.2017.16 10.1002/ange.202013812 10.1126/science.aac7730 10.1002/sus2.6 10.1002/anie.201801513 10.1002/anie.202104671 10.1002/aenm.201900853 10.1002/ange.202012005 10.1002/ange.202103303 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202110589 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 22995 |
ExternalDocumentID | 10_1002_anie_202110589 ANIE202110589 |
Genre | article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: BX2021136 and 2021M691712 – fundername: the Seed Fund of Shanxi Research Institute for Clean Energy funderid: SXKYJF015 – fundername: Beijing Municipal Natural Science Foundation funderid: Z20J00043 – fundername: National Natural Science Foundation of China funderid: 52103342 and 21825501 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3509-a0d76e4c91b111b09e56dd486df880329ac9a045ee1a75984ba675abd8a342e53 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 03:49:52 EDT 2025 Sun Jul 13 02:50:08 EDT 2025 Tue Jul 01 01:18:07 EDT 2025 Thu Apr 24 23:12:56 EDT 2025 Wed Jan 22 16:27:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3509-a0d76e4c91b111b09e56dd486df880329ac9a045ee1a75984ba675abd8a342e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3929-1541 0000-0003-4084-7743 0000-0002-0304-8814 0000-0003-2856-1881 0000-0001-7394-9186 |
PQID | 2578733077 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2563424853 proquest_journals_2578733077 crossref_primary_10_1002_anie_202110589 crossref_citationtrail_10_1002_anie_202110589 wiley_primary_10_1002_anie_202110589_ANIE202110589 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 11, 2021 |
PublicationDateYYYYMMDD | 2021-10-11 |
PublicationDate_xml | – month: 10 year: 2021 text: October 11, 2021 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2017; 5 2015; 15 2019; 9 2021; 6 2017; 8 2019; 4 2017; 2 2021; 3 2021; 2 2019; 31 2019; 11 2019; 10 2020 2020; 59 132 2022; 64 2020; 11 2020; 10 2020; 32 2017 2017; 56 129 2021; 1 2018; 45 2015; 8 2017; 358 2017; 117 2021; 14 2020; 8 2015; 350 2018; 3 2021; 31 2021; 12 2016; 2 2017; 37 2018 2018; 57 130 2017; 10 2017; 12 2020; 28 2021 2021; 60 133 2018; 30 2020; 45 2017; 164 2016; 9 2019; 572 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_72_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_70_2 e_1_2_6_19_2 e_1_2_6_13_1 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_32_3 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_1 e_1_2_6_38_3 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_76_2 e_1_2_6_36_3 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_62_2 e_1_2_6_64_1 e_1_2_6_20_2 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_7_2 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_49_2 e_1_2_6_22_1 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_50_3 e_1_2_6_52_2 e_1_2_6_75_2 e_1_2_6_52_3 e_1_2_6_54_1 e_1_2_6_31_1 e_1_2_6_71_1 e_1_2_6_18_2 e_1_2_6_39_3 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_16_3 e_1_2_6_14_2 e_1_2_6_56_2 e_1_2_6_14_3 e_1_2_6_37_1 e_1_2_6_63_2 e_1_2_6_42_2 e_1_2_6_21_1 e_1_2_6_40_3 e_1_2_6_40_2 e_1_2_6_61_1 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_46_3 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_48_3 e_1_2_6_65_2 e_1_2_6_44_2 e_1_2_6_65_3 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_44_3 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 60 133 start-page: 7770 7849 year: 2021 2021 end-page: 7776 7855 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 17547 17688 year: 2021 2021 end-page: 17555 17696 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 14040 14159 year: 2021 2021 end-page: 14050 14169 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 1452 year: 2021 publication-title: Nat. Commun. – volume: 9 year: 2021 publication-title: Energy Technol. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 60 133 start-page: 19232 19381 year: 2021 2021 end-page: 19240 19389 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 13541 year: 2020 end-page: 13547 publication-title: J. Mater. Chem. A – volume: 60 133 start-page: 16480 16616 year: 2021 2021 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 378 year: 2021 end-page: 387 publication-title: Nat. Energy – volume: 28 start-page: 350 year: 2020 end-page: 356 publication-title: Energy Storage Mater. – volume: 164 start-page: A1703 year: 2017 end-page: A1719 publication-title: J. Electrochem. Soc. – volume: 8 start-page: 2664 year: 2015 end-page: 2667 publication-title: Energy Environ. Sci. – volume: 45 start-page: 1 year: 2020 end-page: 6 publication-title: J. Energy Chem. – volume: 45 start-page: 203 year: 2018 end-page: 209 publication-title: Nano Energy – volume: 60 133 start-page: 16506 16642 year: 2021 2021 end-page: 16513 16649 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 572 start-page: 511 year: 2019 end-page: 515 publication-title: Nature – volume: 9 start-page: 917 year: 2016 end-page: 921 publication-title: Energy Environ. Sci. – volume: 6 start-page: 790 year: 2021 publication-title: Nat. Energy – volume: 3 start-page: 16 year: 2018 end-page: 21 publication-title: Nat. Energy – volume: 57 130 start-page: 5301 5399 year: 2018 2018 end-page: 5305 5403 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 37 start-page: 177 year: 2017 end-page: 186 publication-title: Nano Energy – volume: 3 start-page: 155 year: 2021 end-page: 174 publication-title: InfoMat – volume: 6 start-page: 487 year: 2021 end-page: 494 publication-title: Nat. Energy – volume: 1 start-page: 38 year: 2021 end-page: 50 publication-title: SusMat – volume: 358 start-page: 506 year: 2017 end-page: 510 publication-title: Science – volume: 8 start-page: 527 year: 2017 publication-title: Nat. Commun. – volume: 60 133 start-page: 6600 6674 year: 2021 2021 end-page: 6608 6682 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 year: 2021 publication-title: Small Struct. – volume: 117 start-page: 10403 year: 2017 end-page: 10473 publication-title: Chem. Rev. – volume: 64 start-page: 172 year: 2022 end-page: 178 publication-title: J. Energy Chem. – volume: 4 start-page: 180 year: 2019 end-page: 186 publication-title: Nat. Energy – volume: 59 132 start-page: 3252 3278 year: 2020 2020 end-page: 3257 3283 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 3543 year: 2019 publication-title: Nat. Commun. – volume: 14 start-page: 1326 year: 2021 end-page: 1379 publication-title: Energy Environ. Sci. – volume: 45 start-page: 7 year: 2020 end-page: 17 publication-title: J. Energy Chem. – volume: 1 start-page: 24 year: 2021 end-page: 37 publication-title: SusMat – volume: 11 start-page: 382 year: 2019 end-page: 389 publication-title: Nat. Chem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 5 start-page: 11671 year: 2017 end-page: 11681 publication-title: J. Mater. Chem. A – volume: 60 133 start-page: 10871 10966 year: 2021 2021 end-page: 10879 10974 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 350 start-page: 530 year: 2015 end-page: 533 publication-title: Science – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 60 133 start-page: 3661 3705 year: 2021 2021 end-page: 3671 3715 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 59 132 start-page: 18229 18386 year: 2020 2020 end-page: 18233 18390 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 17119 year: 2017 publication-title: Nat. Energy – volume: 15 start-page: 5982 year: 2015 end-page: 5987 publication-title: Nano Lett. – volume: 10 start-page: 1828 year: 2017 end-page: 1842 publication-title: Energy Environ. Sci. – volume: 11 start-page: 488 year: 2020 publication-title: Nat. Commun. – volume: 12 start-page: 194 year: 2017 end-page: 206 publication-title: Nat. Nanotechnol. – volume: 56 129 start-page: 7505 7613 year: 2017 2017 end-page: 7509 7617 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_6_6_2 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_6_19_2 doi: 10.1016/j.jechem.2019.09.033 – ident: e_1_2_6_23_2 doi: 10.1038/s41557-018-0203-8 – ident: e_1_2_6_68_1 – ident: e_1_2_6_31_1 – ident: e_1_2_6_38_2 doi: 10.1002/anie.202103344 – ident: e_1_2_6_35_2 doi: 10.1016/j.jechem.2021.04.045 – ident: e_1_2_6_37_1 – ident: e_1_2_6_67_1 doi: 10.1039/C5EE03764F – ident: e_1_2_6_4_2 doi: 10.1002/adfm.202100891 – ident: e_1_2_6_71_1 – ident: e_1_2_6_34_2 doi: 10.1016/j.jechem.2019.09.028 – ident: e_1_2_6_16_3 doi: 10.1002/ange.201801513 – ident: e_1_2_6_22_1 – ident: e_1_2_6_32_3 doi: 10.1002/ange.202008081 – ident: e_1_2_6_7_2 doi: 10.1002/sus2.4 – ident: e_1_2_6_69_2 doi: 10.1038/s41467-019-11544-8 – ident: e_1_2_6_24_2 doi: 10.1002/ente.202000700 – ident: e_1_2_6_52_3 doi: 10.1002/ange.202104671 – ident: e_1_2_6_59_2 doi: 10.1126/science.aam6014 – ident: e_1_2_6_58_2 doi: 10.1002/adma.201908293 – ident: e_1_2_6_36_2 doi: 10.1002/anie.202103303 – ident: e_1_2_6_65_2 doi: 10.1002/anie.201701290 – ident: e_1_2_6_10_2 doi: 10.1038/s41560-017-0047-2 – ident: e_1_2_6_75_2 doi: 10.1039/C5EE01958C – ident: e_1_2_6_43_2 doi: 10.1016/j.ensm.2020.03.022 – ident: e_1_2_6_42_2 doi: 10.1038/nenergy.2017.119 – ident: e_1_2_6_40_3 doi: 10.1002/ange.202101976 – ident: e_1_2_6_28_2 doi: 10.1038/s41560-021-00787-9 – ident: e_1_2_6_47_1 – ident: e_1_2_6_12_2 doi: 10.1016/j.nanoen.2017.12.055 – ident: e_1_2_6_48_3 doi: 10.1002/ange.201911724 – ident: e_1_2_6_53_2 doi: 10.1002/inf2.12166 – ident: e_1_2_6_38_3 doi: 10.1002/ange.202103344 – ident: e_1_2_6_61_1 – ident: e_1_2_6_11_2 doi: 10.1016/j.nanoen.2017.05.015 – ident: e_1_2_6_9_1 – ident: e_1_2_6_32_2 doi: 10.1002/anie.202008081 – ident: e_1_2_6_57_2 doi: 10.1039/D0TA03270K – ident: e_1_2_6_30_2 doi: 10.1038/s41560-021-00833-6 – ident: e_1_2_6_73_2 doi: 10.1038/s41467-017-00649-7 – ident: e_1_2_6_39_3 doi: 10.1002/ange.202102552 – ident: e_1_2_6_63_2 doi: 10.1038/s41467-021-21683-6 – ident: e_1_2_6_46_3 doi: 10.1002/ange.202103170 – ident: e_1_2_6_56_2 doi: 10.1002/adma.202000223 – ident: e_1_2_6_65_3 doi: 10.1002/ange.201701290 – ident: e_1_2_6_18_2 doi: 10.1002/aenm.201903645 – ident: e_1_2_6_14_2 doi: 10.1002/anie.202013993 – ident: e_1_2_6_29_2 doi: 10.1002/aenm.201901932 – ident: e_1_2_6_55_2 doi: 10.1038/s41467-020-14358-1 – ident: e_1_2_6_40_2 doi: 10.1002/anie.202101976 – ident: e_1_2_6_48_2 doi: 10.1002/anie.201911724 – ident: e_1_2_6_20_2 doi: 10.1002/sstr.202100018 – ident: e_1_2_6_1_1 – ident: e_1_2_6_51_1 – ident: e_1_2_6_25_2 doi: 10.1002/aenm.201902254 – ident: e_1_2_6_8_2 doi: 10.1039/D0EE02848G – ident: e_1_2_6_21_1 doi: 10.1038/s41586-019-1481-z – ident: e_1_2_6_33_2 doi: 10.1149/2.1441707jes – ident: e_1_2_6_62_2 doi: 10.1039/C7TA00371D – ident: e_1_2_6_50_2 doi: 10.1002/anie.202013812 – ident: e_1_2_6_66_2 doi: 10.1126/sciadv.1501038 – ident: e_1_2_6_74_1 – ident: e_1_2_6_64_1 – ident: e_1_2_6_45_2 doi: 10.1002/adma.201707629 – ident: e_1_2_6_76_2 doi: 10.1039/C7EE00954B – ident: e_1_2_6_17_1 – ident: e_1_2_6_44_2 doi: 10.1002/anie.202012005 – ident: e_1_2_6_46_2 doi: 10.1002/anie.202103170 – ident: e_1_2_6_41_1 – ident: e_1_2_6_72_2 doi: 10.1021/acs.nanolett.5b02116 – ident: e_1_2_6_14_3 doi: 10.1002/ange.202013993 – ident: e_1_2_6_49_2 doi: 10.1002/adma.201902785 – ident: e_1_2_6_5_1 – ident: e_1_2_6_2_2 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_6_39_2 doi: 10.1002/anie.202102552 – ident: e_1_2_6_27_1 – ident: e_1_2_6_60_1 doi: 10.1038/s41560-021-00789-7 – ident: e_1_2_6_13_1 – ident: e_1_2_6_3_2 doi: 10.1038/nnano.2017.16 – ident: e_1_2_6_50_3 doi: 10.1002/ange.202013812 – ident: e_1_2_6_70_2 doi: 10.1126/science.aac7730 – ident: e_1_2_6_15_2 doi: 10.1002/sus2.6 – ident: e_1_2_6_16_2 doi: 10.1002/anie.201801513 – ident: e_1_2_6_52_2 doi: 10.1002/anie.202104671 – ident: e_1_2_6_26_2 doi: 10.1002/aenm.201900853 – ident: e_1_2_6_54_1 – ident: e_1_2_6_44_3 doi: 10.1002/ange.202012005 – ident: e_1_2_6_36_3 doi: 10.1002/ange.202103303 |
SSID | ssj0028806 |
Score | 2.6098049 |
Snippet | High‐energy‐density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by... High-energy-density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 22990 |
SubjectTerms | Cathodes I3−/I− redox couple Iodides Life span Lithium Lithium batteries lithium metal anode Oxidation practical lithium batteries reclaiming inactive lithium Redox reactions Reservoirs |
Title | Reclaiming Inactive Lithium with a Triiodide/Iodide Redox Couple for Practical Lithium Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202110589 https://www.proquest.com/docview/2578733077 https://www.proquest.com/docview/2563424853 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i_XFCoKntGl2kyZHKYoV20Npobewmx01WJOiDYi_3pm82goi6CkJ2SWbmd2ZbzaZbxi71AH6BEQiluujCUSDp6xAU0lArZ0I3RM4kvKd-wPvbizvJ-5kKYu_4IeoN9xoZeT2mha40u-tBWkoZWBjfEcBjOtTBh_9sEWoaFjzRzk4OYv0IiEsqkJfsTbaTmu1-6pXWkDNZcCae5zbbaaqsRY_mrw0s7luRp_faBz_8zI7bKuEo_y6mD-7bA2SPbbRrarA7bNHxJVTRaW_nngvUbl15A_x_DnOXjlt4nLFR29xnJrYQKuXH_gQTPrBu2k2mwJHVMwLViScDnXXPiDq5wW7JwbrB2x8ezPq3lllbQYrEogxLGWbjgcS1anRWmo7ANczRvqeeUShC9R5FCiEiwBt1XEDX2qFoYnSxldCOuCKQ7aepAkcMY4gzPeEtCWAlgYjKIlSaLtGGUSrENgNZlW6CaOSuJzqZ0zDgnLZCUl6YS29Bruq288Kyo4fW55Wqg7Lpfse5jZMoOnrNNhFfRulTl9SVAJpRm1wwEQGJxrMyfX6y5PC60Hvpr46_kunE7ZJ5-Q32-1Ttj5_y-AMAdFcn-eT_gu-EgBP |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED7x4wFe2NhAKyvDk5D2FJrGTpo8VgXUQtsHVKS9RXZ8sGhdUkEjIf567pImDKRpEjxFSWzFubPvvnNy3wEcm4h8AiERxw_JBJLB005kuCSgMV5C7gk9xfnOk2kwvFYXP_36b0LOhan4IZoNN14Zpb3mBc4b0p1n1lBOwaYAjyMYP4zWYZPLenMRg9OrhkHKo-lZJRhJ6XAd-pq30fU6L_u_9EvPYPNvyFr6nPMPYOrRVr-a_D4pluYkeXxF5Piu1_kIOytEKvrVFNqFNcw-wdagLgT3GW4IWs41V_-6FaNMlwZSjNPlr7T4I3gfV2gxu0vT3KYWO6PyIK7Q5g9ikBeLOQoCxqIiRqIZ0XSdIAF_URF8Ury-B9fnZ7PB0FmVZ3ASSTDD0a7tBahIo4YMpnEj9ANrVRjYG5K6JLUnkSbEiNjVPT8KldEUnWhjQy2Vh77ch40sz_ALCMJhYSCVqxCNshREKZJC17faEmDFyG2BUysnTlbc5VxCYx5XrMtezNKLG-m14EfTflGxdvyzZbvWdbxavfdxacYkWb9eC743t0nq_DFFZ5gX3IYGzHxwsgVeqdj_PCnuT0dnzdnBWzodwdZwNhnH49H08its83V2o91uGzaWdwUeEj5amm_lCngCyDUEaQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-NAEB_8AL0X9byTq58rHNxTbJrdpMmjVIv1tIgo-BZ2s1MN9pLiNSD-9c4kTdQDOdCnkGSXbGZ2Z36zyfwG4KeJyCcQEnH8kEwgGTztRIZLAhrjJeSe0FOc73w-DE6u1emNf_Mqi7_ih2g23HhllPaaF_jEjtovpKGcgU3xHQcwfhjNw6IKaMUwLLpsCKQ8mp1VfpGUDpehr2kbXa_9tv9bt_SCNV8j1tLl9FdB14Ot_jS5Pyim5iB5-ofH8TNvswYrMzwqDqsJ9BXmMFuH5V5dBu4bjAhYjjXX_roVg0yX5lGcpdO7tPgjeBdXaHH1kKa5TS22B-VBXKLNH0UvLyZjFASLRUWLRPOh6XqOBPtFRe9J0fp3uO4fX_VOnFlxBieRBDIc7dpugIr0achcGjdCP7BWhYEdkdAlKT2JNOFFxI7u-lGojKbYRBsbaqk89OUGLGR5hj9AEAoLA6lchWiUpRBKkRQ6vtWW4CpGbgucWjdxMmMu5wIa47jiXPZill7cSK8Fv5r2k4qz492W27Wq49na_RuXRkyS7eu2YL-5TVLnTyk6w7zgNjRgZoOTLfBKvf7nSfHhcHDcnG1-pNMeLF0c9eOzwfD3Fnzhy-xDO51tWJg-FLhD4Ghqdsv5_wzIhAMh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reclaiming+Inactive+Lithium+with+a+Triiodide%2FIodide+Redox+Couple+for+Practical+Lithium+Metal+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jin%2C+Cheng-Bin&rft.au=Zhang%2C+Xue-Qiang&rft.au=Sheng%2C+Ou-Wei&rft.au=Sun%2C+Shu-Yu&rft.date=2021-10-11&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=42&rft.spage=22990&rft_id=info:doi/10.1002%2Fanie.202110589&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |