Modulating Supramolecular Charge‐Transfer Interactions in the Solid State using Compressible Macrocyclic Hosts

Modulating intermolecular charge‐transfer (ICT) interactions between specific donor and acceptor species in host–guest systems is a big challenge and full of research value in supramolecular chemistry and materials science. In this work, a strategy to modulate the supramolecular ICT interactions in...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 43; pp. e202210579 - n/a
Main Authors Wu, Jia‐Rui, Li, Dongxia, Wu, Gengxin, Li, Meng‐Hao, Yang, Ying‐Wei
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 24.10.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modulating intermolecular charge‐transfer (ICT) interactions between specific donor and acceptor species in host–guest systems is a big challenge and full of research value in supramolecular chemistry and materials science. In this work, a strategy to modulate the supramolecular ICT interactions in the solid state is developed by compressing the binding cavity of a macrocyclic host named perethylated leaning pillar[6]arene (p‐EtLP6). The solid‐state ICT affinities of p‐EtLP6 toward multi‐types of electron‐deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para‐bridged mode into a hybrid para‐ and meta‐bridged isomeric form (m‐EtLP6). X‐ray single‐crystal structural analyses incorporating theoretical calculation demonstrate that the improved ICT affinities are mainly attributed to the superior host–guest size fit arising from the compressed binding cavity in m‐EtLP6 as compared with p‐EtLP6. A cavity compressing strategy is proposed to modulate the macrocyclic host–guest charge‐transfer (CT) interactions. The solid‐state CT affinities of perethylated leaning pillar[6]arene toward various electron‐deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para‐bridged mode into a hybrid para‐ and meta‐bridged isomeric form.
AbstractList Modulating intermolecular charge-transfer (ICT) interactions between specific donor and acceptor species in host-guest systems is a big challenge and full of research value in supramolecular chemistry and materials science. In this work, a strategy to modulate the supramolecular ICT interactions in the solid state is developed by compressing the binding cavity of a macrocyclic host named perethylated leaning pillar[6]arene (p-EtLP6). The solid-state ICT affinities of p-EtLP6 toward multi-types of electron-deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para-bridged mode into a hybrid para- and meta-bridged isomeric form (m-EtLP6). X-ray single-crystal structural analyses incorporating theoretical calculation demonstrate that the improved ICT affinities are mainly attributed to the superior host-guest size fit arising from the compressed binding cavity in m-EtLP6 as compared with p-EtLP6.Modulating intermolecular charge-transfer (ICT) interactions between specific donor and acceptor species in host-guest systems is a big challenge and full of research value in supramolecular chemistry and materials science. In this work, a strategy to modulate the supramolecular ICT interactions in the solid state is developed by compressing the binding cavity of a macrocyclic host named perethylated leaning pillar[6]arene (p-EtLP6). The solid-state ICT affinities of p-EtLP6 toward multi-types of electron-deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para-bridged mode into a hybrid para- and meta-bridged isomeric form (m-EtLP6). X-ray single-crystal structural analyses incorporating theoretical calculation demonstrate that the improved ICT affinities are mainly attributed to the superior host-guest size fit arising from the compressed binding cavity in m-EtLP6 as compared with p-EtLP6.
Modulating intermolecular charge‐transfer (ICT) interactions between specific donor and acceptor species in host–guest systems is a big challenge and full of research value in supramolecular chemistry and materials science. In this work, a strategy to modulate the supramolecular ICT interactions in the solid state is developed by compressing the binding cavity of a macrocyclic host named perethylated leaning pillar[6]arene (p‐EtLP6). The solid‐state ICT affinities of p‐EtLP6 toward multi‐types of electron‐deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para‐bridged mode into a hybrid para‐ and meta‐bridged isomeric form (m‐EtLP6). X‐ray single‐crystal structural analyses incorporating theoretical calculation demonstrate that the improved ICT affinities are mainly attributed to the superior host–guest size fit arising from the compressed binding cavity in m‐EtLP6 as compared with p‐EtLP6.
Modulating intermolecular charge‐transfer (ICT) interactions between specific donor and acceptor species in host–guest systems is a big challenge and full of research value in supramolecular chemistry and materials science. In this work, a strategy to modulate the supramolecular ICT interactions in the solid state is developed by compressing the binding cavity of a macrocyclic host named perethylated leaning pillar[6]arene (p‐EtLP6). The solid‐state ICT affinities of p‐EtLP6 toward multi‐types of electron‐deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para‐bridged mode into a hybrid para‐ and meta‐bridged isomeric form (m‐EtLP6). X‐ray single‐crystal structural analyses incorporating theoretical calculation demonstrate that the improved ICT affinities are mainly attributed to the superior host–guest size fit arising from the compressed binding cavity in m‐EtLP6 as compared with p‐EtLP6. A cavity compressing strategy is proposed to modulate the macrocyclic host–guest charge‐transfer (CT) interactions. The solid‐state CT affinities of perethylated leaning pillar[6]arene toward various electron‐deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para‐bridged mode into a hybrid para‐ and meta‐bridged isomeric form.
Modulating intermolecular charge‐transfer (ICT) interactions between specific donor and acceptor species in host–guest systems is a big challenge and full of research value in supramolecular chemistry and materials science. In this work, a strategy to modulate the supramolecular ICT interactions in the solid state is developed by compressing the binding cavity of a macrocyclic host named perethylated leaning pillar[6]arene ( p‐ EtLP6 ). The solid‐state ICT affinities of p‐ EtLP6 toward multi‐types of electron‐deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para ‐bridged mode into a hybrid para ‐ and meta ‐bridged isomeric form ( m ‐EtLP6 ). X‐ray single‐crystal structural analyses incorporating theoretical calculation demonstrate that the improved ICT affinities are mainly attributed to the superior host–guest size fit arising from the compressed binding cavity in m ‐EtLP6 as compared with p‐ EtLP6 .
Author Wu, Gengxin
Wu, Jia‐Rui
Yang, Ying‐Wei
Li, Meng‐Hao
Li, Dongxia
Author_xml – sequence: 1
  givenname: Jia‐Rui
  surname: Wu
  fullname: Wu, Jia‐Rui
  organization: Jilin University
– sequence: 2
  givenname: Dongxia
  surname: Li
  fullname: Li, Dongxia
  organization: Jilin University
– sequence: 3
  givenname: Gengxin
  surname: Wu
  fullname: Wu, Gengxin
  organization: Jilin University
– sequence: 4
  givenname: Meng‐Hao
  surname: Li
  fullname: Li, Meng‐Hao
  organization: Jilin University
– sequence: 5
  givenname: Ying‐Wei
  orcidid: 0000-0001-8839-8161
  surname: Yang
  fullname: Yang, Ying‐Wei
  email: ywyang@jlu.edu.cn
  organization: Jilin University
BookMark eNqFkb9qHDEQh0VwILaTNrUgTZo9689qtSrN4cQHdlycXS867ciW0UkbSUu4zo-QZ8yTRMcZBwzBlQbxfcPM_E7QUYgBEPpMyYISws50cLBghDFKhFTv0DEVjDZcSn5U65bzRvaCfkAnOT9Wvu9Jd4ym6zjOXhcX7vF6npLeRg-m_iS8fNDpHv48_b5NOmQLCa9CgaRNcTFk7AIuD4DX0bsRr4sugOe8b7OM2ylBzm7jAV9rk6LZGe8Mvoy55I_ovdU-w6fn9xTdfbu4XV42VzffV8vzq8ZwQVRDQTPQUtMOqOhaSwUoSdqx31ir2rGz_bhpqWZ8VKpnglrTG9FZpmRLNtyM_BR9PfSdUvw5Qy7D1mUD3usAcc4Dk5T2LaGdquiXV-hjnFOo01WKCUlJJ3ml2gNVF8o5gR2Mq1vXW5SknR8oGfYxDPsYhpcYqrZ4pU3JbXXa_V9QB-GX87B7gx7Of6wu_rl_Aa7cn1w
CitedBy_id crossref_primary_10_1002_chem_202300990
crossref_primary_10_1002_adom_202400619
crossref_primary_10_1039_D4CC02698E
crossref_primary_10_1039_D4NJ02859G
crossref_primary_10_1002_ange_202218142
crossref_primary_10_1016_j_ccr_2024_215762
crossref_primary_10_1002_adma_202420486
crossref_primary_10_1002_adma_202309130
crossref_primary_10_1039_D4QO00364K
crossref_primary_10_1126_sciadv_adh8917
crossref_primary_10_1039_D4CS00654B
crossref_primary_10_1039_D5SC00075K
crossref_primary_10_1002_anie_202305214
crossref_primary_10_1002_anie_202412790
crossref_primary_10_1002_anie_202218142
crossref_primary_10_1039_D3NJ05714C
crossref_primary_10_1021_jacs_2c11618
crossref_primary_10_1016_j_dyepig_2024_112158
crossref_primary_10_1038_s41467_024_45592_6
crossref_primary_10_1039_D5CC00627A
crossref_primary_10_1007_s11426_023_1807_3
crossref_primary_10_1002_chem_202400305
crossref_primary_10_1021_acsmaterialslett_3c01250
crossref_primary_10_1002_ange_202305214
crossref_primary_10_3390_molecules29030719
crossref_primary_10_1039_D3CC04196D
crossref_primary_10_1038_s41467_023_41713_9
crossref_primary_10_1039_D3QI01417G
crossref_primary_10_1002_ange_202412790
Cites_doi 10.1038/nature11395
10.1002/ange.201503542
10.1021/ar400264e
10.1002/ange.202002467
10.1021/ja0533996
10.1021/jacs.0c11833
10.1021/acs.accounts.8b00255
10.1002/ange.202117872
10.1021/jacs.8b13889
10.1002/anie.201911965
10.1021/jacs.0c05339
10.1021/acsanm.2c00161
10.1016/j.ccr.2022.214503
10.1021/acs.chemrev.9b00532
10.1002/anie.202013701
10.1021/cr030652g
10.1002/ange.201307756
10.1002/ange.202006999
10.1021/jacs.9b03559
10.1002/anie.201805980
10.1021/jacs.7b09176
10.1002/anie.202006999
10.1002/ange.202015162
10.1002/anie.202202381
10.1002/anie.202104145
10.1002/ange.202013701
10.1002/ange.202204589
10.1021/jacs.9b08758
10.1021/cm300416y
10.1002/anie.202117872
10.1002/adma.201904824
10.1002/ange.201704435
10.1002/ange.201911965
10.1021/jacs.7b00873
10.1038/nmat1298
10.1038/s41467-021-26729-3
10.1002/anie.202015162
10.1039/C6CC03999E
10.1002/ange.202104145
10.1021/acs.accounts.0c00445
10.1021/jacs.7b00631
10.1002/ange.202010802
10.1021/jacs.0c11037
10.1021/acsami.1c22583
10.1039/C6SC02640K
10.1021/acs.accounts.7b00124
10.1002/anie.201704435
10.1021/jacs.1c10139
10.1039/D0CS00109K
10.1002/adma.201601675
10.1002/anie.201503542
10.1021/jacs.7b02279
10.1016/j.chempr.2022.04.001
10.1002/anie.202002467
10.1021/jacs.1c01493
10.1039/B615103E
10.1039/C9CS00098D
10.1002/ange.202202381
10.1126/sciadv.abo2255
10.1002/anie.202204589
10.1002/anie.201307756
10.1021/jacs.1c02594
10.1002/ange.201805980
10.1039/C5CC06801K
10.1002/anie.202010802
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202210579
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202210579
ANIE202210579
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52173200, 21871108
– fundername: Postdoctoral Research Foundation of China
  funderid: BX2021112
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3509-1ea2ea7a16e1564f15e9704d8bff94d6f8db41a23d998251fc8c56f29740b3cd3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 10:52:00 EDT 2025
Fri Jul 25 10:38:25 EDT 2025
Tue Jul 01 01:18:28 EDT 2025
Thu Apr 24 23:07:52 EDT 2025
Wed Jan 22 16:22:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3509-1ea2ea7a16e1564f15e9704d8bff94d6f8db41a23d998251fc8c56f29740b3cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8839-8161
PQID 2725710673
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2711840169
proquest_journals_2725710673
crossref_citationtrail_10_1002_anie_202210579
crossref_primary_10_1002_anie_202210579
wiley_primary_10_1002_anie_202210579_ANIE202210579
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 24, 2022
PublicationDateYYYYMMDD 2022-10-24
PublicationDate_xml – month: 10
  year: 2022
  text: October 24, 2022
  day: 24
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2017; 8
2004; 104
2020; 120
2020; 142
2015; 51
2020 2020; 59 132
2014; 47
2007
2016; 52
2021; 143
2017 2017; 56 129
2020; 32
2012; 488
2019; 141
2017; 139
2017; 50
2022 2022; 61 134
2022; 462
2021; 12
2020; 53
2022
2018 2018; 57 130
2022; 8
2005; 127
2005; 4
2020; 49
2021 2021; 60 133
2022; 14
2015 2015; 54 127
2018; 51
2016; 28
2012; 24
e_1_2_7_5_2
(e_1_2_7_15_3) 2022; 134
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_60_3
e_1_2_7_62_1
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_66_2
e_1_2_7_45_3
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_23_1
e_1_2_7_31_3
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_54_3
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_35_3
e_1_2_7_37_1
e_1_2_7_58_3
e_1_2_7_39_2
(e_1_2_7_49_3) 2022; 134
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_18_2
e_1_2_7_61_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_14_2
e_1_2_7_63_2
e_1_2_7_61_3
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_1
e_1_2_7_44_2
e_1_2_7_10_1
e_1_2_7_46_2
e_1_2_7_27_1
e_1_2_7_48_2
e_1_2_7_29_2
(e_1_2_7_26_3) 2022; 134
e_1_2_7_24_3
e_1_2_7_53_1
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_32_1
e_1_2_7_22_2
e_1_2_7_20_3
e_1_2_7_57_1
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_59_3
e_1_2_7_38_2
e_1_2_7_59_2
e_1_2_7_38_3
References_xml – volume: 28
  start-page: 6976
  year: 2016
  end-page: 6983
  publication-title: Adv. Mater.
– volume: 141
  start-page: 17783
  year: 2019
  end-page: 17795
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 2336
  year: 2020
  end-page: 2346
  publication-title: Acc. Chem. Res.
– volume: 4
  start-page: 163
  year: 2005
  end-page: 166
  publication-title: Nat. Mater.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 50
  start-page: 1654
  year: 2017
  end-page: 1662
  publication-title: Acc. Chem. Res.
– volume: 49
  start-page: 3834
  year: 2020
  end-page: 3862
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 1517
  year: 2020
  end-page: 1544
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 2064
  year: 2018
  end-page: 2072
  publication-title: Acc. Chem. Res.
– volume: 141
  start-page: 12280
  year: 2019
  end-page: 12287
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 1553
  year: 2021
  end-page: 1561
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 9468
  year: 2021
  end-page: 9477
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 6378
  year: 2021
  publication-title: Nat. Commun.
– volume: 60 133
  start-page: 1690 1714
  year: 2021 2021
  end-page: 1701 1725
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 2136
  year: 2022
  end-page: 2147
  publication-title: Chem
– volume: 462
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 51
  start-page: 16361
  year: 2015
  end-page: 16364
  publication-title: Chem. Commun.
– volume: 53 126
  start-page: 2038 2068
  year: 2014 2014
  end-page: 2054 2084
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 4894
  year: 2017
  end-page: 4900
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 5664
  year: 2017
  end-page: 5667
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 9858
  year: 2016
  end-page: 9872
  publication-title: Chem. Commun.
– volume: 139
  start-page: 15239
  year: 2017
  end-page: 15244
  publication-title: J. Am. Chem. Soc.
– volume: 104
  start-page: 5565
  year: 2004
  end-page: 5592
  publication-title: Chem. Rev.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 22012 22196
  year: 2020 2020
  end-page: 22016 22200
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 24
  start-page: 1518
  year: 2012
  end-page: 1528
  publication-title: Chem. Mater.
– volume: 141
  start-page: 5359
  year: 2019
  end-page: 5368
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 16866
  year: 2005
  end-page: 16881
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 8818 8944
  year: 2017 2017
  end-page: 8822 8948
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 16585 16721
  year: 2021 2021
  end-page: 16593 16729
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 143
  start-page: 20395
  year: 2021
  end-page: 20402
  publication-title: J. Am. Chem. Soc.
– volume: 488
  start-page: 485
  year: 2012
  end-page: 489
  publication-title: Nature
– volume: 60 133
  start-page: 8115 8196
  year: 2021 2021
  end-page: 8120 8201
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 6810
  year: 2022
  end-page: 6817
  publication-title: ACS Appl. Mater. Interfaces
– volume: 142
  start-page: 12596
  year: 2020
  end-page: 12601
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 6314 6374
  year: 2020 2020
  end-page: 6316 6376
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 9186
  year: 2017
  end-page: 9191
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 20892
  year: 2020
  end-page: 20901
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 10165 10303
  year: 2015 2015
  end-page: 10168 10306
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 120
  start-page: 2879
  year: 2020
  end-page: 2949
  publication-title: Chem. Rev.
– volume: 59 132
  start-page: 2251 2271
  year: 2020 2020
  end-page: 2255 2275
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 60 133
  start-page: 8967 9049
  year: 2021 2021
  end-page: 8975 9057
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 9853 10001
  year: 2018 2018
  end-page: 9858 10006
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47
  start-page: 1186
  year: 2014
  end-page: 1198
  publication-title: Acc. Chem. Res.
– volume: 143
  start-page: 8000
  year: 2021
  end-page: 8010
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1040
  year: 2017
  end-page: 1045
  publication-title: Chem. Sci.
– start-page: 1305
  year: 2007
  end-page: 1315
  publication-title: Chem. Commun.
– year: 2022
  publication-title: ACS Appl. Nano Mater.
– ident: e_1_2_7_8_2
  doi: 10.1038/nature11395
– ident: e_1_2_7_54_3
  doi: 10.1002/ange.201503542
– ident: e_1_2_7_29_2
  doi: 10.1021/ar400264e
– ident: e_1_2_7_61_3
  doi: 10.1002/ange.202002467
– ident: e_1_2_7_3_2
  doi: 10.1021/ja0533996
– ident: e_1_2_7_21_2
  doi: 10.1021/jacs.0c11833
– ident: e_1_2_7_41_2
  doi: 10.1021/acs.accounts.8b00255
– volume: 134
  start-page: e202117872
  year: 2022
  ident: e_1_2_7_26_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202117872
– ident: e_1_2_7_30_2
  doi: 10.1021/jacs.8b13889
– ident: e_1_2_7_59_2
  doi: 10.1002/anie.201911965
– ident: e_1_2_7_13_2
  doi: 10.1021/jacs.0c05339
– ident: e_1_2_7_25_2
  doi: 10.1021/acsanm.2c00161
– ident: e_1_2_7_47_2
  doi: 10.1016/j.ccr.2022.214503
– ident: e_1_2_7_5_2
  doi: 10.1021/acs.chemrev.9b00532
– ident: e_1_2_7_20_2
  doi: 10.1002/anie.202013701
– ident: e_1_2_7_2_2
  doi: 10.1021/cr030652g
– ident: e_1_2_7_38_3
  doi: 10.1002/ange.201307756
– ident: e_1_2_7_45_3
  doi: 10.1002/ange.202006999
– ident: e_1_2_7_42_2
  doi: 10.1021/jacs.9b03559
– ident: e_1_2_7_58_2
  doi: 10.1002/anie.201805980
– ident: e_1_2_7_18_2
  doi: 10.1021/jacs.7b09176
– ident: e_1_2_7_45_2
  doi: 10.1002/anie.202006999
– ident: e_1_2_7_10_1
– ident: e_1_2_7_16_1
– ident: e_1_2_7_60_3
  doi: 10.1002/ange.202015162
– ident: e_1_2_7_15_2
  doi: 10.1002/anie.202202381
– ident: e_1_2_7_31_2
  doi: 10.1002/anie.202104145
– ident: e_1_2_7_27_1
– ident: e_1_2_7_32_1
– ident: e_1_2_7_20_3
  doi: 10.1002/ange.202013701
– volume: 134
  start-page: e202204589
  year: 2022
  ident: e_1_2_7_49_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202204589
– ident: e_1_2_7_33_2
  doi: 10.1021/jacs.9b08758
– ident: e_1_2_7_28_2
  doi: 10.1021/cm300416y
– ident: e_1_2_7_26_2
  doi: 10.1002/anie.202117872
– ident: e_1_2_7_43_2
  doi: 10.1002/adma.201904824
– ident: e_1_2_7_57_1
– ident: e_1_2_7_65_1
– ident: e_1_2_7_24_3
  doi: 10.1002/ange.201704435
– ident: e_1_2_7_59_3
  doi: 10.1002/ange.201911965
– ident: e_1_2_7_12_2
  doi: 10.1021/jacs.7b00873
– ident: e_1_2_7_37_1
– ident: e_1_2_7_7_2
  doi: 10.1038/nmat1298
– ident: e_1_2_7_56_2
  doi: 10.1038/s41467-021-26729-3
– ident: e_1_2_7_66_2
– ident: e_1_2_7_62_1
– ident: e_1_2_7_60_2
  doi: 10.1002/anie.202015162
– ident: e_1_2_7_64_2
  doi: 10.1039/C6CC03999E
– ident: e_1_2_7_31_3
  doi: 10.1002/ange.202104145
– ident: e_1_2_7_55_2
  doi: 10.1021/acs.accounts.0c00445
– ident: e_1_2_7_17_2
  doi: 10.1021/jacs.7b00631
– ident: e_1_2_7_40_1
– ident: e_1_2_7_35_3
  doi: 10.1002/ange.202010802
– ident: e_1_2_7_34_2
  doi: 10.1021/jacs.0c11037
– ident: e_1_2_7_22_2
  doi: 10.1021/acsami.1c22583
– ident: e_1_2_7_39_2
  doi: 10.1039/C6SC02640K
– ident: e_1_2_7_4_2
  doi: 10.1021/acs.accounts.7b00124
– ident: e_1_2_7_1_1
– ident: e_1_2_7_24_2
  doi: 10.1002/anie.201704435
– ident: e_1_2_7_46_2
  doi: 10.1021/jacs.1c10139
– ident: e_1_2_7_52_2
  doi: 10.1039/D0CS00109K
– ident: e_1_2_7_11_2
  doi: 10.1002/adma.201601675
– ident: e_1_2_7_54_2
  doi: 10.1002/anie.201503542
– ident: e_1_2_7_9_2
  doi: 10.1021/jacs.7b02279
– ident: e_1_2_7_48_2
  doi: 10.1016/j.chempr.2022.04.001
– ident: e_1_2_7_61_2
  doi: 10.1002/anie.202002467
– ident: e_1_2_7_14_2
  doi: 10.1021/jacs.1c01493
– ident: e_1_2_7_51_2
  doi: 10.1039/B615103E
– ident: e_1_2_7_53_1
– ident: e_1_2_7_6_1
– ident: e_1_2_7_19_2
  doi: 10.1039/C9CS00098D
– volume: 134
  start-page: e202202381
  year: 2022
  ident: e_1_2_7_15_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202202381
– ident: e_1_2_7_50_1
– ident: e_1_2_7_44_2
  doi: 10.1126/sciadv.abo2255
– ident: e_1_2_7_49_2
  doi: 10.1002/anie.202204589
– ident: e_1_2_7_38_2
  doi: 10.1002/anie.201307756
– ident: e_1_2_7_23_1
– ident: e_1_2_7_36_2
  doi: 10.1021/jacs.1c02594
– ident: e_1_2_7_58_3
  doi: 10.1002/ange.201805980
– ident: e_1_2_7_63_2
  doi: 10.1039/C5CC06801K
– ident: e_1_2_7_35_2
  doi: 10.1002/anie.202010802
SSID ssj0028806
Score 2.5128953
Snippet Modulating intermolecular charge‐transfer (ICT) interactions between specific donor and acceptor species in host–guest systems is a big challenge and full of...
Modulating intermolecular charge-transfer (ICT) interactions between specific donor and acceptor species in host-guest systems is a big challenge and full of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202210579
SubjectTerms Affinity
Binding
Charge transfer
Co-Crystals
Compressibility
Crystal structure
Host–Guest Chemistry
Intermolecular Charge-Transfer
Macrocycles
Materials science
Solid state
Superstructures
Supramolecular compounds
Title Modulating Supramolecular Charge‐Transfer Interactions in the Solid State using Compressible Macrocyclic Hosts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202210579
https://www.proquest.com/docview/2725710673
https://www.proquest.com/docview/2711840169
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqKwieos3uJmmOIi1VqAcf4C3sY1KKNSlNe9CTP8Hf6C9xZ9PEB4igt4RsXrOzOzO7M99HyFFgWCAZ0qQGofBEDODFbfC9WEfgC2NazGA1cv8q7N2Jy_vg_lMVf4kPUS-44chw8zUOcKmK0w_QUKzAtvEdY8hUixV8mLCFXtF1jR_FrHKW5UWce8hCX6E2ttjp19u_WqUPV_Ozw-osTneVyOpby0STh5PZVJ3o528wjv_5mTWyMndH6VmpP-tkAbINsnRescBtknE_N47hKxvQm9l4Ih8rPl2KO_UDeHt5dfYuhQl1y4tlpURBhxm1ziW9yUdDQ51PSzHJfkBxCnLZt2oEtC-tRPSTHg017eXFtNgid93O7XnPm7M0eJoHyKUAkoGMpB8CAs-kfgBx1BKmrdI0FiZM20YJXzJubGRnvalUt3UQpswGMi3FteHbZDHLM9ghNIik8YXSmqVgjauMrX7xECJuVKxVJBvEq3op0XMIc2TSGCUl-DJLUI5JLccGOa7bj0vwjh9bNqtOT-aDuEhYZOczhNjjDXJYX7byxz0VmUE-wzY-xsh-aB_BXA__8qbk7OqiU5_t_uWmPbKMx2hBmWiSxelkBvvWNZqqA6f-7wwUCME
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigXKH_qQgtGAnFKu7GdZHPooeqPdml3D7SVeguOPVmtWJLVZleonHgEXqWvwiPwJHicn1IkhITUA8ckjpN4ZuzPjuf7AF4HhgeKk0xqEEpPxohe3EPfi3WEvjSmyw1lIw9HYf9cvrsILlbgqsmFqfgh2gU3igzXX1OA04L0zjVrKKVg2wke5yRVG9f7Ko_x8rOdtZW7gwNr4jecHx2e7fe9WljA0yIg-n9UHFWk_BCJKyXzA4yjrjS9NMtiacKsZ1LpKy6MnYxYAJDpng7CjFvs3U2FNsLWewfukow40fUfvG8Zq7gNhyqhSQiPdO8bnsgu37n5vjfHwWtw-ytEdmPc0QP43rROtbXl4_ZykW7rL78RR_5XzbcO92vEzfaqEHkIK5g_grX9RujuMcyGhXEiZvmYnS5nc_WpkQxmtBlhjD--fnNDeoZz5lZQq2SQkk1yZvEzOy2mE8McbGeURzBm1Mu6DcbpFNlQWRPoSz2daNYvykX5BM5v5YOfwmpe5LgBLIiU8WWqNc_Q4gcV2xASIUbCpLFOI9UBr3GLRNcs7SQWMk0qfmmekN2S1m4deNuWn1X8JH8sudl4WVL3U2XCI9tlE4ug6MCr9rJtf_ptpHIsllTGp2UAP7RVcOdSf3lSsjcaHLZHz_7lppew1j8bniQng9Hxc7hH5wkwcLkJq4v5ErcsElykL1zsMfhw2976EzErZsE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4amwS7gfEnOgYYCcRVtsR2kvqCi2ld1TJaIcak3QXHdqpqXVI1rdC44hF4FF6FV-BJ8HF-xpAQEtIuuEziOImPj_3ZOef7AF6EmoaSokxqGHGPC2M80TWBJ1RsAq61TzVmI4_G0eCEvzkNT9fgW5MLU_FDtBtu6BluvEYHn-ts75I0FDOw7fqOUlSqFXVY5ZG5-GQXbeXrYc9a-CWl_cMPBwOv1hXwFAuR_d9IamQsg8ggVUoWhEbEPtfdNMsE11HW1SkPJGXarkXs_J-prgqjjFro7adMaWbrvQEbPPIFikX03reEVdR6Q5XPxJiHsvcNTaRP966-79Vp8BLb_oqQ3RTXvwPfm8apIlvOdlfLdFd9_o038n9qvS24XeNtsl85yF1YM_k9uHXQyNzdh_mo0E7CLJ-Q49V8Ic8bwWCCoQgT8-PLVzehZ2ZB3P5plQpSkmlOLHomx8VsqokD7QSzCCYEx1gXXpzODBlJawF1oWZTRQZFuSwfwMm1fPBDWM-L3DwCEsZSBzxVimbGogcprAOxyMRMp0KlseyA1_SKRNUc7SgVMksqdmmaoN2S1m4deNWWn1fsJH8sudN0sqQepcqExnbARg5B1oHn7WXb_vjTSOamWGGZADcBgshWQV2P-suTkv3x8LA92v6Xm57BzXe9fvJ2OD56DJt4GtEC5TuwvlyszBMLA5fpU-d5BD5ed2f9CX8MZXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+Supramolecular+Charge-Transfer+Interactions+in+the+Solid+State+using+Compressible+Macrocyclic+Hosts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Jia-Rui&rft.au=Li%2C+Dongxia&rft.au=Wu%2C+Gengxin&rft.au=Li%2C+Meng-Hao&rft.date=2022-10-24&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=43&rft.spage=e202210579&rft_id=info:doi/10.1002%2Fanie.202210579&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon