Modulating Supramolecular Charge‐Transfer Interactions in the Solid State using Compressible Macrocyclic Hosts
Modulating intermolecular charge‐transfer (ICT) interactions between specific donor and acceptor species in host–guest systems is a big challenge and full of research value in supramolecular chemistry and materials science. In this work, a strategy to modulate the supramolecular ICT interactions in...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 43; pp. e202210579 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
24.10.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modulating intermolecular charge‐transfer (ICT) interactions between specific donor and acceptor species in host–guest systems is a big challenge and full of research value in supramolecular chemistry and materials science. In this work, a strategy to modulate the supramolecular ICT interactions in the solid state is developed by compressing the binding cavity of a macrocyclic host named perethylated leaning pillar[6]arene (p‐EtLP6). The solid‐state ICT affinities of p‐EtLP6 toward multi‐types of electron‐deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para‐bridged mode into a hybrid para‐ and meta‐bridged isomeric form (m‐EtLP6). X‐ray single‐crystal structural analyses incorporating theoretical calculation demonstrate that the improved ICT affinities are mainly attributed to the superior host–guest size fit arising from the compressed binding cavity in m‐EtLP6 as compared with p‐EtLP6.
A cavity compressing strategy is proposed to modulate the macrocyclic host–guest charge‐transfer (CT) interactions. The solid‐state CT affinities of perethylated leaning pillar[6]arene toward various electron‐deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para‐bridged mode into a hybrid para‐ and meta‐bridged isomeric form. |
---|---|
AbstractList | Modulating intermolecular charge-transfer (ICT) interactions between specific donor and acceptor species in host-guest systems is a big challenge and full of research value in supramolecular chemistry and materials science. In this work, a strategy to modulate the supramolecular ICT interactions in the solid state is developed by compressing the binding cavity of a macrocyclic host named perethylated leaning pillar[6]arene (p-EtLP6). The solid-state ICT affinities of p-EtLP6 toward multi-types of electron-deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para-bridged mode into a hybrid para- and meta-bridged isomeric form (m-EtLP6). X-ray single-crystal structural analyses incorporating theoretical calculation demonstrate that the improved ICT affinities are mainly attributed to the superior host-guest size fit arising from the compressed binding cavity in m-EtLP6 as compared with p-EtLP6.Modulating intermolecular charge-transfer (ICT) interactions between specific donor and acceptor species in host-guest systems is a big challenge and full of research value in supramolecular chemistry and materials science. In this work, a strategy to modulate the supramolecular ICT interactions in the solid state is developed by compressing the binding cavity of a macrocyclic host named perethylated leaning pillar[6]arene (p-EtLP6). The solid-state ICT affinities of p-EtLP6 toward multi-types of electron-deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para-bridged mode into a hybrid para- and meta-bridged isomeric form (m-EtLP6). X-ray single-crystal structural analyses incorporating theoretical calculation demonstrate that the improved ICT affinities are mainly attributed to the superior host-guest size fit arising from the compressed binding cavity in m-EtLP6 as compared with p-EtLP6. Modulating intermolecular charge‐transfer (ICT) interactions between specific donor and acceptor species in host–guest systems is a big challenge and full of research value in supramolecular chemistry and materials science. In this work, a strategy to modulate the supramolecular ICT interactions in the solid state is developed by compressing the binding cavity of a macrocyclic host named perethylated leaning pillar[6]arene (p‐EtLP6). The solid‐state ICT affinities of p‐EtLP6 toward multi‐types of electron‐deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para‐bridged mode into a hybrid para‐ and meta‐bridged isomeric form (m‐EtLP6). X‐ray single‐crystal structural analyses incorporating theoretical calculation demonstrate that the improved ICT affinities are mainly attributed to the superior host–guest size fit arising from the compressed binding cavity in m‐EtLP6 as compared with p‐EtLP6. Modulating intermolecular charge‐transfer (ICT) interactions between specific donor and acceptor species in host–guest systems is a big challenge and full of research value in supramolecular chemistry and materials science. In this work, a strategy to modulate the supramolecular ICT interactions in the solid state is developed by compressing the binding cavity of a macrocyclic host named perethylated leaning pillar[6]arene (p‐EtLP6). The solid‐state ICT affinities of p‐EtLP6 toward multi‐types of electron‐deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para‐bridged mode into a hybrid para‐ and meta‐bridged isomeric form (m‐EtLP6). X‐ray single‐crystal structural analyses incorporating theoretical calculation demonstrate that the improved ICT affinities are mainly attributed to the superior host–guest size fit arising from the compressed binding cavity in m‐EtLP6 as compared with p‐EtLP6. A cavity compressing strategy is proposed to modulate the macrocyclic host–guest charge‐transfer (CT) interactions. The solid‐state CT affinities of perethylated leaning pillar[6]arene toward various electron‐deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para‐bridged mode into a hybrid para‐ and meta‐bridged isomeric form. Modulating intermolecular charge‐transfer (ICT) interactions between specific donor and acceptor species in host–guest systems is a big challenge and full of research value in supramolecular chemistry and materials science. In this work, a strategy to modulate the supramolecular ICT interactions in the solid state is developed by compressing the binding cavity of a macrocyclic host named perethylated leaning pillar[6]arene ( p‐ EtLP6 ). The solid‐state ICT affinities of p‐ EtLP6 toward multi‐types of electron‐deficient planar guests could be significantly enhanced by transforming the macrocyclic backbone from the original para ‐bridged mode into a hybrid para ‐ and meta ‐bridged isomeric form ( m ‐EtLP6 ). X‐ray single‐crystal structural analyses incorporating theoretical calculation demonstrate that the improved ICT affinities are mainly attributed to the superior host–guest size fit arising from the compressed binding cavity in m ‐EtLP6 as compared with p‐ EtLP6 . |
Author | Wu, Gengxin Wu, Jia‐Rui Yang, Ying‐Wei Li, Meng‐Hao Li, Dongxia |
Author_xml | – sequence: 1 givenname: Jia‐Rui surname: Wu fullname: Wu, Jia‐Rui organization: Jilin University – sequence: 2 givenname: Dongxia surname: Li fullname: Li, Dongxia organization: Jilin University – sequence: 3 givenname: Gengxin surname: Wu fullname: Wu, Gengxin organization: Jilin University – sequence: 4 givenname: Meng‐Hao surname: Li fullname: Li, Meng‐Hao organization: Jilin University – sequence: 5 givenname: Ying‐Wei orcidid: 0000-0001-8839-8161 surname: Yang fullname: Yang, Ying‐Wei email: ywyang@jlu.edu.cn organization: Jilin University |
BookMark | eNqFkb9qHDEQh0VwILaTNrUgTZo9689qtSrN4cQHdlycXS867ciW0UkbSUu4zo-QZ8yTRMcZBwzBlQbxfcPM_E7QUYgBEPpMyYISws50cLBghDFKhFTv0DEVjDZcSn5U65bzRvaCfkAnOT9Wvu9Jd4ym6zjOXhcX7vF6npLeRg-m_iS8fNDpHv48_b5NOmQLCa9CgaRNcTFk7AIuD4DX0bsRr4sugOe8b7OM2ylBzm7jAV9rk6LZGe8Mvoy55I_ovdU-w6fn9xTdfbu4XV42VzffV8vzq8ZwQVRDQTPQUtMOqOhaSwUoSdqx31ir2rGz_bhpqWZ8VKpnglrTG9FZpmRLNtyM_BR9PfSdUvw5Qy7D1mUD3usAcc4Dk5T2LaGdquiXV-hjnFOo01WKCUlJJ3ml2gNVF8o5gR2Mq1vXW5SknR8oGfYxDPsYhpcYqrZ4pU3JbXXa_V9QB-GX87B7gx7Of6wu_rl_Aa7cn1w |
CitedBy_id | crossref_primary_10_1002_chem_202300990 crossref_primary_10_1002_adom_202400619 crossref_primary_10_1039_D4CC02698E crossref_primary_10_1039_D4NJ02859G crossref_primary_10_1002_ange_202218142 crossref_primary_10_1016_j_ccr_2024_215762 crossref_primary_10_1002_adma_202420486 crossref_primary_10_1002_adma_202309130 crossref_primary_10_1039_D4QO00364K crossref_primary_10_1126_sciadv_adh8917 crossref_primary_10_1039_D4CS00654B crossref_primary_10_1039_D5SC00075K crossref_primary_10_1002_anie_202305214 crossref_primary_10_1002_anie_202412790 crossref_primary_10_1002_anie_202218142 crossref_primary_10_1039_D3NJ05714C crossref_primary_10_1021_jacs_2c11618 crossref_primary_10_1016_j_dyepig_2024_112158 crossref_primary_10_1038_s41467_024_45592_6 crossref_primary_10_1039_D5CC00627A crossref_primary_10_1007_s11426_023_1807_3 crossref_primary_10_1002_chem_202400305 crossref_primary_10_1021_acsmaterialslett_3c01250 crossref_primary_10_1002_ange_202305214 crossref_primary_10_3390_molecules29030719 crossref_primary_10_1039_D3CC04196D crossref_primary_10_1038_s41467_023_41713_9 crossref_primary_10_1039_D3QI01417G crossref_primary_10_1002_ange_202412790 |
Cites_doi | 10.1038/nature11395 10.1002/ange.201503542 10.1021/ar400264e 10.1002/ange.202002467 10.1021/ja0533996 10.1021/jacs.0c11833 10.1021/acs.accounts.8b00255 10.1002/ange.202117872 10.1021/jacs.8b13889 10.1002/anie.201911965 10.1021/jacs.0c05339 10.1021/acsanm.2c00161 10.1016/j.ccr.2022.214503 10.1021/acs.chemrev.9b00532 10.1002/anie.202013701 10.1021/cr030652g 10.1002/ange.201307756 10.1002/ange.202006999 10.1021/jacs.9b03559 10.1002/anie.201805980 10.1021/jacs.7b09176 10.1002/anie.202006999 10.1002/ange.202015162 10.1002/anie.202202381 10.1002/anie.202104145 10.1002/ange.202013701 10.1002/ange.202204589 10.1021/jacs.9b08758 10.1021/cm300416y 10.1002/anie.202117872 10.1002/adma.201904824 10.1002/ange.201704435 10.1002/ange.201911965 10.1021/jacs.7b00873 10.1038/nmat1298 10.1038/s41467-021-26729-3 10.1002/anie.202015162 10.1039/C6CC03999E 10.1002/ange.202104145 10.1021/acs.accounts.0c00445 10.1021/jacs.7b00631 10.1002/ange.202010802 10.1021/jacs.0c11037 10.1021/acsami.1c22583 10.1039/C6SC02640K 10.1021/acs.accounts.7b00124 10.1002/anie.201704435 10.1021/jacs.1c10139 10.1039/D0CS00109K 10.1002/adma.201601675 10.1002/anie.201503542 10.1021/jacs.7b02279 10.1016/j.chempr.2022.04.001 10.1002/anie.202002467 10.1021/jacs.1c01493 10.1039/B615103E 10.1039/C9CS00098D 10.1002/ange.202202381 10.1126/sciadv.abo2255 10.1002/anie.202204589 10.1002/anie.201307756 10.1021/jacs.1c02594 10.1002/ange.201805980 10.1039/C5CC06801K 10.1002/anie.202010802 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202210579 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202210579 ANIE202210579 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52173200, 21871108 – fundername: Postdoctoral Research Foundation of China funderid: BX2021112 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3509-1ea2ea7a16e1564f15e9704d8bff94d6f8db41a23d998251fc8c56f29740b3cd3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 10:52:00 EDT 2025 Fri Jul 25 10:38:25 EDT 2025 Tue Jul 01 01:18:28 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 Wed Jan 22 16:22:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3509-1ea2ea7a16e1564f15e9704d8bff94d6f8db41a23d998251fc8c56f29740b3cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8839-8161 |
PQID | 2725710673 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2711840169 proquest_journals_2725710673 crossref_citationtrail_10_1002_anie_202210579 crossref_primary_10_1002_anie_202210579 wiley_primary_10_1002_anie_202210579_ANIE202210579 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 24, 2022 |
PublicationDateYYYYMMDD | 2022-10-24 |
PublicationDate_xml | – month: 10 year: 2022 text: October 24, 2022 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2017; 8 2004; 104 2020; 120 2020; 142 2015; 51 2020 2020; 59 132 2014; 47 2007 2016; 52 2021; 143 2017 2017; 56 129 2020; 32 2012; 488 2019; 141 2017; 139 2017; 50 2022 2022; 61 134 2022; 462 2021; 12 2020; 53 2022 2018 2018; 57 130 2022; 8 2005; 127 2005; 4 2020; 49 2021 2021; 60 133 2022; 14 2015 2015; 54 127 2018; 51 2016; 28 2012; 24 e_1_2_7_5_2 (e_1_2_7_15_3) 2022; 134 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_60_3 e_1_2_7_62_1 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_66_2 e_1_2_7_45_3 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_23_1 e_1_2_7_31_3 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_54_3 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_35_3 e_1_2_7_37_1 e_1_2_7_58_3 e_1_2_7_39_2 (e_1_2_7_49_3) 2022; 134 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_14_2 e_1_2_7_63_2 e_1_2_7_61_3 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_65_1 e_1_2_7_44_2 e_1_2_7_10_1 e_1_2_7_46_2 e_1_2_7_27_1 e_1_2_7_48_2 e_1_2_7_29_2 (e_1_2_7_26_3) 2022; 134 e_1_2_7_24_3 e_1_2_7_53_1 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_20_3 e_1_2_7_57_1 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_59_3 e_1_2_7_38_2 e_1_2_7_59_2 e_1_2_7_38_3 |
References_xml | – volume: 28 start-page: 6976 year: 2016 end-page: 6983 publication-title: Adv. Mater. – volume: 141 start-page: 17783 year: 2019 end-page: 17795 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 2336 year: 2020 end-page: 2346 publication-title: Acc. Chem. Res. – volume: 4 start-page: 163 year: 2005 end-page: 166 publication-title: Nat. Mater. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 50 start-page: 1654 year: 2017 end-page: 1662 publication-title: Acc. Chem. Res. – volume: 49 start-page: 3834 year: 2020 end-page: 3862 publication-title: Chem. Soc. Rev. – volume: 49 start-page: 1517 year: 2020 end-page: 1544 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 2064 year: 2018 end-page: 2072 publication-title: Acc. Chem. Res. – volume: 141 start-page: 12280 year: 2019 end-page: 12287 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 1553 year: 2021 end-page: 1561 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 9468 year: 2021 end-page: 9477 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 6378 year: 2021 publication-title: Nat. Commun. – volume: 60 133 start-page: 1690 1714 year: 2021 2021 end-page: 1701 1725 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 2136 year: 2022 end-page: 2147 publication-title: Chem – volume: 462 year: 2022 publication-title: Coord. Chem. Rev. – volume: 51 start-page: 16361 year: 2015 end-page: 16364 publication-title: Chem. Commun. – volume: 53 126 start-page: 2038 2068 year: 2014 2014 end-page: 2054 2084 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 4894 year: 2017 end-page: 4900 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 5664 year: 2017 end-page: 5667 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 9858 year: 2016 end-page: 9872 publication-title: Chem. Commun. – volume: 139 start-page: 15239 year: 2017 end-page: 15244 publication-title: J. Am. Chem. Soc. – volume: 104 start-page: 5565 year: 2004 end-page: 5592 publication-title: Chem. Rev. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 22012 22196 year: 2020 2020 end-page: 22016 22200 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 24 start-page: 1518 year: 2012 end-page: 1528 publication-title: Chem. Mater. – volume: 141 start-page: 5359 year: 2019 end-page: 5368 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 16866 year: 2005 end-page: 16881 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 8818 8944 year: 2017 2017 end-page: 8822 8948 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 16585 16721 year: 2021 2021 end-page: 16593 16729 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 20395 year: 2021 end-page: 20402 publication-title: J. Am. Chem. Soc. – volume: 488 start-page: 485 year: 2012 end-page: 489 publication-title: Nature – volume: 60 133 start-page: 8115 8196 year: 2021 2021 end-page: 8120 8201 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 6810 year: 2022 end-page: 6817 publication-title: ACS Appl. Mater. Interfaces – volume: 142 start-page: 12596 year: 2020 end-page: 12601 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 6314 6374 year: 2020 2020 end-page: 6316 6376 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 9186 year: 2017 end-page: 9191 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 20892 year: 2020 end-page: 20901 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 10165 10303 year: 2015 2015 end-page: 10168 10306 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 120 start-page: 2879 year: 2020 end-page: 2949 publication-title: Chem. Rev. – volume: 59 132 start-page: 2251 2271 year: 2020 2020 end-page: 2255 2275 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 60 133 start-page: 8967 9049 year: 2021 2021 end-page: 8975 9057 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 9853 10001 year: 2018 2018 end-page: 9858 10006 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 start-page: 1186 year: 2014 end-page: 1198 publication-title: Acc. Chem. Res. – volume: 143 start-page: 8000 year: 2021 end-page: 8010 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1040 year: 2017 end-page: 1045 publication-title: Chem. Sci. – start-page: 1305 year: 2007 end-page: 1315 publication-title: Chem. Commun. – year: 2022 publication-title: ACS Appl. Nano Mater. – ident: e_1_2_7_8_2 doi: 10.1038/nature11395 – ident: e_1_2_7_54_3 doi: 10.1002/ange.201503542 – ident: e_1_2_7_29_2 doi: 10.1021/ar400264e – ident: e_1_2_7_61_3 doi: 10.1002/ange.202002467 – ident: e_1_2_7_3_2 doi: 10.1021/ja0533996 – ident: e_1_2_7_21_2 doi: 10.1021/jacs.0c11833 – ident: e_1_2_7_41_2 doi: 10.1021/acs.accounts.8b00255 – volume: 134 start-page: e202117872 year: 2022 ident: e_1_2_7_26_3 publication-title: Angew. Chem. doi: 10.1002/ange.202117872 – ident: e_1_2_7_30_2 doi: 10.1021/jacs.8b13889 – ident: e_1_2_7_59_2 doi: 10.1002/anie.201911965 – ident: e_1_2_7_13_2 doi: 10.1021/jacs.0c05339 – ident: e_1_2_7_25_2 doi: 10.1021/acsanm.2c00161 – ident: e_1_2_7_47_2 doi: 10.1016/j.ccr.2022.214503 – ident: e_1_2_7_5_2 doi: 10.1021/acs.chemrev.9b00532 – ident: e_1_2_7_20_2 doi: 10.1002/anie.202013701 – ident: e_1_2_7_2_2 doi: 10.1021/cr030652g – ident: e_1_2_7_38_3 doi: 10.1002/ange.201307756 – ident: e_1_2_7_45_3 doi: 10.1002/ange.202006999 – ident: e_1_2_7_42_2 doi: 10.1021/jacs.9b03559 – ident: e_1_2_7_58_2 doi: 10.1002/anie.201805980 – ident: e_1_2_7_18_2 doi: 10.1021/jacs.7b09176 – ident: e_1_2_7_45_2 doi: 10.1002/anie.202006999 – ident: e_1_2_7_10_1 – ident: e_1_2_7_16_1 – ident: e_1_2_7_60_3 doi: 10.1002/ange.202015162 – ident: e_1_2_7_15_2 doi: 10.1002/anie.202202381 – ident: e_1_2_7_31_2 doi: 10.1002/anie.202104145 – ident: e_1_2_7_27_1 – ident: e_1_2_7_32_1 – ident: e_1_2_7_20_3 doi: 10.1002/ange.202013701 – volume: 134 start-page: e202204589 year: 2022 ident: e_1_2_7_49_3 publication-title: Angew. Chem. doi: 10.1002/ange.202204589 – ident: e_1_2_7_33_2 doi: 10.1021/jacs.9b08758 – ident: e_1_2_7_28_2 doi: 10.1021/cm300416y – ident: e_1_2_7_26_2 doi: 10.1002/anie.202117872 – ident: e_1_2_7_43_2 doi: 10.1002/adma.201904824 – ident: e_1_2_7_57_1 – ident: e_1_2_7_65_1 – ident: e_1_2_7_24_3 doi: 10.1002/ange.201704435 – ident: e_1_2_7_59_3 doi: 10.1002/ange.201911965 – ident: e_1_2_7_12_2 doi: 10.1021/jacs.7b00873 – ident: e_1_2_7_37_1 – ident: e_1_2_7_7_2 doi: 10.1038/nmat1298 – ident: e_1_2_7_56_2 doi: 10.1038/s41467-021-26729-3 – ident: e_1_2_7_66_2 – ident: e_1_2_7_62_1 – ident: e_1_2_7_60_2 doi: 10.1002/anie.202015162 – ident: e_1_2_7_64_2 doi: 10.1039/C6CC03999E – ident: e_1_2_7_31_3 doi: 10.1002/ange.202104145 – ident: e_1_2_7_55_2 doi: 10.1021/acs.accounts.0c00445 – ident: e_1_2_7_17_2 doi: 10.1021/jacs.7b00631 – ident: e_1_2_7_40_1 – ident: e_1_2_7_35_3 doi: 10.1002/ange.202010802 – ident: e_1_2_7_34_2 doi: 10.1021/jacs.0c11037 – ident: e_1_2_7_22_2 doi: 10.1021/acsami.1c22583 – ident: e_1_2_7_39_2 doi: 10.1039/C6SC02640K – ident: e_1_2_7_4_2 doi: 10.1021/acs.accounts.7b00124 – ident: e_1_2_7_1_1 – ident: e_1_2_7_24_2 doi: 10.1002/anie.201704435 – ident: e_1_2_7_46_2 doi: 10.1021/jacs.1c10139 – ident: e_1_2_7_52_2 doi: 10.1039/D0CS00109K – ident: e_1_2_7_11_2 doi: 10.1002/adma.201601675 – ident: e_1_2_7_54_2 doi: 10.1002/anie.201503542 – ident: e_1_2_7_9_2 doi: 10.1021/jacs.7b02279 – ident: e_1_2_7_48_2 doi: 10.1016/j.chempr.2022.04.001 – ident: e_1_2_7_61_2 doi: 10.1002/anie.202002467 – ident: e_1_2_7_14_2 doi: 10.1021/jacs.1c01493 – ident: e_1_2_7_51_2 doi: 10.1039/B615103E – ident: e_1_2_7_53_1 – ident: e_1_2_7_6_1 – ident: e_1_2_7_19_2 doi: 10.1039/C9CS00098D – volume: 134 start-page: e202202381 year: 2022 ident: e_1_2_7_15_3 publication-title: Angew. Chem. doi: 10.1002/ange.202202381 – ident: e_1_2_7_50_1 – ident: e_1_2_7_44_2 doi: 10.1126/sciadv.abo2255 – ident: e_1_2_7_49_2 doi: 10.1002/anie.202204589 – ident: e_1_2_7_38_2 doi: 10.1002/anie.201307756 – ident: e_1_2_7_23_1 – ident: e_1_2_7_36_2 doi: 10.1021/jacs.1c02594 – ident: e_1_2_7_58_3 doi: 10.1002/ange.201805980 – ident: e_1_2_7_63_2 doi: 10.1039/C5CC06801K – ident: e_1_2_7_35_2 doi: 10.1002/anie.202010802 |
SSID | ssj0028806 |
Score | 2.5128953 |
Snippet | Modulating intermolecular charge‐transfer (ICT) interactions between specific donor and acceptor species in host–guest systems is a big challenge and full of... Modulating intermolecular charge-transfer (ICT) interactions between specific donor and acceptor species in host-guest systems is a big challenge and full of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202210579 |
SubjectTerms | Affinity Binding Charge transfer Co-Crystals Compressibility Crystal structure Host–Guest Chemistry Intermolecular Charge-Transfer Macrocycles Materials science Solid state Superstructures Supramolecular compounds |
Title | Modulating Supramolecular Charge‐Transfer Interactions in the Solid State using Compressible Macrocyclic Hosts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202210579 https://www.proquest.com/docview/2725710673 https://www.proquest.com/docview/2711840169 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqKwieos3uJmmOIi1VqAcf4C3sY1KKNSlNe9CTP8Hf6C9xZ9PEB4igt4RsXrOzOzO7M99HyFFgWCAZ0qQGofBEDODFbfC9WEfgC2NazGA1cv8q7N2Jy_vg_lMVf4kPUS-44chw8zUOcKmK0w_QUKzAtvEdY8hUixV8mLCFXtF1jR_FrHKW5UWce8hCX6E2ttjp19u_WqUPV_Ozw-osTneVyOpby0STh5PZVJ3o528wjv_5mTWyMndH6VmpP-tkAbINsnRescBtknE_N47hKxvQm9l4Ih8rPl2KO_UDeHt5dfYuhQl1y4tlpURBhxm1ziW9yUdDQ51PSzHJfkBxCnLZt2oEtC-tRPSTHg017eXFtNgid93O7XnPm7M0eJoHyKUAkoGMpB8CAs-kfgBx1BKmrdI0FiZM20YJXzJubGRnvalUt3UQpswGMi3FteHbZDHLM9ghNIik8YXSmqVgjauMrX7xECJuVKxVJBvEq3op0XMIc2TSGCUl-DJLUI5JLccGOa7bj0vwjh9bNqtOT-aDuEhYZOczhNjjDXJYX7byxz0VmUE-wzY-xsh-aB_BXA__8qbk7OqiU5_t_uWmPbKMx2hBmWiSxelkBvvWNZqqA6f-7wwUCME |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigXKH_qQgtGAnFKu7GdZHPooeqPdml3D7SVeguOPVmtWJLVZleonHgEXqWvwiPwJHicn1IkhITUA8ckjpN4ZuzPjuf7AF4HhgeKk0xqEEpPxohe3EPfi3WEvjSmyw1lIw9HYf9cvrsILlbgqsmFqfgh2gU3igzXX1OA04L0zjVrKKVg2wke5yRVG9f7Ko_x8rOdtZW7gwNr4jecHx2e7fe9WljA0yIg-n9UHFWk_BCJKyXzA4yjrjS9NMtiacKsZ1LpKy6MnYxYAJDpng7CjFvs3U2FNsLWewfukow40fUfvG8Zq7gNhyqhSQiPdO8bnsgu37n5vjfHwWtw-ytEdmPc0QP43rROtbXl4_ZykW7rL78RR_5XzbcO92vEzfaqEHkIK5g_grX9RujuMcyGhXEiZvmYnS5nc_WpkQxmtBlhjD--fnNDeoZz5lZQq2SQkk1yZvEzOy2mE8McbGeURzBm1Mu6DcbpFNlQWRPoSz2daNYvykX5BM5v5YOfwmpe5LgBLIiU8WWqNc_Q4gcV2xASIUbCpLFOI9UBr3GLRNcs7SQWMk0qfmmekN2S1m4deNuWn1X8JH8sudl4WVL3U2XCI9tlE4ug6MCr9rJtf_ptpHIsllTGp2UAP7RVcOdSf3lSsjcaHLZHz_7lppew1j8bniQng9Hxc7hH5wkwcLkJq4v5ErcsElykL1zsMfhw2976EzErZsE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4amwS7gfEnOgYYCcRVtsR2kvqCi2ld1TJaIcak3QXHdqpqXVI1rdC44hF4FF6FV-BJ8HF-xpAQEtIuuEziOImPj_3ZOef7AF6EmoaSokxqGHGPC2M80TWBJ1RsAq61TzVmI4_G0eCEvzkNT9fgW5MLU_FDtBtu6BluvEYHn-ts75I0FDOw7fqOUlSqFXVY5ZG5-GQXbeXrYc9a-CWl_cMPBwOv1hXwFAuR_d9IamQsg8ggVUoWhEbEPtfdNMsE11HW1SkPJGXarkXs_J-prgqjjFro7adMaWbrvQEbPPIFikX03reEVdR6Q5XPxJiHsvcNTaRP966-79Vp8BLb_oqQ3RTXvwPfm8apIlvOdlfLdFd9_o038n9qvS24XeNtsl85yF1YM_k9uHXQyNzdh_mo0E7CLJ-Q49V8Ic8bwWCCoQgT8-PLVzehZ2ZB3P5plQpSkmlOLHomx8VsqokD7QSzCCYEx1gXXpzODBlJawF1oWZTRQZFuSwfwMm1fPBDWM-L3DwCEsZSBzxVimbGogcprAOxyMRMp0KlseyA1_SKRNUc7SgVMksqdmmaoN2S1m4deNWWn1fsJH8sudN0sqQepcqExnbARg5B1oHn7WXb_vjTSOamWGGZADcBgshWQV2P-suTkv3x8LA92v6Xm57BzXe9fvJ2OD56DJt4GtEC5TuwvlyszBMLA5fpU-d5BD5ed2f9CX8MZXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+Supramolecular+Charge-Transfer+Interactions+in+the+Solid+State+using+Compressible+Macrocyclic+Hosts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Jia-Rui&rft.au=Li%2C+Dongxia&rft.au=Wu%2C+Gengxin&rft.au=Li%2C+Meng-Hao&rft.date=2022-10-24&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=43&rft.spage=e202210579&rft_id=info:doi/10.1002%2Fanie.202210579&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |