Progress in Chemical Recycling of Carbon Fiber Reinforced Epoxy Composites

Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked polymers as binders. Due to the irreversible nature of the crosslinked polymer...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 43; no. 23; pp. e2200538 - n/a
Main Authors Liu, Tuan, Shao, Lin, Zhao, Baoming, Chang, Yu‐Chung, Zhang, Jinwen
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked polymers as binders. Due to the irreversible nature of the crosslinked polymers, CFRPs are neither repairable nor recyclable. Once the material is damaged or out of service, landfill or incineration is the typical way to deal with the waste. These methods take no advantages of the residue value of the waste and add burdens to the environment. To reduce waste and cost, it is desirable to develop effective recycling technologies to reserve the residue value of carbon fiber and polymer matrix. In the past decade, chemical recycling by cleaving the covalent bonds in a solvent has been considered as an ideal path for the recycling of CFRP wastes, because it has the potential to recover both valuable CFs and polymer matrix. In this review, the discussion is focused on the progress in the chemical recycling of CFRP. The primary matrix resin of CFRP discussed in this review is epoxy resin which is the most widely used polymer matrix. In addition, the challenges and outlook are provided. CFRPs are indispensable in a variety of applications; however, their recycling is challenging. This review focuses on the research progress in the chemical recycling of CFRP based on epoxy matrix from chemical degradation to the utilization of the recyclates. The challenges and outlook regarding to the CFRP recycling area are also provided.
AbstractList Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked polymers as binders. Due to the irreversible nature of the crosslinked polymers, CFRPs are neither repairable nor recyclable. Once the material is damaged or out of service, landfill or incineration is the typical way to deal with the waste. These methods take no advantages of the residue value of the waste and add burdens to the environment. To reduce waste and cost, it is desirable to develop effective recycling technologies to reserve the residue value of carbon fiber and polymer matrix. In the past decade, chemical recycling by cleaving the covalent bonds in a solvent has been considered as an ideal path for the recycling of CFRP wastes, because it has the potential to recover both valuable CFs and polymer matrix. In this review, the discussion is focused on the progress in the chemical recycling of CFRP. The primary matrix resin of CFRP discussed in this review is epoxy resin which is the most widely used polymer matrix. In addition, the challenges and outlook are provided.
Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked polymers as binders. Due to the irreversible nature of the crosslinked polymers, CFRPs are neither repairable nor recyclable. Once the material is damaged or out of service, landfill or incineration is the typical way to deal with the waste. These methods take no advantages of the residue value of the waste and add burdens to the environment. To reduce waste and cost, it is desirable to develop effective recycling technologies to reserve the residue value of carbon fiber and polymer matrix. In the past decade, chemical recycling by cleaving the covalent bonds in a solvent has been considered as an ideal path for the recycling of CFRP wastes, because it has the potential to recover both valuable CFs and polymer matrix. In this review, the discussion is focused on the progress in the chemical recycling of CFRP. The primary matrix resin of CFRP discussed in this review is epoxy resin which is the most widely used polymer matrix. In addition, the challenges and outlook are provided.
Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked polymers as binders. Due to the irreversible nature of the crosslinked polymers, CFRPs are neither repairable nor recyclable. Once the material is damaged or out of service, landfill or incineration is the typical way to deal with the waste. These methods take no advantages of the residue value of the waste and add burdens to the environment. To reduce waste and cost, it is desirable to develop effective recycling technologies to reserve the residue value of carbon fiber and polymer matrix. In the past decade, chemical recycling by cleaving the covalent bonds in a solvent has been considered as an ideal path for the recycling of CFRP wastes, because it has the potential to recover both valuable CFs and polymer matrix. In this review, the discussion is focused on the progress in the chemical recycling of CFRP. The primary matrix resin of CFRP discussed in this review is epoxy resin which is the most widely used polymer matrix. In addition, the challenges and outlook are provided. CFRPs are indispensable in a variety of applications; however, their recycling is challenging. This review focuses on the research progress in the chemical recycling of CFRP based on epoxy matrix from chemical degradation to the utilization of the recyclates. The challenges and outlook regarding to the CFRP recycling area are also provided.
Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked polymers as binders. Due to the irreversible nature of the crosslinked polymers, CFRPs are neither repairable nor recyclable. Once the material is damaged or out of service, landfill or incineration is the typical way to deal with the waste. These methods take no advantages of the residue value of the waste and add burdens to the environment. To reduce waste and cost, it is desirable to develop effective recycling technologies to reserve the residue value of carbon fiber and polymer matrix. In the past decade, chemical recycling by cleaving the covalent bonds in a solvent has been considered as an ideal path for the recycling of CFRP wastes, because it has the potential to recover both valuable CFs and polymer matrix. In this review, the discussion is focused on the progress in the chemical recycling of CFRP. The primary matrix resin of CFRP discussed in this review is epoxy resin which is the most widely used polymer matrix. In addition, the challenges and outlook are provided.Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked polymers as binders. Due to the irreversible nature of the crosslinked polymers, CFRPs are neither repairable nor recyclable. Once the material is damaged or out of service, landfill or incineration is the typical way to deal with the waste. These methods take no advantages of the residue value of the waste and add burdens to the environment. To reduce waste and cost, it is desirable to develop effective recycling technologies to reserve the residue value of carbon fiber and polymer matrix. In the past decade, chemical recycling by cleaving the covalent bonds in a solvent has been considered as an ideal path for the recycling of CFRP wastes, because it has the potential to recover both valuable CFs and polymer matrix. In this review, the discussion is focused on the progress in the chemical recycling of CFRP. The primary matrix resin of CFRP discussed in this review is epoxy resin which is the most widely used polymer matrix. In addition, the challenges and outlook are provided.
Author Chang, Yu‐Chung
Zhao, Baoming
Shao, Lin
Zhang, Jinwen
Liu, Tuan
Author_xml – sequence: 1
  givenname: Tuan
  surname: Liu
  fullname: Liu, Tuan
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Lin
  surname: Shao
  fullname: Shao, Lin
  organization: Washington State University
– sequence: 3
  givenname: Baoming
  surname: Zhao
  fullname: Zhao, Baoming
  organization: Washington State University
– sequence: 4
  givenname: Yu‐Chung
  surname: Chang
  fullname: Chang, Yu‐Chung
  organization: Washington State University
– sequence: 5
  givenname: Jinwen
  orcidid: 0000-0001-8828-114X
  surname: Zhang
  fullname: Zhang, Jinwen
  email: jwzhang@wsu.edu
  organization: Washington State University
BookMark eNqFkE1LAzEQhoNUsK1ePS948bI1H7tN9liW1g8qStHzkmRna8o2qckW7b83paJQEE8ZMs8zM7wD1LPOAkKXBI8IxvRmLb0eUUwpxjkTJ6hPckpSVlDei3X8Twlj4zM0CGGFMRYZpn308Ozd0kMIibFJ-QZro2WbLEDvdGvsMnFNUkqvnE1mRoGPHWMb5zXUyXTjPndJ6dYbF0wH4RydNrINcPH9DtHrbPpS3qXzp9v7cjJPNcuxSAlmGRvXeQMiKwArUcuaKswo1JkWteAqV0IqULImFLjmPC4TeSN4rjNVEDZE14e5G-_etxC6am2ChraVFtw2VJTjgjMRQ4jo1RG6cltv43WRysacMEKKSGUHSnsXgoem0qaTnXG289K0FcHVPuBqH3D1E3DURkfaxpvI7P4WioPwYVrY_UNXj5NF-et-AWUnj9g
CitedBy_id crossref_primary_10_1002_marc_202400678
crossref_primary_10_1016_j_compscitech_2025_111048
crossref_primary_10_1021_acssuschemeng_3c01857
crossref_primary_10_1021_jacs_4c10838
crossref_primary_10_1016_j_jece_2023_110032
crossref_primary_10_3390_jcs8010002
crossref_primary_10_1016_j_compstruct_2025_118943
crossref_primary_10_1016_j_eurpolymj_2023_112427
crossref_primary_10_3390_act13110449
crossref_primary_10_1039_D4SU00382A
crossref_primary_10_1016_j_cej_2024_153792
crossref_primary_10_1016_j_pmatsci_2024_101326
crossref_primary_10_1016_j_clay_2024_107545
crossref_primary_10_1002_adfm_202409223
crossref_primary_10_1002_ange_202408969
crossref_primary_10_1002_adfm_202412268
crossref_primary_10_1002_pc_28285
crossref_primary_10_1002_pc_27994
crossref_primary_10_1021_acssuschemeng_3c00761
crossref_primary_10_3390_polym15214255
crossref_primary_10_1002_pc_29137
crossref_primary_10_1002_pc_29159
crossref_primary_10_1002_adfm_202408299
crossref_primary_10_1002_marc_202400646
crossref_primary_10_20517_cs_2024_85
crossref_primary_10_1016_j_compscitech_2024_110442
crossref_primary_10_1016_j_cej_2023_146625
crossref_primary_10_1016_j_resconrec_2025_108159
crossref_primary_10_1039_D3SU00258F
crossref_primary_10_3390_polym16202922
crossref_primary_10_1016_j_resconrec_2024_107668
crossref_primary_10_1002_anie_202408969
crossref_primary_10_1016_j_wasman_2024_09_002
crossref_primary_10_1039_D4PY00599F
crossref_primary_10_1016_j_compstruct_2023_117842
crossref_primary_10_1007_s10751_024_01937_7
crossref_primary_10_3389_fmats_2023_1179270
crossref_primary_10_1016_j_jaap_2024_106908
crossref_primary_10_1007_s44246_024_00192_3
crossref_primary_10_1016_j_cej_2024_155528
crossref_primary_10_3390_polym17070843
crossref_primary_10_1002_asia_202300373
Cites_doi 10.1016/j.polymdegradstab.2012.04.007
10.1021/acssuschemeng.1c01737
10.1016/j.compositesa.2015.07.015
10.1201/9781420006834
10.1021/acssuschemeng.5b01497
10.1016/j.compscitech.2019.01.026
10.1016/j.wasman.2017.12.031
10.1021/acsomega.7b01665
10.1039/C4GC02512A
10.1039/C4RA14898C
10.1021/acssuschemeng.5b00949
10.1016/j.polymdegradstab.2015.04.016
10.26434/chemrxiv‐2022‐xlttk
10.1039/C7GC01737E
10.1021/acs.iecr.7b00096
10.1039/C4TA04841E
10.1007/s10924-022-02391-8
10.1016/j.polymdegradstab.2017.03.017
10.1016/j.polymdegradstab.2022.109895
10.1016/j.jclepro.2020.123173
10.1016/j.msea.2009.05.030
10.1039/C8RA08958B
10.1021/acsomega.1c06652
10.1002/marc.202000458
10.1016/j.compscitech.2013.04.002
10.1016/j.compscitech.2022.109461
10.1007/s13762-012-0124-9
10.1016/j.compscitech.2008.10.007
10.1016/j.polymdegradstab.2013.09.026
10.1021/ie901542z
10.1016/j.compstruct.2022.115603
10.1039/C8GC03672A
10.1016/j.polymdegradstab.2022.109905
10.1016/j.jclepro.2019.04.104
10.1016/j.polymdegradstab.2014.12.003
10.1016/j.polymdegradstab.2011.12.028
10.3390/pr7040207
10.3390/su14073744
10.1002/app.20990
10.1021/acssuschemeng.8b01538
10.1016/j.supflu.2017.01.013
10.1177/0021998311420604
10.1021/acssuschemeng.7b01456
10.1016/j.jenvman.2020.110766
10.1016/j.polymdegradstab.2019.02.018
10.1002/cssc.202101607
10.1016/j.jece.2022.107510
10.1016/j.surfin.2021.101684
10.1016/j.supflu.2015.07.022
10.1007/s10924-016-0776-5
10.1016/j.supflu.2016.08.015
10.1016/j.polymdegradstab.2020.109268
10.1016/j.supflu.2008.02.008
10.1016/j.polymdegradstab.2020.109125
10.1002/app.41648
10.1039/C9GC00685K
10.1016/j.compositesb.2021.108808
10.1016/j.wasman.2012.10.003
10.1016/j.compositesb.2021.109560
10.1021/ie010178
10.1016/j.polymer.2004.12.035
10.1021/ie501995m
10.1016/j.supflu.2014.04.011
10.1007/s10118-014-1519-5
10.1039/c2gc36294e
10.1016/S0032-3861(02)00100-3
10.1016/j.compositesb.2013.12.013
10.3390/pr8080954
10.1002/app.39257
10.1016/j.jclepro.2016.11.118
10.1016/j.polymer.2020.122392
10.1243/09576509JPE518
10.1016/j.compositesa.2008.01.001
10.4028/www.scientific.net/AMR.79-82.409
10.1039/C5RA03828F
10.1177/0021998321999098
10.1016/j.wasman.2017.04.013
10.1016/j.cej.2015.06.007
10.1039/D0PY00545B
10.1016/j.applthermaleng.2014.09.029
10.1016/j.polymdegradstab.2022.109849
10.1002/app.27253
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.202200538
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 10_1002_marc_202200538
MARC202200538
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52103119
– fundername: China Scholarship Council
  funderid: 201807565017
– fundername: Shanghai Pujiang Program
  funderid: 21PJ1405900
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SR
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c3508-103436d5fe849e0b8dad2b032ed4c8d87b5b8abebad12e7c77ced85f875c4b913
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 07:13:20 EDT 2025
Sat Jul 19 21:42:18 EDT 2025
Tue Jul 01 03:31:47 EDT 2025
Thu Apr 24 23:07:12 EDT 2025
Wed Jan 22 16:20:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3508-103436d5fe849e0b8dad2b032ed4c8d87b5b8abebad12e7c77ced85f875c4b913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8828-114X
PQID 2746713119
PQPubID 1016394
PageCount 21
ParticipantIDs proquest_miscellaneous_2709738053
proquest_journals_2746713119
crossref_citationtrail_10_1002_marc_202200538
crossref_primary_10_1002_marc_202200538
wiley_primary_10_1002_marc_202200538_MARC202200538
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 119
2015; 78
2022; 292
2016; 107
2015; 75
2008; 39
2008; 107
2020; 11
2008; 222
2012; 14
2019; 163
2001; 40
2012; 97
2022; 29
2020; 8
2018; 6
2018; 3
1990
2013; 98
2013; 10
2020; 175
2019; 21
2002; 43
2015; 132
2014; 59
2009; 520
2018; 74
2022; 30
2020; 179
2017; 124
2014; 53
2022; 199
2021; 9
2019; 7
2009; 69
2019; 9
2022; 231
2015; 280
2015; 17
2021; 42
2015; 5
2014; 91
2022; 196
2015; 3
2017; 25
2017; 65
2020; 269
2007
2019; 227
2017; 139
2005; 46
2016; 4
2009; 79
2010; 49
2004; 94
2021; 55
2020; 273
2013; 33
2022
2022; 61
2022; 7
2015; 111
2021; 215
2017; 56
2020; 194
2018
2022; 14
2013; 82
2017
2022; 15
2008; 46
2016
2013; 130
2017; 19
2022; 10
2020; 22
2017; 142
2014
2015; 118
2019; 173
2012; 46
2014; 32
2022; 224
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_56_1
Arif Z. U. (e_1_2_9_6_1) 2022; 61
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_71_1
Gong X. (e_1_2_9_35_1) 2015; 132
Shama Rao N. (e_1_2_9_1_1) 2018
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
Li Y. (e_1_2_9_24_1) 2020; 22
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
Hara O. (e_1_2_9_21_1) 1990
e_1_2_9_29_1
References_xml – volume: 130
  start-page: 1064
  year: 2013
  publication-title: J. Appl. Polym. Sci.
– volume: 280
  start-page: 391
  year: 2015
  publication-title: Chem. Eng. J.
– volume: 9
  year: 2021
  publication-title: ACS Sustainable Chem. Eng.
– volume: 142
  start-page: 1721
  year: 2017
  publication-title: J Clean Prod
– volume: 194
  year: 2020
  publication-title: Polymer
– volume: 74
  start-page: 123
  year: 2018
  publication-title: Waste Manage.
– volume: 9
  start-page: 377
  year: 2019
  publication-title: RSC Adv.
– volume: 3
  start-page: 1188
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 199
  year: 2022
  publication-title: Polym. Degrad. Stab.
– volume: 173
  start-page: 66
  year: 2019
  publication-title: Compos. Sci. Technol.
– volume: 231
  year: 2022
  publication-title: Compos B Eng
– volume: 94
  start-page: 1912
  year: 2004
  publication-title: J. Appl. Polym. Sci.
– volume: 14
  start-page: 3744
  year: 2022
  publication-title: Sustainability
– volume: 82
  start-page: 54
  year: 2013
  publication-title: Compos. Sci. Technol.
– volume: 55
  start-page: 2693
  year: 2021
  publication-title: J. Compos. Mater.
– volume: 10
  year: 2022
  publication-title: J. Environ. Chem. Eng.
– volume: 43
  start-page: 2953
  year: 2002
  publication-title: Polymer
– volume: 520
  start-page: 179
  year: 2009
  publication-title: Mater. Sci. Eng., A
– year: 2014
– volume: 222
  start-page: 339
  year: 2008
  publication-title: Proc. Inst. Mech. Eng., Part A
– volume: 42
  year: 2021
  publication-title: Macromol. Rapid Commun.
– volume: 40
  start-page: 6063
  year: 2001
  publication-title: Ind. Eng. Chem. Res.
– volume: 292
  year: 2022
  publication-title: Compos. Struct.
– volume: 32
  start-page: 1550
  year: 2014
  publication-title: Chin. J. Polym. Sci.
– volume: 8
  start-page: 954
  year: 2020
  publication-title: Processes
– volume: 46
  start-page: 83
  year: 2008
  publication-title: J. Supercrit. Fluids
– volume: 46
  start-page: 1459
  year: 2012
  publication-title: J. Compos. Mater.
– volume: 56
  start-page: 7708
  year: 2017
  publication-title: Ind. Eng. Chem. Res.
– volume: 65
  start-page: 139
  year: 2017
  publication-title: Waste Manage.
– volume: 163
  start-page: 1
  year: 2019
  publication-title: Polym. Degrad. Stab.
– volume: 196
  year: 2022
  publication-title: Polym. Degrad. Stab.
– volume: 39
  start-page: 454
  year: 2008
  publication-title: Compos Part A Appl Sci Manuf
– volume: 111
  start-page: 247
  year: 2015
  publication-title: Polym. Degrad. Stab.
– volume: 215
  year: 2021
  publication-title: Compos B Eng
– volume: 25
  start-page: 115
  year: 2017
  publication-title: J. Polym. Environ.
– volume: 269
  year: 2020
  publication-title: J Environ Manage
– volume: 118
  start-page: 96
  year: 2015
  publication-title: Polym. Degrad. Stab.
– volume: 17
  start-page: 2141
  year: 2015
  publication-title: Green Chem.
– volume: 79
  start-page: 409
  year: 2009
  publication-title: Adv. Mater. Res.
– volume: 53
  year: 2014
  publication-title: Ind. Eng. Chem. Res.
– volume: 11
  start-page: 4500
  year: 2020
  publication-title: Polym. Chem.
– volume: 124
  start-page: 80
  year: 2017
  publication-title: J. Supercrit. Fluids
– volume: 107
  start-page: 605
  year: 2016
  publication-title: J. Supercrit. Fluids
– volume: 69
  start-page: 192
  year: 2009
  publication-title: Compos. Sci. Technol.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 21
  start-page: 1635
  year: 2019
  publication-title: Green Chem.
– volume: 78
  start-page: 10
  year: 2015
  publication-title: Compos Part A Appl Sci Manuf
– volume: 224
  year: 2022
  publication-title: Compos. Sci. Technol.
– volume: 132
  year: 2015
  publication-title: J. Appl. Polym. Sci.
– start-page: 1
  year: 1990
  publication-title: Three Bond Tech. News
– volume: 33
  start-page: 484
  year: 2013
  publication-title: Waste Manage.
– volume: 21
  start-page: 2487
  year: 2019
  publication-title: Green Chem.
– year: 2007
– volume: 7
  start-page: 207
  year: 2019
  publication-title: Processes
– volume: 49
  start-page: 4535
  year: 2010
  publication-title: Ind. Eng. Chem. Res.
– volume: 6
  start-page: 1564
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 75
  start-page: 397
  year: 2015
  publication-title: Appl. Therm. Eng.
– volume: 46
  start-page: 1905
  year: 2005
  publication-title: Polymer
– volume: 175
  year: 2020
  publication-title: Polym. Degrad. Stab.
– volume: 3
  start-page: 3332
  year: 2015
  publication-title: ACS Sustainable Chem. Eng.
– year: 2018
  publication-title: White paper
– year: 2016
– volume: 98
  start-page: 2571
  year: 2013
  publication-title: Polym. Degrad. Stab.
– volume: 10
  start-page: 175
  year: 2013
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 14
  start-page: 3260
  year: 2012
  publication-title: Green Chem.
– year: 2022
  publication-title: ChemRxiv
– volume: 3
  start-page: 524
  year: 2018
  publication-title: ACS Omega
– volume: 139
  start-page: 20
  year: 2017
  publication-title: Polym. Degrad. Stab.
– volume: 19
  start-page: 4364
  year: 2017
  publication-title: Green Chem.
– volume: 7
  year: 2022
  publication-title: ACS Omega
– volume: 273
  year: 2020
  publication-title: J Clean Prod
– volume: 91
  start-page: 68
  year: 2014
  publication-title: J. Supercrit. Fluids
– volume: 179
  year: 2020
  publication-title: Polym. Degrad. Stab.
– volume: 59
  start-page: 260
  year: 2014
  publication-title: Compos B Eng
– volume: 97
  start-page: 214
  year: 2012
  publication-title: Polym. Degrad. Stab.
– volume: 29
  year: 2022
  publication-title: Surf. Interfaces
– volume: 119
  start-page: 44
  year: 2017
  publication-title: J. Supercrit. Fluids
– volume: 4
  start-page: 2080
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– year: 2017
– volume: 227
  start-page: 794
  year: 2019
  publication-title: J Clean Prod
– volume: 22
  start-page: 870
  year: 2020
  publication-title: Chem
– volume: 97
  start-page: 1101
  year: 2012
  publication-title: Polym. Degrad. Stab.
– volume: 61
  start-page: 761
  year: 2022
  publication-title: Polym.‐Plast. Technol. Mat.
– volume: 30
  start-page: 3119
  year: 2022
  publication-title: J. Polym. Environ.
– volume: 6
  start-page: 9189
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 15
  year: 2022
  publication-title: ChemSusChem
– volume: 107
  start-page: 2015
  year: 2008
  publication-title: J. Appl. Polym. Sci.
– ident: e_1_2_9_80_1
  doi: 10.1016/j.polymdegradstab.2012.04.007
– ident: e_1_2_9_88_1
  doi: 10.1021/acssuschemeng.1c01737
– ident: e_1_2_9_75_1
  doi: 10.1016/j.compositesa.2015.07.015
– ident: e_1_2_9_58_1
  doi: 10.1201/9781420006834
– ident: e_1_2_9_71_1
  doi: 10.1021/acssuschemeng.5b01497
– ident: e_1_2_9_33_1
  doi: 10.1016/j.compscitech.2019.01.026
– ident: e_1_2_9_73_1
  doi: 10.1016/j.wasman.2017.12.031
– ident: e_1_2_9_49_1
  doi: 10.1021/acsomega.7b01665
– ident: e_1_2_9_82_1
  doi: 10.1039/C4GC02512A
– ident: e_1_2_9_37_1
  doi: 10.1039/C4RA14898C
– ident: e_1_2_9_57_1
  doi: 10.1021/acssuschemeng.5b00949
– ident: e_1_2_9_52_1
  doi: 10.1016/j.polymdegradstab.2015.04.016
– ident: e_1_2_9_7_1
  doi: 10.26434/chemrxiv‐2022‐xlttk
– ident: e_1_2_9_79_1
  doi: 10.1039/C7GC01737E
– ident: e_1_2_9_19_1
  doi: 10.1021/acs.iecr.7b00096
– ident: e_1_2_9_20_1
  doi: 10.1039/C4TA04841E
– ident: e_1_2_9_78_1
  doi: 10.1007/s10924-022-02391-8
– ident: e_1_2_9_2_1
– ident: e_1_2_9_56_1
  doi: 10.1016/j.polymdegradstab.2017.03.017
– ident: e_1_2_9_28_1
  doi: 10.1016/j.polymdegradstab.2022.109895
– ident: e_1_2_9_17_1
  doi: 10.1016/j.jclepro.2020.123173
– ident: e_1_2_9_36_1
  doi: 10.1016/j.msea.2009.05.030
– ident: e_1_2_9_54_1
  doi: 10.1039/C8RA08958B
– ident: e_1_2_9_5_1
  doi: 10.1021/acsomega.1c06652
– ident: e_1_2_9_25_1
  doi: 10.1002/marc.202000458
– ident: e_1_2_9_59_1
  doi: 10.1016/j.compscitech.2013.04.002
– ident: e_1_2_9_15_1
  doi: 10.1016/j.compscitech.2022.109461
– ident: e_1_2_9_63_1
  doi: 10.1007/s13762-012-0124-9
– ident: e_1_2_9_47_1
  doi: 10.1016/j.compscitech.2008.10.007
– ident: e_1_2_9_45_1
  doi: 10.1016/j.polymdegradstab.2013.09.026
– ident: e_1_2_9_22_1
– ident: e_1_2_9_48_1
  doi: 10.1021/ie901542z
– ident: e_1_2_9_12_1
  doi: 10.1016/j.compstruct.2022.115603
– volume: 61
  start-page: 761
  year: 2022
  ident: e_1_2_9_6_1
  publication-title: Polym.‐Plast. Technol. Mat.
– ident: e_1_2_9_74_1
  doi: 10.1039/C8GC03672A
– ident: e_1_2_9_77_1
  doi: 10.1016/j.polymdegradstab.2022.109905
– ident: e_1_2_9_30_1
  doi: 10.1016/j.jclepro.2019.04.104
– ident: e_1_2_9_53_1
  doi: 10.1016/j.polymdegradstab.2014.12.003
– ident: e_1_2_9_39_1
  doi: 10.1016/j.polymdegradstab.2011.12.028
– ident: e_1_2_9_14_1
  doi: 10.3390/pr7040207
– ident: e_1_2_9_9_1
  doi: 10.3390/su14073744
– ident: e_1_2_9_66_1
  doi: 10.1002/app.20990
– ident: e_1_2_9_26_1
  doi: 10.1021/acssuschemeng.8b01538
– ident: e_1_2_9_51_1
  doi: 10.1016/j.supflu.2017.01.013
– ident: e_1_2_9_70_1
  doi: 10.1177/0021998311420604
– ident: e_1_2_9_72_1
  doi: 10.1021/acssuschemeng.7b01456
– ident: e_1_2_9_10_1
  doi: 10.1016/j.jenvman.2020.110766
– ident: e_1_2_9_50_1
  doi: 10.1016/j.polymdegradstab.2019.02.018
– start-page: 1
  year: 1990
  ident: e_1_2_9_21_1
  publication-title: Three Bond Tech. News
– ident: e_1_2_9_27_1
  doi: 10.1002/cssc.202101607
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jece.2022.107510
– ident: e_1_2_9_85_1
  doi: 10.1016/j.surfin.2021.101684
– ident: e_1_2_9_41_1
  doi: 10.1016/j.supflu.2015.07.022
– ident: e_1_2_9_44_1
  doi: 10.1007/s10924-016-0776-5
– ident: e_1_2_9_42_1
  doi: 10.1016/j.supflu.2016.08.015
– ident: e_1_2_9_16_1
  doi: 10.1016/j.polymdegradstab.2020.109268
– ident: e_1_2_9_43_1
  doi: 10.1016/j.supflu.2008.02.008
– ident: e_1_2_9_89_1
  doi: 10.1016/j.polymdegradstab.2020.109125
– volume: 132
  start-page: 41648
  year: 2015
  ident: e_1_2_9_35_1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.41648
– ident: e_1_2_9_81_1
  doi: 10.1039/C9GC00685K
– ident: e_1_2_9_4_1
  doi: 10.1016/j.compositesb.2021.108808
– ident: e_1_2_9_64_1
  doi: 10.1016/j.wasman.2012.10.003
– ident: e_1_2_9_84_1
  doi: 10.1016/j.compositesb.2021.109560
– ident: e_1_2_9_32_1
  doi: 10.1021/ie010178
– ident: e_1_2_9_68_1
  doi: 10.1016/j.polymer.2004.12.035
– ident: e_1_2_9_76_1
  doi: 10.1021/ie501995m
– ident: e_1_2_9_40_1
  doi: 10.1016/j.supflu.2014.04.011
– year: 2018
  ident: e_1_2_9_1_1
  publication-title: White paper
– ident: e_1_2_9_46_1
  doi: 10.1007/s10118-014-1519-5
– ident: e_1_2_9_60_1
  doi: 10.1039/c2gc36294e
– ident: e_1_2_9_67_1
  doi: 10.1016/S0032-3861(02)00100-3
– ident: e_1_2_9_11_1
  doi: 10.1016/j.compositesb.2013.12.013
– ident: e_1_2_9_13_1
  doi: 10.3390/pr8080954
– ident: e_1_2_9_23_1
  doi: 10.1002/app.39257
– ident: e_1_2_9_62_1
  doi: 10.1016/j.jclepro.2016.11.118
– volume: 22
  start-page: 870
  year: 2020
  ident: e_1_2_9_24_1
  publication-title: Chem
– ident: e_1_2_9_90_1
  doi: 10.1016/j.polymer.2020.122392
– ident: e_1_2_9_3_1
  doi: 10.1243/09576509JPE518
– ident: e_1_2_9_38_1
  doi: 10.1016/j.compositesa.2008.01.001
– ident: e_1_2_9_69_1
  doi: 10.4028/www.scientific.net/AMR.79-82.409
– ident: e_1_2_9_34_1
  doi: 10.1039/C5RA03828F
– ident: e_1_2_9_86_1
  doi: 10.1177/0021998321999098
– ident: e_1_2_9_83_1
– ident: e_1_2_9_61_1
  doi: 10.1016/j.wasman.2017.04.013
– ident: e_1_2_9_65_1
  doi: 10.1016/j.cej.2015.06.007
– ident: e_1_2_9_18_1
  doi: 10.1039/D0PY00545B
– ident: e_1_2_9_31_1
  doi: 10.1016/j.applthermaleng.2014.09.029
– ident: e_1_2_9_29_1
– ident: e_1_2_9_55_1
  doi: 10.1016/j.polymdegradstab.2022.109849
– ident: e_1_2_9_87_1
  doi: 10.1002/app.27253
SSID ssj0008402
Score 2.5611675
SecondaryResourceType review_article
Snippet Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2200538
SubjectTerms Addition polymerization
Binders
Carbon
Carbon fiber reinforced plastics
Carbon fiber reinforcement
Carbon-epoxy composites
Chemical recycling
composites
Covalent bonds
Crosslinking
epoxy
Epoxy resins
Fiber composites
Fiber reinforced polymers
Incineration
Landfills
Polymer matrix composites
Polymers
Recycling
Residues
supercritical liquid
vitrimers
Waste disposal sites
Title Progress in Chemical Recycling of Carbon Fiber Reinforced Epoxy Composites
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202200538
https://www.proquest.com/docview/2746713119
https://www.proquest.com/docview/2709738053
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5ED3rxLcYXKwieUtvdzaPHUi0iVqRa6C1kXyJKKrY96K93JmnSVhBBj2EfSWZ3Z7_ZnfkG4MzglmBDof04CIwvG8b6TWm577iRjqONEXIKcO7ehdd9eTMIBnNR_AU_RHXgRisj19e0wFM1upiRhhLVA9p3nI5FBEX7ksMWoaLejD8KrZfiuhMtLjTGwpK1sc4vFpsv7kozqDkPWPMdp7MBafmthaPJS20yVjX9-Y3G8T8_swnrUzjKWsX82YIlm23DarvMArcDN_fkwIXqkD1nrGQXYAg2Pyim8okNHWun72qYsQ75nmBJTsWqrWFXb_jhjBQOOYbZ0S70O1eP7Wt_mn_B1yLIWV-FFKEJnI1l09ZVbFLDVV1wa6SOTRypQMWpsio1DW4jHUXYeRw4NIG0VM2G2IPlbJjZfWBaabRcGi5CPS-dVSoQTqCyVcI5BJTGA7-Uf6Kn5OSUI-M1KWiVeUISSioJeXBe1X8raDl-rHlUDmcyXZ6jhFOSFSIaanpwWhWjZOm2JM3scEJ1iMkoxj484PnY_fKmpNvqtaung780OoQ1ns9Vcpc5guXx-8QeI-gZqxNYaV12bx9O8gn-Bfw_-ow
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HvTiW6zPFQRP0XZ3k2yPpVjqoyKi4C1kXyJKWrQ96K93JmlSFUTQY9hH9jk73-7MNwCHFo8EFwkTqDC0gWxaF7Sk44HnVnqOGCPi5ODcv4p6d_L8PiytCckXpuCHqC7caGfk8po2OF1In0xZQ4nrAQEep3sRoWZhjsJ656jqZsoghfilePBEzIVwLCp5Gxv85Gv5r-fSVNn8rLLmZ053CXTZ2sLU5Ol4PNLH5v0bkeO_urMMixONlLWLJbQCMy5bhflOGQhuDc6vyYYLJSJ7zFhJMMBQ33wjt8oHNvCsk77oQca6ZH6CKTkbq3GWnQ6x5YxkDtmGudd1uOue3nZ6wSQEQ2BEmBO_CikiG3qnZMs1tLKp5bohuLPSKKtiHWqVaqdT2-QuNnGMlavQIwoyUreaYgNq2SBzm8CMNghemj5GUS-90zoUXqC81cJ71CltHYJyAhIz4SenMBnPScGszBMaoaQaoTocVfmHBTPHjzl3yvlMJjv0NeEUZ4W4hlp1OKiScWTpwSTN3GBMeYjMSGEddeD55P3yp6TfvulUX1t_KbQP873b_mVyeXZ1sQ0LPF-4ZD2zA7XRy9jtog400nv5Kv8AwoD9Ew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gHrxLVarriB4ira7m2R7lNbiGxEFbyH7ElHSou1Bf70zSZOqIIIewz6SzM7Ozrc7-w3AnsUlwUXCBCoMbSCb1gUt6XjguZWeI8aIOF1wvryKTu7k2X14_-kWf8EPUW240czI7TVN8L71h2PSUKJ6QHzHaVtEqEmYllFDkV53bsYEUghfivNOhFyIxqKStrHBD7-2_7osjX3Nzx5rvuR0FyAtP7aINHk6GA70gXn_xuP4n79ZhPmRP8qOCgVaggmXLcNsu0wDtwJn1xTBhfaQPWaspBdg6G2-0aXKB9bzrJ2-6F7GuhR8giU5F6txlh338cMZWRyKDHOvq3DXPb5tnwSjBAyBEWFO-yqkiGzonZIt19DKppbrhuDOSqOsinWoVaqdTm2Tu9jEMXauQo8YyEjdaoo1mMp6mVsHZrRB6NL0MRp66Z3WofACra0W3qNHaWsQlPJPzIidnJJkPCcFrzJPSEJJJaEa7Ff1-wUvx4816-VwJqP5-ZpwyrJCTEOtGuxWxShZOi5JM9cbUh2iMlLYRw14Pna_vCm5PLppV08bf2m0AzPXnW5ycXp1vglzPFdbCp2pw9TgZei20AEa6O1cxz8A4uv7yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+in+Chemical+Recycling+of+Carbon+Fiber+Reinforced+Epoxy+Composites&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Liu%2C+Tuan&rft.au=Shao%2C+Lin&rft.au=Zhao%2C+Baoming&rft.au=Chang%2C+Yu-Chung&rft.date=2022-12-01&rft.issn=1521-3927&rft.eissn=1521-3927&rft.volume=43&rft.issue=23&rft.spage=e2200538&rft_id=info:doi/10.1002%2Fmarc.202200538&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon