High‐Temperature and Large‐Polarization Ferroelectric with Second Harmonic Generation Response in a Novel Crown Ether Clathrate

Molecular ferroelectrics of high‐temperature reversible phase transitions are very rare and have attracted increasing attention in recent years. In this paper is described the successful synthesis of a novel high‐temperature host‐guest inclusion ferroelectric: [(C6H5NF3)(18‐crown‐6)][BF4] (1) that s...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 27; no. 54; pp. 13575 - 13581
Main Authors Han, Ding Chong, Tan, Yu Hui, Li, Yu Kong, Wen, Jia Hui, Tang, Yun Zhi, Wei, Wen Juan, Du, Peng Kang, Zhang, Hao
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 24.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molecular ferroelectrics of high‐temperature reversible phase transitions are very rare and have attracted increasing attention in recent years. In this paper is described the successful synthesis of a novel high‐temperature host‐guest inclusion ferroelectric: [(C6H5NF3)(18‐crown‐6)][BF4] (1) that shows a pair of reversible peaks at 348 K (heating) and 331 K (cooling) with a heat hysteresis about 17 K by differential scanning calorimetry measurements, thus indicating that 1 undergoes a reversible structural phase transition. Variable‐temperature PXRD and temperature‐dependent dielectric measurements further prove the phase‐transition behavior of 1. The second harmonic response demonstrates that 1 belongs to a non‐centrosymmetric space group at room temperature and is a good nonlinear optical material. In its semiconducting properties, 1 shows a wide optical band gap of about 4.43 eV that comes chiefly from the C, H and O atoms of the crystals. In particular, the ferroelectric measurements of 1 exhibit a typical polarization‐electric hysteresis loop with a large spontaneous polarization (Ps) of about 4.06 μC/cm2. This finding offers an alternative pathway for designing new ferroelectric‐dielectric and nonlinear optical materials and related physical properties in organic‐inorganic and other hybrid crystals. A modern material: A novel high‐temperature host‐guest inclusion ferroelectric, [(C6H5NF3)(18‐crown‐6)][BF4], has successfully been synthesized; it underwent a reversible structural phase transition around Tc=348 K, with a wide band gap of 4.43 eV. The chief contributors to this are the C, H and O atoms of the crystals, the obvious second harmonic generation response and the large value of spontaneous ferroelectric polarization of around 4.06 μC/cm2.
AbstractList Molecular ferroelectrics of high‐temperature reversible phase transitions are very rare and have attracted increasing attention in recent years. In this paper is described the successful synthesis of a novel high‐temperature host‐guest inclusion ferroelectric: [(C6H5NF3)(18‐crown‐6)][BF4] (1) that shows a pair of reversible peaks at 348 K (heating) and 331 K (cooling) with a heat hysteresis about 17 K by differential scanning calorimetry measurements, thus indicating that 1 undergoes a reversible structural phase transition. Variable‐temperature PXRD and temperature‐dependent dielectric measurements further prove the phase‐transition behavior of 1. The second harmonic response demonstrates that 1 belongs to a non‐centrosymmetric space group at room temperature and is a good nonlinear optical material. In its semiconducting properties, 1 shows a wide optical band gap of about 4.43 eV that comes chiefly from the C, H and O atoms of the crystals. In particular, the ferroelectric measurements of 1 exhibit a typical polarization‐electric hysteresis loop with a large spontaneous polarization (Ps) of about 4.06 μC/cm2. This finding offers an alternative pathway for designing new ferroelectric‐dielectric and nonlinear optical materials and related physical properties in organic‐inorganic and other hybrid crystals. A modern material: A novel high‐temperature host‐guest inclusion ferroelectric, [(C6H5NF3)(18‐crown‐6)][BF4], has successfully been synthesized; it underwent a reversible structural phase transition around Tc=348 K, with a wide band gap of 4.43 eV. The chief contributors to this are the C, H and O atoms of the crystals, the obvious second harmonic generation response and the large value of spontaneous ferroelectric polarization of around 4.06 μC/cm2.
Abstract Molecular ferroelectrics of high‐temperature reversible phase transitions are very rare and have attracted increasing attention in recent years. In this paper is described the successful synthesis of a novel high‐temperature host‐guest inclusion ferroelectric: [(C 6 H 5 NF 3 )(18‐crown‐6)][BF 4 ] ( 1 ) that shows a pair of reversible peaks at 348 K (heating) and 331 K (cooling) with a heat hysteresis about 17 K by differential scanning calorimetry measurements, thus indicating that 1 undergoes a reversible structural phase transition. Variable‐temperature PXRD and temperature‐dependent dielectric measurements further prove the phase‐transition behavior of 1 . The second harmonic response demonstrates that 1 belongs to a non‐centrosymmetric space group at room temperature and is a good nonlinear optical material. In its semiconducting properties, 1 shows a wide optical band gap of about 4.43 eV that comes chiefly from the C, H and O atoms of the crystals. In particular, the ferroelectric measurements of 1 exhibit a typical polarization‐electric hysteresis loop with a large spontaneous polarization ( P s ) of about 4.06 μC / cm 2 . This finding offers an alternative pathway for designing new ferroelectric‐dielectric and nonlinear optical materials and related physical properties in organic‐inorganic and other hybrid crystals.
Molecular ferroelectrics of high‐temperature reversible phase transitions are very rare and have attracted increasing attention in recent years. In this paper is described the successful synthesis of a novel high‐temperature host‐guest inclusion ferroelectric: [(C6H5NF3)(18‐crown‐6)][BF4] (1) that shows a pair of reversible peaks at 348 K (heating) and 331 K (cooling) with a heat hysteresis about 17 K by differential scanning calorimetry measurements, thus indicating that 1 undergoes a reversible structural phase transition. Variable‐temperature PXRD and temperature‐dependent dielectric measurements further prove the phase‐transition behavior of 1. The second harmonic response demonstrates that 1 belongs to a non‐centrosymmetric space group at room temperature and is a good nonlinear optical material. In its semiconducting properties, 1 shows a wide optical band gap of about 4.43 eV that comes chiefly from the C, H and O atoms of the crystals. In particular, the ferroelectric measurements of 1 exhibit a typical polarization‐electric hysteresis loop with a large spontaneous polarization (Ps) of about 4.06 μC/cm2. This finding offers an alternative pathway for designing new ferroelectric‐dielectric and nonlinear optical materials and related physical properties in organic‐inorganic and other hybrid crystals.
Author Tang, Yun Zhi
Li, Yu Kong
Han, Ding Chong
Du, Peng Kang
Wei, Wen Juan
Wen, Jia Hui
Zhang, Hao
Tan, Yu Hui
Author_xml – sequence: 1
  givenname: Ding Chong
  surname: Han
  fullname: Han, Ding Chong
  organization: Jiangxi University of Science and Technology
– sequence: 2
  givenname: Yu Hui
  surname: Tan
  fullname: Tan, Yu Hui
  email: tyxcn@163.com
  organization: Jiangxi University of Science and Technology
– sequence: 3
  givenname: Yu Kong
  surname: Li
  fullname: Li, Yu Kong
  organization: Jiangxi University of Science and Technology
– sequence: 4
  givenname: Jia Hui
  surname: Wen
  fullname: Wen, Jia Hui
  organization: Jiangxi University of Science and Technology
– sequence: 5
  givenname: Yun Zhi
  surname: Tang
  fullname: Tang, Yun Zhi
  email: tangyunzhi75@163.com
  organization: Jiangxi University of Science and Technology
– sequence: 6
  givenname: Wen Juan
  surname: Wei
  fullname: Wei, Wen Juan
  organization: Jiangxi University of Science and Technology
– sequence: 7
  givenname: Peng Kang
  surname: Du
  fullname: Du, Peng Kang
  organization: Jiangxi University of Science and Technology
– sequence: 8
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  organization: Jiangxi University of Science and Technology
BookMark eNqF0c9qGzEQBnBRUqiT9NqzoJde1h39W1nHsjhxwGlLm54XWR5nFXYlV1rHpKdCXqDPmCeJjEsLvfQ0MPy-YeA7JSchBiTkDYMpA-DvXYfDlANnwDToF2TCFGeV0LU6IRMwUle1EuYVOc35DgBMLcSEPC78bff089cNDltMdtwlpDas6dKmWyz7z7G3yf-wo4-BXmBKEXt0Y_KO7v3Y0a_oYuELm4YYyvISw-HMQX_BvI0hI_WBWvox3mNPmxT3gc7HDhNtejt2xeI5ebmxfcbXv-cZ-XYxv2kW1fLT5VXzYVk5oUBXKKXd2BnHNcoVq0UtVlorWBnNJFcW3GytwDnLjTOcO6XdhiujJKC0ALoWZ-Td8e42xe87zGM7-Oyw723AuMstV6oWM6lAFfr2H3oXdymU74rSShvBpChqelQuxZwTbtpt8oNNDy2D9tBJe-ik_dNJCZhjYO97fPiPbpvF_Ppv9hlfH5Sf
CitedBy_id crossref_primary_10_1021_acs_inorgchem_2c03486
crossref_primary_10_1039_D2DT02632E
crossref_primary_10_1039_D3DT01499A
crossref_primary_10_1039_D1NJ04448F
crossref_primary_10_1039_D2DT02621J
crossref_primary_10_3390_molecules28227586
crossref_primary_10_1039_D2DT01826H
crossref_primary_10_1039_D3DT01574B
crossref_primary_10_1039_D2DT00390B
Cites_doi 10.1002/ange.201709588
10.1002/anie.202001042
10.1002/anie.202009329
10.1038/nmat2377
10.1038/ncomms13108
10.1103/PhysRevB.72.014302
10.1021/jacs.0c06048
10.1002/chem.202004859
10.1021/acs.orglett.8b03087
10.1016/0025-5408(70)90112-1
10.1021/ja503344b
10.1021/jacs.0c12907
10.1039/C9CC05900H
10.1016/j.cclet.2019.06.017
10.1002/ange.202009329
10.1002/chem.202100366
10.1002/ange.201307690
10.1126/science.aai8535
10.1021/acsami.0c19507
10.1002/slct.201900598
10.1002/anie.201307690
10.1039/D0TC00168F
10.1063/1.1656857
10.1039/C9TC04479E
10.1002/anie.201916254
10.1039/C7TC01520H
10.1038/s41467-020-20530-4
10.1021/jacs.5b08061
10.1021/cr200174w
10.1021/ja204540g
10.1002/ange.201001208
10.1021/jacs.1c00613
10.1021/acs.cgd.8b00994
10.1039/C8TC03517B
10.1039/C5CS00308C
10.1002/ange.201916254
10.1002/ange.202001042
10.1021/acs.inorgchem.0c03309
10.1002/chem.202100334
10.1002/anie.201709588
10.1002/anie.201001208
10.1021/acsami.8b12900
10.1002/chem.202000188
10.1002/ejic.201801293
10.1021/jacs.0c12513
10.1039/C9DT02045D
10.1002/adma.201505224
10.1021/jacs.0c02924
10.1021/acs.jpcc.9b07009
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202101707
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 13581
ExternalDocumentID 10_1002_chem_202101707
CHEM202101707
Genre article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3507-e44afa82ede4b16363b7750b971425a0c8d50cca29c922c57cf259540e4a00763
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Sat Aug 17 00:45:13 EDT 2024
Thu Oct 10 18:05:18 EDT 2024
Fri Aug 23 02:25:19 EDT 2024
Sat Aug 24 01:00:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 54
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3507-e44afa82ede4b16363b7750b971425a0c8d50cca29c922c57cf259540e4a00763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2575793143
PQPubID 986340
PageCount 7
ParticipantIDs proquest_miscellaneous_2556384505
proquest_journals_2575793143
crossref_primary_10_1002_chem_202101707
wiley_primary_10_1002_chem_202101707_CHEM202101707
PublicationCentury 2000
PublicationDate September 24, 2021
PublicationDateYYYYMMDD 2021-09-24
PublicationDate_xml – month: 09
  year: 2021
  text: September 24, 2021
  day: 24
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2014 2014; 53 126
2019; 7
2021; 27
2019; 2019
2019; 4
2020; 20
2020; 142
2019; 55
2020 2020; 59 132
2010 2010; 49 122
2021; 143
2018; 20
2017; 357
2014; 136
1970; 5
2011; 133
2019; 123
2020; 8
2021; 13
2018; 6
2018; 18
2016; 7
2021; 12
2012; 112
1968; 39
2015; 137
2020; 31
2018 2018; 57 130
2019; 48
2020; 26
2009; 8
2005; 72
2021; 60
2016; 28
2018; 10
2016; 45
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_28_3
e_1_2_7_50_2
e_1_2_7_25_1
e_1_2_7_50_3
e_1_2_7_52_1
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_37_2
e_1_2_7_37_3
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_2_2
Yang K. (e_1_2_7_8_2) 2020; 20
e_1_2_7_6_3
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_2
e_1_2_7_22_1
e_1_2_7_32_3
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_36_2
e_1_2_7_38_1
References_xml – volume: 26
  start-page: 5887
  year: 2020
  end-page: 5892
  publication-title: Chem. Eur. J.
– volume: 142
  start-page: 16990
  year: 2020
  end-page: 16998
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 2044
  year: 2021
  end-page: 2051
  publication-title: ACS Appl. Mater. Interfaces
– volume: 39
  start-page: 3798
  year: 1968
  publication-title: J. Appl. Phys.
– volume: 133
  start-page: 12780
  year: 2011
  end-page: 12786
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 10327
  year: 2018
  end-page: 10331
  publication-title: J. Mater. Chem. C
– volume: 5
  start-page: 721
  year: 1970
  end-page: 729
  publication-title: Mater. Res. Bull.
– volume: 27
  start-page: 5831
  year: 2021
  publication-title: Chem. Eur. J.
– volume: 59 132
  start-page: 7793 7867
  year: 2020 2020
  end-page: 7796 7870
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 2114 2146
  year: 2014 2014
  end-page: 2118 2150
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 284
  year: 2021
  publication-title: Nat. Commun.
– volume: 5
  start-page: 5458
  year: 2017
  end-page: 5464
  publication-title: J. Mater. Chem. C
– volume: 72
  year: 2005
  publication-title: Phys. Rev. B
– volume: 357
  start-page: 306
  year: 2017
  end-page: 309
  publication-title: Science
– volume: 59 132
  start-page: 9305 9391
  year: 2020 2020
  end-page: 9308 9394
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 18
  start-page: 6117
  year: 2018
  end-page: 6122
  publication-title: Cryst. Growth Des.
– volume: 143
  start-page: 1664
  year: 2021
  end-page: 1672
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 13108
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  start-page: 5025
  year: 2020
  end-page: 5028
  publication-title: J. Mater. Chem. C
– volume: 10
  start-page: 41471
  year: 2018
  end-page: 41478
  publication-title: ACS Appl. Mater. Interfaces
– volume: 60
  start-page: 1195
  year: 2021
  end-page: 1201
  publication-title: Inorg. Chem.
– volume: 49 122
  start-page: 6608 6758
  year: 2010 2010
  end-page: 6610 6760
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 143
  start-page: 5091
  year: 2021
  end-page: 5098
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 13345
  year: 2015
  end-page: 13351
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 9054
  year: 2021
  end-page: 9059
  publication-title: Chem. Eur. J.
– volume: 28
  start-page: 2579
  year: 2016
  end-page: 2586
  publication-title: Adv. Mater.
– volume: 2019
  start-page: 800
  year: 2019
  end-page: 807
  publication-title: Eur. J. Inorg. Chem.
– volume: 123
  start-page: 21161
  year: 2019
  end-page: 21166
  publication-title: J. Phys. Chem. C
– volume: 112
  start-page: 1163
  year: 2012
  end-page: 1195
  publication-title: Chem. Rev.
– volume: 136
  start-page: 10033
  year: 2014
  end-page: 10040
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 841
  year: 2020
  end-page: 845
  publication-title: Chin. Chem. Lett.
– volume: 143
  start-page: 2130
  year: 2021
  end-page: 2137
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 6934
  year: 2018
  end-page: 6937
  publication-title: Org. Lett.
– volume: 142
  start-page: 9000
  year: 2020
  end-page: 9006
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 11571
  year: 2019
  end-page: 11574
  publication-title: Chem. Commun.
– volume: 45
  start-page: 3811
  year: 2016
  end-page: 3827
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 11964
  year: 2019
  end-page: 11971
  publication-title: J. Mater. Chem. C
– volume: 20
  year: 2020
  publication-title: Appl. Mater. Res.
– volume: 48
  start-page: 11292
  year: 2019
  end-page: 11297
  publication-title: Dalton Trans.
– volume: 4
  start-page: 3921
  year: 2019
  end-page: 3925
  publication-title: ChemistrySelect
– volume: 59 132
  start-page: 21693 21877
  year: 2020 2020
  end-page: 21697 21881
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 342
  year: 2009
  end-page: 347
  publication-title: Nat. Mater.
– volume: 27
  start-page: 5880
  year: 2021
  end-page: 5884
  publication-title: Chem. Eur. J.
– volume: 57 130
  start-page: 526 535
  year: 2018 2018
  end-page: 530 539
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_7_50_3
  doi: 10.1002/ange.201709588
– ident: e_1_2_7_37_2
  doi: 10.1002/anie.202001042
– ident: e_1_2_7_6_2
  doi: 10.1002/anie.202009329
– ident: e_1_2_7_48_1
– ident: e_1_2_7_25_1
– ident: e_1_2_7_13_2
  doi: 10.1038/nmat2377
– ident: e_1_2_7_12_2
  doi: 10.1038/ncomms13108
– ident: e_1_2_7_33_1
– ident: e_1_2_7_19_2
  doi: 10.1103/PhysRevB.72.014302
– ident: e_1_2_7_4_2
  doi: 10.1021/jacs.0c06048
– ident: e_1_2_7_41_2
  doi: 10.1002/chem.202004859
– ident: e_1_2_7_20_2
  doi: 10.1021/acs.orglett.8b03087
– ident: e_1_2_7_52_1
  doi: 10.1016/0025-5408(70)90112-1
– ident: e_1_2_7_24_1
  doi: 10.1021/ja503344b
– ident: e_1_2_7_27_2
  doi: 10.1021/jacs.0c12907
– ident: e_1_2_7_30_1
– ident: e_1_2_7_14_2
  doi: 10.1039/C9CC05900H
– ident: e_1_2_7_38_1
– ident: e_1_2_7_39_2
  doi: 10.1016/j.cclet.2019.06.017
– ident: e_1_2_7_6_3
  doi: 10.1002/ange.202009329
– ident: e_1_2_7_42_2
  doi: 10.1002/chem.202100366
– ident: e_1_2_7_23_2
  doi: 10.1002/ange.201307690
– ident: e_1_2_7_3_2
  doi: 10.1126/science.aai8535
– ident: e_1_2_7_11_2
  doi: 10.1021/acsami.0c19507
– ident: e_1_2_7_17_2
  doi: 10.1002/slct.201900598
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.201307690
– ident: e_1_2_7_35_2
  doi: 10.1039/D0TC00168F
– ident: e_1_2_7_44_2
  doi: 10.1063/1.1656857
– ident: e_1_2_7_53_1
  doi: 10.1039/C9TC04479E
– ident: e_1_2_7_28_2
  doi: 10.1002/anie.201916254
– ident: e_1_2_7_5_2
  doi: 10.1039/C7TC01520H
– ident: e_1_2_7_29_2
  doi: 10.1038/s41467-020-20530-4
– ident: e_1_2_7_10_2
  doi: 10.1021/jacs.5b08061
– ident: e_1_2_7_51_1
  doi: 10.1021/cr200174w
– ident: e_1_2_7_22_1
  doi: 10.1021/ja204540g
– ident: e_1_2_7_32_3
  doi: 10.1002/ange.201001208
– ident: e_1_2_7_2_2
  doi: 10.1021/jacs.1c00613
– ident: e_1_2_7_9_2
  doi: 10.1021/acs.cgd.8b00994
– ident: e_1_2_7_45_1
  doi: 10.1039/C8TC03517B
– ident: e_1_2_7_26_2
  doi: 10.1039/C5CS00308C
– ident: e_1_2_7_28_3
  doi: 10.1002/ange.201916254
– ident: e_1_2_7_37_3
  doi: 10.1002/ange.202001042
– ident: e_1_2_7_1_1
– ident: e_1_2_7_47_1
  doi: 10.1021/acs.inorgchem.0c03309
– ident: e_1_2_7_7_1
– ident: e_1_2_7_43_2
  doi: 10.1002/chem.202100334
– ident: e_1_2_7_50_2
  doi: 10.1002/anie.201709588
– ident: e_1_2_7_32_2
  doi: 10.1002/anie.201001208
– ident: e_1_2_7_21_2
  doi: 10.1021/acsami.8b12900
– ident: e_1_2_7_40_2
  doi: 10.1002/chem.202000188
– ident: e_1_2_7_34_2
  doi: 10.1002/ejic.201801293
– ident: e_1_2_7_16_2
  doi: 10.1021/jacs.0c12513
– ident: e_1_2_7_18_1
– ident: e_1_2_7_31_2
  doi: 10.1039/C9DT02045D
– ident: e_1_2_7_49_2
  doi: 10.1002/adma.201505224
– volume: 20
  start-page: 100687
  year: 2020
  ident: e_1_2_7_8_2
  publication-title: Appl. Mater. Res.
  contributor:
    fullname: Yang K.
– ident: e_1_2_7_36_2
  doi: 10.1021/jacs.0c02924
– ident: e_1_2_7_46_1
  doi: 10.1021/acs.jpcc.9b07009
– ident: e_1_2_7_15_1
SSID ssj0009633
Score 2.4723125
Snippet Molecular ferroelectrics of high‐temperature reversible phase transitions are very rare and have attracted increasing attention in recent years. In this paper...
Abstract Molecular ferroelectrics of high‐temperature reversible phase transitions are very rare and have attracted increasing attention in recent years. In...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 13575
SubjectTerms Calorimetry
Chemistry
Clathrates
Crown ethers
Crystals
dielectric anomalies
Differential scanning calorimetry
Ferroelectric materials
ferroelectric properties
Ferroelectricity
Harmonic response
high-temperature reversible phase transition
Hysteresis
Hysteresis loops
Optical materials
Optical properties
Optics
Phase transitions
Physical properties
Polarization
Room temperature
Second harmonic generation
SHG response
Temperature dependence
Title High‐Temperature and Large‐Polarization Ferroelectric with Second Harmonic Generation Response in a Novel Crown Ether Clathrate
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202101707
https://www.proquest.com/docview/2575793143
https://search.proquest.com/docview/2556384505
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5ED3rxLdYXEQRPq-lu9nVsq6WIivgAb0teC2LdSm09eBL8A_5Gf4kzm26rXgS97SNhN5lJ8k0y8w3AHorc1IXJvYhbMlBi5alYCS-p103CFQ9iTtHIZ-dR50ac3Ia3X6L4HT_EeMONRkY5X9MAl-rpcEIaim2iSHKfdKoMJyc2PUJFlxP-KNQul0texB5xsFasjdw__F79-6o0gZpfAWu54rQXQFb_6hxN7g-GA3WgX37QOP6nMYswP4KjrOH0ZwmmbLEMs60qC9wKvJEjyMfr-7VFfO34l5ksDDslD3J8fkGm8SiWk7Vtv99ziXXuNKMtXnZFBrdhHdl_IBJe5miuy9KXzj3XsruCSXbee7Zd1qJdAXZMqJS1uohOicliFW7ax9etjjdK3ODpAPGlZ4WQuUx8a6xQCPiiQMWITFQa13GKkFwnJuSoOn6qU9_XYaxztMIQO1oh6WgwWIPpolfYdWCBTLRMI2koR1DKZZpHeRBqwYVFW8ikNdivBJc9On6OzDEx-xl1ajbu1BpsVXLNRuP0KcMJK0R1RdBYg93xa-xiOjaRhe0NqUyIk5RAqFgDvxTiL1_KiM1ifLfxl0qbMEfXXnn8tQXTg_7QbiP6GagdmGk0j5rtnVLTPwEbhP--
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4hegiXPoCq2_JwpUqcNji73tcRBaIAIUIhkbit_Foparqp0qQHTkj9A_2N_BJm1tmkcEGix_Xa2rU9Y39jz3wD8A2n3LSEKfyYWzJQEuWrRAk_bbVMyhUPE07RyFf9uDsSF7dR7U1IsTCOH2J14EaaUa3XpOB0IH28Zg3FTlEoeUBCRfHkb1DnI9LN08GaQQrly2WTF4lPLKw1byMPjp-2f7ovrcHmv5C12nM670DVf-tcTb43F3PV1HfPiBz_qzvv4e0SkbITJ0IfYMOW29Bo14ngduAP-YI83P8dWoTYjoKZydKwHjmRY_k1WcfLcE7WsbPZ1OXWGWtGp7zshmxuw7py9oN4eJljuq5qD5yHrmXjkknWn_62E9amgwF2RsCUtScIUInMYhdGnbNhu-svczf4OkSI6VshZCHTwBorFGK-OFQJghOVJS1cJSTXqYk4Sk-Q6SwIdJToAg0xhI9WSLodDD_CZjkt7SdgoUy1zGJpKE1QxmVWxEUYacGFRXPIZB4c1TOX_3QUHbkjYw5yGtR8Nage7NUTmy9V9VeOa1aEEou40YOvq9c4xHRzIks7XVCdCNcpgWjRg6CaxRe-lBOhxerp82saHUKjO7zq5b3z_uUX2KJyv7oN24PN-Wxh9xEMzdVBJe6PEI0Cew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB6KC20ufaQJcZq2CgR62ljWal_H4ti4bWqMY0Nui14LIek6OHYOORX6B_ob-0s6s_LacS-B5LhaiV1pRtI30sw3AEcoctuWtghi7shASXSgEy2DtN22Kdc8TDhFI_8YxP2J_HYend-L4vf8EKsDN5oZ1XpNE_zaFq01aSj2iSLJBekUhZM_l3EoyPw6Ga0JpFC9fDJ5mQREwlrTNnLR2my_uS2tseZ9xFptOb3XoOqf9Z4ml8eLuT42d__xOD6lN2_g1RKPsi9egd7CM1duw8tOnQbuHfwmT5C_v_6MHQJsT8DMVGnZKbmQY_mQbONlMCfrudls6jPrXBhGZ7zsjCxuy_pq9pNYeJnnua5qj7x_rmMXJVNsML11V6xDxwKsS7CUda4QnhKVxQ5Met1xpx8sMzcEJkSAGTgpVaFS4ayTGhFfHOoEoYnOkjauEYqb1EYcdUdkJhPCRIkp0AxD8OikorvBcBca5bR0e8BClRqVxcpSkqCMq6yIizAykkuHxpDNmvC5Flx-7Qk6ck_FLHIa1Hw1qE04qOWaLyfqTY4rVoT6iqixCYer1zjEdG-iSjddUJ0IVymJWLEJohLiA1_Kic5i9bT_mEaf4MXwpJeffh18fw9bVBxUV2EH0JjPFu4DIqG5_lgp-z8JJQEq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Temperature+and+Large%E2%80%90Polarization+Ferroelectric+with+Second+Harmonic+Generation+Response+in+a+Novel+Crown+Ether+Clathrate&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Han%2C+Ding+Chong&rft.au=Tan%2C+Yu+Hui&rft.au=Li%2C+Yu+Kong&rft.au=Wen%2C+Jia+Hui&rft.date=2021-09-24&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=27&rft.issue=54&rft.spage=13575&rft.epage=13581&rft_id=info:doi/10.1002%2Fchem.202101707&rft.externalDBID=10.1002%252Fchem.202101707&rft.externalDocID=CHEM202101707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon