Progress in Chemical Recycling of Carbon Fiber Reinforced Epoxy Composites
Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked polymers as binders. Due to the irreversible nature of the crosslinked polymer...
Saved in:
Published in | Macromolecular rapid communications. Vol. 43; no. 23; pp. e2200538 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked polymers as binders. Due to the irreversible nature of the crosslinked polymers, CFRPs are neither repairable nor recyclable. Once the material is damaged or out of service, landfill or incineration is the typical way to deal with the waste. These methods take no advantages of the residue value of the waste and add burdens to the environment. To reduce waste and cost, it is desirable to develop effective recycling technologies to reserve the residue value of carbon fiber and polymer matrix. In the past decade, chemical recycling by cleaving the covalent bonds in a solvent has been considered as an ideal path for the recycling of CFRP wastes, because it has the potential to recover both valuable CFs and polymer matrix. In this review, the discussion is focused on the progress in the chemical recycling of CFRP. The primary matrix resin of CFRP discussed in this review is epoxy resin which is the most widely used polymer matrix. In addition, the challenges and outlook are provided.
CFRPs are indispensable in a variety of applications; however, their recycling is challenging. This review focuses on the research progress in the chemical recycling of CFRP based on epoxy matrix from chemical degradation to the utilization of the recyclates. The challenges and outlook regarding to the CFRP recycling area are also provided. |
---|---|
AbstractList | Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked polymers as binders. Due to the irreversible nature of the crosslinked polymers, CFRPs are neither repairable nor recyclable. Once the material is damaged or out of service, landfill or incineration is the typical way to deal with the waste. These methods take no advantages of the residue value of the waste and add burdens to the environment. To reduce waste and cost, it is desirable to develop effective recycling technologies to reserve the residue value of carbon fiber and polymer matrix. In the past decade, chemical recycling by cleaving the covalent bonds in a solvent has been considered as an ideal path for the recycling of CFRP wastes, because it has the potential to recover both valuable CFs and polymer matrix. In this review, the discussion is focused on the progress in the chemical recycling of CFRP. The primary matrix resin of CFRP discussed in this review is epoxy resin which is the most widely used polymer matrix. In addition, the challenges and outlook are provided. Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked polymers as binders. Due to the irreversible nature of the crosslinked polymers, CFRPs are neither repairable nor recyclable. Once the material is damaged or out of service, landfill or incineration is the typical way to deal with the waste. These methods take no advantages of the residue value of the waste and add burdens to the environment. To reduce waste and cost, it is desirable to develop effective recycling technologies to reserve the residue value of carbon fiber and polymer matrix. In the past decade, chemical recycling by cleaving the covalent bonds in a solvent has been considered as an ideal path for the recycling of CFRP wastes, because it has the potential to recover both valuable CFs and polymer matrix. In this review, the discussion is focused on the progress in the chemical recycling of CFRP. The primary matrix resin of CFRP discussed in this review is epoxy resin which is the most widely used polymer matrix. In addition, the challenges and outlook are provided. Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked polymers as binders. Due to the irreversible nature of the crosslinked polymers, CFRPs are neither repairable nor recyclable. Once the material is damaged or out of service, landfill or incineration is the typical way to deal with the waste. These methods take no advantages of the residue value of the waste and add burdens to the environment. To reduce waste and cost, it is desirable to develop effective recycling technologies to reserve the residue value of carbon fiber and polymer matrix. In the past decade, chemical recycling by cleaving the covalent bonds in a solvent has been considered as an ideal path for the recycling of CFRP wastes, because it has the potential to recover both valuable CFs and polymer matrix. In this review, the discussion is focused on the progress in the chemical recycling of CFRP. The primary matrix resin of CFRP discussed in this review is epoxy resin which is the most widely used polymer matrix. In addition, the challenges and outlook are provided. CFRPs are indispensable in a variety of applications; however, their recycling is challenging. This review focuses on the research progress in the chemical recycling of CFRP based on epoxy matrix from chemical degradation to the utilization of the recyclates. The challenges and outlook regarding to the CFRP recycling area are also provided. Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked polymers as binders. Due to the irreversible nature of the crosslinked polymers, CFRPs are neither repairable nor recyclable. Once the material is damaged or out of service, landfill or incineration is the typical way to deal with the waste. These methods take no advantages of the residue value of the waste and add burdens to the environment. To reduce waste and cost, it is desirable to develop effective recycling technologies to reserve the residue value of carbon fiber and polymer matrix. In the past decade, chemical recycling by cleaving the covalent bonds in a solvent has been considered as an ideal path for the recycling of CFRP wastes, because it has the potential to recover both valuable CFs and polymer matrix. In this review, the discussion is focused on the progress in the chemical recycling of CFRP. The primary matrix resin of CFRP discussed in this review is epoxy resin which is the most widely used polymer matrix. In addition, the challenges and outlook are provided.Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked polymers as binders. Due to the irreversible nature of the crosslinked polymers, CFRPs are neither repairable nor recyclable. Once the material is damaged or out of service, landfill or incineration is the typical way to deal with the waste. These methods take no advantages of the residue value of the waste and add burdens to the environment. To reduce waste and cost, it is desirable to develop effective recycling technologies to reserve the residue value of carbon fiber and polymer matrix. In the past decade, chemical recycling by cleaving the covalent bonds in a solvent has been considered as an ideal path for the recycling of CFRP wastes, because it has the potential to recover both valuable CFs and polymer matrix. In this review, the discussion is focused on the progress in the chemical recycling of CFRP. The primary matrix resin of CFRP discussed in this review is epoxy resin which is the most widely used polymer matrix. In addition, the challenges and outlook are provided. |
Author | Chang, Yu‐Chung Zhao, Baoming Shao, Lin Zhang, Jinwen Liu, Tuan |
Author_xml | – sequence: 1 givenname: Tuan surname: Liu fullname: Liu, Tuan organization: Shanghai Jiao Tong University – sequence: 2 givenname: Lin surname: Shao fullname: Shao, Lin organization: Washington State University – sequence: 3 givenname: Baoming surname: Zhao fullname: Zhao, Baoming organization: Washington State University – sequence: 4 givenname: Yu‐Chung surname: Chang fullname: Chang, Yu‐Chung organization: Washington State University – sequence: 5 givenname: Jinwen orcidid: 0000-0001-8828-114X surname: Zhang fullname: Zhang, Jinwen email: jwzhang@wsu.edu organization: Washington State University |
BookMark | eNqFkE1LAzEQhoNUsK1ePS948bI1H7tN9liW1g8qStHzkmRna8o2qckW7b83paJQEE8ZMs8zM7wD1LPOAkKXBI8IxvRmLb0eUUwpxjkTJ6hPckpSVlDei3X8Twlj4zM0CGGFMRYZpn308Ozd0kMIibFJ-QZro2WbLEDvdGvsMnFNUkqvnE1mRoGPHWMb5zXUyXTjPndJ6dYbF0wH4RydNrINcPH9DtHrbPpS3qXzp9v7cjJPNcuxSAlmGRvXeQMiKwArUcuaKswo1JkWteAqV0IqULImFLjmPC4TeSN4rjNVEDZE14e5G-_etxC6am2ChraVFtw2VJTjgjMRQ4jo1RG6cltv43WRysacMEKKSGUHSnsXgoem0qaTnXG289K0FcHVPuBqH3D1E3DURkfaxpvI7P4WioPwYVrY_UNXj5NF-et-AWUnj9g |
CitedBy_id | crossref_primary_10_1002_marc_202400678 crossref_primary_10_1016_j_compscitech_2025_111048 crossref_primary_10_1021_acssuschemeng_3c01857 crossref_primary_10_1021_jacs_4c10838 crossref_primary_10_1016_j_jece_2023_110032 crossref_primary_10_3390_jcs8010002 crossref_primary_10_1016_j_compstruct_2025_118943 crossref_primary_10_1016_j_eurpolymj_2023_112427 crossref_primary_10_3390_act13110449 crossref_primary_10_1039_D4SU00382A crossref_primary_10_1016_j_cej_2024_153792 crossref_primary_10_1016_j_pmatsci_2024_101326 crossref_primary_10_1016_j_clay_2024_107545 crossref_primary_10_1002_adfm_202409223 crossref_primary_10_1002_ange_202408969 crossref_primary_10_1002_adfm_202412268 crossref_primary_10_1002_pc_28285 crossref_primary_10_1002_pc_27994 crossref_primary_10_1021_acssuschemeng_3c00761 crossref_primary_10_3390_polym15214255 crossref_primary_10_1002_pc_29137 crossref_primary_10_1002_pc_29159 crossref_primary_10_1002_adfm_202408299 crossref_primary_10_1002_marc_202400646 crossref_primary_10_20517_cs_2024_85 crossref_primary_10_1016_j_compscitech_2024_110442 crossref_primary_10_1016_j_cej_2023_146625 crossref_primary_10_1016_j_resconrec_2025_108159 crossref_primary_10_1039_D3SU00258F crossref_primary_10_3390_polym16202922 crossref_primary_10_1016_j_resconrec_2024_107668 crossref_primary_10_1002_anie_202408969 crossref_primary_10_1016_j_wasman_2024_09_002 crossref_primary_10_1039_D4PY00599F crossref_primary_10_1016_j_compstruct_2023_117842 crossref_primary_10_1007_s10751_024_01937_7 crossref_primary_10_3389_fmats_2023_1179270 crossref_primary_10_1016_j_jaap_2024_106908 crossref_primary_10_1007_s44246_024_00192_3 crossref_primary_10_1016_j_cej_2024_155528 crossref_primary_10_3390_polym17070843 crossref_primary_10_1002_asia_202300373 |
Cites_doi | 10.1016/j.polymdegradstab.2012.04.007 10.1021/acssuschemeng.1c01737 10.1016/j.compositesa.2015.07.015 10.1201/9781420006834 10.1021/acssuschemeng.5b01497 10.1016/j.compscitech.2019.01.026 10.1016/j.wasman.2017.12.031 10.1021/acsomega.7b01665 10.1039/C4GC02512A 10.1039/C4RA14898C 10.1021/acssuschemeng.5b00949 10.1016/j.polymdegradstab.2015.04.016 10.26434/chemrxiv‐2022‐xlttk 10.1039/C7GC01737E 10.1021/acs.iecr.7b00096 10.1039/C4TA04841E 10.1007/s10924-022-02391-8 10.1016/j.polymdegradstab.2017.03.017 10.1016/j.polymdegradstab.2022.109895 10.1016/j.jclepro.2020.123173 10.1016/j.msea.2009.05.030 10.1039/C8RA08958B 10.1021/acsomega.1c06652 10.1002/marc.202000458 10.1016/j.compscitech.2013.04.002 10.1016/j.compscitech.2022.109461 10.1007/s13762-012-0124-9 10.1016/j.compscitech.2008.10.007 10.1016/j.polymdegradstab.2013.09.026 10.1021/ie901542z 10.1016/j.compstruct.2022.115603 10.1039/C8GC03672A 10.1016/j.polymdegradstab.2022.109905 10.1016/j.jclepro.2019.04.104 10.1016/j.polymdegradstab.2014.12.003 10.1016/j.polymdegradstab.2011.12.028 10.3390/pr7040207 10.3390/su14073744 10.1002/app.20990 10.1021/acssuschemeng.8b01538 10.1016/j.supflu.2017.01.013 10.1177/0021998311420604 10.1021/acssuschemeng.7b01456 10.1016/j.jenvman.2020.110766 10.1016/j.polymdegradstab.2019.02.018 10.1002/cssc.202101607 10.1016/j.jece.2022.107510 10.1016/j.surfin.2021.101684 10.1016/j.supflu.2015.07.022 10.1007/s10924-016-0776-5 10.1016/j.supflu.2016.08.015 10.1016/j.polymdegradstab.2020.109268 10.1016/j.supflu.2008.02.008 10.1016/j.polymdegradstab.2020.109125 10.1002/app.41648 10.1039/C9GC00685K 10.1016/j.compositesb.2021.108808 10.1016/j.wasman.2012.10.003 10.1016/j.compositesb.2021.109560 10.1021/ie010178 10.1016/j.polymer.2004.12.035 10.1021/ie501995m 10.1016/j.supflu.2014.04.011 10.1007/s10118-014-1519-5 10.1039/c2gc36294e 10.1016/S0032-3861(02)00100-3 10.1016/j.compositesb.2013.12.013 10.3390/pr8080954 10.1002/app.39257 10.1016/j.jclepro.2016.11.118 10.1016/j.polymer.2020.122392 10.1243/09576509JPE518 10.1016/j.compositesa.2008.01.001 10.4028/www.scientific.net/AMR.79-82.409 10.1039/C5RA03828F 10.1177/0021998321999098 10.1016/j.wasman.2017.04.013 10.1016/j.cej.2015.06.007 10.1039/D0PY00545B 10.1016/j.applthermaleng.2014.09.029 10.1016/j.polymdegradstab.2022.109849 10.1002/app.27253 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.202200538 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | 10_1002_marc_202200538 MARC202200538 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52103119 – fundername: China Scholarship Council funderid: 201807565017 – fundername: Shanghai Pujiang Program funderid: 21PJ1405900 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SR 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c3508-103436d5fe849e0b8dad2b032ed4c8d87b5b8abebad12e7c77ced85f875c4b913 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Fri Jul 11 07:13:20 EDT 2025 Sat Jul 19 21:42:18 EDT 2025 Tue Jul 01 03:31:47 EDT 2025 Thu Apr 24 23:07:12 EDT 2025 Wed Jan 22 16:20:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3508-103436d5fe849e0b8dad2b032ed4c8d87b5b8abebad12e7c77ced85f875c4b913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8828-114X |
PQID | 2746713119 |
PQPubID | 1016394 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2709738053 proquest_journals_2746713119 crossref_citationtrail_10_1002_marc_202200538 crossref_primary_10_1002_marc_202200538 wiley_primary_10_1002_marc_202200538_MARC202200538 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 119 2015; 78 2022; 292 2016; 107 2015; 75 2008; 39 2008; 107 2020; 11 2008; 222 2012; 14 2019; 163 2001; 40 2012; 97 2022; 29 2020; 8 2018; 6 2018; 3 1990 2013; 98 2013; 10 2020; 175 2019; 21 2002; 43 2015; 132 2014; 59 2009; 520 2018; 74 2022; 30 2020; 179 2017; 124 2014; 53 2022; 199 2021; 9 2019; 7 2009; 69 2019; 9 2022; 231 2015; 280 2015; 17 2021; 42 2015; 5 2014; 91 2022; 196 2015; 3 2017; 25 2017; 65 2020; 269 2007 2019; 227 2017; 139 2005; 46 2016; 4 2009; 79 2010; 49 2004; 94 2021; 55 2020; 273 2013; 33 2022 2022; 61 2022; 7 2015; 111 2021; 215 2017; 56 2020; 194 2018 2022; 14 2013; 82 2017 2022; 15 2008; 46 2016 2013; 130 2017; 19 2022; 10 2020; 22 2017; 142 2014 2015; 118 2019; 173 2012; 46 2014; 32 2022; 224 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_56_1 Arif Z. U. (e_1_2_9_6_1) 2022; 61 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_71_1 Gong X. (e_1_2_9_35_1) 2015; 132 Shama Rao N. (e_1_2_9_1_1) 2018 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 Li Y. (e_1_2_9_24_1) 2020; 22 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 Hara O. (e_1_2_9_21_1) 1990 e_1_2_9_29_1 |
References_xml | – volume: 130 start-page: 1064 year: 2013 publication-title: J. Appl. Polym. Sci. – volume: 280 start-page: 391 year: 2015 publication-title: Chem. Eng. J. – volume: 9 year: 2021 publication-title: ACS Sustainable Chem. Eng. – volume: 142 start-page: 1721 year: 2017 publication-title: J Clean Prod – volume: 194 year: 2020 publication-title: Polymer – volume: 74 start-page: 123 year: 2018 publication-title: Waste Manage. – volume: 9 start-page: 377 year: 2019 publication-title: RSC Adv. – volume: 3 start-page: 1188 year: 2015 publication-title: J. Mater. Chem. A – volume: 199 year: 2022 publication-title: Polym. Degrad. Stab. – volume: 173 start-page: 66 year: 2019 publication-title: Compos. Sci. Technol. – volume: 231 year: 2022 publication-title: Compos B Eng – volume: 94 start-page: 1912 year: 2004 publication-title: J. Appl. Polym. Sci. – volume: 14 start-page: 3744 year: 2022 publication-title: Sustainability – volume: 82 start-page: 54 year: 2013 publication-title: Compos. Sci. Technol. – volume: 55 start-page: 2693 year: 2021 publication-title: J. Compos. Mater. – volume: 10 year: 2022 publication-title: J. Environ. Chem. Eng. – volume: 43 start-page: 2953 year: 2002 publication-title: Polymer – volume: 520 start-page: 179 year: 2009 publication-title: Mater. Sci. Eng., A – year: 2014 – volume: 222 start-page: 339 year: 2008 publication-title: Proc. Inst. Mech. Eng., Part A – volume: 42 year: 2021 publication-title: Macromol. Rapid Commun. – volume: 40 start-page: 6063 year: 2001 publication-title: Ind. Eng. Chem. Res. – volume: 292 year: 2022 publication-title: Compos. Struct. – volume: 32 start-page: 1550 year: 2014 publication-title: Chin. J. Polym. Sci. – volume: 8 start-page: 954 year: 2020 publication-title: Processes – volume: 46 start-page: 83 year: 2008 publication-title: J. Supercrit. Fluids – volume: 46 start-page: 1459 year: 2012 publication-title: J. Compos. Mater. – volume: 56 start-page: 7708 year: 2017 publication-title: Ind. Eng. Chem. Res. – volume: 65 start-page: 139 year: 2017 publication-title: Waste Manage. – volume: 163 start-page: 1 year: 2019 publication-title: Polym. Degrad. Stab. – volume: 196 year: 2022 publication-title: Polym. Degrad. Stab. – volume: 39 start-page: 454 year: 2008 publication-title: Compos Part A Appl Sci Manuf – volume: 111 start-page: 247 year: 2015 publication-title: Polym. Degrad. Stab. – volume: 215 year: 2021 publication-title: Compos B Eng – volume: 25 start-page: 115 year: 2017 publication-title: J. Polym. Environ. – volume: 269 year: 2020 publication-title: J Environ Manage – volume: 118 start-page: 96 year: 2015 publication-title: Polym. Degrad. Stab. – volume: 17 start-page: 2141 year: 2015 publication-title: Green Chem. – volume: 79 start-page: 409 year: 2009 publication-title: Adv. Mater. Res. – volume: 53 year: 2014 publication-title: Ind. Eng. Chem. Res. – volume: 11 start-page: 4500 year: 2020 publication-title: Polym. Chem. – volume: 124 start-page: 80 year: 2017 publication-title: J. Supercrit. Fluids – volume: 107 start-page: 605 year: 2016 publication-title: J. Supercrit. Fluids – volume: 69 start-page: 192 year: 2009 publication-title: Compos. Sci. Technol. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 21 start-page: 1635 year: 2019 publication-title: Green Chem. – volume: 78 start-page: 10 year: 2015 publication-title: Compos Part A Appl Sci Manuf – volume: 224 year: 2022 publication-title: Compos. Sci. Technol. – volume: 132 year: 2015 publication-title: J. Appl. Polym. Sci. – start-page: 1 year: 1990 publication-title: Three Bond Tech. News – volume: 33 start-page: 484 year: 2013 publication-title: Waste Manage. – volume: 21 start-page: 2487 year: 2019 publication-title: Green Chem. – year: 2007 – volume: 7 start-page: 207 year: 2019 publication-title: Processes – volume: 49 start-page: 4535 year: 2010 publication-title: Ind. Eng. Chem. Res. – volume: 6 start-page: 1564 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 75 start-page: 397 year: 2015 publication-title: Appl. Therm. Eng. – volume: 46 start-page: 1905 year: 2005 publication-title: Polymer – volume: 175 year: 2020 publication-title: Polym. Degrad. Stab. – volume: 3 start-page: 3332 year: 2015 publication-title: ACS Sustainable Chem. Eng. – year: 2018 publication-title: White paper – year: 2016 – volume: 98 start-page: 2571 year: 2013 publication-title: Polym. Degrad. Stab. – volume: 10 start-page: 175 year: 2013 publication-title: Int. J. Environ. Sci. Technol. – volume: 14 start-page: 3260 year: 2012 publication-title: Green Chem. – year: 2022 publication-title: ChemRxiv – volume: 3 start-page: 524 year: 2018 publication-title: ACS Omega – volume: 139 start-page: 20 year: 2017 publication-title: Polym. Degrad. Stab. – volume: 19 start-page: 4364 year: 2017 publication-title: Green Chem. – volume: 7 year: 2022 publication-title: ACS Omega – volume: 273 year: 2020 publication-title: J Clean Prod – volume: 91 start-page: 68 year: 2014 publication-title: J. Supercrit. Fluids – volume: 179 year: 2020 publication-title: Polym. Degrad. Stab. – volume: 59 start-page: 260 year: 2014 publication-title: Compos B Eng – volume: 97 start-page: 214 year: 2012 publication-title: Polym. Degrad. Stab. – volume: 29 year: 2022 publication-title: Surf. Interfaces – volume: 119 start-page: 44 year: 2017 publication-title: J. Supercrit. Fluids – volume: 4 start-page: 2080 year: 2016 publication-title: ACS Sustainable Chem. Eng. – year: 2017 – volume: 227 start-page: 794 year: 2019 publication-title: J Clean Prod – volume: 22 start-page: 870 year: 2020 publication-title: Chem – volume: 97 start-page: 1101 year: 2012 publication-title: Polym. Degrad. Stab. – volume: 61 start-page: 761 year: 2022 publication-title: Polym.‐Plast. Technol. Mat. – volume: 30 start-page: 3119 year: 2022 publication-title: J. Polym. Environ. – volume: 6 start-page: 9189 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 15 year: 2022 publication-title: ChemSusChem – volume: 107 start-page: 2015 year: 2008 publication-title: J. Appl. Polym. Sci. – ident: e_1_2_9_80_1 doi: 10.1016/j.polymdegradstab.2012.04.007 – ident: e_1_2_9_88_1 doi: 10.1021/acssuschemeng.1c01737 – ident: e_1_2_9_75_1 doi: 10.1016/j.compositesa.2015.07.015 – ident: e_1_2_9_58_1 doi: 10.1201/9781420006834 – ident: e_1_2_9_71_1 doi: 10.1021/acssuschemeng.5b01497 – ident: e_1_2_9_33_1 doi: 10.1016/j.compscitech.2019.01.026 – ident: e_1_2_9_73_1 doi: 10.1016/j.wasman.2017.12.031 – ident: e_1_2_9_49_1 doi: 10.1021/acsomega.7b01665 – ident: e_1_2_9_82_1 doi: 10.1039/C4GC02512A – ident: e_1_2_9_37_1 doi: 10.1039/C4RA14898C – ident: e_1_2_9_57_1 doi: 10.1021/acssuschemeng.5b00949 – ident: e_1_2_9_52_1 doi: 10.1016/j.polymdegradstab.2015.04.016 – ident: e_1_2_9_7_1 doi: 10.26434/chemrxiv‐2022‐xlttk – ident: e_1_2_9_79_1 doi: 10.1039/C7GC01737E – ident: e_1_2_9_19_1 doi: 10.1021/acs.iecr.7b00096 – ident: e_1_2_9_20_1 doi: 10.1039/C4TA04841E – ident: e_1_2_9_78_1 doi: 10.1007/s10924-022-02391-8 – ident: e_1_2_9_2_1 – ident: e_1_2_9_56_1 doi: 10.1016/j.polymdegradstab.2017.03.017 – ident: e_1_2_9_28_1 doi: 10.1016/j.polymdegradstab.2022.109895 – ident: e_1_2_9_17_1 doi: 10.1016/j.jclepro.2020.123173 – ident: e_1_2_9_36_1 doi: 10.1016/j.msea.2009.05.030 – ident: e_1_2_9_54_1 doi: 10.1039/C8RA08958B – ident: e_1_2_9_5_1 doi: 10.1021/acsomega.1c06652 – ident: e_1_2_9_25_1 doi: 10.1002/marc.202000458 – ident: e_1_2_9_59_1 doi: 10.1016/j.compscitech.2013.04.002 – ident: e_1_2_9_15_1 doi: 10.1016/j.compscitech.2022.109461 – ident: e_1_2_9_63_1 doi: 10.1007/s13762-012-0124-9 – ident: e_1_2_9_47_1 doi: 10.1016/j.compscitech.2008.10.007 – ident: e_1_2_9_45_1 doi: 10.1016/j.polymdegradstab.2013.09.026 – ident: e_1_2_9_22_1 – ident: e_1_2_9_48_1 doi: 10.1021/ie901542z – ident: e_1_2_9_12_1 doi: 10.1016/j.compstruct.2022.115603 – volume: 61 start-page: 761 year: 2022 ident: e_1_2_9_6_1 publication-title: Polym.‐Plast. Technol. Mat. – ident: e_1_2_9_74_1 doi: 10.1039/C8GC03672A – ident: e_1_2_9_77_1 doi: 10.1016/j.polymdegradstab.2022.109905 – ident: e_1_2_9_30_1 doi: 10.1016/j.jclepro.2019.04.104 – ident: e_1_2_9_53_1 doi: 10.1016/j.polymdegradstab.2014.12.003 – ident: e_1_2_9_39_1 doi: 10.1016/j.polymdegradstab.2011.12.028 – ident: e_1_2_9_14_1 doi: 10.3390/pr7040207 – ident: e_1_2_9_9_1 doi: 10.3390/su14073744 – ident: e_1_2_9_66_1 doi: 10.1002/app.20990 – ident: e_1_2_9_26_1 doi: 10.1021/acssuschemeng.8b01538 – ident: e_1_2_9_51_1 doi: 10.1016/j.supflu.2017.01.013 – ident: e_1_2_9_70_1 doi: 10.1177/0021998311420604 – ident: e_1_2_9_72_1 doi: 10.1021/acssuschemeng.7b01456 – ident: e_1_2_9_10_1 doi: 10.1016/j.jenvman.2020.110766 – ident: e_1_2_9_50_1 doi: 10.1016/j.polymdegradstab.2019.02.018 – start-page: 1 year: 1990 ident: e_1_2_9_21_1 publication-title: Three Bond Tech. News – ident: e_1_2_9_27_1 doi: 10.1002/cssc.202101607 – ident: e_1_2_9_8_1 doi: 10.1016/j.jece.2022.107510 – ident: e_1_2_9_85_1 doi: 10.1016/j.surfin.2021.101684 – ident: e_1_2_9_41_1 doi: 10.1016/j.supflu.2015.07.022 – ident: e_1_2_9_44_1 doi: 10.1007/s10924-016-0776-5 – ident: e_1_2_9_42_1 doi: 10.1016/j.supflu.2016.08.015 – ident: e_1_2_9_16_1 doi: 10.1016/j.polymdegradstab.2020.109268 – ident: e_1_2_9_43_1 doi: 10.1016/j.supflu.2008.02.008 – ident: e_1_2_9_89_1 doi: 10.1016/j.polymdegradstab.2020.109125 – volume: 132 start-page: 41648 year: 2015 ident: e_1_2_9_35_1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.41648 – ident: e_1_2_9_81_1 doi: 10.1039/C9GC00685K – ident: e_1_2_9_4_1 doi: 10.1016/j.compositesb.2021.108808 – ident: e_1_2_9_64_1 doi: 10.1016/j.wasman.2012.10.003 – ident: e_1_2_9_84_1 doi: 10.1016/j.compositesb.2021.109560 – ident: e_1_2_9_32_1 doi: 10.1021/ie010178 – ident: e_1_2_9_68_1 doi: 10.1016/j.polymer.2004.12.035 – ident: e_1_2_9_76_1 doi: 10.1021/ie501995m – ident: e_1_2_9_40_1 doi: 10.1016/j.supflu.2014.04.011 – year: 2018 ident: e_1_2_9_1_1 publication-title: White paper – ident: e_1_2_9_46_1 doi: 10.1007/s10118-014-1519-5 – ident: e_1_2_9_60_1 doi: 10.1039/c2gc36294e – ident: e_1_2_9_67_1 doi: 10.1016/S0032-3861(02)00100-3 – ident: e_1_2_9_11_1 doi: 10.1016/j.compositesb.2013.12.013 – ident: e_1_2_9_13_1 doi: 10.3390/pr8080954 – ident: e_1_2_9_23_1 doi: 10.1002/app.39257 – ident: e_1_2_9_62_1 doi: 10.1016/j.jclepro.2016.11.118 – volume: 22 start-page: 870 year: 2020 ident: e_1_2_9_24_1 publication-title: Chem – ident: e_1_2_9_90_1 doi: 10.1016/j.polymer.2020.122392 – ident: e_1_2_9_3_1 doi: 10.1243/09576509JPE518 – ident: e_1_2_9_38_1 doi: 10.1016/j.compositesa.2008.01.001 – ident: e_1_2_9_69_1 doi: 10.4028/www.scientific.net/AMR.79-82.409 – ident: e_1_2_9_34_1 doi: 10.1039/C5RA03828F – ident: e_1_2_9_86_1 doi: 10.1177/0021998321999098 – ident: e_1_2_9_83_1 – ident: e_1_2_9_61_1 doi: 10.1016/j.wasman.2017.04.013 – ident: e_1_2_9_65_1 doi: 10.1016/j.cej.2015.06.007 – ident: e_1_2_9_18_1 doi: 10.1039/D0PY00545B – ident: e_1_2_9_31_1 doi: 10.1016/j.applthermaleng.2014.09.029 – ident: e_1_2_9_29_1 – ident: e_1_2_9_55_1 doi: 10.1016/j.polymdegradstab.2022.109849 – ident: e_1_2_9_87_1 doi: 10.1002/app.27253 |
SSID | ssj0008402 |
Score | 2.5611675 |
SecondaryResourceType | review_article |
Snippet | Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2200538 |
SubjectTerms | Addition polymerization Binders Carbon Carbon fiber reinforced plastics Carbon fiber reinforcement Carbon-epoxy composites Chemical recycling composites Covalent bonds Crosslinking epoxy Epoxy resins Fiber composites Fiber reinforced polymers Incineration Landfills Polymer matrix composites Polymers Recycling Residues supercritical liquid vitrimers Waste disposal sites |
Title | Progress in Chemical Recycling of Carbon Fiber Reinforced Epoxy Composites |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202200538 https://www.proquest.com/docview/2746713119 https://www.proquest.com/docview/2709738053 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5ED3rxLcYXKwieUtvdzaPHUi0iVqRa6C1kXyJKKrY96K93JmnSVhBBj2EfSWZ3Z7_ZnfkG4MzglmBDof04CIwvG8b6TWm577iRjqONEXIKcO7ehdd9eTMIBnNR_AU_RHXgRisj19e0wFM1upiRhhLVA9p3nI5FBEX7ksMWoaLejD8KrZfiuhMtLjTGwpK1sc4vFpsv7kozqDkPWPMdp7MBafmthaPJS20yVjX9-Y3G8T8_swnrUzjKWsX82YIlm23DarvMArcDN_fkwIXqkD1nrGQXYAg2Pyim8okNHWun72qYsQ75nmBJTsWqrWFXb_jhjBQOOYbZ0S70O1eP7Wt_mn_B1yLIWV-FFKEJnI1l09ZVbFLDVV1wa6SOTRypQMWpsio1DW4jHUXYeRw4NIG0VM2G2IPlbJjZfWBaabRcGi5CPS-dVSoQTqCyVcI5BJTGA7-Uf6Kn5OSUI-M1KWiVeUISSioJeXBe1X8raDl-rHlUDmcyXZ6jhFOSFSIaanpwWhWjZOm2JM3scEJ1iMkoxj484PnY_fKmpNvqtaung780OoQ1ns9Vcpc5guXx-8QeI-gZqxNYaV12bx9O8gn-Bfw_-ow |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HvTiW6zPFQRP0XZ3k2yPpVjqoyKi4C1kXyJKWrQ96K93JmlSFUTQY9hH9jk73-7MNwCHFo8EFwkTqDC0gWxaF7Sk44HnVnqOGCPi5ODcv4p6d_L8PiytCckXpuCHqC7caGfk8po2OF1In0xZQ4nrAQEep3sRoWZhjsJ656jqZsoghfilePBEzIVwLCp5Gxv85Gv5r-fSVNn8rLLmZ053CXTZ2sLU5Ol4PNLH5v0bkeO_urMMixONlLWLJbQCMy5bhflOGQhuDc6vyYYLJSJ7zFhJMMBQ33wjt8oHNvCsk77oQca6ZH6CKTkbq3GWnQ6x5YxkDtmGudd1uOue3nZ6wSQEQ2BEmBO_CikiG3qnZMs1tLKp5bohuLPSKKtiHWqVaqdT2-QuNnGMlavQIwoyUreaYgNq2SBzm8CMNghemj5GUS-90zoUXqC81cJ71CltHYJyAhIz4SenMBnPScGszBMaoaQaoTocVfmHBTPHjzl3yvlMJjv0NeEUZ4W4hlp1OKiScWTpwSTN3GBMeYjMSGEddeD55P3yp6TfvulUX1t_KbQP873b_mVyeXZ1sQ0LPF-4ZD2zA7XRy9jtog400nv5Kv8AwoD9Ew |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gHrxLVarriB4ira7m2R7lNbiGxEFbyH7ElHSou1Bf70zSZOqIIIewz6SzM7Ozrc7-w3AnsUlwUXCBCoMbSCb1gUt6XjguZWeI8aIOF1wvryKTu7k2X14_-kWf8EPUW240czI7TVN8L71h2PSUKJ6QHzHaVtEqEmYllFDkV53bsYEUghfivNOhFyIxqKStrHBD7-2_7osjX3Nzx5rvuR0FyAtP7aINHk6GA70gXn_xuP4n79ZhPmRP8qOCgVaggmXLcNsu0wDtwJn1xTBhfaQPWaspBdg6G2-0aXKB9bzrJ2-6F7GuhR8giU5F6txlh338cMZWRyKDHOvq3DXPb5tnwSjBAyBEWFO-yqkiGzonZIt19DKppbrhuDOSqOsinWoVaqdTm2Tu9jEMXauQo8YyEjdaoo1mMp6mVsHZrRB6NL0MRp66Z3WofACra0W3qNHaWsQlPJPzIidnJJkPCcFrzJPSEJJJaEa7Ff1-wUvx4816-VwJqP5-ZpwyrJCTEOtGuxWxShZOi5JM9cbUh2iMlLYRw14Pna_vCm5PLppV08bf2m0AzPXnW5ycXp1vglzPFdbCp2pw9TgZei20AEa6O1cxz8A4uv7yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+in+Chemical+Recycling+of+Carbon+Fiber+Reinforced+Epoxy+Composites&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Liu%2C+Tuan&rft.au=Shao%2C+Lin&rft.au=Zhao%2C+Baoming&rft.au=Chang%2C+Yu-Chung&rft.date=2022-12-01&rft.issn=1521-3927&rft.eissn=1521-3927&rft.volume=43&rft.issue=23&rft.spage=e2200538&rft_id=info:doi/10.1002%2Fmarc.202200538&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |