A Case Study on the Desired Selectivity in Solid‐State Mechano‐ and Slow‐Chemistry, Melt, and Solution Methodologies
Solution‐based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid‐state mechano‐...
Saved in:
Published in | ChemSusChem Vol. 14; no. 18; pp. 3887 - 3894 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
20.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solution‐based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid‐state mechano‐ and slow‐chemistry synthesis, melted phase, and solution protocols, and the impact of the employed solvent‐free solid‐state versus liquid‐phase synthetic approaches was highlighted on a pool of products. A moderately exothermic model reaction system was chosen based on bis(pentafluorophenyl)zinc, (C6F5)2Zn, and 2,2,6,6‐tetramethylpiperidinyl oxide (TEMPO) as a stable nitroxyl radical, anticipating that these reagents may offer a unique landscape for addressing kinetic and thermodynamic aspects of wet and solvent‐free solid‐state processes. In a toluene solution two distinct paramagnetic Lewis acid‐base adducts (C6F5)2Zn(η1‐TEMPO) (1) and (C6F5)2Zn(η1‐TEMPO)2 (2) equilibrated, but only 2 was affordable by crystallization. In turn, crystallization from the melt was the only method yielding single crystals of 1. Moreover, the solid‐state approaches were stoichiometry sensitive and allowed for the selective synthesis of both adducts by simple stoichiometric control over the substrates. Density functional theory (DFT) calculations were carried out to examine selected structural and thermodynamic features of the adducts 1 and 2. Compound 2 is a unique non‐redox active metal complex supported by two nitroxide radicals, and the magnetic studies revealed weak‐to‐moderate intramolecular antiferromagnetic interactions between the two coordinated TEMPO molecules.
Four directions: The impact of four different synthesis approaches on a pool of products is presented for a model (C6F5)2Zn/2,2,6,6‐tetramethylpiperidinyl oxide (TEMPO) reaction system. For the first time reactions in solution, mechanochemistry, slow‐chemistry, and melted‐phase reactions are collated in this comprehensive study of model reaction system. |
---|---|
AbstractList | Abstract
Solution‐based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid‐state mechano‐ and slow‐chemistry synthesis, melted phase, and solution protocols, and the impact of the employed solvent‐free solid‐state versus liquid‐phase synthetic approaches was highlighted on a pool of products. A moderately exothermic model reaction system was chosen based on bis(pentafluorophenyl)zinc, (C
6
F
5
)
2
Zn, and 2,2,6,6‐tetramethylpiperidinyl oxide (TEMPO) as a stable nitroxyl radical, anticipating that these reagents may offer a unique landscape for addressing kinetic and thermodynamic aspects of wet and solvent‐free solid‐state processes. In a toluene solution two distinct paramagnetic Lewis acid‐base adducts (C
6
F
5
)
2
Zn(
η
1
‐TEMPO) (
1
) and (C
6
F
5
)
2
Zn(
η
1
‐TEMPO)
2
(
2
) equilibrated, but only
2
was affordable by crystallization. In turn, crystallization from the melt was the only method yielding single crystals of
1
. Moreover, the solid‐state approaches were stoichiometry sensitive and allowed for the selective synthesis of both adducts by simple stoichiometric control over the substrates. Density functional theory (DFT) calculations were carried out to examine selected structural and thermodynamic features of the adducts
1
and
2
. Compound
2
is a unique non‐redox active metal complex supported by two nitroxide radicals, and the magnetic studies revealed weak‐to‐moderate intramolecular antiferromagnetic interactions between the two coordinated TEMPO molecules. Solution‐based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid‐state mechano‐ and slow‐chemistry synthesis, melted phase, and solution protocols, and the impact of the employed solvent‐free solid‐state versus liquid‐phase synthetic approaches was highlighted on a pool of products. A moderately exothermic model reaction system was chosen based on bis(pentafluorophenyl)zinc, (C6F5)2Zn, and 2,2,6,6‐tetramethylpiperidinyl oxide (TEMPO) as a stable nitroxyl radical, anticipating that these reagents may offer a unique landscape for addressing kinetic and thermodynamic aspects of wet and solvent‐free solid‐state processes. In a toluene solution two distinct paramagnetic Lewis acid‐base adducts (C6F5)2Zn(η1‐TEMPO) (1) and (C6F5)2Zn(η1‐TEMPO)2 (2) equilibrated, but only 2 was affordable by crystallization. In turn, crystallization from the melt was the only method yielding single crystals of 1. Moreover, the solid‐state approaches were stoichiometry sensitive and allowed for the selective synthesis of both adducts by simple stoichiometric control over the substrates. Density functional theory (DFT) calculations were carried out to examine selected structural and thermodynamic features of the adducts 1 and 2. Compound 2 is a unique non‐redox active metal complex supported by two nitroxide radicals, and the magnetic studies revealed weak‐to‐moderate intramolecular antiferromagnetic interactions between the two coordinated TEMPO molecules. Four directions: The impact of four different synthesis approaches on a pool of products is presented for a model (C6F5)2Zn/2,2,6,6‐tetramethylpiperidinyl oxide (TEMPO) reaction system. For the first time reactions in solution, mechanochemistry, slow‐chemistry, and melted‐phase reactions are collated in this comprehensive study of model reaction system. Solution‐based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid‐state mechano‐ and slow‐chemistry synthesis, melted phase, and solution protocols, and the impact of the employed solvent‐free solid‐state versus liquid‐phase synthetic approaches was highlighted on a pool of products. A moderately exothermic model reaction system was chosen based on bis(pentafluorophenyl)zinc, (C6F5)2Zn, and 2,2,6,6‐tetramethylpiperidinyl oxide (TEMPO) as a stable nitroxyl radical, anticipating that these reagents may offer a unique landscape for addressing kinetic and thermodynamic aspects of wet and solvent‐free solid‐state processes. In a toluene solution two distinct paramagnetic Lewis acid‐base adducts (C6F5)2Zn(η1‐TEMPO) (1) and (C6F5)2Zn(η1‐TEMPO)2 (2) equilibrated, but only 2 was affordable by crystallization. In turn, crystallization from the melt was the only method yielding single crystals of 1. Moreover, the solid‐state approaches were stoichiometry sensitive and allowed for the selective synthesis of both adducts by simple stoichiometric control over the substrates. Density functional theory (DFT) calculations were carried out to examine selected structural and thermodynamic features of the adducts 1 and 2. Compound 2 is a unique non‐redox active metal complex supported by two nitroxide radicals, and the magnetic studies revealed weak‐to‐moderate intramolecular antiferromagnetic interactions between the two coordinated TEMPO molecules. |
Author | Sieklucka, Barbara Leszczyński, Michał K. Pinkowicz, Dawid Lewiński, Janusz Sojka, Zbigniew Tulewicz, Adam Kruczała, Krzysztof Justyniak, Iwona Budny‐Godlewski, Krzysztof |
Author_xml | – sequence: 1 givenname: Krzysztof surname: Budny‐Godlewski fullname: Budny‐Godlewski, Krzysztof organization: Polish Academy of Sciences – sequence: 2 givenname: Michał K. surname: Leszczyński fullname: Leszczyński, Michał K. organization: Polish Academy of Sciences – sequence: 3 givenname: Adam surname: Tulewicz fullname: Tulewicz, Adam organization: Polish Academy of Sciences – sequence: 4 givenname: Iwona surname: Justyniak fullname: Justyniak, Iwona organization: Polish Academy of Sciences – sequence: 5 givenname: Dawid surname: Pinkowicz fullname: Pinkowicz, Dawid organization: Jagiellonian University – sequence: 6 givenname: Barbara surname: Sieklucka fullname: Sieklucka, Barbara organization: Jagiellonian University – sequence: 7 givenname: Krzysztof surname: Kruczała fullname: Kruczała, Krzysztof organization: Jagiellonian University – sequence: 8 givenname: Zbigniew surname: Sojka fullname: Sojka, Zbigniew email: sojka@chemia.uj.edu.pl organization: Jagiellonian University – sequence: 9 givenname: Janusz surname: Lewiński fullname: Lewiński, Janusz email: lewin@ch.pw.edu.pl organization: Polish Academy of Sciences |
BookMark | eNqFkU1LxDAQhoMouH5cPQe8eLBrkqZpe5T6CS4equCtZNOpG8k22qQu9eRP8Df6S8xSUfDiad5hnndm4N1Bm61tAaEDSqaUEHainFNTRhgllIl8A01oJniUCP6w-aNjuo12nHsiRJBciAl6O8WFdIBL39cDti32C8Bn4HQHNS7BgPL6VfsB6xaX1uj68_2j9NIDnoFayNaGHss2sMaugi4WsNTOd8NxAIw_HmfW9F6H5TPwC1tbYx81uD201UjjYP-77qL7i_O74iq6ub28Lk5vIhUnJI8SkgCoOM3mDVFECc4g4TLjqZzPqeApbThnIpaUEgZK8TpVitapIIzIOpZ5vIuOxr3PnX3pwfkqfKjAGNmC7V3FkoTHCQ_-gB7-QZ9s37Xhu0Cl4UyWsSxQ05FSnXWug6Z67vRSdkNFSbWOolpHUf1EEQz5aFhpA8M_dFWUZfHr_QLNNJGn |
CitedBy_id | crossref_primary_10_1039_D2FD00126H crossref_primary_10_1002_ajoc_202200117 crossref_primary_10_1039_D3SC05796H crossref_primary_10_1002_cssc_202200362 crossref_primary_10_1093_chemle_upae060 crossref_primary_10_1021_acs_cgd_2c00021 crossref_primary_10_1016_j_mencom_2023_04_001 crossref_primary_10_1021_acssuschemeng_1c08402 crossref_primary_10_1039_D3CC04929A crossref_primary_10_3390_ma16062242 crossref_primary_10_1021_jacs_4c00906 crossref_primary_10_1002_chem_202401968 crossref_primary_10_1039_D2NA00759B |
Cites_doi | 10.3390/molecules22010144 10.1016/j.cplett.2016.09.033 10.1002/1521-3765(20000901)6:17<3215::AID-CHEM3215>3.0.CO;2-8 10.1002/chem.201602058 10.1002/chem.201805180 10.1002/anie.201904380 10.1039/C7SC05371A 10.1021/om5008117 10.1039/c2sc20344h 10.1039/C1CS15171A 10.1002/chem.201200236 10.1021/cr010303r 10.1016/j.ccr.2014.10.012 10.1002/chem.201101997 10.1002/anie.201810141 10.1021/acscatal.8b05001 10.1002/ange.200601001 10.1002/anie.200803254 10.1038/524020a 10.1039/c2gc36005e 10.1038/s41570-020-00249-y 10.1002/ange.201904380 10.1021/om00158a022 10.1021/acs.chemrev.8b00479 10.1021/ja0034388 10.1016/j.carbpol.2017.05.043 10.1016/j.ccr.2020.213611 10.1063/1.464913 10.1039/b515623h 10.1039/D0CE00440E 10.1038/nmat4732 10.1039/c3gc40520f 10.1002/anie.200601001 10.1002/anie.200902716 10.1039/C7CS00813A 10.1107/S0108270197005945 10.1016/j.mattod.2021.01.008 10.1039/b508541a 10.1016/j.molliq.2015.12.015 10.1021/acscentsci.6b00277 10.1021/acssuschemeng.9b04552 10.1002/9783527645602.ch23 10.1002/anie.201106715 10.1098/rsos.191378 10.1039/c3cs60052a 10.1002/ange.200902716 10.1016/S0040-4020(03)00554-4 10.1021/acs.joc.6b02887 10.1039/D0GC02264K 10.1039/C5SC00600G 10.1002/ange.200803254 10.1103/PhysRevB.37.785 10.1039/C3DT53586J 10.1039/C5DT03866A 10.1016/j.jorganchem.2006.10.046 10.1002/ange.201106715 10.1039/C3GC41370E 10.1039/c0sc00533a 10.1055/s-2008-1078445 10.1039/c2cs35442j 10.1021/acs.accounts.9b00454 10.1002/ange.201810141 10.1039/b709411f 10.1139/v98-064 10.1039/C9SC01396B |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.202101269 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | 3894 |
ExternalDocumentID | 10_1002_cssc_202101269 CSSC202101269 |
Genre | article |
GrantInformation_xml | – fundername: Foundation for Polish Science TEAM Program co-financed by the EU “European Regional Development Fund” funderid: POIR.04.04.00-00-20C6/16-00 |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAIHA AANLZ AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3509-505eec378bf0c0c642e54a847abb16471f44263a1102ecc4d7cc1d76020ad3a93 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 |
IngestDate | Thu Jul 25 12:06:51 EDT 2024 Thu Oct 10 18:28:38 EDT 2024 Fri Aug 23 01:58:07 EDT 2024 Sat Aug 24 01:35:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3509-505eec378bf0c0c642e54a847abb16471f44263a1102ecc4d7cc1d76020ad3a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2574268828 |
PQPubID | 986333 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2554354110 proquest_journals_2574268828 crossref_primary_10_1002_cssc_202101269 wiley_primary_10_1002_cssc_202101269_CSSC202101269 |
PublicationCentury | 2000 |
PublicationDate | September 20, 2021 |
PublicationDateYYYYMMDD | 2021-09-20 |
PublicationDate_xml | – month: 09 year: 2021 text: September 20, 2021 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 3 2017; 82 2000; 6 2019; 52 2015; 289–290 2009 2009; 48 121 2019; 10 1988; 37 2016; 662 2003; 59 2012; 18 2008 2008; 47 120 2012; 14 2011; 17 2008; 2008 2018; 9 2013; 15 1997; 53 2012 2012; 51 124 2002; 102 2018 2018; 57 130 2007; 692 2019; 25 2014; 16 2007; 9 2019; 119 2016; 45 2021; 46 2019; 7 2001; 123 2019; 9 2021; 5 2015; 6 2019; 6 2011; 2 2017; 22 2013; 42 2021; 427 2006; 8 2017; 172 2015; 524 2016; 15 2019 2019; 58 131 2014; 43 2006 2006; 45 118 2012; 3 1993; 98 2019; 48 2005; 7 2016; 215 2020; 22 2014 1998; 76 1990; 9 2014; 33 2012; 41 2016; 22 Kruczała K. (e_1_2_7_49_1) 2014 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_60_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_41_2 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_28_1 (e_1_2_7_43_2) 2019; 131 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_39_2 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_40_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 15 start-page: 1280 year: 2016 end-page: 1286 publication-title: Nat. Mater. – volume: 3 start-page: 2495 year: 2012 end-page: 2500 publication-title: Chem. Sci. – volume: 9 start-page: 732 year: 2007 end-page: 734 publication-title: CrystEngComm – volume: 9 start-page: 3080 year: 2018 end-page: 3094 publication-title: Chem. Sci. – volume: 46 start-page: 109 year: 2021 end-page: 124 publication-title: Mater. Today – volume: 76 start-page: 513 year: 1998 end-page: 517 publication-title: Can. J. Chem. – volume: 9 start-page: 2777 year: 2019 end-page: 2830 publication-title: ACS Catal. – volume: 22 start-page: 9504 year: 2016 end-page: 9507 publication-title: Chem. Eur. J. – volume: 42 start-page: 7719 year: 2013 end-page: 7738 publication-title: Chem. Soc. Rev. – volume: 45 start-page: 2352 year: 2016 end-page: 2362 publication-title: Dalton Trans. – volume: 57 130 start-page: 16104 16336 year: 2018 2018 end-page: 16108 16340 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 3233 year: 2019 end-page: 3243 publication-title: Acc. Chem. Res. – volume: 48 start-page: 2274 year: 2019 end-page: 2292 publication-title: Chem. Soc. Rev. – volume: 692 start-page: 709 year: 2007 end-page: 730 publication-title: J. Organomet. Chem. – volume: 17 start-page: 12713 year: 2011 end-page: 12721 publication-title: Chem. Eur. J. – volume: 5 start-page: 148 year: 2021 end-page: 167 publication-title: Nat. Chem. Rev. – volume: 48 121 start-page: 7017 7151 year: 2009 2009 end-page: 7020 7154 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 25 start-page: 2503 year: 2019 end-page: 2510 publication-title: Chem. Eur. J. – volume: 427 year: 2021 publication-title: Coord. Chem. Rev. – volume: 172 start-page: 237 year: 2017 end-page: 245 publication-title: Carbohydr. Polym. – start-page: 731 year: 2014 end-page: 788 – volume: 8 start-page: 1057 year: 2006 end-page: 1065 publication-title: Phys. Chem. Chem. Phys. – volume: 3 start-page: 13 year: 2017 end-page: 19 publication-title: ACS Cent. Sci. – volume: 82 start-page: 4007 year: 2017 end-page: 4019 publication-title: J. Org. Chem. – volume: 98 start-page: 5648 year: 1993 end-page: 5652 publication-title: J. Chem. Phys. – volume: 662 start-page: 163 year: 2016 end-page: 168 publication-title: Chem. Phys. Lett. – volume: 6 year: 2019 publication-title: R. Soc. Open Sci. – volume: 33 start-page: 5093 year: 2014 end-page: 5096 publication-title: Organometallics – volume: 53 start-page: 1192 year: 1997 end-page: 1195 publication-title: Acta Crystallogr. Sect. C – volume: 42 start-page: 7649 year: 2013 end-page: 7659 publication-title: Chem. Soc. Rev. – volume: 59 start-page: 3753 year: 2003 end-page: 3760 publication-title: Tetrahedron – volume: 37 start-page: 785 year: 1988 end-page: 789 publication-title: Phys. Rev. B – volume: 15 start-page: 2121 year: 2013 end-page: 2131 publication-title: Green Chem. – volume: 47 120 start-page: 7888 8006 year: 2008 2008 end-page: 7891 8009 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 7149 year: 2019 end-page: 7155 publication-title: Chem. Sci. – volume: 6 start-page: 3215 year: 2000 end-page: 3227 publication-title: Chem. Eur. J. – volume: 7 start-page: 3297 year: 2005 end-page: 3305 publication-title: Phys. Chem. Chem. Phys. – volume: 22 start-page: 2705 year: 2020 end-page: 2708 publication-title: CrystEngComm – volume: 289–290 start-page: 149 year: 2015 end-page: 176 publication-title: Coord. Chem. Rev. – volume: 215 start-page: 345 year: 2016 end-page: 386 publication-title: J. Mol. Liq. – volume: 6 start-page: 3102 year: 2015 end-page: 3108 publication-title: Chem. Sci. – volume: 2008 start-page: 1979 year: 2008 end-page: 1993 publication-title: Synthesis – volume: 58 131 start-page: 8526 8614 year: 2019 2019 end-page: 8530 8618 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 119 start-page: 7529 year: 2019 end-page: 7609 publication-title: Chem. Rev. – volume: 7 start-page: 19505 year: 2019 end-page: 19512 publication-title: ACS Sustainable Chem. Eng. – volume: 102 start-page: 2369 year: 2002 end-page: 2388 publication-title: Chem. Rev. – volume: 43 start-page: 5893 year: 2014 end-page: 5898 publication-title: Dalton Trans. – volume: 22 start-page: 144 year: 2017 publication-title: Molecules – volume: 9 start-page: 2243 year: 1990 end-page: 2247 publication-title: Organometallics – volume: 2 start-page: 696 year: 2011 publication-title: Chem. Sci. – volume: 22 start-page: 5881 year: 2020 end-page: 5901 publication-title: Green Chem. – volume: 18 start-page: 7367 year: 2012 end-page: 7371 publication-title: Chem. Eur. J. – volume: 45 118 start-page: 4826 4944 year: 2006 2006 end-page: 4829 4947 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 16 start-page: 121 year: 2014 end-page: 132 publication-title: Green Chem. – volume: 14 start-page: 2969 year: 2012 end-page: 2982 publication-title: Green Chem. – volume: 41 start-page: 413 year: 2012 end-page: 447 publication-title: Chem. Soc. Rev. – volume: 524 start-page: 20 year: 2015 end-page: 21 publication-title: Nature – volume: 123 start-page: 8701 year: 2001 end-page: 8708 publication-title: J. Am. Chem. Soc. – volume: 51 124 start-page: 6582 6686 year: 2012 2012 end-page: 6596 6700 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_7_27_1 doi: 10.3390/molecules22010144 – ident: e_1_2_7_52_1 doi: 10.1016/j.cplett.2016.09.033 – ident: e_1_2_7_38_1 doi: 10.1002/1521-3765(20000901)6:17<3215::AID-CHEM3215>3.0.CO;2-8 – ident: e_1_2_7_57_1 doi: 10.1002/chem.201602058 – ident: e_1_2_7_44_1 doi: 10.1002/chem.201805180 – ident: e_1_2_7_43_1 doi: 10.1002/anie.201904380 – ident: e_1_2_7_11_1 doi: 10.1039/C7SC05371A – ident: e_1_2_7_45_1 doi: 10.1021/om5008117 – ident: e_1_2_7_23_1 doi: 10.1039/c2sc20344h – ident: e_1_2_7_4_1 doi: 10.1039/C1CS15171A – ident: e_1_2_7_28_1 doi: 10.1002/chem.201200236 – ident: e_1_2_7_35_1 doi: 10.1021/cr010303r – ident: e_1_2_7_36_1 doi: 10.1016/j.ccr.2014.10.012 – ident: e_1_2_7_42_1 doi: 10.1002/chem.201101997 – ident: e_1_2_7_60_1 doi: 10.1002/anie.201810141 – ident: e_1_2_7_34_1 doi: 10.1021/acscatal.8b05001 – ident: e_1_2_7_39_2 doi: 10.1002/ange.200601001 – ident: e_1_2_7_40_1 doi: 10.1002/anie.200803254 – ident: e_1_2_7_7_1 doi: 10.1038/524020a – ident: e_1_2_7_20_1 doi: 10.1039/c2gc36005e – ident: e_1_2_7_3_1 doi: 10.1038/s41570-020-00249-y – volume: 131 start-page: 8614 year: 2019 ident: e_1_2_7_43_2 publication-title: Angew. Chem. doi: 10.1002/ange.201904380 – ident: e_1_2_7_47_1 doi: 10.1021/om00158a022 – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemrev.8b00479 – ident: e_1_2_7_18_1 doi: 10.1021/ja0034388 – ident: e_1_2_7_48_1 doi: 10.1016/j.carbpol.2017.05.043 – ident: e_1_2_7_37_1 doi: 10.1016/j.ccr.2020.213611 – ident: e_1_2_7_53_1 doi: 10.1063/1.464913 – ident: e_1_2_7_56_1 doi: 10.1039/b515623h – ident: e_1_2_7_19_1 doi: 10.1039/D0CE00440E – ident: e_1_2_7_16_1 doi: 10.1038/nmat4732 – ident: e_1_2_7_25_1 doi: 10.1039/c3gc40520f – ident: e_1_2_7_39_1 doi: 10.1002/anie.200601001 – ident: e_1_2_7_41_1 doi: 10.1002/anie.200902716 – ident: e_1_2_7_13_1 doi: 10.1039/C7CS00813A – ident: e_1_2_7_50_1 doi: 10.1107/S0108270197005945 – ident: e_1_2_7_15_1 doi: 10.1016/j.mattod.2021.01.008 – ident: e_1_2_7_55_1 doi: 10.1039/b508541a – ident: e_1_2_7_21_1 doi: 10.1016/j.molliq.2015.12.015 – ident: e_1_2_7_6_1 doi: 10.1021/acscentsci.6b00277 – ident: e_1_2_7_29_1 doi: 10.1021/acssuschemeng.9b04552 – start-page: 731 volume-title: Characterization of Polymer Blends year: 2014 ident: e_1_2_7_49_1 doi: 10.1002/9783527645602.ch23 contributor: fullname: Kruczała K. – ident: e_1_2_7_24_1 doi: 10.1002/anie.201106715 – ident: e_1_2_7_1_1 doi: 10.1098/rsos.191378 – ident: e_1_2_7_10_1 doi: 10.1039/c3cs60052a – ident: e_1_2_7_41_2 doi: 10.1002/ange.200902716 – ident: e_1_2_7_31_1 doi: 10.1016/S0040-4020(03)00554-4 – ident: e_1_2_7_59_1 doi: 10.1021/acs.joc.6b02887 – ident: e_1_2_7_8_1 doi: 10.1039/D0GC02264K – ident: e_1_2_7_46_1 doi: 10.1039/C5SC00600G – ident: e_1_2_7_40_2 doi: 10.1002/ange.200803254 – ident: e_1_2_7_54_1 doi: 10.1103/PhysRevB.37.785 – ident: e_1_2_7_51_1 doi: 10.1039/C3DT53586J – ident: e_1_2_7_12_1 doi: 10.1039/C5DT03866A – ident: e_1_2_7_22_1 doi: 10.1016/j.jorganchem.2006.10.046 – ident: e_1_2_7_24_2 doi: 10.1002/ange.201106715 – ident: e_1_2_7_26_1 doi: 10.1039/C3GC41370E – ident: e_1_2_7_58_1 doi: 10.1039/c0sc00533a – ident: e_1_2_7_33_1 doi: 10.1055/s-2008-1078445 – ident: e_1_2_7_5_1 doi: 10.1039/c2cs35442j – ident: e_1_2_7_14_1 doi: 10.1021/acs.accounts.9b00454 – ident: e_1_2_7_60_2 doi: 10.1002/ange.201810141 – ident: e_1_2_7_17_1 doi: 10.1039/b709411f – ident: e_1_2_7_32_1 doi: 10.1139/v98-064 – ident: e_1_2_7_9_1 – ident: e_1_2_7_30_1 doi: 10.1039/C9SC01396B |
SSID | ssj0060966 |
Score | 2.4603043 |
Snippet | Solution‐based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic... Abstract Solution‐based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 3887 |
SubjectTerms | Adducts Antiferromagnetism Chemical synthesis Comparative studies Coordination compounds Crystallization Density functional theory Exothermic reactions Lewis acid mechanochemistry melted phase organometallics Reagents Selectivity Single crystals slow chemistry Solvents Stoichiometry Substrates TEMPO Toluene |
Title | A Case Study on the Desired Selectivity in Solid‐State Mechano‐ and Slow‐Chemistry, Melt, and Solution Methodologies |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202101269 https://www.proquest.com/docview/2574268828 https://search.proquest.com/docview/2554354110 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA4yF724i-NGBMGLHadLuhylKoMwHqwDcytpFhgcWrEziJ78Cf5Gf4nvpcuoF0FvSZO0Wd_70uR9j5CTSGlQdKFtMVdKy2MS5KBWjsXDLEAbH8kUnugOb_3ByLsZs_EXK_6KH6L94YYrw8hrXOA8K88XpKGiLJGC0EGCKh8t-Gw3wDtdl3ctf5QP-NyYF4W-ZzHftRvWxr5z_r34d620gJpfAavRONdrhDd1rS6aPPTms6wnXn_QOP6nMetktYaj9KKaPxtkSeWbZDluvMBtkdcLGoOio3jf8IUWOQXASGGzCpJS0sQ40THuJ-gkp0kxnciPt3cDYOlQoVFxAXHKc8g7LZ4h3L76DDJMZ2dVWj3_4RH6szbyWJXbZHR9dR8PrNpfgyVcwB0WgCmlBIxCpvuiL2Bno5jHQf3xLEPaMlt7SA_PAXE4MHM8GQhhy8AHxMqlyyN3h3TyIle7hHIVOor7mmmtADLxyNcR08IDcBGFgOi65LQZr_SxouVIKwJmJ8W-TNu-7JKDZjjTenmWKcgpqAlsLsIuOW6Tofl4WsJzVcwxDwMo6UFlu8QxY_fLl9I4SeI2tveXQvtkBcN4H8XpH5DO7GmuDgH0zLIjM7E_AT9W_BQ |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOcCFHVEoYCQkLgTaJE6TIwqgspQDBYlb5HiREFWCaCsEJz6Bb-RLmHGasFyQ4BbHduJtZp63NwA7kTZo6MKWwz2lHJ8r1INGu44I0zbd8VFc045u9zLo3Phnt7w8TUh3YQp-iGrBjSTD6msScFqQPvhkDZWDAXEQusRQFUSTMIUy75H3hqOrikEqQIRuLxiFge_wwGuVvI1N9-B7_u926RNsfoWs1uaczEFalrY4anK_Pxqm-_LlB5Hjv6ozD7NjRMoOiyG0ABM6W4TpuHQEtwQvhyxGW8foyOEzyzOGmJHhfBWVpWI960fHeqBgdxnr5f079f76ZjEs62q6V5xjmIkM0_bzJ3yuPr2HCfrDvSJuLAL4ilxaW5WsB8twc3J8HXecscsGR3oIPRzEU1pLrx2mpimbEic3mvsCLaBIU2IuaxmfGOIFgg4XB4-v2lK2VDtA0CqUJyJvBWpZnulVYEKHrhaB4cZoRE0iCkzEjfQRX0Qhgro67JYdljwUzBxJwcHsJtSWSdWWdWiU_ZmMJXSQoKrCkuD8IqzDdhWN1acNE5HpfERpOKJJHwtbB9d23i9_SuJeL65Ca3_JtAXTnevuRXJxenm-DjP0no6nuM0G1IaPI72BGGiYbtpR_gHyAQA7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMdHQCXg0gcPsS0FV0LiQtjdxPYmR5R2xaOgigWJW-T4ISFWCWJ3hcqpH4HPyCfpjLMJjwsS3OLESZzYnvk5sf8DsJVYh44u7gYiMibgwqAddDYMVJz3aI2PEZb-6B6fyP1zfnghLp6s4q_0IZoPbtQzvL2mDn5tXPtRNFSPRiRBGJJAlUxm4QOXiL-ERaeNgJREQPfri2LJAyGjbi3b2Anbz89_7pYeWfMpsXqX0_8Eqi5sNdPkancyznf13Qsdx_c8zWf4OOVRtlc1oC8wY4slWEjrMHDLcLfHUvR0jCYc_mVlwZAYGY5W0VQaNvBRdHz8CXZZsEE5vDQP_-49wbJjS6uKS0wzVWDeYXmL282ldzDDcLxTHZt2ANxFAa29QbajFTjv_zpL94NpwIZARwgeAdKUtTrqxbnr6I7GoY0VXKH_U3lOumVdx0kfXiFyhNh0uOlp3TU9iciqTKSSaBXmirKwa8CUjUOrpBPOWWQmlUiXCKc50kUSI9K1YLuur-y60uXIKgXmMKN3mTXvsgXrdXVm0_45ytBQYUlwdBG34EdzGB-ffpeowpYTyiOQJTkWtgWhr7tX7pSlg0HapL6-5aRNmP_zs5_9Pjg5-gaLtJvmpoSddZgb30zsdwSgcb7h2_h_9KL-2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Case+Study+on+the+Desired+Selectivity+in+Solid%E2%80%90State+Mechano%E2%80%90+and+Slow%E2%80%90Chemistry%2C+Melt%2C+and+Solution+Methodologies&rft.jtitle=ChemSusChem&rft.au=Budny%E2%80%90Godlewski%2C+Krzysztof&rft.au=Leszczy%C5%84ski%2C+Micha%C5%82+K.&rft.au=Tulewicz%2C+Adam&rft.au=Justyniak%2C+Iwona&rft.date=2021-09-20&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=14&rft.issue=18&rft.spage=3887&rft.epage=3894&rft_id=info:doi/10.1002%2Fcssc.202101269&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cssc_202101269 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |