A Ferrocene‐Functionalized Covalent Organic Framework for Enhancing Chemodynamic Therapy via Redox Dyshomeostasis
Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defen...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 32; pp. e2101368 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH‐induced cellular damage by CDT, a covalent organic framework (COF)‐based, ferrocene (Fc)‐ and glutathione peroxidase 4 (GPX4) inhibitor‐loaded nanodrug, RSL3@COF–Fc (2b), is fabricated. The obtained 2b not only promotes in situ Fenton‐like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species‐mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF‐based nanomedicine.
Versatile covalent organic frameworks (COFs)! The organic nanodrug RSL3@COF–Fc (2b), which integrates the glutathione peroxidase 4 inhibitor RSL3 and Fenton‐like reaction catalyst ferrocene (Fc) into a nanoscale COF, induces ferroptosis to enhance chemodynamic therapy by blocking lipid repair and disrupting cellular redox homeostasis. |
---|---|
AbstractList | Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH‐induced cellular damage by CDT, a covalent organic framework (COF)‐based, ferrocene (Fc)‐ and glutathione peroxidase 4 (GPX4) inhibitor‐loaded nanodrug, RSL3@COF–Fc (2b), is fabricated. The obtained 2b not only promotes in situ Fenton‐like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species‐mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF‐based nanomedicine.
Versatile covalent organic frameworks (COFs)! The organic nanodrug RSL3@COF–Fc (2b), which integrates the glutathione peroxidase 4 inhibitor RSL3 and Fenton‐like reaction catalyst ferrocene (Fc) into a nanoscale COF, induces ferroptosis to enhance chemodynamic therapy by blocking lipid repair and disrupting cellular redox homeostasis. Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H 2 O 2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH‐induced cellular damage by CDT, a covalent organic framework (COF)‐based, ferrocene (Fc)‐ and glutathione peroxidase 4 (GPX4) inhibitor‐loaded nanodrug, RSL3@COF–Fc ( 2b ), is fabricated. The obtained 2b not only promotes in situ Fenton‐like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species‐mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF‐based nanomedicine. Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2 O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH-induced cellular damage by CDT, a covalent organic framework (COF)-based, ferrocene (Fc)- and glutathione peroxidase 4 (GPX4) inhibitor-loaded nanodrug, RSL3@COF-Fc (2b), is fabricated. The obtained 2b not only promotes in situ Fenton-like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species-mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF-based nanomedicine.Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2 O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH-induced cellular damage by CDT, a covalent organic framework (COF)-based, ferrocene (Fc)- and glutathione peroxidase 4 (GPX4) inhibitor-loaded nanodrug, RSL3@COF-Fc (2b), is fabricated. The obtained 2b not only promotes in situ Fenton-like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species-mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF-based nanomedicine. Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH‐induced cellular damage by CDT, a covalent organic framework (COF)‐based, ferrocene (Fc)‐ and glutathione peroxidase 4 (GPX4) inhibitor‐loaded nanodrug, RSL3@COF–Fc (2b), is fabricated. The obtained 2b not only promotes in situ Fenton‐like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species‐mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF‐based nanomedicine. |
Author | Li, Wen‐Yan Li, Yan‐An Guan, Qun Dong, Yu‐Bin Zhou, Le‐Le Zhang, Zhiyong |
Author_xml | – sequence: 1 givenname: Le‐Le surname: Zhou fullname: Zhou, Le‐Le organization: Shandong Normal University – sequence: 2 givenname: Qun surname: Guan fullname: Guan, Qun organization: Shandong Normal University – sequence: 3 givenname: Wen‐Yan surname: Li fullname: Li, Wen‐Yan organization: Shandong Normal University – sequence: 4 givenname: Zhiyong surname: Zhang fullname: Zhang, Zhiyong organization: Shandong Academy of Medical Sciences – sequence: 5 givenname: Yan‐An surname: Li fullname: Li, Yan‐An organization: Shandong Normal University – sequence: 6 givenname: Yu‐Bin orcidid: 0000-0002-9698-8863 surname: Dong fullname: Dong, Yu‐Bin email: yubindong@sdnu.edu.cn organization: Shandong Normal University |
BookMark | eNqFkU1rGzEQhkVIIR_ttWdBLrnYHUn7eQxu3AZcAm16XsbSbKxEK7nSOsn21J-Q39hf0jUOCQRCTzMwzzMD8x6xfR88MfZRwFQAyE-pc24qQQoQqqj22KEohJoUlaz3n3sBB-wopRsAJWRWHrJ0xucUY9Dk6e-fx_nG694Gj87-JsNn4Q4d-Z5fxmv0VvN5xI7uQ7zlbYj83K_Qa-uv-WxFXTCDx26ErlYUcT3wO4v8O5nwwD8PaRU6CqnHZNN79q5Fl-jDUz1mP-fnV7Ovk8Xll4vZ2WKiVQ7VRJulUabOc2NqWbYGl7IFIUFkhRK4zCFrsc1xnBUlLqFGWUosq6xqhdJSFeqYne72rmP4taHUN51NmpxDT2GTGplnVSYqyGFET16hN2ETxzdsqQKklLWqR2q6o3QMKUVqm3W0HcahEdBsM2i2GTTPGYxC9krQtsftg_uI1r2t1Tvt3joa_nOk-fFtsXhx_wFNfqBX |
CitedBy_id | crossref_primary_10_1021_acsanm_4c01125 crossref_primary_10_1039_D3NR02000B crossref_primary_10_1002_adhm_202402314 crossref_primary_10_1002_adfm_202112000 crossref_primary_10_2147_DDDT_S472178 crossref_primary_10_1016_j_ccr_2023_215434 crossref_primary_10_1016_j_cej_2023_147436 crossref_primary_10_1016_j_cej_2024_149518 crossref_primary_10_1039_D1TB01654G crossref_primary_10_1002_adhm_202400265 crossref_primary_10_1002_smm2_1119 crossref_primary_10_1007_s12272_025_01536_2 crossref_primary_10_2147_IJN_S479848 crossref_primary_10_1021_acsnano_3c06967 crossref_primary_10_1039_D1CS00983D crossref_primary_10_1021_acs_analchem_4c05274 crossref_primary_10_3390_molecules28166008 crossref_primary_10_1016_j_jpha_2022_09_003 crossref_primary_10_1016_j_ijbiomac_2022_07_183 crossref_primary_10_1016_j_smaim_2024_03_003 crossref_primary_10_1039_D3CS00356F crossref_primary_10_1039_D2TB02194C crossref_primary_10_1039_D3BM01894F crossref_primary_10_1088_2515_7639_ad4d1e crossref_primary_10_1080_07853890_2024_2396568 crossref_primary_10_1039_D4QI01073F crossref_primary_10_1007_s12274_023_5377_0 crossref_primary_10_1039_D2QI00413E crossref_primary_10_1021_acs_biomac_4c00260 crossref_primary_10_1002_ange_202314763 crossref_primary_10_1021_acsami_2c01701 crossref_primary_10_1039_D4BM00930D crossref_primary_10_1016_j_cej_2022_137148 crossref_primary_10_1016_j_smaim_2022_01_006 crossref_primary_10_1016_j_ajps_2022_09_002 crossref_primary_10_1039_D1SC05482A crossref_primary_10_1016_j_ccr_2021_214360 crossref_primary_10_1016_j_cej_2024_150448 crossref_primary_10_1002_cac2_12250 crossref_primary_10_1016_j_ccr_2024_216400 crossref_primary_10_1016_j_jconrel_2022_08_037 crossref_primary_10_1021_acsami_4c07040 crossref_primary_10_1136_jitc_2022_006516 crossref_primary_10_1002_adhm_202300871 crossref_primary_10_1021_jacs_2c11071 crossref_primary_10_1016_j_mtbio_2024_101040 crossref_primary_10_2147_IJN_S372947 crossref_primary_10_1002_smll_202412462 crossref_primary_10_1002_adtp_202200208 crossref_primary_10_1038_s41467_023_41121_z crossref_primary_10_1039_D2TB02319A crossref_primary_10_1002_smll_202205024 crossref_primary_10_1016_j_bmc_2022_116885 crossref_primary_10_1016_j_nantod_2024_102166 crossref_primary_10_1021_acsami_4c20103 crossref_primary_10_1039_D3BM01247F crossref_primary_10_1039_D1CS00871D crossref_primary_10_3390_molecules28186469 crossref_primary_10_1021_acs_chemmater_3c02095 crossref_primary_10_1016_j_bioactmat_2022_08_016 crossref_primary_10_1016_j_carbpol_2024_121795 crossref_primary_10_1016_j_cej_2024_150770 crossref_primary_10_1016_j_jpowsour_2024_236121 crossref_primary_10_1002_adhm_202304249 crossref_primary_10_1016_j_cej_2024_157730 crossref_primary_10_1039_D2DT03088H crossref_primary_10_3390_ijms25115675 crossref_primary_10_1021_acsnano_3c03279 crossref_primary_10_1039_D2TB01815B crossref_primary_10_1016_j_snb_2024_135594 crossref_primary_10_1039_D3SC00251A crossref_primary_10_1021_acsami_1c14998 crossref_primary_10_1002_adfm_202211251 crossref_primary_10_1021_acs_chemrev_4c00546 crossref_primary_10_1039_D2SC05732H crossref_primary_10_1002_anie_202314763 crossref_primary_10_1021_acsbiomaterials_1c01605 crossref_primary_10_1002_adtp_202100177 crossref_primary_10_1002_aoc_7960 crossref_primary_10_1016_j_jcis_2023_01_110 crossref_primary_10_1016_j_onano_2023_100159 crossref_primary_10_1039_D2TA05934G crossref_primary_10_1002_advs_202306178 crossref_primary_10_1016_j_cej_2023_144360 crossref_primary_10_1002_adfm_202313890 crossref_primary_10_1002_adma_202108174 crossref_primary_10_1002_ange_202303829 crossref_primary_10_1007_s10118_025_3316_8 crossref_primary_10_1021_acsanm_2c01517 crossref_primary_10_3389_fchem_2022_868630 crossref_primary_10_1097_MPA_0000000000002426 crossref_primary_10_1039_D2SC02297D crossref_primary_10_1016_j_cej_2023_142960 crossref_primary_10_3390_pharmaceutics13111785 crossref_primary_10_1186_s12951_022_01661_w crossref_primary_10_1002_anbr_202300163 crossref_primary_10_1039_D4NR00654B crossref_primary_10_1002_adhm_202101971 crossref_primary_10_1016_j_canlet_2023_216119 crossref_primary_10_1016_j_ccr_2023_215332 crossref_primary_10_1002_anie_202303829 crossref_primary_10_1021_acs_chemmater_2c01726 crossref_primary_10_1186_s13045_024_01564_3 crossref_primary_10_1016_j_snb_2022_131937 crossref_primary_10_1002_adhm_202400809 crossref_primary_10_1039_D1CS00804H crossref_primary_10_2147_JHC_S483619 crossref_primary_10_1002_smll_202202161 crossref_primary_10_1016_j_ejmech_2024_117015 crossref_primary_10_1016_j_jddst_2022_103851 crossref_primary_10_1039_D3MH01492D crossref_primary_10_1021_acs_nanolett_3c02362 |
Cites_doi | 10.1021/cr100392s 10.1016/j.pharmthera.2020.107664 10.1039/C9CS00890J 10.1002/adfm.201902757 10.1039/D0CC03829F 10.1016/j.synres.2014.07.003 10.1016/j.chembiol.2020.03.013 10.1021/jacs.0c04722 10.1021/acsnano.8b06399 10.1016/j.giant.2021.100054 10.1002/adhm.202001821 10.1039/D0NA00537A 10.1021/acs.chemmater.8b02560 10.1016/j.nantod.2020.100972 10.1126/sciadv.abc4373 10.1016/j.biomaterials.2019.119486 10.1038/s41583-019-0132-6 10.1371/journal.pbio.2006203 10.1021/jacs.7b01229 10.1002/adma.202000038 10.1021/acsmedchemlett.0c00022 10.1021/acs.nanolett.9b02904 10.1002/anie.202008055 10.1021/acsnano.9b06467 10.1016/j.chembiol.2020.03.015 10.1016/j.ccell.2018.03.022 10.1038/s41569-020-0403-y 10.1002/adfm.202006216 10.1039/D0QI01051K 10.1002/anie.202007222 10.1002/adma.202004647 10.1038/s41467-019-11355-x 10.1016/j.isci.2020.101569 10.1016/j.chembiol.2020.03.011 10.1038/s41467-018-04910-5 10.1016/j.ccell.2019.04.002 10.1021/acs.nanolett.1c00488 10.1021/jacs.0c09984 10.1002/adma.201902885 10.1002/adfm.202007475 10.1126/sciadv.aax1346 10.1002/adhm.201901819 10.1021/jacs.8b13691 10.1038/s41571-020-00462-0 10.1039/D0CC03012K 10.1016/j.aca.2016.10.046 10.1002/agt2.24 10.1002/adfm.201909062 10.1021/acs.analchem.9b05175 10.1038/s41586-019-1705-2 10.1002/chem.201405380 10.1039/C8MO00162F 10.1002/adma.201901778 10.1016/j.cell.2012.03.042 10.1038/nrd4002 10.1021/jacs.7b00925 10.1021/acsami.0c12824 10.1039/D0CC00499E 10.1002/adma.201701683 10.1016/j.freeradbiomed.2020.02.027 10.1016/j.biomaterials.2020.120305 10.1002/smll.202000303 10.1021/acsnano.9b05157 10.1002/smll.202001704 10.1016/j.isci.2020.101281 10.1016/j.tibs.2013.09.001 10.1039/C9CC05998A 10.1016/j.isci.2019.03.028 10.1021/acsnano.9b07789 10.1016/j.chembiol.2008.02.010 10.1016/j.msec.2019.110302 10.1002/anie.202100864 10.1002/adma.201904197 10.1039/D0TB00724B 10.1021/acs.bioconjchem.1c00040 10.1007/s40843-020-1428-0 10.1016/j.tips.2020.06.011 10.1194/jlr.M080374 10.1016/j.chempr.2020.08.024 10.1021/acs.chemrev.0c00977 10.1038/s41571-020-0363-5 10.1002/adfm.202002046 10.1016/j.biomaterials.2020.120257 10.1021/jacs.9b03457 10.1002/adma.201901556 10.1016/j.bbamcr.2020.118928 10.1016/j.nantod.2021.101101 10.1021/jacs.9b07695 10.1038/s41586-019-1707-0 10.1002/advs.202000272 10.1002/adma.202006892 10.1021/jacs.8b08714 10.1016/j.bbagen.2020.129539 10.1002/pst.426 10.1016/j.cclet.2019.03.025 10.1021/acsami.9b13544 10.1002/adfm.202006098 10.1002/adhm.202002090 10.1039/C9SC01652J 10.1021/acsmaterialslett.0c00260 10.1002/anie.201904291 10.1016/j.freeradbiomed.2018.10.426 10.1021/acsnano.8b05860 10.1021/acsnano.0c09454 10.1039/D0AN00867B 10.1021/acs.accounts.5b00226 10.1083/jcb.201804161 10.7150/thno.49277 10.1021/acsami.9b20661 10.1021/acsnano.0c00173 10.1039/dt9880001383 10.1021/acsnano.1c01194 10.1039/D0CC00861C 10.1038/s41467-017-00424-8 10.1021/acsnano.8b07635 10.1016/j.biomaterials.2019.119459 10.1002/adfm.201906128 10.1146/annurev-cancerbio-030518-055844 10.1002/anie.201710800 10.1002/adma.202006363 10.1016/j.ijpharm.2019.118782 10.1021/acs.inorgchem.0c03783 10.1002/anie.201915569 10.1002/anie.202007786 10.1039/C9CC04486H 10.1002/adma.202002439 10.1172/JCI97946 10.1002/anie.201805664 10.1021/acs.nanolett.0c00502 10.1038/s41580-020-00324-8 10.1016/j.freeradbiomed.2019.05.012 10.1016/j.chembiol.2020.03.012 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202101368 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202101368 SMLL202101368 |
Genre | article |
GrantInformation_xml | – fundername: Taishan Scholars Climbing Program of Shandong Province – fundername: Major Basic Research Projects of Shandong Natural Science Foundation funderid: ZR2020ZD32 – fundername: NSFC funderid: 21971153; 21805172; 21671122 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3508-cdbd3d955dd927fdab2f012014631ab504faf5a92767ab09a272a7848f13c2363 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 03:47:21 EDT 2025 Fri Jul 25 11:51:14 EDT 2025 Tue Jul 01 02:11:05 EDT 2025 Thu Apr 24 23:01:45 EDT 2025 Wed Jan 22 16:28:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3508-cdbd3d955dd927fdab2f012014631ab504faf5a92767ab09a272a7848f13c2363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9698-8863 |
PQID | 2560222939 |
PQPubID | 1046358 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2548418050 proquest_journals_2560222939 crossref_primary_10_1002_smll_202101368 crossref_citationtrail_10_1002_smll_202101368 wiley_primary_10_1002_smll_202101368_SMLL202101368 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020 2020 2019 2019; 35 14 31 30 2017 2018 2020 2020 2021; 139 9 8 260 21 2020; 20 2018; 128 2019 2019; 575 575 2019; 55 2018; 129 2019; 13 2019; 19 2011; 10 2020; 56 2019 2020 2021; 10 142 60 2020; 11 2021; 121 2020 2020; 59 258 2011; 111 2020 2020 2021; 106 17 31 2014; 1 2020 2017; 145 950 2020; 6 2015; 48 2021; 32 2021; 31 2019; 20 2020; 92 2017 2020 2020 2019 2020; 29 7 142 141 30 2020; 49 2018; 30 2018; 34 2019 2019 2019 2019 2020 2020 2021 2021 2021; 223 14 11 141 59 59 10 37 15 2019; 3 2019; 31 2019 2020; 58 56 2020 2013 2019; 17 12 10 2020; 41 2019; 35 2018 2020 2021; 57 59 33 2020 2020 2020 2021; 2 2 30 8 2008; 15 2020 2021; 27 217 2019; 223 2020; 32 2019; 141 2012; 149 2019; 144 2018 2021; 217 22 2017; 139 2021; 15 2021; 10 2018 2019 2020 2020; 12 572 16 14 2021; 11 2013; 38 2020 2020 2021 2021; 59 6 2 6 2020; 30 2021; 1868 2020 2021 2018; 27 18 16 1988; 5 2020 2019; 12 29 2020; 27 2015 2019 2020; 21 15 16 2020; 23 2020 2020; 1864 152 2018; 12 2020 2020 2020; 12 32 32 2021; 60 2021 2020 2017; 33 9 8 2019 2021 2019; 13 64 141 2018; 59 e_1_2_7_3_1 e_1_2_7_19_3 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_15_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_71_1 e_1_2_7_23_4 e_1_2_7_75_2 e_1_2_7_23_3 e_1_2_7_52_1 e_1_2_7_75_3 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_40_2 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_2 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_29_2 e_1_2_7_29_3 e_1_2_7_24_5 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_24_4 e_1_2_7_24_3 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_78_3 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_78_2 e_1_2_7_5_2 e_1_2_7_5_1 e_1_2_7_1_3 e_1_2_7_5_5 e_1_2_7_9_1 e_1_2_7_5_4 e_1_2_7_5_3 e_1_2_7_17_3 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_1_2 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_47_1 e_1_2_7_28_1 e_1_2_7_28_2 e_1_2_7_28_3 e_1_2_7_25_9 e_1_2_7_25_8 e_1_2_7_25_7 e_1_2_7_25_6 e_1_2_7_25_5 e_1_2_7_73_1 e_1_2_7_25_4 e_1_2_7_25_3 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_21_4 e_1_2_7_21_3 e_1_2_7_54_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_2 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_72_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_22_4 e_1_2_7_76_2 e_1_2_7_22_3 e_1_2_7_22_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_76_3 e_1_2_7_57_2 e_1_2_7_76_4 e_1_2_7_38_1 |
References_xml | – volume: 149 start-page: 1060 year: 2012 publication-title: Cell – volume: 56 year: 2020 publication-title: Chem. Commun. – volume: 32 start-page: 755 year: 2021 publication-title: Bioconjugate Chem. – volume: 35 start-page: 830 year: 2019 publication-title: Cancer Cell – volume: 3 start-page: 35 year: 2019 publication-title: Annu. Rev. Cancer Biol. – volume: 11 start-page: 1993 year: 2020 publication-title: ACS Med. Chem. Lett. – volume: 59 6 2 6 start-page: 5050 2461 year: 2020 2020 2021 2021 publication-title: Angew. Chem., Int. Ed. Chem Aggregate Giant – volume: 141 start-page: 9937 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 5271 year: 2020 publication-title: Chem. Commun. – volume: 575 575 start-page: 688 693 year: 2019 2019 publication-title: Nature Nature – volume: 2 2 30 8 start-page: 1074 3656 848 year: 2020 2020 2020 2021 publication-title: ACS Mater. Lett. Nanoscale Adv. Adv. Funct. Mater. Inorg. Chem. Front. – volume: 10 142 60 start-page: 3368 3393 year: 2019 2020 2021 publication-title: Nat. Commun. J. Am. Chem. Soc. Inorg. Chem. – volume: 5 start-page: 1383 year: 1988 publication-title: J. Chem. Soc., Dalton Trans. – volume: 34 start-page: 21 year: 2018 publication-title: Cancer Cell – volume: 27 start-page: 365 year: 2020 publication-title: Cell Chem. Biol. – volume: 13 64 141 start-page: 488 3298 year: 2019 2021 2019 publication-title: ACS Nano Sci. China Mater. J. Am. Chem. Soc. – volume: 41 start-page: 641 year: 2020 publication-title: Trends Pharmacol. Sci. – volume: 49 start-page: 2291 year: 2020 publication-title: Chem. Soc. Rev. – volume: 92 year: 2020 publication-title: Anal. Chem. – volume: 56 start-page: 7793 year: 2020 publication-title: Chem. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 128 year: 2011 publication-title: Pharm. Stat. – volume: 10 year: 2021 publication-title: Adv. Healthcare Mater. – volume: 1864 152 start-page: 175 year: 2020 2020 publication-title: Biochim. Biophys. Acta, Gen. Subj. Free Radical Biol. Med. – volume: 6 start-page: 4373 year: 2020 publication-title: Sci. Adv. – volume: 13 start-page: 7359 year: 2019 publication-title: ACS Nano – volume: 19 start-page: 7866 year: 2019 publication-title: Nano Lett. – volume: 17 12 10 start-page: 773 931 6035 year: 2020 2013 2019 publication-title: Nat. Rev. Cardiol. Nat. Rev. Drug Discovery Chem. Sci. – volume: 23 year: 2020 publication-title: iScience – volume: 106 17 31 start-page: 527 year: 2020 2020 2021 publication-title: Mater. Sci. Eng., C Nat. Rev. Clin. Oncol. Adv. Funct. Mater. – volume: 55 year: 2019 publication-title: Chem. Commun. – volume: 27 217 start-page: 436 year: 2020 2021 publication-title: Cell Chem. Biol. Pharmacol. Ther. – volume: 57 59 33 start-page: 4891 year: 2018 2020 2021 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Mater. – volume: 60 start-page: 8905 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 128 start-page: 2691 year: 2018 publication-title: J. Clin. Invest. – volume: 12 32 32 year: 2020 2020 2020 publication-title: ACS Appl. Mater. Interfaces Adv. Mater. Adv. Mater. – volume: 12 29 year: 2020 2019 publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater. – volume: 20 start-page: 6235 year: 2020 publication-title: Nano Lett. – volume: 121 start-page: 1981 year: 2021 publication-title: Chem. Rev. – volume: 11 start-page: 2334 year: 2021 publication-title: Theranostics – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 27 18 16 start-page: 463 280 year: 2020 2021 2018 publication-title: Cell Chem. Biol. Nat. Rev. Clin. Oncol. PLoS Biol. – volume: 139 9 8 260 21 start-page: 4513 2785 4475 3218 year: 2017 2018 2020 2020 2021 publication-title: J. Am. Chem. Soc. Nat. Commun. J. Mater. Chem. B Biomaterials Nano Lett. – volume: 15 start-page: 3047 year: 2021 publication-title: ACS Nano – volume: 59 start-page: 312 year: 2018 publication-title: J. Lipid Res. – volume: 129 start-page: 454 year: 2018 publication-title: Free Radical Biol. Med. – volume: 144 start-page: 72 year: 2019 publication-title: Free Radical Biol. Med. – volume: 38 start-page: 592 year: 2013 publication-title: Trends Biochem. Sci. – volume: 35 14 31 30 start-page: 2678 847 year: 2020 2020 2019 2019 publication-title: Nano Today ACS Nano Adv. Mater. Chin. Chem. Lett. – volume: 48 start-page: 2242 year: 2015 publication-title: Acc. Chem. Res. – volume: 27 start-page: 409 year: 2020 publication-title: Cell Chem. Biol. – volume: 55 start-page: 9645 year: 2019 publication-title: Chem. Commun. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 223 year: 2019 publication-title: Biomaterials – volume: 33 9 8 start-page: 357 year: 2021 2020 2017 publication-title: Adv. Mater. Adv. Healthcare Mater. Nat. Commun. – volume: 59 258 year: 2020 2020 publication-title: Angew. Chem., Int. Ed. Biomaterials – volume: 30 start-page: 5743 year: 2018 publication-title: Chem. Mater. – volume: 1 start-page: 3 year: 2014 publication-title: Synergy – volume: 139 start-page: 5877 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 217 22 start-page: 2291 266 year: 2018 2021 publication-title: J. Cell Biol. Nat. Rev. Mol. Cell Biol. – volume: 1868 year: 2021 publication-title: Biochim. Biophys. Acta, Mol. Cell. Res. – volume: 12 572 16 14 year: 2018 2019 2020 2020 publication-title: ACS Nano Int. J. Pharm. Small ACS Nano – volume: 21 15 16 start-page: 2508 30 year: 2015 2019 2020 publication-title: Chem. ‐ Eur. J. Mol. Omics Small – volume: 15 start-page: 234 year: 2008 publication-title: Chem. Biol. – volume: 223 14 11 141 59 59 10 37 15 start-page: 180 4354 7638 year: 2019 2019 2019 2019 2020 2020 2021 2021 2021 publication-title: Biomaterials iScience ACS Appl. Mater. Interfaces J. Am. Chem. Soc. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Healthcare Mater. Nano Today ACS Nano – volume: 58 56 start-page: 946 8332 year: 2019 2020 publication-title: Angew. Chem., Int. Ed. Chem. Commun. – volume: 29 7 142 141 30 start-page: 849 year: 2017 2020 2020 2019 2020 publication-title: Adv. Mater. Adv. Sci. J. Am. Chem. Soc. J. Am. Chem. Soc. Adv. Funct. Mater. – volume: 20 start-page: 148 year: 2019 publication-title: Nat. Rev. Neurosci. – volume: 111 start-page: 6231 year: 2011 publication-title: Chem. Rev. – volume: 145 950 start-page: 4972 108 year: 2020 2017 publication-title: Analyst Anal. Chim. Acta – ident: e_1_2_7_60_1 doi: 10.1021/cr100392s – ident: e_1_2_7_67_2 doi: 10.1016/j.pharmthera.2020.107664 – ident: e_1_2_7_33_1 doi: 10.1039/C9CS00890J – ident: e_1_2_7_27_2 doi: 10.1002/adfm.201902757 – ident: e_1_2_7_45_1 doi: 10.1039/D0CC03829F – ident: e_1_2_7_49_1 doi: 10.1016/j.synres.2014.07.003 – ident: e_1_2_7_74_1 doi: 10.1016/j.chembiol.2020.03.013 – ident: e_1_2_7_78_2 doi: 10.1021/jacs.0c04722 – ident: e_1_2_7_52_1 doi: 10.1021/acsnano.8b06399 – ident: e_1_2_7_22_4 doi: 10.1016/j.giant.2021.100054 – ident: e_1_2_7_25_7 doi: 10.1002/adhm.202001821 – ident: e_1_2_7_23_2 doi: 10.1039/D0NA00537A – ident: e_1_2_7_35_1 doi: 10.1021/acs.chemmater.8b02560 – ident: e_1_2_7_21_1 doi: 10.1016/j.nantod.2020.100972 – ident: e_1_2_7_12_1 doi: 10.1126/sciadv.abc4373 – ident: e_1_2_7_64_1 doi: 10.1016/j.biomaterials.2019.119486 – ident: e_1_2_7_59_1 doi: 10.1038/s41583-019-0132-6 – ident: e_1_2_7_75_3 doi: 10.1371/journal.pbio.2006203 – ident: e_1_2_7_39_1 doi: 10.1021/jacs.7b01229 – ident: e_1_2_7_18_2 doi: 10.1002/adma.202000038 – ident: e_1_2_7_73_1 doi: 10.1021/acsmedchemlett.0c00022 – ident: e_1_2_7_77_1 doi: 10.1021/acs.nanolett.9b02904 – ident: e_1_2_7_25_5 doi: 10.1002/anie.202008055 – ident: e_1_2_7_28_1 doi: 10.1021/acsnano.9b06467 – ident: e_1_2_7_75_1 doi: 10.1016/j.chembiol.2020.03.015 – ident: e_1_2_7_6_1 doi: 10.1016/j.ccell.2018.03.022 – ident: e_1_2_7_1_1 doi: 10.1038/s41569-020-0403-y – ident: e_1_2_7_9_1 doi: 10.1002/adfm.202006216 – ident: e_1_2_7_23_4 doi: 10.1039/D0QI01051K – ident: e_1_2_7_40_1 doi: 10.1002/anie.202007222 – ident: e_1_2_7_18_3 doi: 10.1002/adma.202004647 – ident: e_1_2_7_78_1 doi: 10.1038/s41467-019-11355-x – ident: e_1_2_7_55_1 doi: 10.1016/j.isci.2020.101569 – ident: e_1_2_7_67_1 doi: 10.1016/j.chembiol.2020.03.011 – ident: e_1_2_7_24_2 doi: 10.1038/s41467-018-04910-5 – ident: e_1_2_7_7_1 doi: 10.1016/j.ccell.2019.04.002 – ident: e_1_2_7_24_5 doi: 10.1021/acs.nanolett.1c00488 – ident: e_1_2_7_5_3 doi: 10.1021/jacs.0c09984 – ident: e_1_2_7_43_1 doi: 10.1002/adma.201902885 – ident: e_1_2_7_19_3 doi: 10.1002/adfm.202007475 – ident: e_1_2_7_53_1 doi: 10.1126/sciadv.aax1346 – ident: e_1_2_7_17_2 doi: 10.1002/adhm.201901819 – ident: e_1_2_7_28_3 doi: 10.1021/jacs.8b13691 – ident: e_1_2_7_75_2 doi: 10.1038/s41571-020-00462-0 – ident: e_1_2_7_4_2 doi: 10.1039/D0CC03012K – ident: e_1_2_7_57_2 doi: 10.1016/j.aca.2016.10.046 – ident: e_1_2_7_22_3 doi: 10.1002/agt2.24 – ident: e_1_2_7_37_1 doi: 10.1002/adfm.201909062 – ident: e_1_2_7_65_1 doi: 10.1021/acs.analchem.9b05175 – ident: e_1_2_7_69_1 doi: 10.1038/s41586-019-1705-2 – ident: e_1_2_7_29_1 doi: 10.1002/chem.201405380 – ident: e_1_2_7_29_2 doi: 10.1039/C8MO00162F – ident: e_1_2_7_3_1 doi: 10.1002/adma.201901778 – ident: e_1_2_7_50_1 doi: 10.1016/j.cell.2012.03.042 – ident: e_1_2_7_1_2 doi: 10.1038/nrd4002 – ident: e_1_2_7_24_1 doi: 10.1021/jacs.7b00925 – ident: e_1_2_7_27_1 doi: 10.1021/acsami.0c12824 – ident: e_1_2_7_66_1 doi: 10.1039/D0CC00499E – ident: e_1_2_7_5_1 doi: 10.1002/adma.201701683 – ident: e_1_2_7_16_2 doi: 10.1016/j.freeradbiomed.2020.02.027 – ident: e_1_2_7_24_4 doi: 10.1016/j.biomaterials.2020.120305 – ident: e_1_2_7_29_3 doi: 10.1002/smll.202000303 – ident: e_1_2_7_36_1 doi: 10.1021/acsnano.9b05157 – ident: e_1_2_7_76_3 doi: 10.1002/smll.202001704 – ident: e_1_2_7_11_1 doi: 10.1016/j.isci.2020.101281 – ident: e_1_2_7_14_1 doi: 10.1016/j.tibs.2013.09.001 – ident: e_1_2_7_70_1 doi: 10.1039/C9CC05998A – ident: e_1_2_7_25_2 doi: 10.1016/j.isci.2019.03.028 – ident: e_1_2_7_76_4 doi: 10.1021/acsnano.9b07789 – ident: e_1_2_7_31_1 doi: 10.1016/j.chembiol.2008.02.010 – ident: e_1_2_7_19_1 doi: 10.1016/j.msec.2019.110302 – ident: e_1_2_7_41_1 doi: 10.1002/anie.202100864 – ident: e_1_2_7_21_3 doi: 10.1002/adma.201904197 – ident: e_1_2_7_24_3 doi: 10.1039/D0TB00724B – ident: e_1_2_7_26_1 doi: 10.1021/acs.bioconjchem.1c00040 – ident: e_1_2_7_28_2 doi: 10.1007/s40843-020-1428-0 – ident: e_1_2_7_42_1 doi: 10.1016/j.tips.2020.06.011 – ident: e_1_2_7_56_1 doi: 10.1194/jlr.M080374 – ident: e_1_2_7_22_2 doi: 10.1016/j.chempr.2020.08.024 – ident: e_1_2_7_20_1 doi: 10.1021/acs.chemrev.0c00977 – ident: e_1_2_7_19_2 doi: 10.1038/s41571-020-0363-5 – ident: e_1_2_7_23_3 doi: 10.1002/adfm.202002046 – ident: e_1_2_7_40_2 doi: 10.1016/j.biomaterials.2020.120257 – ident: e_1_2_7_72_1 doi: 10.1021/jacs.9b03457 – ident: e_1_2_7_34_1 doi: 10.1002/adma.201901556 – ident: e_1_2_7_71_1 doi: 10.1016/j.bbamcr.2020.118928 – ident: e_1_2_7_25_8 doi: 10.1016/j.nantod.2021.101101 – ident: e_1_2_7_25_4 doi: 10.1021/jacs.9b07695 – ident: e_1_2_7_69_2 doi: 10.1038/s41586-019-1707-0 – ident: e_1_2_7_5_2 doi: 10.1002/advs.202000272 – ident: e_1_2_7_8_3 doi: 10.1002/adma.202006892 – ident: e_1_2_7_5_4 doi: 10.1021/jacs.8b08714 – ident: e_1_2_7_16_1 doi: 10.1016/j.bbagen.2020.129539 – ident: e_1_2_7_48_1 doi: 10.1002/pst.426 – ident: e_1_2_7_21_4 doi: 10.1016/j.cclet.2019.03.025 – ident: e_1_2_7_25_3 doi: 10.1021/acsami.9b13544 – ident: e_1_2_7_5_5 doi: 10.1002/adfm.202006098 – ident: e_1_2_7_30_1 doi: 10.1002/adhm.202002090 – ident: e_1_2_7_1_3 doi: 10.1039/C9SC01652J – ident: e_1_2_7_23_1 doi: 10.1021/acsmaterialslett.0c00260 – ident: e_1_2_7_22_1 doi: 10.1002/anie.201904291 – ident: e_1_2_7_68_1 doi: 10.1016/j.freeradbiomed.2018.10.426 – ident: e_1_2_7_76_1 doi: 10.1021/acsnano.8b05860 – ident: e_1_2_7_63_1 doi: 10.1021/acsnano.0c09454 – ident: e_1_2_7_57_1 doi: 10.1039/D0AN00867B – ident: e_1_2_7_58_1 doi: 10.1021/acs.accounts.5b00226 – ident: e_1_2_7_15_1 doi: 10.1083/jcb.201804161 – ident: e_1_2_7_13_1 doi: 10.7150/thno.49277 – ident: e_1_2_7_18_1 doi: 10.1021/acsami.9b20661 – ident: e_1_2_7_21_2 doi: 10.1021/acsnano.0c00173 – ident: e_1_2_7_38_1 doi: 10.1039/dt9880001383 – ident: e_1_2_7_25_9 doi: 10.1021/acsnano.1c01194 – ident: e_1_2_7_47_1 doi: 10.1039/D0CC00861C – ident: e_1_2_7_17_3 doi: 10.1038/s41467-017-00424-8 – ident: e_1_2_7_2_1 doi: 10.1021/acsnano.8b07635 – ident: e_1_2_7_25_1 doi: 10.1016/j.biomaterials.2019.119459 – ident: e_1_2_7_44_1 doi: 10.1002/adfm.201906128 – ident: e_1_2_7_51_1 doi: 10.1146/annurev-cancerbio-030518-055844 – ident: e_1_2_7_8_1 doi: 10.1002/anie.201710800 – ident: e_1_2_7_17_1 doi: 10.1002/adma.202006363 – ident: e_1_2_7_76_2 doi: 10.1016/j.ijpharm.2019.118782 – ident: e_1_2_7_78_3 doi: 10.1021/acs.inorgchem.0c03783 – ident: e_1_2_7_25_6 doi: 10.1002/anie.201915569 – ident: e_1_2_7_8_2 doi: 10.1002/anie.202007786 – ident: e_1_2_7_46_1 doi: 10.1039/C9CC04486H – ident: e_1_2_7_10_1 doi: 10.1002/adma.202002439 – ident: e_1_2_7_61_1 doi: 10.1172/JCI97946 – ident: e_1_2_7_4_1 doi: 10.1002/anie.201805664 – ident: e_1_2_7_54_1 doi: 10.1021/acs.nanolett.0c00502 – ident: e_1_2_7_15_2 doi: 10.1038/s41580-020-00324-8 – ident: e_1_2_7_62_1 doi: 10.1016/j.freeradbiomed.2019.05.012 – ident: e_1_2_7_32_1 doi: 10.1016/j.chembiol.2020.03.012 |
SSID | ssj0031247 |
Score | 2.6316416 |
Snippet | Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2O2 in tumor cells into highly toxic ·OH, is recognized as a promising... Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H 2 O 2 in tumor cells into highly toxic ·OH, is recognized as a promising... Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2 O2 in tumor cells into highly toxic ·OH, is recognized as a promising... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2101368 |
SubjectTerms | Antioxidants cancer Cell death chemodynamic therapy Covalence covalent organic frameworks Damage accumulation ferroptosis Glutathione Hydrogen peroxide Lipids nanoparticles Nanotechnology Peroxidase |
Title | A Ferrocene‐Functionalized Covalent Organic Framework for Enhancing Chemodynamic Therapy via Redox Dyshomeostasis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202101368 https://www.proquest.com/docview/2560222939 https://www.proquest.com/docview/2548418050 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqTu2BPhHb0spIlXoKJHYezhEBEULQAwWJWzR-pKzKJhXZRcCJn8Bv7C9hJt6EBQlVam-JPFYS2-Pviz3zmbGvCil9qqDC2S9PghgiCCCLKN5BK4MUQzndRVt8T_dO4v3T5HQhi9_rQwwLbuQZ3XxNDg663XwQDW0n57R1gL8skUwp25cCtogVHQ36URLBqztdBTErIOGtXrUxFJuPqz9GpQequUhYO8QpXjPo39UHmvzamE31hrl5IuP4Px_zhi3P6Sjf8uPnLXvh6nfs1YJI4XvWbvHCXRDO1e7P7V2BQOjXD8c3zvLtBocqAhf3SZ2GF320F0c6zHfrMxL0qH9yUiZo7HUNEzQ69loG_HIM_MjZ5orvXLdnzcQ1SFbbcfuBnRS7x9t7wfyohsBIpHiBsdpKmyeJtbnIKgtaVJSWi_OwjEAnYVxBlQCWpRnoMAeRCchUrKpIGiFTucKW6qZ2q4yLXBtlIQETqlhjvahCkkbENneIs9WIBX1XlWauY07HaZyXXoFZlNSY5dCYI_ZtsP_tFTyetVzre76ce3JbEiWkM89lPmLrQzH6IG2sQO2aGdnEKo5UmIQjJrpu_suTyh-HBwfD3cd_qfSJvaRrH4u4xpamFzP3GfnRVH_pfOAeOL4JWw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAe-EddKGAkEKe0ifPnHDhU3UZbuu2hbKXegh07dNVuUjW7LdsTj8Cr8Co8Ak_CTP7aIiEkpB44Jh7nx_bMfLbH3wC8EQjpAyEztH6Rb3nSkZYMHYp3UCJFiCGMqqItdoPBvvfhwD9YgO_tWZiaH6JbcCPNqOw1KTgtSK9dsoaWk2PaO8A5i-MGoomr3Dbzc5y1le-3-tjFbzmPN0cbA6tJLGClLgISK9VKuzryfa0jHmZaKp7RIVK0Gq4jlW97mcx8iWVBKJUdSR5yGQpPZI6bcjdw8bm34DalESe6_v5ex1jlorus8rmgl7SI6qvlibT52vXvve4HL8HtVYhc-bj4PvxoW6cObTlanU3VanrxG3Hkf9V8D-Beg7jZeq0iD2HB5I9g6QoP42Mo11lsTsmV5-bn128x-vp6iXR8YTTbKFAb0Tez-txqyuI2oI0h4meb-SFxluSfGZEvFHqeywkKjWq6BnY2lmzP6OIL68_Lw2JiCsTj5bh8Avs38tdPYTEvcrMMjEcqFVr6MrWFp7CekyEOJeweGYQSWQ-sdmwkaUPVThlDjpOaZJon1HlJ13k9eNfJn9QkJX-UXGmHWtIYqzIh1Etp3d2oB6-7YjQztHckc1PMSMYTniNs3-4Br8bVX96UfNwZDrurZ_9S6RXcGYx2hslwa3f7Odyl-3Xo5QosTk9n5gXCwal6WSkgg083PWR_AZPFZl8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48F-xUMBIIE5pE-fPOXCouo1aulSotFJvwb90RTepml1ge-IReBRehVfgSRjHSdoiISSkHjgmHufH9sx8tsffADxnCOkTxg1avyz2Ih5wj6eBjXcQTCLEYFo00RY7yeZ-9PogPliA791ZGMcP0S-4Wc1o7LVV8GNlVs9IQ-vJkd06wClLECasDavc1vPPOGmrX20NsYdfUJpv7K1vem1eAU-GiEc8qYQKVRbHSmU0NYoLauwZUjQaYcBF7EeGm5hjWZJy4WecppSnLGImCCUNkxCfewWuRomf2WQRw92esCpEb9mkc0En6Vmmr44m0qerF7_3ohs8w7bnEXLj4vJb8KNrHBfZ8nFlNhUr8vQ33sj_qfVuw80Wb5M1pyB3YEGXd-HGORbGe1CvkVyfWEde6p9fv-Xo6d0C6fhUK7JeoS6iZybu1KokeRfORhDvk43y0DKWlB-IpV6o1LzkExTac2QN5NOYk12tqi9kOK8Pq4muEI3X4_o-7F_KXy_BYlmV-gEQmgnJFI-59FkksF5gEIVa5J5pBBJmAF43NArZErXbfCFHhaOYpoXtvKLvvAG87OWPHUXJHyWXu5FWtKaqLizmtUndw2wAz_piNDJ254iXuppZmYhFAfNjfwC0GVZ_eVPx7s1o1F89_JdKT-Ha22FejLZ2th_BdXvbxV0uw-L0ZKYfIxaciieN-hF4f9kj9hfd_WUO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Ferrocene%E2%80%90Functionalized+Covalent+Organic+Framework+for+Enhancing+Chemodynamic+Therapy+via+Redox+Dyshomeostasis&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhou%2C+Le%E2%80%90Le&rft.au=Guan%2C+Qun&rft.au=Li%2C+Wen%E2%80%90Yan&rft.au=Zhang%2C+Zhiyong&rft.date=2021-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202101368&rft.externalDBID=10.1002%252Fsmll.202101368&rft.externalDocID=SMLL202101368 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |