A Case Study on the Desired Selectivity in Solid‐State Mechano‐ and Slow‐Chemistry, Melt, and Solution Methodologies

Solution‐based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid‐state mechano‐...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 14; no. 18; pp. 3887 - 3894
Main Authors Budny‐Godlewski, Krzysztof, Leszczyński, Michał K., Tulewicz, Adam, Justyniak, Iwona, Pinkowicz, Dawid, Sieklucka, Barbara, Kruczała, Krzysztof, Sojka, Zbigniew, Lewiński, Janusz
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 20.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solution‐based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid‐state mechano‐ and slow‐chemistry synthesis, melted phase, and solution protocols, and the impact of the employed solvent‐free solid‐state versus liquid‐phase synthetic approaches was highlighted on a pool of products. A moderately exothermic model reaction system was chosen based on bis(pentafluorophenyl)zinc, (C6F5)2Zn, and 2,2,6,6‐tetramethylpiperidinyl oxide (TEMPO) as a stable nitroxyl radical, anticipating that these reagents may offer a unique landscape for addressing kinetic and thermodynamic aspects of wet and solvent‐free solid‐state processes. In a toluene solution two distinct paramagnetic Lewis acid‐base adducts (C6F5)2Zn(η1‐TEMPO) (1) and (C6F5)2Zn(η1‐TEMPO)2 (2) equilibrated, but only 2 was affordable by crystallization. In turn, crystallization from the melt was the only method yielding single crystals of 1. Moreover, the solid‐state approaches were stoichiometry sensitive and allowed for the selective synthesis of both adducts by simple stoichiometric control over the substrates. Density functional theory (DFT) calculations were carried out to examine selected structural and thermodynamic features of the adducts 1 and 2. Compound 2 is a unique non‐redox active metal complex supported by two nitroxide radicals, and the magnetic studies revealed weak‐to‐moderate intramolecular antiferromagnetic interactions between the two coordinated TEMPO molecules. Four directions: The impact of four different synthesis approaches on a pool of products is presented for a model (C6F5)2Zn/2,2,6,6‐tetramethylpiperidinyl oxide (TEMPO) reaction system. For the first time reactions in solution, mechanochemistry, slow‐chemistry, and melted‐phase reactions are collated in this comprehensive study of model reaction system.
AbstractList Abstract Solution‐based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid‐state mechano‐ and slow‐chemistry synthesis, melted phase, and solution protocols, and the impact of the employed solvent‐free solid‐state versus liquid‐phase synthetic approaches was highlighted on a pool of products. A moderately exothermic model reaction system was chosen based on bis(pentafluorophenyl)zinc, (C 6 F 5 ) 2 Zn, and 2,2,6,6‐tetramethylpiperidinyl oxide (TEMPO) as a stable nitroxyl radical, anticipating that these reagents may offer a unique landscape for addressing kinetic and thermodynamic aspects of wet and solvent‐free solid‐state processes. In a toluene solution two distinct paramagnetic Lewis acid‐base adducts (C 6 F 5 ) 2 Zn( η 1 ‐TEMPO) ( 1 ) and (C 6 F 5 ) 2 Zn( η 1 ‐TEMPO) 2 ( 2 ) equilibrated, but only 2 was affordable by crystallization. In turn, crystallization from the melt was the only method yielding single crystals of 1 . Moreover, the solid‐state approaches were stoichiometry sensitive and allowed for the selective synthesis of both adducts by simple stoichiometric control over the substrates. Density functional theory (DFT) calculations were carried out to examine selected structural and thermodynamic features of the adducts 1 and 2 . Compound 2 is a unique non‐redox active metal complex supported by two nitroxide radicals, and the magnetic studies revealed weak‐to‐moderate intramolecular antiferromagnetic interactions between the two coordinated TEMPO molecules.
Solution‐based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid‐state mechano‐ and slow‐chemistry synthesis, melted phase, and solution protocols, and the impact of the employed solvent‐free solid‐state versus liquid‐phase synthetic approaches was highlighted on a pool of products. A moderately exothermic model reaction system was chosen based on bis(pentafluorophenyl)zinc, (C6F5)2Zn, and 2,2,6,6‐tetramethylpiperidinyl oxide (TEMPO) as a stable nitroxyl radical, anticipating that these reagents may offer a unique landscape for addressing kinetic and thermodynamic aspects of wet and solvent‐free solid‐state processes. In a toluene solution two distinct paramagnetic Lewis acid‐base adducts (C6F5)2Zn(η1‐TEMPO) (1) and (C6F5)2Zn(η1‐TEMPO)2 (2) equilibrated, but only 2 was affordable by crystallization. In turn, crystallization from the melt was the only method yielding single crystals of 1. Moreover, the solid‐state approaches were stoichiometry sensitive and allowed for the selective synthesis of both adducts by simple stoichiometric control over the substrates. Density functional theory (DFT) calculations were carried out to examine selected structural and thermodynamic features of the adducts 1 and 2. Compound 2 is a unique non‐redox active metal complex supported by two nitroxide radicals, and the magnetic studies revealed weak‐to‐moderate intramolecular antiferromagnetic interactions between the two coordinated TEMPO molecules. Four directions: The impact of four different synthesis approaches on a pool of products is presented for a model (C6F5)2Zn/2,2,6,6‐tetramethylpiperidinyl oxide (TEMPO) reaction system. For the first time reactions in solution, mechanochemistry, slow‐chemistry, and melted‐phase reactions are collated in this comprehensive study of model reaction system.
Solution‐based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid‐state mechano‐ and slow‐chemistry synthesis, melted phase, and solution protocols, and the impact of the employed solvent‐free solid‐state versus liquid‐phase synthetic approaches was highlighted on a pool of products. A moderately exothermic model reaction system was chosen based on bis(pentafluorophenyl)zinc, (C6F5)2Zn, and 2,2,6,6‐tetramethylpiperidinyl oxide (TEMPO) as a stable nitroxyl radical, anticipating that these reagents may offer a unique landscape for addressing kinetic and thermodynamic aspects of wet and solvent‐free solid‐state processes. In a toluene solution two distinct paramagnetic Lewis acid‐base adducts (C6F5)2Zn(η1‐TEMPO) (1) and (C6F5)2Zn(η1‐TEMPO)2 (2) equilibrated, but only 2 was affordable by crystallization. In turn, crystallization from the melt was the only method yielding single crystals of 1. Moreover, the solid‐state approaches were stoichiometry sensitive and allowed for the selective synthesis of both adducts by simple stoichiometric control over the substrates. Density functional theory (DFT) calculations were carried out to examine selected structural and thermodynamic features of the adducts 1 and 2. Compound 2 is a unique non‐redox active metal complex supported by two nitroxide radicals, and the magnetic studies revealed weak‐to‐moderate intramolecular antiferromagnetic interactions between the two coordinated TEMPO molecules.
Author Sieklucka, Barbara
Leszczyński, Michał K.
Pinkowicz, Dawid
Lewiński, Janusz
Sojka, Zbigniew
Tulewicz, Adam
Kruczała, Krzysztof
Justyniak, Iwona
Budny‐Godlewski, Krzysztof
Author_xml – sequence: 1
  givenname: Krzysztof
  surname: Budny‐Godlewski
  fullname: Budny‐Godlewski, Krzysztof
  organization: Polish Academy of Sciences
– sequence: 2
  givenname: Michał K.
  surname: Leszczyński
  fullname: Leszczyński, Michał K.
  organization: Polish Academy of Sciences
– sequence: 3
  givenname: Adam
  surname: Tulewicz
  fullname: Tulewicz, Adam
  organization: Polish Academy of Sciences
– sequence: 4
  givenname: Iwona
  surname: Justyniak
  fullname: Justyniak, Iwona
  organization: Polish Academy of Sciences
– sequence: 5
  givenname: Dawid
  surname: Pinkowicz
  fullname: Pinkowicz, Dawid
  organization: Jagiellonian University
– sequence: 6
  givenname: Barbara
  surname: Sieklucka
  fullname: Sieklucka, Barbara
  organization: Jagiellonian University
– sequence: 7
  givenname: Krzysztof
  surname: Kruczała
  fullname: Kruczała, Krzysztof
  organization: Jagiellonian University
– sequence: 8
  givenname: Zbigniew
  surname: Sojka
  fullname: Sojka, Zbigniew
  email: sojka@chemia.uj.edu.pl
  organization: Jagiellonian University
– sequence: 9
  givenname: Janusz
  surname: Lewiński
  fullname: Lewiński, Janusz
  email: lewin@ch.pw.edu.pl
  organization: Polish Academy of Sciences
BookMark eNqFkU1LxDAQhoMouH5cPQe8eLBrkqZpe5T6CS4equCtZNOpG8k22qQu9eRP8Df6S8xSUfDiad5hnndm4N1Bm61tAaEDSqaUEHainFNTRhgllIl8A01oJniUCP6w-aNjuo12nHsiRJBciAl6O8WFdIBL39cDti32C8Bn4HQHNS7BgPL6VfsB6xaX1uj68_2j9NIDnoFayNaGHss2sMaugi4WsNTOd8NxAIw_HmfW9F6H5TPwC1tbYx81uD201UjjYP-77qL7i_O74iq6ub28Lk5vIhUnJI8SkgCoOM3mDVFECc4g4TLjqZzPqeApbThnIpaUEgZK8TpVitapIIzIOpZ5vIuOxr3PnX3pwfkqfKjAGNmC7V3FkoTHCQ_-gB7-QZ9s37Xhu0Cl4UyWsSxQ05FSnXWug6Z67vRSdkNFSbWOolpHUf1EEQz5aFhpA8M_dFWUZfHr_QLNNJGn
CitedBy_id crossref_primary_10_1039_D2FD00126H
crossref_primary_10_1002_ajoc_202200117
crossref_primary_10_1039_D3SC05796H
crossref_primary_10_1002_cssc_202200362
crossref_primary_10_1093_chemle_upae060
crossref_primary_10_1021_acs_cgd_2c00021
crossref_primary_10_1016_j_mencom_2023_04_001
crossref_primary_10_1021_acssuschemeng_1c08402
crossref_primary_10_1039_D3CC04929A
crossref_primary_10_3390_ma16062242
crossref_primary_10_1021_jacs_4c00906
crossref_primary_10_1002_chem_202401968
crossref_primary_10_1039_D2NA00759B
Cites_doi 10.3390/molecules22010144
10.1016/j.cplett.2016.09.033
10.1002/1521-3765(20000901)6:17<3215::AID-CHEM3215>3.0.CO;2-8
10.1002/chem.201602058
10.1002/chem.201805180
10.1002/anie.201904380
10.1039/C7SC05371A
10.1021/om5008117
10.1039/c2sc20344h
10.1039/C1CS15171A
10.1002/chem.201200236
10.1021/cr010303r
10.1016/j.ccr.2014.10.012
10.1002/chem.201101997
10.1002/anie.201810141
10.1021/acscatal.8b05001
10.1002/ange.200601001
10.1002/anie.200803254
10.1038/524020a
10.1039/c2gc36005e
10.1038/s41570-020-00249-y
10.1002/ange.201904380
10.1021/om00158a022
10.1021/acs.chemrev.8b00479
10.1021/ja0034388
10.1016/j.carbpol.2017.05.043
10.1016/j.ccr.2020.213611
10.1063/1.464913
10.1039/b515623h
10.1039/D0CE00440E
10.1038/nmat4732
10.1039/c3gc40520f
10.1002/anie.200601001
10.1002/anie.200902716
10.1039/C7CS00813A
10.1107/S0108270197005945
10.1016/j.mattod.2021.01.008
10.1039/b508541a
10.1016/j.molliq.2015.12.015
10.1021/acscentsci.6b00277
10.1021/acssuschemeng.9b04552
10.1002/9783527645602.ch23
10.1002/anie.201106715
10.1098/rsos.191378
10.1039/c3cs60052a
10.1002/ange.200902716
10.1016/S0040-4020(03)00554-4
10.1021/acs.joc.6b02887
10.1039/D0GC02264K
10.1039/C5SC00600G
10.1002/ange.200803254
10.1103/PhysRevB.37.785
10.1039/C3DT53586J
10.1039/C5DT03866A
10.1016/j.jorganchem.2006.10.046
10.1002/ange.201106715
10.1039/C3GC41370E
10.1039/c0sc00533a
10.1055/s-2008-1078445
10.1039/c2cs35442j
10.1021/acs.accounts.9b00454
10.1002/ange.201810141
10.1039/b709411f
10.1139/v98-064
10.1039/C9SC01396B
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.202101269
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 3894
ExternalDocumentID 10_1002_cssc_202101269
CSSC202101269
Genre article
GrantInformation_xml – fundername: Foundation for Polish Science TEAM Program co-financed by the EU “European Regional Development Fund”
  funderid: POIR.04.04.00-00-20C6/16-00
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3509-505eec378bf0c0c642e54a847abb16471f44263a1102ecc4d7cc1d76020ad3a93
IEDL.DBID DR2
ISSN 1864-5631
IngestDate Thu Jul 25 12:06:51 EDT 2024
Thu Oct 10 18:28:38 EDT 2024
Fri Aug 23 01:58:07 EDT 2024
Sat Aug 24 01:35:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3509-505eec378bf0c0c642e54a847abb16471f44263a1102ecc4d7cc1d76020ad3a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2574268828
PQPubID 986333
PageCount 8
ParticipantIDs proquest_miscellaneous_2554354110
proquest_journals_2574268828
crossref_primary_10_1002_cssc_202101269
wiley_primary_10_1002_cssc_202101269_CSSC202101269
PublicationCentury 2000
PublicationDate September 20, 2021
PublicationDateYYYYMMDD 2021-09-20
PublicationDate_xml – month: 09
  year: 2021
  text: September 20, 2021
  day: 20
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemSusChem
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 3
2017; 82
2000; 6
2019; 52
2015; 289–290
2009 2009; 48 121
2019; 10
1988; 37
2016; 662
2003; 59
2012; 18
2008 2008; 47 120
2012; 14
2011; 17
2008; 2008
2018; 9
2013; 15
1997; 53
2012 2012; 51 124
2002; 102
2018 2018; 57 130
2007; 692
2019; 25
2014; 16
2007; 9
2019; 119
2016; 45
2021; 46
2019; 7
2001; 123
2019; 9
2021; 5
2015; 6
2019; 6
2011; 2
2017; 22
2013; 42
2021; 427
2006; 8
2017; 172
2015; 524
2016; 15
2019 2019; 58 131
2014; 43
2006 2006; 45 118
2012; 3
1993; 98
2019; 48
2005; 7
2016; 215
2020; 22
2014
1998; 76
1990; 9
2014; 33
2012; 41
2016; 22
Kruczała K. (e_1_2_7_49_1) 2014
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_60_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_41_2
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_28_1
(e_1_2_7_43_2) 2019; 131
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_39_2
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_40_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 15
  start-page: 1280
  year: 2016
  end-page: 1286
  publication-title: Nat. Mater.
– volume: 3
  start-page: 2495
  year: 2012
  end-page: 2500
  publication-title: Chem. Sci.
– volume: 9
  start-page: 732
  year: 2007
  end-page: 734
  publication-title: CrystEngComm
– volume: 9
  start-page: 3080
  year: 2018
  end-page: 3094
  publication-title: Chem. Sci.
– volume: 46
  start-page: 109
  year: 2021
  end-page: 124
  publication-title: Mater. Today
– volume: 76
  start-page: 513
  year: 1998
  end-page: 517
  publication-title: Can. J. Chem.
– volume: 9
  start-page: 2777
  year: 2019
  end-page: 2830
  publication-title: ACS Catal.
– volume: 22
  start-page: 9504
  year: 2016
  end-page: 9507
  publication-title: Chem. Eur. J.
– volume: 42
  start-page: 7719
  year: 2013
  end-page: 7738
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: 2352
  year: 2016
  end-page: 2362
  publication-title: Dalton Trans.
– volume: 57 130
  start-page: 16104 16336
  year: 2018 2018
  end-page: 16108 16340
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 3233
  year: 2019
  end-page: 3243
  publication-title: Acc. Chem. Res.
– volume: 48
  start-page: 2274
  year: 2019
  end-page: 2292
  publication-title: Chem. Soc. Rev.
– volume: 692
  start-page: 709
  year: 2007
  end-page: 730
  publication-title: J. Organomet. Chem.
– volume: 17
  start-page: 12713
  year: 2011
  end-page: 12721
  publication-title: Chem. Eur. J.
– volume: 5
  start-page: 148
  year: 2021
  end-page: 167
  publication-title: Nat. Chem. Rev.
– volume: 48 121
  start-page: 7017 7151
  year: 2009 2009
  end-page: 7020 7154
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 25
  start-page: 2503
  year: 2019
  end-page: 2510
  publication-title: Chem. Eur. J.
– volume: 427
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 172
  start-page: 237
  year: 2017
  end-page: 245
  publication-title: Carbohydr. Polym.
– start-page: 731
  year: 2014
  end-page: 788
– volume: 8
  start-page: 1057
  year: 2006
  end-page: 1065
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 13
  year: 2017
  end-page: 19
  publication-title: ACS Cent. Sci.
– volume: 82
  start-page: 4007
  year: 2017
  end-page: 4019
  publication-title: J. Org. Chem.
– volume: 98
  start-page: 5648
  year: 1993
  end-page: 5652
  publication-title: J. Chem. Phys.
– volume: 662
  start-page: 163
  year: 2016
  end-page: 168
  publication-title: Chem. Phys. Lett.
– volume: 6
  year: 2019
  publication-title: R. Soc. Open Sci.
– volume: 33
  start-page: 5093
  year: 2014
  end-page: 5096
  publication-title: Organometallics
– volume: 53
  start-page: 1192
  year: 1997
  end-page: 1195
  publication-title: Acta Crystallogr. Sect. C
– volume: 42
  start-page: 7649
  year: 2013
  end-page: 7659
  publication-title: Chem. Soc. Rev.
– volume: 59
  start-page: 3753
  year: 2003
  end-page: 3760
  publication-title: Tetrahedron
– volume: 37
  start-page: 785
  year: 1988
  end-page: 789
  publication-title: Phys. Rev. B
– volume: 15
  start-page: 2121
  year: 2013
  end-page: 2131
  publication-title: Green Chem.
– volume: 47 120
  start-page: 7888 8006
  year: 2008 2008
  end-page: 7891 8009
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 7149
  year: 2019
  end-page: 7155
  publication-title: Chem. Sci.
– volume: 6
  start-page: 3215
  year: 2000
  end-page: 3227
  publication-title: Chem. Eur. J.
– volume: 7
  start-page: 3297
  year: 2005
  end-page: 3305
  publication-title: Phys. Chem. Chem. Phys.
– volume: 22
  start-page: 2705
  year: 2020
  end-page: 2708
  publication-title: CrystEngComm
– volume: 289–290
  start-page: 149
  year: 2015
  end-page: 176
  publication-title: Coord. Chem. Rev.
– volume: 215
  start-page: 345
  year: 2016
  end-page: 386
  publication-title: J. Mol. Liq.
– volume: 6
  start-page: 3102
  year: 2015
  end-page: 3108
  publication-title: Chem. Sci.
– volume: 2008
  start-page: 1979
  year: 2008
  end-page: 1993
  publication-title: Synthesis
– volume: 58 131
  start-page: 8526 8614
  year: 2019 2019
  end-page: 8530 8618
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 119
  start-page: 7529
  year: 2019
  end-page: 7609
  publication-title: Chem. Rev.
– volume: 7
  start-page: 19505
  year: 2019
  end-page: 19512
  publication-title: ACS Sustainable Chem. Eng.
– volume: 102
  start-page: 2369
  year: 2002
  end-page: 2388
  publication-title: Chem. Rev.
– volume: 43
  start-page: 5893
  year: 2014
  end-page: 5898
  publication-title: Dalton Trans.
– volume: 22
  start-page: 144
  year: 2017
  publication-title: Molecules
– volume: 9
  start-page: 2243
  year: 1990
  end-page: 2247
  publication-title: Organometallics
– volume: 2
  start-page: 696
  year: 2011
  publication-title: Chem. Sci.
– volume: 22
  start-page: 5881
  year: 2020
  end-page: 5901
  publication-title: Green Chem.
– volume: 18
  start-page: 7367
  year: 2012
  end-page: 7371
  publication-title: Chem. Eur. J.
– volume: 45 118
  start-page: 4826 4944
  year: 2006 2006
  end-page: 4829 4947
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 16
  start-page: 121
  year: 2014
  end-page: 132
  publication-title: Green Chem.
– volume: 14
  start-page: 2969
  year: 2012
  end-page: 2982
  publication-title: Green Chem.
– volume: 41
  start-page: 413
  year: 2012
  end-page: 447
  publication-title: Chem. Soc. Rev.
– volume: 524
  start-page: 20
  year: 2015
  end-page: 21
  publication-title: Nature
– volume: 123
  start-page: 8701
  year: 2001
  end-page: 8708
  publication-title: J. Am. Chem. Soc.
– volume: 51 124
  start-page: 6582 6686
  year: 2012 2012
  end-page: 6596 6700
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_7_27_1
  doi: 10.3390/molecules22010144
– ident: e_1_2_7_52_1
  doi: 10.1016/j.cplett.2016.09.033
– ident: e_1_2_7_38_1
  doi: 10.1002/1521-3765(20000901)6:17<3215::AID-CHEM3215>3.0.CO;2-8
– ident: e_1_2_7_57_1
  doi: 10.1002/chem.201602058
– ident: e_1_2_7_44_1
  doi: 10.1002/chem.201805180
– ident: e_1_2_7_43_1
  doi: 10.1002/anie.201904380
– ident: e_1_2_7_11_1
  doi: 10.1039/C7SC05371A
– ident: e_1_2_7_45_1
  doi: 10.1021/om5008117
– ident: e_1_2_7_23_1
  doi: 10.1039/c2sc20344h
– ident: e_1_2_7_4_1
  doi: 10.1039/C1CS15171A
– ident: e_1_2_7_28_1
  doi: 10.1002/chem.201200236
– ident: e_1_2_7_35_1
  doi: 10.1021/cr010303r
– ident: e_1_2_7_36_1
  doi: 10.1016/j.ccr.2014.10.012
– ident: e_1_2_7_42_1
  doi: 10.1002/chem.201101997
– ident: e_1_2_7_60_1
  doi: 10.1002/anie.201810141
– ident: e_1_2_7_34_1
  doi: 10.1021/acscatal.8b05001
– ident: e_1_2_7_39_2
  doi: 10.1002/ange.200601001
– ident: e_1_2_7_40_1
  doi: 10.1002/anie.200803254
– ident: e_1_2_7_7_1
  doi: 10.1038/524020a
– ident: e_1_2_7_20_1
  doi: 10.1039/c2gc36005e
– ident: e_1_2_7_3_1
  doi: 10.1038/s41570-020-00249-y
– volume: 131
  start-page: 8614
  year: 2019
  ident: e_1_2_7_43_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201904380
– ident: e_1_2_7_47_1
  doi: 10.1021/om00158a022
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemrev.8b00479
– ident: e_1_2_7_18_1
  doi: 10.1021/ja0034388
– ident: e_1_2_7_48_1
  doi: 10.1016/j.carbpol.2017.05.043
– ident: e_1_2_7_37_1
  doi: 10.1016/j.ccr.2020.213611
– ident: e_1_2_7_53_1
  doi: 10.1063/1.464913
– ident: e_1_2_7_56_1
  doi: 10.1039/b515623h
– ident: e_1_2_7_19_1
  doi: 10.1039/D0CE00440E
– ident: e_1_2_7_16_1
  doi: 10.1038/nmat4732
– ident: e_1_2_7_25_1
  doi: 10.1039/c3gc40520f
– ident: e_1_2_7_39_1
  doi: 10.1002/anie.200601001
– ident: e_1_2_7_41_1
  doi: 10.1002/anie.200902716
– ident: e_1_2_7_13_1
  doi: 10.1039/C7CS00813A
– ident: e_1_2_7_50_1
  doi: 10.1107/S0108270197005945
– ident: e_1_2_7_15_1
  doi: 10.1016/j.mattod.2021.01.008
– ident: e_1_2_7_55_1
  doi: 10.1039/b508541a
– ident: e_1_2_7_21_1
  doi: 10.1016/j.molliq.2015.12.015
– ident: e_1_2_7_6_1
  doi: 10.1021/acscentsci.6b00277
– ident: e_1_2_7_29_1
  doi: 10.1021/acssuschemeng.9b04552
– start-page: 731
  volume-title: Characterization of Polymer Blends
  year: 2014
  ident: e_1_2_7_49_1
  doi: 10.1002/9783527645602.ch23
  contributor:
    fullname: Kruczała K.
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201106715
– ident: e_1_2_7_1_1
  doi: 10.1098/rsos.191378
– ident: e_1_2_7_10_1
  doi: 10.1039/c3cs60052a
– ident: e_1_2_7_41_2
  doi: 10.1002/ange.200902716
– ident: e_1_2_7_31_1
  doi: 10.1016/S0040-4020(03)00554-4
– ident: e_1_2_7_59_1
  doi: 10.1021/acs.joc.6b02887
– ident: e_1_2_7_8_1
  doi: 10.1039/D0GC02264K
– ident: e_1_2_7_46_1
  doi: 10.1039/C5SC00600G
– ident: e_1_2_7_40_2
  doi: 10.1002/ange.200803254
– ident: e_1_2_7_54_1
  doi: 10.1103/PhysRevB.37.785
– ident: e_1_2_7_51_1
  doi: 10.1039/C3DT53586J
– ident: e_1_2_7_12_1
  doi: 10.1039/C5DT03866A
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jorganchem.2006.10.046
– ident: e_1_2_7_24_2
  doi: 10.1002/ange.201106715
– ident: e_1_2_7_26_1
  doi: 10.1039/C3GC41370E
– ident: e_1_2_7_58_1
  doi: 10.1039/c0sc00533a
– ident: e_1_2_7_33_1
  doi: 10.1055/s-2008-1078445
– ident: e_1_2_7_5_1
  doi: 10.1039/c2cs35442j
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.accounts.9b00454
– ident: e_1_2_7_60_2
  doi: 10.1002/ange.201810141
– ident: e_1_2_7_17_1
  doi: 10.1039/b709411f
– ident: e_1_2_7_32_1
  doi: 10.1139/v98-064
– ident: e_1_2_7_9_1
– ident: e_1_2_7_30_1
  doi: 10.1039/C9SC01396B
SSID ssj0060966
Score 2.4603043
Snippet Solution‐based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic...
Abstract Solution‐based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 3887
SubjectTerms Adducts
Antiferromagnetism
Chemical synthesis
Comparative studies
Coordination compounds
Crystallization
Density functional theory
Exothermic reactions
Lewis acid
mechanochemistry
melted phase
organometallics
Reagents
Selectivity
Single crystals
slow chemistry
Solvents
Stoichiometry
Substrates
TEMPO
Toluene
Title A Case Study on the Desired Selectivity in Solid‐State Mechano‐ and Slow‐Chemistry, Melt, and Solution Methodologies
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202101269
https://www.proquest.com/docview/2574268828
https://search.proquest.com/docview/2554354110
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA4yF724i-NGBMGLHadLuhylKoMwHqwDcytpFhgcWrEziJ78Cf5Gf4nvpcuoF0FvSZO0Wd_70uR9j5CTSGlQdKFtMVdKy2MS5KBWjsXDLEAbH8kUnugOb_3ByLsZs_EXK_6KH6L94YYrw8hrXOA8K88XpKGiLJGC0EGCKh8t-Gw3wDtdl3ctf5QP-NyYF4W-ZzHftRvWxr5z_r34d620gJpfAavRONdrhDd1rS6aPPTms6wnXn_QOP6nMetktYaj9KKaPxtkSeWbZDluvMBtkdcLGoOio3jf8IUWOQXASGGzCpJS0sQ40THuJ-gkp0kxnciPt3cDYOlQoVFxAXHKc8g7LZ4h3L76DDJMZ2dVWj3_4RH6szbyWJXbZHR9dR8PrNpfgyVcwB0WgCmlBIxCpvuiL2Bno5jHQf3xLEPaMlt7SA_PAXE4MHM8GQhhy8AHxMqlyyN3h3TyIle7hHIVOor7mmmtADLxyNcR08IDcBGFgOi65LQZr_SxouVIKwJmJ8W-TNu-7JKDZjjTenmWKcgpqAlsLsIuOW6Tofl4WsJzVcwxDwMo6UFlu8QxY_fLl9I4SeI2tveXQvtkBcN4H8XpH5DO7GmuDgH0zLIjM7E_AT9W_BQ
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOcCFHVEoYCQkLgTaJE6TIwqgspQDBYlb5HiREFWCaCsEJz6Bb-RLmHGasFyQ4BbHduJtZp63NwA7kTZo6MKWwz2lHJ8r1INGu44I0zbd8VFc045u9zLo3Phnt7w8TUh3YQp-iGrBjSTD6msScFqQPvhkDZWDAXEQusRQFUSTMIUy75H3hqOrikEqQIRuLxiFge_wwGuVvI1N9-B7_u926RNsfoWs1uaczEFalrY4anK_Pxqm-_LlB5Hjv6ozD7NjRMoOiyG0ABM6W4TpuHQEtwQvhyxGW8foyOEzyzOGmJHhfBWVpWI960fHeqBgdxnr5f079f76ZjEs62q6V5xjmIkM0_bzJ3yuPr2HCfrDvSJuLAL4ilxaW5WsB8twc3J8HXecscsGR3oIPRzEU1pLrx2mpimbEic3mvsCLaBIU2IuaxmfGOIFgg4XB4-v2lK2VDtA0CqUJyJvBWpZnulVYEKHrhaB4cZoRE0iCkzEjfQRX0Qhgro67JYdljwUzBxJwcHsJtSWSdWWdWiU_ZmMJXSQoKrCkuD8IqzDdhWN1acNE5HpfERpOKJJHwtbB9d23i9_SuJeL65Ca3_JtAXTnevuRXJxenm-DjP0no6nuM0G1IaPI72BGGiYbtpR_gHyAQA7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMdHQCXg0gcPsS0FV0LiQtjdxPYmR5R2xaOgigWJW-T4ISFWCWJ3hcqpH4HPyCfpjLMJjwsS3OLESZzYnvk5sf8DsJVYh44u7gYiMibgwqAddDYMVJz3aI2PEZb-6B6fyP1zfnghLp6s4q_0IZoPbtQzvL2mDn5tXPtRNFSPRiRBGJJAlUxm4QOXiL-ERaeNgJREQPfri2LJAyGjbi3b2Anbz89_7pYeWfMpsXqX0_8Eqi5sNdPkancyznf13Qsdx_c8zWf4OOVRtlc1oC8wY4slWEjrMHDLcLfHUvR0jCYc_mVlwZAYGY5W0VQaNvBRdHz8CXZZsEE5vDQP_-49wbJjS6uKS0wzVWDeYXmL282ldzDDcLxTHZt2ANxFAa29QbajFTjv_zpL94NpwIZARwgeAdKUtTrqxbnr6I7GoY0VXKH_U3lOumVdx0kfXiFyhNh0uOlp3TU9iciqTKSSaBXmirKwa8CUjUOrpBPOWWQmlUiXCKc50kUSI9K1YLuur-y60uXIKgXmMKN3mTXvsgXrdXVm0_45ytBQYUlwdBG34EdzGB-ffpeowpYTyiOQJTkWtgWhr7tX7pSlg0HapL6-5aRNmP_zs5_9Pjg5-gaLtJvmpoSddZgb30zsdwSgcb7h2_h_9KL-2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Case+Study+on+the+Desired+Selectivity+in+Solid%E2%80%90State+Mechano%E2%80%90+and+Slow%E2%80%90Chemistry%2C+Melt%2C+and+Solution+Methodologies&rft.jtitle=ChemSusChem&rft.au=Budny%E2%80%90Godlewski%2C+Krzysztof&rft.au=Leszczy%C5%84ski%2C+Micha%C5%82+K.&rft.au=Tulewicz%2C+Adam&rft.au=Justyniak%2C+Iwona&rft.date=2021-09-20&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=14&rft.issue=18&rft.spage=3887&rft.epage=3894&rft_id=info:doi/10.1002%2Fcssc.202101269&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cssc_202101269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon