A Ferrocene‐Functionalized Covalent Organic Framework for Enhancing Chemodynamic Therapy via Redox Dyshomeostasis

Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defen...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 32; pp. e2101368 - n/a
Main Authors Zhou, Le‐Le, Guan, Qun, Li, Wen‐Yan, Zhang, Zhiyong, Li, Yan‐An, Dong, Yu‐Bin
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH‐induced cellular damage by CDT, a covalent organic framework (COF)‐based, ferrocene (Fc)‐ and glutathione peroxidase 4 (GPX4) inhibitor‐loaded nanodrug, RSL3@COF–Fc (2b), is fabricated. The obtained 2b not only promotes in situ Fenton‐like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species‐mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF‐based nanomedicine. Versatile covalent organic frameworks (COFs)! The organic nanodrug RSL3@COF–Fc (2b), which integrates the glutathione peroxidase 4 inhibitor RSL3 and Fenton‐like reaction catalyst ferrocene (Fc) into a nanoscale COF, induces ferroptosis to enhance chemodynamic therapy by blocking lipid repair and disrupting cellular redox homeostasis.
AbstractList Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH‐induced cellular damage by CDT, a covalent organic framework (COF)‐based, ferrocene (Fc)‐ and glutathione peroxidase 4 (GPX4) inhibitor‐loaded nanodrug, RSL3@COF–Fc (2b), is fabricated. The obtained 2b not only promotes in situ Fenton‐like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species‐mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF‐based nanomedicine. Versatile covalent organic frameworks (COFs)! The organic nanodrug RSL3@COF–Fc (2b), which integrates the glutathione peroxidase 4 inhibitor RSL3 and Fenton‐like reaction catalyst ferrocene (Fc) into a nanoscale COF, induces ferroptosis to enhance chemodynamic therapy by blocking lipid repair and disrupting cellular redox homeostasis.
Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H 2 O 2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH‐induced cellular damage by CDT, a covalent organic framework (COF)‐based, ferrocene (Fc)‐ and glutathione peroxidase 4 (GPX4) inhibitor‐loaded nanodrug, RSL3@COF–Fc ( 2b ), is fabricated. The obtained 2b not only promotes in situ Fenton‐like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species‐mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF‐based nanomedicine.
Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2 O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH-induced cellular damage by CDT, a covalent organic framework (COF)-based, ferrocene (Fc)- and glutathione peroxidase 4 (GPX4) inhibitor-loaded nanodrug, RSL3@COF-Fc (2b), is fabricated. The obtained 2b not only promotes in situ Fenton-like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species-mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF-based nanomedicine.Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2 O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH-induced cellular damage by CDT, a covalent organic framework (COF)-based, ferrocene (Fc)- and glutathione peroxidase 4 (GPX4) inhibitor-loaded nanodrug, RSL3@COF-Fc (2b), is fabricated. The obtained 2b not only promotes in situ Fenton-like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species-mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF-based nanomedicine.
Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH‐induced cellular damage by CDT, a covalent organic framework (COF)‐based, ferrocene (Fc)‐ and glutathione peroxidase 4 (GPX4) inhibitor‐loaded nanodrug, RSL3@COF–Fc (2b), is fabricated. The obtained 2b not only promotes in situ Fenton‐like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species‐mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF‐based nanomedicine.
Author Li, Wen‐Yan
Li, Yan‐An
Guan, Qun
Dong, Yu‐Bin
Zhou, Le‐Le
Zhang, Zhiyong
Author_xml – sequence: 1
  givenname: Le‐Le
  surname: Zhou
  fullname: Zhou, Le‐Le
  organization: Shandong Normal University
– sequence: 2
  givenname: Qun
  surname: Guan
  fullname: Guan, Qun
  organization: Shandong Normal University
– sequence: 3
  givenname: Wen‐Yan
  surname: Li
  fullname: Li, Wen‐Yan
  organization: Shandong Normal University
– sequence: 4
  givenname: Zhiyong
  surname: Zhang
  fullname: Zhang, Zhiyong
  organization: Shandong Academy of Medical Sciences
– sequence: 5
  givenname: Yan‐An
  surname: Li
  fullname: Li, Yan‐An
  organization: Shandong Normal University
– sequence: 6
  givenname: Yu‐Bin
  orcidid: 0000-0002-9698-8863
  surname: Dong
  fullname: Dong, Yu‐Bin
  email: yubindong@sdnu.edu.cn
  organization: Shandong Normal University
BookMark eNqFkU1rGzEQhkVIIR_ttWdBLrnYHUn7eQxu3AZcAm16XsbSbKxEK7nSOsn21J-Q39hf0jUOCQRCTzMwzzMD8x6xfR88MfZRwFQAyE-pc24qQQoQqqj22KEohJoUlaz3n3sBB-wopRsAJWRWHrJ0xucUY9Dk6e-fx_nG694Gj87-JsNn4Q4d-Z5fxmv0VvN5xI7uQ7zlbYj83K_Qa-uv-WxFXTCDx26ErlYUcT3wO4v8O5nwwD8PaRU6CqnHZNN79q5Fl-jDUz1mP-fnV7Ovk8Xll4vZ2WKiVQ7VRJulUabOc2NqWbYGl7IFIUFkhRK4zCFrsc1xnBUlLqFGWUosq6xqhdJSFeqYne72rmP4taHUN51NmpxDT2GTGplnVSYqyGFET16hN2ETxzdsqQKklLWqR2q6o3QMKUVqm3W0HcahEdBsM2i2GTTPGYxC9krQtsftg_uI1r2t1Tvt3joa_nOk-fFtsXhx_wFNfqBX
CitedBy_id crossref_primary_10_1021_acsanm_4c01125
crossref_primary_10_1039_D3NR02000B
crossref_primary_10_1002_adhm_202402314
crossref_primary_10_1002_adfm_202112000
crossref_primary_10_2147_DDDT_S472178
crossref_primary_10_1016_j_ccr_2023_215434
crossref_primary_10_1016_j_cej_2023_147436
crossref_primary_10_1016_j_cej_2024_149518
crossref_primary_10_1039_D1TB01654G
crossref_primary_10_1002_adhm_202400265
crossref_primary_10_1002_smm2_1119
crossref_primary_10_1007_s12272_025_01536_2
crossref_primary_10_2147_IJN_S479848
crossref_primary_10_1021_acsnano_3c06967
crossref_primary_10_1039_D1CS00983D
crossref_primary_10_1021_acs_analchem_4c05274
crossref_primary_10_3390_molecules28166008
crossref_primary_10_1016_j_jpha_2022_09_003
crossref_primary_10_1016_j_ijbiomac_2022_07_183
crossref_primary_10_1016_j_smaim_2024_03_003
crossref_primary_10_1039_D3CS00356F
crossref_primary_10_1039_D2TB02194C
crossref_primary_10_1039_D3BM01894F
crossref_primary_10_1088_2515_7639_ad4d1e
crossref_primary_10_1080_07853890_2024_2396568
crossref_primary_10_1039_D4QI01073F
crossref_primary_10_1007_s12274_023_5377_0
crossref_primary_10_1039_D2QI00413E
crossref_primary_10_1021_acs_biomac_4c00260
crossref_primary_10_1002_ange_202314763
crossref_primary_10_1021_acsami_2c01701
crossref_primary_10_1039_D4BM00930D
crossref_primary_10_1016_j_cej_2022_137148
crossref_primary_10_1016_j_smaim_2022_01_006
crossref_primary_10_1016_j_ajps_2022_09_002
crossref_primary_10_1039_D1SC05482A
crossref_primary_10_1016_j_ccr_2021_214360
crossref_primary_10_1016_j_cej_2024_150448
crossref_primary_10_1002_cac2_12250
crossref_primary_10_1016_j_ccr_2024_216400
crossref_primary_10_1016_j_jconrel_2022_08_037
crossref_primary_10_1021_acsami_4c07040
crossref_primary_10_1136_jitc_2022_006516
crossref_primary_10_1002_adhm_202300871
crossref_primary_10_1021_jacs_2c11071
crossref_primary_10_1016_j_mtbio_2024_101040
crossref_primary_10_2147_IJN_S372947
crossref_primary_10_1002_smll_202412462
crossref_primary_10_1002_adtp_202200208
crossref_primary_10_1038_s41467_023_41121_z
crossref_primary_10_1039_D2TB02319A
crossref_primary_10_1002_smll_202205024
crossref_primary_10_1016_j_bmc_2022_116885
crossref_primary_10_1016_j_nantod_2024_102166
crossref_primary_10_1021_acsami_4c20103
crossref_primary_10_1039_D3BM01247F
crossref_primary_10_1039_D1CS00871D
crossref_primary_10_3390_molecules28186469
crossref_primary_10_1021_acs_chemmater_3c02095
crossref_primary_10_1016_j_bioactmat_2022_08_016
crossref_primary_10_1016_j_carbpol_2024_121795
crossref_primary_10_1016_j_cej_2024_150770
crossref_primary_10_1016_j_jpowsour_2024_236121
crossref_primary_10_1002_adhm_202304249
crossref_primary_10_1016_j_cej_2024_157730
crossref_primary_10_1039_D2DT03088H
crossref_primary_10_3390_ijms25115675
crossref_primary_10_1021_acsnano_3c03279
crossref_primary_10_1039_D2TB01815B
crossref_primary_10_1016_j_snb_2024_135594
crossref_primary_10_1039_D3SC00251A
crossref_primary_10_1021_acsami_1c14998
crossref_primary_10_1002_adfm_202211251
crossref_primary_10_1021_acs_chemrev_4c00546
crossref_primary_10_1039_D2SC05732H
crossref_primary_10_1002_anie_202314763
crossref_primary_10_1021_acsbiomaterials_1c01605
crossref_primary_10_1002_adtp_202100177
crossref_primary_10_1002_aoc_7960
crossref_primary_10_1016_j_jcis_2023_01_110
crossref_primary_10_1016_j_onano_2023_100159
crossref_primary_10_1039_D2TA05934G
crossref_primary_10_1002_advs_202306178
crossref_primary_10_1016_j_cej_2023_144360
crossref_primary_10_1002_adfm_202313890
crossref_primary_10_1002_adma_202108174
crossref_primary_10_1002_ange_202303829
crossref_primary_10_1007_s10118_025_3316_8
crossref_primary_10_1021_acsanm_2c01517
crossref_primary_10_3389_fchem_2022_868630
crossref_primary_10_1097_MPA_0000000000002426
crossref_primary_10_1039_D2SC02297D
crossref_primary_10_1016_j_cej_2023_142960
crossref_primary_10_3390_pharmaceutics13111785
crossref_primary_10_1186_s12951_022_01661_w
crossref_primary_10_1002_anbr_202300163
crossref_primary_10_1039_D4NR00654B
crossref_primary_10_1002_adhm_202101971
crossref_primary_10_1016_j_canlet_2023_216119
crossref_primary_10_1016_j_ccr_2023_215332
crossref_primary_10_1002_anie_202303829
crossref_primary_10_1021_acs_chemmater_2c01726
crossref_primary_10_1186_s13045_024_01564_3
crossref_primary_10_1016_j_snb_2022_131937
crossref_primary_10_1002_adhm_202400809
crossref_primary_10_1039_D1CS00804H
crossref_primary_10_2147_JHC_S483619
crossref_primary_10_1002_smll_202202161
crossref_primary_10_1016_j_ejmech_2024_117015
crossref_primary_10_1016_j_jddst_2022_103851
crossref_primary_10_1039_D3MH01492D
crossref_primary_10_1021_acs_nanolett_3c02362
Cites_doi 10.1021/cr100392s
10.1016/j.pharmthera.2020.107664
10.1039/C9CS00890J
10.1002/adfm.201902757
10.1039/D0CC03829F
10.1016/j.synres.2014.07.003
10.1016/j.chembiol.2020.03.013
10.1021/jacs.0c04722
10.1021/acsnano.8b06399
10.1016/j.giant.2021.100054
10.1002/adhm.202001821
10.1039/D0NA00537A
10.1021/acs.chemmater.8b02560
10.1016/j.nantod.2020.100972
10.1126/sciadv.abc4373
10.1016/j.biomaterials.2019.119486
10.1038/s41583-019-0132-6
10.1371/journal.pbio.2006203
10.1021/jacs.7b01229
10.1002/adma.202000038
10.1021/acsmedchemlett.0c00022
10.1021/acs.nanolett.9b02904
10.1002/anie.202008055
10.1021/acsnano.9b06467
10.1016/j.chembiol.2020.03.015
10.1016/j.ccell.2018.03.022
10.1038/s41569-020-0403-y
10.1002/adfm.202006216
10.1039/D0QI01051K
10.1002/anie.202007222
10.1002/adma.202004647
10.1038/s41467-019-11355-x
10.1016/j.isci.2020.101569
10.1016/j.chembiol.2020.03.011
10.1038/s41467-018-04910-5
10.1016/j.ccell.2019.04.002
10.1021/acs.nanolett.1c00488
10.1021/jacs.0c09984
10.1002/adma.201902885
10.1002/adfm.202007475
10.1126/sciadv.aax1346
10.1002/adhm.201901819
10.1021/jacs.8b13691
10.1038/s41571-020-00462-0
10.1039/D0CC03012K
10.1016/j.aca.2016.10.046
10.1002/agt2.24
10.1002/adfm.201909062
10.1021/acs.analchem.9b05175
10.1038/s41586-019-1705-2
10.1002/chem.201405380
10.1039/C8MO00162F
10.1002/adma.201901778
10.1016/j.cell.2012.03.042
10.1038/nrd4002
10.1021/jacs.7b00925
10.1021/acsami.0c12824
10.1039/D0CC00499E
10.1002/adma.201701683
10.1016/j.freeradbiomed.2020.02.027
10.1016/j.biomaterials.2020.120305
10.1002/smll.202000303
10.1021/acsnano.9b05157
10.1002/smll.202001704
10.1016/j.isci.2020.101281
10.1016/j.tibs.2013.09.001
10.1039/C9CC05998A
10.1016/j.isci.2019.03.028
10.1021/acsnano.9b07789
10.1016/j.chembiol.2008.02.010
10.1016/j.msec.2019.110302
10.1002/anie.202100864
10.1002/adma.201904197
10.1039/D0TB00724B
10.1021/acs.bioconjchem.1c00040
10.1007/s40843-020-1428-0
10.1016/j.tips.2020.06.011
10.1194/jlr.M080374
10.1016/j.chempr.2020.08.024
10.1021/acs.chemrev.0c00977
10.1038/s41571-020-0363-5
10.1002/adfm.202002046
10.1016/j.biomaterials.2020.120257
10.1021/jacs.9b03457
10.1002/adma.201901556
10.1016/j.bbamcr.2020.118928
10.1016/j.nantod.2021.101101
10.1021/jacs.9b07695
10.1038/s41586-019-1707-0
10.1002/advs.202000272
10.1002/adma.202006892
10.1021/jacs.8b08714
10.1016/j.bbagen.2020.129539
10.1002/pst.426
10.1016/j.cclet.2019.03.025
10.1021/acsami.9b13544
10.1002/adfm.202006098
10.1002/adhm.202002090
10.1039/C9SC01652J
10.1021/acsmaterialslett.0c00260
10.1002/anie.201904291
10.1016/j.freeradbiomed.2018.10.426
10.1021/acsnano.8b05860
10.1021/acsnano.0c09454
10.1039/D0AN00867B
10.1021/acs.accounts.5b00226
10.1083/jcb.201804161
10.7150/thno.49277
10.1021/acsami.9b20661
10.1021/acsnano.0c00173
10.1039/dt9880001383
10.1021/acsnano.1c01194
10.1039/D0CC00861C
10.1038/s41467-017-00424-8
10.1021/acsnano.8b07635
10.1016/j.biomaterials.2019.119459
10.1002/adfm.201906128
10.1146/annurev-cancerbio-030518-055844
10.1002/anie.201710800
10.1002/adma.202006363
10.1016/j.ijpharm.2019.118782
10.1021/acs.inorgchem.0c03783
10.1002/anie.201915569
10.1002/anie.202007786
10.1039/C9CC04486H
10.1002/adma.202002439
10.1172/JCI97946
10.1002/anie.201805664
10.1021/acs.nanolett.0c00502
10.1038/s41580-020-00324-8
10.1016/j.freeradbiomed.2019.05.012
10.1016/j.chembiol.2020.03.012
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202101368
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202101368
SMLL202101368
Genre article
GrantInformation_xml – fundername: Taishan Scholars Climbing Program of Shandong Province
– fundername: Major Basic Research Projects of Shandong Natural Science Foundation
  funderid: ZR2020ZD32
– fundername: NSFC
  funderid: 21971153; 21805172; 21671122
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3508-cdbd3d955dd927fdab2f012014631ab504faf5a92767ab09a272a7848f13c2363
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 03:47:21 EDT 2025
Fri Jul 25 11:51:14 EDT 2025
Tue Jul 01 02:11:05 EDT 2025
Thu Apr 24 23:01:45 EDT 2025
Wed Jan 22 16:28:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3508-cdbd3d955dd927fdab2f012014631ab504faf5a92767ab09a272a7848f13c2363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9698-8863
PQID 2560222939
PQPubID 1046358
PageCount 12
ParticipantIDs proquest_miscellaneous_2548418050
proquest_journals_2560222939
crossref_primary_10_1002_smll_202101368
crossref_citationtrail_10_1002_smll_202101368
wiley_primary_10_1002_smll_202101368_SMLL202101368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020 2020 2019 2019; 35 14 31 30
2017 2018 2020 2020 2021; 139 9 8 260 21
2020; 20
2018; 128
2019 2019; 575 575
2019; 55
2018; 129
2019; 13
2019; 19
2011; 10
2020; 56
2019 2020 2021; 10 142 60
2020; 11
2021; 121
2020 2020; 59 258
2011; 111
2020 2020 2021; 106 17 31
2014; 1
2020 2017; 145 950
2020; 6
2015; 48
2021; 32
2021; 31
2019; 20
2020; 92
2017 2020 2020 2019 2020; 29 7 142 141 30
2020; 49
2018; 30
2018; 34
2019 2019 2019 2019 2020 2020 2021 2021 2021; 223 14 11 141 59 59 10 37 15
2019; 3
2019; 31
2019 2020; 58 56
2020 2013 2019; 17 12 10
2020; 41
2019; 35
2018 2020 2021; 57 59 33
2020 2020 2020 2021; 2 2 30 8
2008; 15
2020 2021; 27 217
2019; 223
2020; 32
2019; 141
2012; 149
2019; 144
2018 2021; 217 22
2017; 139
2021; 15
2021; 10
2018 2019 2020 2020; 12 572 16 14
2021; 11
2013; 38
2020 2020 2021 2021; 59 6 2 6
2020; 30
2021; 1868
2020 2021 2018; 27 18 16
1988; 5
2020 2019; 12 29
2020; 27
2015 2019 2020; 21 15 16
2020; 23
2020 2020; 1864 152
2018; 12
2020 2020 2020; 12 32 32
2021; 60
2021 2020 2017; 33 9 8
2019 2021 2019; 13 64 141
2018; 59
e_1_2_7_3_1
e_1_2_7_19_3
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_15_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_71_1
e_1_2_7_23_4
e_1_2_7_75_2
e_1_2_7_23_3
e_1_2_7_52_1
e_1_2_7_75_3
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_40_2
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_2
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_29_2
e_1_2_7_29_3
e_1_2_7_24_5
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_24_4
e_1_2_7_24_3
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_78_3
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_78_2
e_1_2_7_5_2
e_1_2_7_5_1
e_1_2_7_1_3
e_1_2_7_5_5
e_1_2_7_9_1
e_1_2_7_5_4
e_1_2_7_5_3
e_1_2_7_17_3
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_1_2
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_47_1
e_1_2_7_28_1
e_1_2_7_28_2
e_1_2_7_28_3
e_1_2_7_25_9
e_1_2_7_25_8
e_1_2_7_25_7
e_1_2_7_25_6
e_1_2_7_25_5
e_1_2_7_73_1
e_1_2_7_25_4
e_1_2_7_25_3
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_21_4
e_1_2_7_21_3
e_1_2_7_54_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_2
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_72_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_22_4
e_1_2_7_76_2
e_1_2_7_22_3
e_1_2_7_22_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_76_3
e_1_2_7_57_2
e_1_2_7_76_4
e_1_2_7_38_1
References_xml – volume: 149
  start-page: 1060
  year: 2012
  publication-title: Cell
– volume: 56
  year: 2020
  publication-title: Chem. Commun.
– volume: 32
  start-page: 755
  year: 2021
  publication-title: Bioconjugate Chem.
– volume: 35
  start-page: 830
  year: 2019
  publication-title: Cancer Cell
– volume: 3
  start-page: 35
  year: 2019
  publication-title: Annu. Rev. Cancer Biol.
– volume: 11
  start-page: 1993
  year: 2020
  publication-title: ACS Med. Chem. Lett.
– volume: 59 6 2 6
  start-page: 5050 2461
  year: 2020 2020 2021 2021
  publication-title: Angew. Chem., Int. Ed. Chem Aggregate Giant
– volume: 141
  start-page: 9937
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 5271
  year: 2020
  publication-title: Chem. Commun.
– volume: 575 575
  start-page: 688 693
  year: 2019 2019
  publication-title: Nature Nature
– volume: 2 2 30 8
  start-page: 1074 3656 848
  year: 2020 2020 2020 2021
  publication-title: ACS Mater. Lett. Nanoscale Adv. Adv. Funct. Mater. Inorg. Chem. Front.
– volume: 10 142 60
  start-page: 3368 3393
  year: 2019 2020 2021
  publication-title: Nat. Commun. J. Am. Chem. Soc. Inorg. Chem.
– volume: 5
  start-page: 1383
  year: 1988
  publication-title: J. Chem. Soc., Dalton Trans.
– volume: 34
  start-page: 21
  year: 2018
  publication-title: Cancer Cell
– volume: 27
  start-page: 365
  year: 2020
  publication-title: Cell Chem. Biol.
– volume: 13 64 141
  start-page: 488 3298
  year: 2019 2021 2019
  publication-title: ACS Nano Sci. China Mater. J. Am. Chem. Soc.
– volume: 41
  start-page: 641
  year: 2020
  publication-title: Trends Pharmacol. Sci.
– volume: 49
  start-page: 2291
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 92
  year: 2020
  publication-title: Anal. Chem.
– volume: 56
  start-page: 7793
  year: 2020
  publication-title: Chem. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 128
  year: 2011
  publication-title: Pharm. Stat.
– volume: 10
  year: 2021
  publication-title: Adv. Healthcare Mater.
– volume: 1864 152
  start-page: 175
  year: 2020 2020
  publication-title: Biochim. Biophys. Acta, Gen. Subj. Free Radical Biol. Med.
– volume: 6
  start-page: 4373
  year: 2020
  publication-title: Sci. Adv.
– volume: 13
  start-page: 7359
  year: 2019
  publication-title: ACS Nano
– volume: 19
  start-page: 7866
  year: 2019
  publication-title: Nano Lett.
– volume: 17 12 10
  start-page: 773 931 6035
  year: 2020 2013 2019
  publication-title: Nat. Rev. Cardiol. Nat. Rev. Drug Discovery Chem. Sci.
– volume: 23
  year: 2020
  publication-title: iScience
– volume: 106 17 31
  start-page: 527
  year: 2020 2020 2021
  publication-title: Mater. Sci. Eng., C Nat. Rev. Clin. Oncol. Adv. Funct. Mater.
– volume: 55
  year: 2019
  publication-title: Chem. Commun.
– volume: 27 217
  start-page: 436
  year: 2020 2021
  publication-title: Cell Chem. Biol. Pharmacol. Ther.
– volume: 57 59 33
  start-page: 4891
  year: 2018 2020 2021
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Mater.
– volume: 60
  start-page: 8905
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 128
  start-page: 2691
  year: 2018
  publication-title: J. Clin. Invest.
– volume: 12 32 32
  year: 2020 2020 2020
  publication-title: ACS Appl. Mater. Interfaces Adv. Mater. Adv. Mater.
– volume: 12 29
  year: 2020 2019
  publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater.
– volume: 20
  start-page: 6235
  year: 2020
  publication-title: Nano Lett.
– volume: 121
  start-page: 1981
  year: 2021
  publication-title: Chem. Rev.
– volume: 11
  start-page: 2334
  year: 2021
  publication-title: Theranostics
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 27 18 16
  start-page: 463 280
  year: 2020 2021 2018
  publication-title: Cell Chem. Biol. Nat. Rev. Clin. Oncol. PLoS Biol.
– volume: 139 9 8 260 21
  start-page: 4513 2785 4475 3218
  year: 2017 2018 2020 2020 2021
  publication-title: J. Am. Chem. Soc. Nat. Commun. J. Mater. Chem. B Biomaterials Nano Lett.
– volume: 15
  start-page: 3047
  year: 2021
  publication-title: ACS Nano
– volume: 59
  start-page: 312
  year: 2018
  publication-title: J. Lipid Res.
– volume: 129
  start-page: 454
  year: 2018
  publication-title: Free Radical Biol. Med.
– volume: 144
  start-page: 72
  year: 2019
  publication-title: Free Radical Biol. Med.
– volume: 38
  start-page: 592
  year: 2013
  publication-title: Trends Biochem. Sci.
– volume: 35 14 31 30
  start-page: 2678 847
  year: 2020 2020 2019 2019
  publication-title: Nano Today ACS Nano Adv. Mater. Chin. Chem. Lett.
– volume: 48
  start-page: 2242
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 27
  start-page: 409
  year: 2020
  publication-title: Cell Chem. Biol.
– volume: 55
  start-page: 9645
  year: 2019
  publication-title: Chem. Commun.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 223
  year: 2019
  publication-title: Biomaterials
– volume: 33 9 8
  start-page: 357
  year: 2021 2020 2017
  publication-title: Adv. Mater. Adv. Healthcare Mater. Nat. Commun.
– volume: 59 258
  year: 2020 2020
  publication-title: Angew. Chem., Int. Ed. Biomaterials
– volume: 30
  start-page: 5743
  year: 2018
  publication-title: Chem. Mater.
– volume: 1
  start-page: 3
  year: 2014
  publication-title: Synergy
– volume: 139
  start-page: 5877
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 217 22
  start-page: 2291 266
  year: 2018 2021
  publication-title: J. Cell Biol. Nat. Rev. Mol. Cell Biol.
– volume: 1868
  year: 2021
  publication-title: Biochim. Biophys. Acta, Mol. Cell. Res.
– volume: 12 572 16 14
  year: 2018 2019 2020 2020
  publication-title: ACS Nano Int. J. Pharm. Small ACS Nano
– volume: 21 15 16
  start-page: 2508 30
  year: 2015 2019 2020
  publication-title: Chem. ‐ Eur. J. Mol. Omics Small
– volume: 15
  start-page: 234
  year: 2008
  publication-title: Chem. Biol.
– volume: 223 14 11 141 59 59 10 37 15
  start-page: 180 4354 7638
  year: 2019 2019 2019 2019 2020 2020 2021 2021 2021
  publication-title: Biomaterials iScience ACS Appl. Mater. Interfaces J. Am. Chem. Soc. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Healthcare Mater. Nano Today ACS Nano
– volume: 58 56
  start-page: 946 8332
  year: 2019 2020
  publication-title: Angew. Chem., Int. Ed. Chem. Commun.
– volume: 29 7 142 141 30
  start-page: 849
  year: 2017 2020 2020 2019 2020
  publication-title: Adv. Mater. Adv. Sci. J. Am. Chem. Soc. J. Am. Chem. Soc. Adv. Funct. Mater.
– volume: 20
  start-page: 148
  year: 2019
  publication-title: Nat. Rev. Neurosci.
– volume: 111
  start-page: 6231
  year: 2011
  publication-title: Chem. Rev.
– volume: 145 950
  start-page: 4972 108
  year: 2020 2017
  publication-title: Analyst Anal. Chim. Acta
– ident: e_1_2_7_60_1
  doi: 10.1021/cr100392s
– ident: e_1_2_7_67_2
  doi: 10.1016/j.pharmthera.2020.107664
– ident: e_1_2_7_33_1
  doi: 10.1039/C9CS00890J
– ident: e_1_2_7_27_2
  doi: 10.1002/adfm.201902757
– ident: e_1_2_7_45_1
  doi: 10.1039/D0CC03829F
– ident: e_1_2_7_49_1
  doi: 10.1016/j.synres.2014.07.003
– ident: e_1_2_7_74_1
  doi: 10.1016/j.chembiol.2020.03.013
– ident: e_1_2_7_78_2
  doi: 10.1021/jacs.0c04722
– ident: e_1_2_7_52_1
  doi: 10.1021/acsnano.8b06399
– ident: e_1_2_7_22_4
  doi: 10.1016/j.giant.2021.100054
– ident: e_1_2_7_25_7
  doi: 10.1002/adhm.202001821
– ident: e_1_2_7_23_2
  doi: 10.1039/D0NA00537A
– ident: e_1_2_7_35_1
  doi: 10.1021/acs.chemmater.8b02560
– ident: e_1_2_7_21_1
  doi: 10.1016/j.nantod.2020.100972
– ident: e_1_2_7_12_1
  doi: 10.1126/sciadv.abc4373
– ident: e_1_2_7_64_1
  doi: 10.1016/j.biomaterials.2019.119486
– ident: e_1_2_7_59_1
  doi: 10.1038/s41583-019-0132-6
– ident: e_1_2_7_75_3
  doi: 10.1371/journal.pbio.2006203
– ident: e_1_2_7_39_1
  doi: 10.1021/jacs.7b01229
– ident: e_1_2_7_18_2
  doi: 10.1002/adma.202000038
– ident: e_1_2_7_73_1
  doi: 10.1021/acsmedchemlett.0c00022
– ident: e_1_2_7_77_1
  doi: 10.1021/acs.nanolett.9b02904
– ident: e_1_2_7_25_5
  doi: 10.1002/anie.202008055
– ident: e_1_2_7_28_1
  doi: 10.1021/acsnano.9b06467
– ident: e_1_2_7_75_1
  doi: 10.1016/j.chembiol.2020.03.015
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ccell.2018.03.022
– ident: e_1_2_7_1_1
  doi: 10.1038/s41569-020-0403-y
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.202006216
– ident: e_1_2_7_23_4
  doi: 10.1039/D0QI01051K
– ident: e_1_2_7_40_1
  doi: 10.1002/anie.202007222
– ident: e_1_2_7_18_3
  doi: 10.1002/adma.202004647
– ident: e_1_2_7_78_1
  doi: 10.1038/s41467-019-11355-x
– ident: e_1_2_7_55_1
  doi: 10.1016/j.isci.2020.101569
– ident: e_1_2_7_67_1
  doi: 10.1016/j.chembiol.2020.03.011
– ident: e_1_2_7_24_2
  doi: 10.1038/s41467-018-04910-5
– ident: e_1_2_7_7_1
  doi: 10.1016/j.ccell.2019.04.002
– ident: e_1_2_7_24_5
  doi: 10.1021/acs.nanolett.1c00488
– ident: e_1_2_7_5_3
  doi: 10.1021/jacs.0c09984
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.201902885
– ident: e_1_2_7_19_3
  doi: 10.1002/adfm.202007475
– ident: e_1_2_7_53_1
  doi: 10.1126/sciadv.aax1346
– ident: e_1_2_7_17_2
  doi: 10.1002/adhm.201901819
– ident: e_1_2_7_28_3
  doi: 10.1021/jacs.8b13691
– ident: e_1_2_7_75_2
  doi: 10.1038/s41571-020-00462-0
– ident: e_1_2_7_4_2
  doi: 10.1039/D0CC03012K
– ident: e_1_2_7_57_2
  doi: 10.1016/j.aca.2016.10.046
– ident: e_1_2_7_22_3
  doi: 10.1002/agt2.24
– ident: e_1_2_7_37_1
  doi: 10.1002/adfm.201909062
– ident: e_1_2_7_65_1
  doi: 10.1021/acs.analchem.9b05175
– ident: e_1_2_7_69_1
  doi: 10.1038/s41586-019-1705-2
– ident: e_1_2_7_29_1
  doi: 10.1002/chem.201405380
– ident: e_1_2_7_29_2
  doi: 10.1039/C8MO00162F
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201901778
– ident: e_1_2_7_50_1
  doi: 10.1016/j.cell.2012.03.042
– ident: e_1_2_7_1_2
  doi: 10.1038/nrd4002
– ident: e_1_2_7_24_1
  doi: 10.1021/jacs.7b00925
– ident: e_1_2_7_27_1
  doi: 10.1021/acsami.0c12824
– ident: e_1_2_7_66_1
  doi: 10.1039/D0CC00499E
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201701683
– ident: e_1_2_7_16_2
  doi: 10.1016/j.freeradbiomed.2020.02.027
– ident: e_1_2_7_24_4
  doi: 10.1016/j.biomaterials.2020.120305
– ident: e_1_2_7_29_3
  doi: 10.1002/smll.202000303
– ident: e_1_2_7_36_1
  doi: 10.1021/acsnano.9b05157
– ident: e_1_2_7_76_3
  doi: 10.1002/smll.202001704
– ident: e_1_2_7_11_1
  doi: 10.1016/j.isci.2020.101281
– ident: e_1_2_7_14_1
  doi: 10.1016/j.tibs.2013.09.001
– ident: e_1_2_7_70_1
  doi: 10.1039/C9CC05998A
– ident: e_1_2_7_25_2
  doi: 10.1016/j.isci.2019.03.028
– ident: e_1_2_7_76_4
  doi: 10.1021/acsnano.9b07789
– ident: e_1_2_7_31_1
  doi: 10.1016/j.chembiol.2008.02.010
– ident: e_1_2_7_19_1
  doi: 10.1016/j.msec.2019.110302
– ident: e_1_2_7_41_1
  doi: 10.1002/anie.202100864
– ident: e_1_2_7_21_3
  doi: 10.1002/adma.201904197
– ident: e_1_2_7_24_3
  doi: 10.1039/D0TB00724B
– ident: e_1_2_7_26_1
  doi: 10.1021/acs.bioconjchem.1c00040
– ident: e_1_2_7_28_2
  doi: 10.1007/s40843-020-1428-0
– ident: e_1_2_7_42_1
  doi: 10.1016/j.tips.2020.06.011
– ident: e_1_2_7_56_1
  doi: 10.1194/jlr.M080374
– ident: e_1_2_7_22_2
  doi: 10.1016/j.chempr.2020.08.024
– ident: e_1_2_7_20_1
  doi: 10.1021/acs.chemrev.0c00977
– ident: e_1_2_7_19_2
  doi: 10.1038/s41571-020-0363-5
– ident: e_1_2_7_23_3
  doi: 10.1002/adfm.202002046
– ident: e_1_2_7_40_2
  doi: 10.1016/j.biomaterials.2020.120257
– ident: e_1_2_7_72_1
  doi: 10.1021/jacs.9b03457
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.201901556
– ident: e_1_2_7_71_1
  doi: 10.1016/j.bbamcr.2020.118928
– ident: e_1_2_7_25_8
  doi: 10.1016/j.nantod.2021.101101
– ident: e_1_2_7_25_4
  doi: 10.1021/jacs.9b07695
– ident: e_1_2_7_69_2
  doi: 10.1038/s41586-019-1707-0
– ident: e_1_2_7_5_2
  doi: 10.1002/advs.202000272
– ident: e_1_2_7_8_3
  doi: 10.1002/adma.202006892
– ident: e_1_2_7_5_4
  doi: 10.1021/jacs.8b08714
– ident: e_1_2_7_16_1
  doi: 10.1016/j.bbagen.2020.129539
– ident: e_1_2_7_48_1
  doi: 10.1002/pst.426
– ident: e_1_2_7_21_4
  doi: 10.1016/j.cclet.2019.03.025
– ident: e_1_2_7_25_3
  doi: 10.1021/acsami.9b13544
– ident: e_1_2_7_5_5
  doi: 10.1002/adfm.202006098
– ident: e_1_2_7_30_1
  doi: 10.1002/adhm.202002090
– ident: e_1_2_7_1_3
  doi: 10.1039/C9SC01652J
– ident: e_1_2_7_23_1
  doi: 10.1021/acsmaterialslett.0c00260
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.201904291
– ident: e_1_2_7_68_1
  doi: 10.1016/j.freeradbiomed.2018.10.426
– ident: e_1_2_7_76_1
  doi: 10.1021/acsnano.8b05860
– ident: e_1_2_7_63_1
  doi: 10.1021/acsnano.0c09454
– ident: e_1_2_7_57_1
  doi: 10.1039/D0AN00867B
– ident: e_1_2_7_58_1
  doi: 10.1021/acs.accounts.5b00226
– ident: e_1_2_7_15_1
  doi: 10.1083/jcb.201804161
– ident: e_1_2_7_13_1
  doi: 10.7150/thno.49277
– ident: e_1_2_7_18_1
  doi: 10.1021/acsami.9b20661
– ident: e_1_2_7_21_2
  doi: 10.1021/acsnano.0c00173
– ident: e_1_2_7_38_1
  doi: 10.1039/dt9880001383
– ident: e_1_2_7_25_9
  doi: 10.1021/acsnano.1c01194
– ident: e_1_2_7_47_1
  doi: 10.1039/D0CC00861C
– ident: e_1_2_7_17_3
  doi: 10.1038/s41467-017-00424-8
– ident: e_1_2_7_2_1
  doi: 10.1021/acsnano.8b07635
– ident: e_1_2_7_25_1
  doi: 10.1016/j.biomaterials.2019.119459
– ident: e_1_2_7_44_1
  doi: 10.1002/adfm.201906128
– ident: e_1_2_7_51_1
  doi: 10.1146/annurev-cancerbio-030518-055844
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.201710800
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.202006363
– ident: e_1_2_7_76_2
  doi: 10.1016/j.ijpharm.2019.118782
– ident: e_1_2_7_78_3
  doi: 10.1021/acs.inorgchem.0c03783
– ident: e_1_2_7_25_6
  doi: 10.1002/anie.201915569
– ident: e_1_2_7_8_2
  doi: 10.1002/anie.202007786
– ident: e_1_2_7_46_1
  doi: 10.1039/C9CC04486H
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.202002439
– ident: e_1_2_7_61_1
  doi: 10.1172/JCI97946
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.201805664
– ident: e_1_2_7_54_1
  doi: 10.1021/acs.nanolett.0c00502
– ident: e_1_2_7_15_2
  doi: 10.1038/s41580-020-00324-8
– ident: e_1_2_7_62_1
  doi: 10.1016/j.freeradbiomed.2019.05.012
– ident: e_1_2_7_32_1
  doi: 10.1016/j.chembiol.2020.03.012
SSID ssj0031247
Score 2.6316416
Snippet Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2O2 in tumor cells into highly toxic ·OH, is recognized as a promising...
Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H 2 O 2 in tumor cells into highly toxic ·OH, is recognized as a promising...
Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2 O2 in tumor cells into highly toxic ·OH, is recognized as a promising...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2101368
SubjectTerms Antioxidants
cancer
Cell death
chemodynamic therapy
Covalence
covalent organic frameworks
Damage accumulation
ferroptosis
Glutathione
Hydrogen peroxide
Lipids
nanoparticles
Nanotechnology
Peroxidase
Title A Ferrocene‐Functionalized Covalent Organic Framework for Enhancing Chemodynamic Therapy via Redox Dyshomeostasis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202101368
https://www.proquest.com/docview/2560222939
https://www.proquest.com/docview/2548418050
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqTu2BPhHb0spIlXoKJHYezhEBEULQAwWJWzR-pKzKJhXZRcCJn8Bv7C9hJt6EBQlVam-JPFYS2-Pviz3zmbGvCil9qqDC2S9PghgiCCCLKN5BK4MUQzndRVt8T_dO4v3T5HQhi9_rQwwLbuQZ3XxNDg663XwQDW0n57R1gL8skUwp25cCtogVHQ36URLBqztdBTErIOGtXrUxFJuPqz9GpQequUhYO8QpXjPo39UHmvzamE31hrl5IuP4Px_zhi3P6Sjf8uPnLXvh6nfs1YJI4XvWbvHCXRDO1e7P7V2BQOjXD8c3zvLtBocqAhf3SZ2GF320F0c6zHfrMxL0qH9yUiZo7HUNEzQ69loG_HIM_MjZ5orvXLdnzcQ1SFbbcfuBnRS7x9t7wfyohsBIpHiBsdpKmyeJtbnIKgtaVJSWi_OwjEAnYVxBlQCWpRnoMAeRCchUrKpIGiFTucKW6qZ2q4yLXBtlIQETqlhjvahCkkbENneIs9WIBX1XlWauY07HaZyXXoFZlNSY5dCYI_ZtsP_tFTyetVzre76ce3JbEiWkM89lPmLrQzH6IG2sQO2aGdnEKo5UmIQjJrpu_suTyh-HBwfD3cd_qfSJvaRrH4u4xpamFzP3GfnRVH_pfOAeOL4JWw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAe-EddKGAkEKe0ifPnHDhU3UZbuu2hbKXegh07dNVuUjW7LdsTj8Cr8Co8Ak_CTP7aIiEkpB44Jh7nx_bMfLbH3wC8EQjpAyEztH6Rb3nSkZYMHYp3UCJFiCGMqqItdoPBvvfhwD9YgO_tWZiaH6JbcCPNqOw1KTgtSK9dsoaWk2PaO8A5i-MGoomr3Dbzc5y1le-3-tjFbzmPN0cbA6tJLGClLgISK9VKuzryfa0jHmZaKp7RIVK0Gq4jlW97mcx8iWVBKJUdSR5yGQpPZI6bcjdw8bm34DalESe6_v5ex1jlorus8rmgl7SI6qvlibT52vXvve4HL8HtVYhc-bj4PvxoW6cObTlanU3VanrxG3Hkf9V8D-Beg7jZeq0iD2HB5I9g6QoP42Mo11lsTsmV5-bn128x-vp6iXR8YTTbKFAb0Tez-txqyuI2oI0h4meb-SFxluSfGZEvFHqeywkKjWq6BnY2lmzP6OIL68_Lw2JiCsTj5bh8Avs38tdPYTEvcrMMjEcqFVr6MrWFp7CekyEOJeweGYQSWQ-sdmwkaUPVThlDjpOaZJon1HlJ13k9eNfJn9QkJX-UXGmHWtIYqzIh1Etp3d2oB6-7YjQztHckc1PMSMYTniNs3-4Br8bVX96UfNwZDrurZ_9S6RXcGYx2hslwa3f7Odyl-3Xo5QosTk9n5gXCwal6WSkgg083PWR_AZPFZl8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48F-xUMBIIE5pE-fPOXCouo1aulSotFJvwb90RTepml1ge-IReBRehVfgSRjHSdoiISSkHjgmHufH9sx8tsffADxnCOkTxg1avyz2Ih5wj6eBjXcQTCLEYFo00RY7yeZ-9PogPliA791ZGMcP0S-4Wc1o7LVV8GNlVs9IQ-vJkd06wClLECasDavc1vPPOGmrX20NsYdfUJpv7K1vem1eAU-GiEc8qYQKVRbHSmU0NYoLauwZUjQaYcBF7EeGm5hjWZJy4WecppSnLGImCCUNkxCfewWuRomf2WQRw92esCpEb9mkc0En6Vmmr44m0qerF7_3ohs8w7bnEXLj4vJb8KNrHBfZ8nFlNhUr8vQ33sj_qfVuw80Wb5M1pyB3YEGXd-HGORbGe1CvkVyfWEde6p9fv-Xo6d0C6fhUK7JeoS6iZybu1KokeRfORhDvk43y0DKWlB-IpV6o1LzkExTac2QN5NOYk12tqi9kOK8Pq4muEI3X4_o-7F_KXy_BYlmV-gEQmgnJFI-59FkksF5gEIVa5J5pBBJmAF43NArZErXbfCFHhaOYpoXtvKLvvAG87OWPHUXJHyWXu5FWtKaqLizmtUndw2wAz_piNDJ254iXuppZmYhFAfNjfwC0GVZ_eVPx7s1o1F89_JdKT-Ha22FejLZ2th_BdXvbxV0uw-L0ZKYfIxaciieN-hF4f9kj9hfd_WUO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Ferrocene%E2%80%90Functionalized+Covalent+Organic+Framework+for+Enhancing+Chemodynamic+Therapy+via+Redox+Dyshomeostasis&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhou%2C+Le%E2%80%90Le&rft.au=Guan%2C+Qun&rft.au=Li%2C+Wen%E2%80%90Yan&rft.au=Zhang%2C+Zhiyong&rft.date=2021-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202101368&rft.externalDBID=10.1002%252Fsmll.202101368&rft.externalDocID=SMLL202101368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon