Local Diverse Polarization Optimized Comprehensive Energy‐Storage Performance in Lead‐Free Superparaelectrics
Lead‐free dielectric ceramics with ultrahigh energy‐storage performance are the core components used in next‐generation advanced pulse power capacitors. However, the low energy storage density largely hinders their development towards miniaturization, lightweight, and integration. Here, an effective...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 44; pp. e2205787 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lead‐free dielectric ceramics with ultrahigh energy‐storage performance are the core components used in next‐generation advanced pulse power capacitors. However, the low energy storage density largely hinders their development towards miniaturization, lightweight, and integration. Here, an effective strategy of constructing local diverse polarization is designed in superparaelectrics to realize an ultrahigh energy storage density of ≈10.59 J cm−3 as well as a large efficiency of ≈87.6%. The excellent comprehensive energy‐storage performance is mainly attributed to the design of ultrasmall polar nanoregions with local diverse polarization configuration, confirmed by scanning transmission electron microscopy, leading to the reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to ceramics with single polarization configuration. Benefiting from these features, outstanding temperature/frequency/cycling stability and superior charge/discharge performance (power density ≈187.5 MW cm−3, discharge energy density ≈3.52 J cm−3, discharge rate ≈77 ns) are also achieved. This work demonstrates that local diverse polarization is a super strategy to design new dielectric materials with high energy‐storage performance.
Excellent energy‐storage properties with an ultrahigh recoverable energy storage density ≈10.59 J cm−3 and a large efficiency ≈87.6% are realized in lead‐free relaxor ferroelectrics, which is responsible by the local diverse polarization design, leading to the ultrasmall polar nanoregions, reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to single polarization configuration. |
---|---|
AbstractList | Lead‐free dielectric ceramics with ultrahigh energy‐storage performance are the core components used in next‐generation advanced pulse power capacitors. However, the low energy storage density largely hinders their development towards miniaturization, lightweight, and integration. Here, an effective strategy of constructing local diverse polarization is designed in superparaelectrics to realize an ultrahigh energy storage density of ≈10.59 J cm−3 as well as a large efficiency of ≈87.6%. The excellent comprehensive energy‐storage performance is mainly attributed to the design of ultrasmall polar nanoregions with local diverse polarization configuration, confirmed by scanning transmission electron microscopy, leading to the reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to ceramics with single polarization configuration. Benefiting from these features, outstanding temperature/frequency/cycling stability and superior charge/discharge performance (power density ≈187.5 MW cm−3, discharge energy density ≈3.52 J cm−3, discharge rate ≈77 ns) are also achieved. This work demonstrates that local diverse polarization is a super strategy to design new dielectric materials with high energy‐storage performance. Lead-free dielectric ceramics with ultrahigh energy-storage performance are the core components used in next-generation advanced pulse power capacitors. However, the low energy storage density largely hinders their development towards miniaturization, lightweight, and integration. Here, an effective strategy of constructing local diverse polarization is designed in superparaelectrics to realize an ultrahigh energy storage density of ≈10.59 J cm-3 as well as a large efficiency of ≈87.6%. The excellent comprehensive energy-storage performance is mainly attributed to the design of ultrasmall polar nanoregions with local diverse polarization configuration, confirmed by scanning transmission electron microscopy, leading to the reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to ceramics with single polarization configuration. Benefiting from these features, outstanding temperature/frequency/cycling stability and superior charge/discharge performance (power density ≈187.5 MW cm-3 , discharge energy density ≈3.52 J cm-3 , discharge rate ≈77 ns) are also achieved. This work demonstrates that local diverse polarization is a super strategy to design new dielectric materials with high energy-storage performance.Lead-free dielectric ceramics with ultrahigh energy-storage performance are the core components used in next-generation advanced pulse power capacitors. However, the low energy storage density largely hinders their development towards miniaturization, lightweight, and integration. Here, an effective strategy of constructing local diverse polarization is designed in superparaelectrics to realize an ultrahigh energy storage density of ≈10.59 J cm-3 as well as a large efficiency of ≈87.6%. The excellent comprehensive energy-storage performance is mainly attributed to the design of ultrasmall polar nanoregions with local diverse polarization configuration, confirmed by scanning transmission electron microscopy, leading to the reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to ceramics with single polarization configuration. Benefiting from these features, outstanding temperature/frequency/cycling stability and superior charge/discharge performance (power density ≈187.5 MW cm-3 , discharge energy density ≈3.52 J cm-3 , discharge rate ≈77 ns) are also achieved. This work demonstrates that local diverse polarization is a super strategy to design new dielectric materials with high energy-storage performance. Lead‐free dielectric ceramics with ultrahigh energy‐storage performance are the core components used in next‐generation advanced pulse power capacitors. However, the low energy storage density largely hinders their development towards miniaturization, lightweight, and integration. Here, an effective strategy of constructing local diverse polarization is designed in superparaelectrics to realize an ultrahigh energy storage density of ≈10.59 J cm −3 as well as a large efficiency of ≈87.6%. The excellent comprehensive energy‐storage performance is mainly attributed to the design of ultrasmall polar nanoregions with local diverse polarization configuration, confirmed by scanning transmission electron microscopy, leading to the reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to ceramics with single polarization configuration. Benefiting from these features, outstanding temperature/frequency/cycling stability and superior charge/discharge performance (power density ≈187.5 MW cm −3 , discharge energy density ≈3.52 J cm −3 , discharge rate ≈77 ns) are also achieved. This work demonstrates that local diverse polarization is a super strategy to design new dielectric materials with high energy‐storage performance. Lead‐free dielectric ceramics with ultrahigh energy‐storage performance are the core components used in next‐generation advanced pulse power capacitors. However, the low energy storage density largely hinders their development towards miniaturization, lightweight, and integration. Here, an effective strategy of constructing local diverse polarization is designed in superparaelectrics to realize an ultrahigh energy storage density of ≈10.59 J cm−3 as well as a large efficiency of ≈87.6%. The excellent comprehensive energy‐storage performance is mainly attributed to the design of ultrasmall polar nanoregions with local diverse polarization configuration, confirmed by scanning transmission electron microscopy, leading to the reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to ceramics with single polarization configuration. Benefiting from these features, outstanding temperature/frequency/cycling stability and superior charge/discharge performance (power density ≈187.5 MW cm−3, discharge energy density ≈3.52 J cm−3, discharge rate ≈77 ns) are also achieved. This work demonstrates that local diverse polarization is a super strategy to design new dielectric materials with high energy‐storage performance. Excellent energy‐storage properties with an ultrahigh recoverable energy storage density ≈10.59 J cm−3 and a large efficiency ≈87.6% are realized in lead‐free relaxor ferroelectrics, which is responsible by the local diverse polarization design, leading to the ultrasmall polar nanoregions, reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to single polarization configuration. |
Author | Deng, Shiqing Chen, Liang Wu, Jie Chen, Jun Yu, Huifen Liu, Hui Zhang, Zhifei Wang, Na Qi, He |
Author_xml | – sequence: 1 givenname: Liang orcidid: 0000-0002-4951-2205 surname: Chen fullname: Chen, Liang organization: University of Science and Technology Beijing – sequence: 2 givenname: Na surname: Wang fullname: Wang, Na organization: University of Science and Technology Beijing – sequence: 3 givenname: Zhifei surname: Zhang fullname: Zhang, Zhifei organization: University of Science and Technology Beijing – sequence: 4 givenname: Huifen surname: Yu fullname: Yu, Huifen organization: University of Science and Technology Beijing – sequence: 5 givenname: Jie surname: Wu fullname: Wu, Jie organization: University of Science and Technology Beijing – sequence: 6 givenname: Shiqing surname: Deng fullname: Deng, Shiqing organization: University of Science and Technology Beijing – sequence: 7 givenname: Hui surname: Liu fullname: Liu, Hui organization: University of Science and Technology Beijing – sequence: 8 givenname: He orcidid: 0000-0002-3094-3574 surname: Qi fullname: Qi, He email: qiheustb@ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 9 givenname: Jun surname: Chen fullname: Chen, Jun email: junchen@ustb.edu.cn organization: University of Science and Technology Beijing |
BookMark | eNqFkU1r3DAQhkVJoJuk154NvfTirT5t6bhskrawIYG0ZzOWR6mCLTmSN2Vz6k_ob-wvqdMtCQRKT3OY53kZ5j0iByEGJOQto0tGKf8A3QBLTjmnqtb1K7JgirNSUqMOyIIaoUpTSf2aHOV8Syk1Fa0W5G4TLfTFqb_HlLG4ij0k_wCTj6G4HCc_-AfsinUcxoTfMOSZK84Cppvdrx8_r6eY4Ga2MLmYBggWCx-KDUI3b88TYnG9HTGNkAB7tFPyNp-QQwd9xjd_5zH5en72Zf2p3Fx-_LxebUorFK1L2zInW9l1wqGiqLXmthOdpAgaOl7rylZSWte23BkAySvRVko4kOA0dUwck_f73DHFuy3mqRl8ttj3EDBuc8NragxTleIz-u4Fehu3KczXzZRgQnMuzUzJPWVTzDmha6yf_nxqSuD7htHmsYfmsYfmqYdZW77QxuQHSLt_C2YvfPc97v5DN6vTi9Wz-xu3fqGR |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_3c03618 crossref_primary_10_1002_smll_202309796 crossref_primary_10_1007_s12598_024_02852_0 crossref_primary_10_1002_advs_202409814 crossref_primary_10_1038_s41467_025_56316_9 crossref_primary_10_1016_j_cej_2023_145705 crossref_primary_10_1016_j_ceramint_2023_10_005 crossref_primary_10_1002_adma_202313285 crossref_primary_10_1016_j_ceramint_2024_09_350 crossref_primary_10_1016_j_cej_2025_160821 crossref_primary_10_1016_j_cej_2024_156447 crossref_primary_10_1142_S2010135X23430014 crossref_primary_10_1038_s41578_023_00544_2 crossref_primary_10_1007_s10853_025_10778_w crossref_primary_10_1016_j_ceramint_2024_11_289 crossref_primary_10_1016_j_cej_2023_147167 crossref_primary_10_1016_j_jallcom_2024_175067 crossref_primary_10_1002_adma_202302554 crossref_primary_10_1016_j_jeurceramsoc_2023_01_036 crossref_primary_10_1016_j_nanoen_2024_110065 crossref_primary_10_1016_j_ceramint_2024_12_151 crossref_primary_10_1002_adma_202409639 crossref_primary_10_1038_s41467_024_55491_5 crossref_primary_10_1016_j_ceramint_2023_02_070 crossref_primary_10_1021_acsami_4c11898 crossref_primary_10_1016_j_cej_2024_154248 crossref_primary_10_1126_science_adn8721 crossref_primary_10_1016_j_est_2024_114992 crossref_primary_10_1002_adfm_202409446 crossref_primary_10_1002_smll_202302346 crossref_primary_10_1016_j_jmat_2025_101055 crossref_primary_10_1002_adma_202409059 crossref_primary_10_1002_smll_202206840 crossref_primary_10_1038_s41467_024_51766_z crossref_primary_10_1016_j_cej_2024_150441 crossref_primary_10_1021_jacs_2c12200 crossref_primary_10_1002_inf2_12488 crossref_primary_10_1016_j_cej_2024_157986 crossref_primary_10_1002_aenm_202403926 crossref_primary_10_1016_j_ceramint_2023_10_167 crossref_primary_10_1021_acsami_3c08791 crossref_primary_10_1038_s41467_025_56443_3 crossref_primary_10_1002_adma_202406625 crossref_primary_10_1038_s41467_024_51058_6 crossref_primary_10_1016_j_ceramint_2023_05_089 crossref_primary_10_1016_j_actamat_2025_120943 crossref_primary_10_1002_smll_202309992 crossref_primary_10_3390_molecules29133187 crossref_primary_10_1038_s41467_023_41494_1 crossref_primary_10_1039_D3EE01545A crossref_primary_10_1002_smll_202306486 crossref_primary_10_1039_D4TA00575A crossref_primary_10_1039_D3MH01965A crossref_primary_10_1007_s12598_024_02934_z crossref_primary_10_1007_s40820_023_01036_2 crossref_primary_10_1021_acssuschemeng_4c07306 crossref_primary_10_1021_acsami_4c12564 crossref_primary_10_1038_s41467_025_56194_1 crossref_primary_10_1016_j_cej_2025_160500 crossref_primary_10_1038_s41467_024_53287_1 crossref_primary_10_1039_D3TA03946C crossref_primary_10_1016_j_cej_2023_146673 crossref_primary_10_1016_j_jmat_2023_05_002 crossref_primary_10_1039_D3TC02971A crossref_primary_10_1016_j_actamat_2025_120931 crossref_primary_10_1063_5_0190404 crossref_primary_10_1016_j_nanoen_2024_109394 crossref_primary_10_1002_advs_202300227 crossref_primary_10_1016_j_actamat_2024_120278 crossref_primary_10_1038_s41467_025_57228_4 crossref_primary_10_1016_j_cej_2023_146426 crossref_primary_10_1016_j_jeurceramsoc_2024_02_040 crossref_primary_10_1002_smll_202303768 crossref_primary_10_1021_acsami_3c16303 crossref_primary_10_1016_j_ceramint_2024_12_353 crossref_primary_10_1016_j_ceramint_2024_07_316 crossref_primary_10_26599_JAC_2024_9220904 crossref_primary_10_1016_j_cej_2024_149154 crossref_primary_10_1016_j_cej_2023_143395 crossref_primary_10_1016_j_ceramint_2024_05_360 crossref_primary_10_1016_j_jmat_2023_09_007 crossref_primary_10_1063_5_0226576 crossref_primary_10_1016_j_ensm_2025_104205 crossref_primary_10_1002_adfm_202301027 crossref_primary_10_1002_smll_202400686 crossref_primary_10_1016_j_cej_2024_156460 crossref_primary_10_1021_acs_jpcc_4c05351 crossref_primary_10_1002_advs_202409113 crossref_primary_10_1016_j_ensm_2023_103155 crossref_primary_10_1016_j_nanoen_2025_110651 crossref_primary_10_1007_s12274_023_5571_8 crossref_primary_10_1002_adfm_202500988 crossref_primary_10_1038_s41467_025_56195_0 crossref_primary_10_1016_j_jallcom_2025_178836 crossref_primary_10_1039_D4TA07104B crossref_primary_10_1002_adfm_202411954 crossref_primary_10_1002_advs_202307011 crossref_primary_10_1016_j_jallcom_2023_172373 crossref_primary_10_1038_s41467_024_49107_1 crossref_primary_10_1016_j_cej_2023_147974 crossref_primary_10_1039_D4TA05920D crossref_primary_10_1038_s41467_025_56767_0 crossref_primary_10_1016_j_compositesb_2023_110630 crossref_primary_10_1016_j_cej_2024_154150 crossref_primary_10_1016_j_jeurceramsoc_2024_04_023 crossref_primary_10_1039_D4TA03145H crossref_primary_10_1063_5_0235963 crossref_primary_10_1016_j_cej_2024_155400 crossref_primary_10_1039_D4TC03942D crossref_primary_10_1016_j_ceramint_2024_02_036 crossref_primary_10_1016_j_ceramint_2024_11_179 crossref_primary_10_1016_j_jeurceramsoc_2023_10_070 |
Cites_doi | 10.1021/acsami.0c02832 10.1021/acsami.0c03677 10.1002/adfm.201903877 10.1002/aenm.202101378 10.1016/j.cej.2021.130800 10.1080/00150198708016945 10.1002/aenm.201903338 10.1039/C8TA12232F 10.1002/aenm.201803048 10.1016/j.jeurceramsoc.2019.08.020 10.1016/j.nanoen.2019.104264 10.1016/j.jeurceramsoc.2019.03.030 10.1038/s41563-020-0704-x 10.1103/PhysRevB.82.224105 10.1016/j.ensm.2020.05.026 10.1039/C9TA11314B 10.1016/j.actamat.2021.116710 10.1021/acs.chemrev.0c01264 10.1021/acsami.1c25234 10.1016/j.cej.2020.127375 10.1126/science.abi7687 10.1126/science.aaw8109 10.1039/D2TA02534E 10.1016/j.pmatsci.2018.12.005 10.1021/jacs.9b07188 10.1038/s41467-022-30821-7 10.1002/aenm.202001778 10.1016/j.matchemphys.2019.121794 10.1002/adfm.202110478 10.1016/j.ensm.2021.11.043 10.1038/s41467-020-18665-5 10.1002/adfm.202111776 10.1002/adma.202201333 10.1002/smll.202106515 10.1016/j.ensm.2021.09.018 10.1002/adma.201701824 10.1143/JJAP.30.2236 10.1016/j.cej.2021.130475 10.1063/1.4995009 10.1126/science.1259869 10.1016/j.cej.2021.131465 10.1016/j.cej.2022.135789 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202205787 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202205787 ADMA202205787 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 06500186 – fundername: National Natural Science Foundation of China funderid: 21825102; 22161142022; 52172181; 22105017 – fundername: China Postdoctoral Science Foundation funderid: 2020M680345; 2021T140048 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3507-cb1f4b4dd3fe50e8882cd3d40ea8ad2786c644cfbb2f9aa4263b653fa4af80f13 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 06:42:25 EDT 2025 Sun Jul 13 04:59:00 EDT 2025 Tue Jul 01 02:33:21 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Wed Jan 22 16:31:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3507-cb1f4b4dd3fe50e8882cd3d40ea8ad2786c644cfbb2f9aa4263b653fa4af80f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3094-3574 0000-0002-4951-2205 |
PQID | 2731382249 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2709915652 proquest_journals_2731382249 crossref_citationtrail_10_1002_adma_202205787 crossref_primary_10_1002_adma_202205787 wiley_primary_10_1002_adma_202205787_ADMA202205787 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2021 2010 1991 2017 2019; 208 82 30 111 237 1987; 76 2021; 11 2020 2020; 12 12 2021; 420 2020 2022 2021 2022 2022 2022; 30 10 426 18 440 14 2020 2022; 10 32 2022; 34 2019 2021 2019 2022 2017; 39 121 102 45 29 2022; 13 2020; 67 2020; 11 2020; 10 2015; 348 2022 2021 2021; 32 409 425 2019 2019; 39 7 2019; 141 2019; 365 2021 2020 2019; 374 19 9 2019 2021; 29 43 e_1_2_8_21_4 e_1_2_8_21_5 e_1_2_8_21_6 e_1_2_8_1_3 e_1_2_8_2_2 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_5_1 e_1_2_8_2_3 e_1_2_8_3_2 e_1_2_8_4_1 e_1_2_8_5_3 e_1_2_8_6_2 e_1_2_8_7_1 e_1_2_8_2_5 e_1_2_8_5_2 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_21_3 e_1_2_8_1_1 e_1_2_8_14_4 e_1_2_8_17_1 e_1_2_8_14_5 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_15_1 e_1_2_8_14_3 e_1_2_8_15_2 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_12_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 39 121 102 45 29 start-page: 5236 6124 72 541 year: 2019 2021 2019 2022 2017 publication-title: J. Eur. Ceram. Soc. Chem. Rev. Prog. Mater. Sci. Energy Storage Mater. Adv. Mater. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 29 43 start-page: 383 year: 2019 2021 publication-title: Adv. Funct. Mater. Energy Storage Mater. – volume: 348 start-page: 547 year: 2015 publication-title: Science – volume: 32 409 425 year: 2022 2021 2021 publication-title: Adv. Funct. Mater. Chem. Eng. J. Chem. Eng. J. – volume: 76 start-page: 241 year: 1987 publication-title: Ferroelectrics – volume: 67 year: 2020 publication-title: Nano Energy – volume: 10 32 year: 2020 2022 publication-title: Adv. Energy Mater. Adv. Funct. Mater. – volume: 11 start-page: 4824 year: 2020 publication-title: Nat. Commun. – volume: 13 start-page: 3089 year: 2022 publication-title: Nat. Commun. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 12 12 year: 2020 2020 publication-title: ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces – volume: 374 19 9 start-page: 100 999 year: 2021 2020 2019 publication-title: Science Nat. Mater. Adv. Energy Mater. – volume: 208 82 30 111 237 start-page: 2236 year: 2021 2010 1991 2017 2019 publication-title: Acta Mater. Phys. Rev. B Jpn. J. Appl. Phys. Appl. Phys. Lett. Mater. Chem. Phys. – volume: 39 7 start-page: 2899 3971 year: 2019 2019 publication-title: J. Eur. Ceram. Soc. J. Mater. Chem. A – volume: 30 10 426 18 440 14 start-page: 392 7052 year: 2020 2022 2021 2022 2022 2022 publication-title: Energy Storage Mater. J. Mater. Chem. A Chem. Eng. J. Small Chem. Eng. J. ACS Appl. Mater. Interfaces – volume: 420 year: 2021 publication-title: Chem. Eng. J. – volume: 365 start-page: 578 year: 2019 publication-title: Science – volume: 34 year: 2022 publication-title: Adv. Mater. – ident: e_1_2_8_11_2 doi: 10.1021/acsami.0c02832 – ident: e_1_2_8_11_1 doi: 10.1021/acsami.0c03677 – ident: e_1_2_8_3_1 doi: 10.1002/adfm.201903877 – ident: e_1_2_8_20_1 doi: 10.1002/aenm.202101378 – ident: e_1_2_8_21_3 doi: 10.1016/j.cej.2021.130800 – ident: e_1_2_8_16_1 doi: 10.1080/00150198708016945 – ident: e_1_2_8_6_1 doi: 10.1002/aenm.201903338 – ident: e_1_2_8_15_2 doi: 10.1039/C8TA12232F – ident: e_1_2_8_1_3 doi: 10.1002/aenm.201803048 – ident: e_1_2_8_2_1 doi: 10.1016/j.jeurceramsoc.2019.08.020 – ident: e_1_2_8_10_1 doi: 10.1016/j.nanoen.2019.104264 – ident: e_1_2_8_15_1 doi: 10.1016/j.jeurceramsoc.2019.03.030 – ident: e_1_2_8_1_2 doi: 10.1038/s41563-020-0704-x – ident: e_1_2_8_14_2 doi: 10.1103/PhysRevB.82.224105 – ident: e_1_2_8_21_1 doi: 10.1016/j.ensm.2020.05.026 – ident: e_1_2_8_9_1 doi: 10.1039/C9TA11314B – ident: e_1_2_8_14_1 doi: 10.1016/j.actamat.2021.116710 – ident: e_1_2_8_2_2 doi: 10.1021/acs.chemrev.0c01264 – ident: e_1_2_8_21_6 doi: 10.1021/acsami.1c25234 – ident: e_1_2_8_5_2 doi: 10.1016/j.cej.2020.127375 – ident: e_1_2_8_1_1 doi: 10.1126/science.abi7687 – ident: e_1_2_8_12_1 doi: 10.1126/science.aaw8109 – ident: e_1_2_8_21_2 doi: 10.1039/D2TA02534E – ident: e_1_2_8_2_3 doi: 10.1016/j.pmatsci.2018.12.005 – ident: e_1_2_8_19_1 doi: 10.1021/jacs.9b07188 – ident: e_1_2_8_7_1 doi: 10.1038/s41467-022-30821-7 – ident: e_1_2_8_17_1 doi: 10.1002/aenm.202001778 – ident: e_1_2_8_14_5 doi: 10.1016/j.matchemphys.2019.121794 – ident: e_1_2_8_5_1 doi: 10.1002/adfm.202110478 – ident: e_1_2_8_2_4 doi: 10.1016/j.ensm.2021.11.043 – ident: e_1_2_8_4_1 doi: 10.1038/s41467-020-18665-5 – ident: e_1_2_8_6_2 doi: 10.1002/adfm.202111776 – ident: e_1_2_8_8_1 doi: 10.1002/adma.202201333 – ident: e_1_2_8_21_4 doi: 10.1002/smll.202106515 – ident: e_1_2_8_3_2 doi: 10.1016/j.ensm.2021.09.018 – ident: e_1_2_8_2_5 doi: 10.1002/adma.201701824 – ident: e_1_2_8_14_3 doi: 10.1143/JJAP.30.2236 – ident: e_1_2_8_13_1 doi: 10.1016/j.cej.2021.130475 – ident: e_1_2_8_14_4 doi: 10.1063/1.4995009 – ident: e_1_2_8_18_1 doi: 10.1126/science.1259869 – ident: e_1_2_8_5_3 doi: 10.1016/j.cej.2021.131465 – ident: e_1_2_8_21_5 doi: 10.1016/j.cej.2022.135789 |
SSID | ssj0009606 |
Score | 2.6681857 |
Snippet | Lead‐free dielectric ceramics with ultrahigh energy‐storage performance are the core components used in next‐generation advanced pulse power capacitors.... Lead-free dielectric ceramics with ultrahigh energy-storage performance are the core components used in next-generation advanced pulse power capacitors.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2205787 |
SubjectTerms | Ceramics Charge density Configurations Dielectrics Discharge Electric fields Energy storage Flux density Frequency stability Heat loss lead‐free dielectric ceramics local diverse polarization Materials science Miniaturization Polarization relaxor ferroelectrics Scanning transmission electron microscopy superparaelectrics |
Title | Local Diverse Polarization Optimized Comprehensive Energy‐Storage Performance in Lead‐Free Superparaelectrics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202205787 https://www.proquest.com/docview/2731382249 https://www.proquest.com/docview/2709915652 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5VnNoDjxZEeFRbqVJPDs5617GPUZMIVQ1FQKTcrH3MiggwkMeFEz-hv7G_pDO24wQkhAQ3WzurtXd3Zr-xZ75h7HtLaCe88UFolQqkxKvE2BSBHCQhxCLVLcp3HpzEx0P5a6RGK1n8JT9E_cGNNKOw16Tg2kyPlqSh2hW8QZQoipsOjTAFbBEqOlvyRxE8L8j2IhWksUwWrI2hOHra_emptISaq4C1OHH6G0wvnrUMNLlqzmemaR-e0Ti-52U22XoFR3mn3D9b7APkn9mnFZLCL-z-Nx13vFsEcAA_JV-4St7kf9Dg3IwfwHGyKxO4LMPhea_IKPz3-PccXXq0WPx0mZ_Axzmnwp7Y2p8A8PP5HUyIgbysyDO202027Pcufh4HVaGGwEaIJwNrWl4a6VzkQYWATrWwLnIyBJ3gVmgnsUXYZb0xwqdaE0e8iVXktdQ-CX0r2mFr-W0Ou4wn2rZdCqA8yhmTGoQoOIiMpAt9W7UbLFgsVGYrFnMqpnGdlfzLIqOpzOqpbLAftfxdyd_xouTBYt2zSo-nGYI7ImlEH7XBvtXNqIH0W0XncDsnGUTZ6AYr0WCiWORXRso63UGnvtt7S6d99pGuy6TIA7Y2m8zhENHRzHwtNOA_jTMLlw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOUAPhVJQtxRwJSROabOOnU2OK9rVQnfbirYSt8i_YgXNttvdS088As_IkzDj_GyLVCHBLYnHcmJ77G-cmW8A3nW5stxrH8VGykgIvMq0yRHIuSx2Kc9Vl-Kdx0fp8Fx8-iIbb0KKhan4IdoDN9KMsF6TgtOB9N6SNVTZQBxEkaI46x7CI0rrHayqz0sGKQLogW4vkVGeiqzhbYz53t36d_elJdi8DVnDnjN4Crp528rV5NvuYq53zc0fRI7_9TnPYK1GpKxfTaF1eODK57B6i6dwA65GtOOx_eDD4dgJmcN1_CY7xjXnYnLjLKOlZea-Vh7x7CAEFf768fMUrXpctNjJMkSBTUpGuT2xdDBzjp0uLt2MSMirpDwTc_0CzgcHZx-GUZ2rITIJQsrI6K4XWlibeCdjh3Y1NzaxInYqw9nQy1KDyMt4rbnPlSKaeJ3KxCuhfBb7bvISVspp6TaBZcr0bO6c9Cinda4RpWAjIhE29j3Z60DUjFRhaiJzyqfxvagomHlBXVm0XdmB9638ZUXhca_kdjPwRa3K1wXiO-JpRDO1AzttMSoh_VlRpZsuSAaBNlrCkneAh1H-S0tFf3_cb--2_qXSW3g8PBuPitHHo8NX8ISeVzGS27Ayny3cawRLc_0mqMNvNJMPsg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB7RIqFy4B8RWmCRkHpy66x3HfsYkUZtaUtEqdSbtT-zIgLckCaXnngEnrFPwoztOGklhAQ32zsr27szs9_YO98AvOtK42WwIYqd1pFSdJRZlxOQwyzGVOamy_nOxyfp_pk6PNfnK1n8NT9E-8GNLaPy12zgEx92l6Shxle8QZwoSkq3BndVGmes14NPSwIpxucV216iozxV2YK2MZa7N_vfXJaWWHMVsVZLzvAhmMXD1jtNvu7MZ3bHXd3icfyft3kEDxo8Kvq1Aj2GO1g-gfsrLIVP4ccRr3diUO3gQDHiYLjJ3hQfyeN8H1-hF-xYpvil3g8v9qqUwuufv04ppieXJUbLBAUxLgVX9qTW4RRRnM4nOGUK8rokz9hdPoOz4d7n9_tRU6khcgkBysjZblBWeZ8E1DFSVC2dT7yK0WSkC70sdYS7XLBWhtwYJom3qU6CUSZkcegmz2G9vCjxBYjMuJ7PEXUgOWtzSxiFbqIS5ePQ070ORIuJKlxDY87VNL4VNQGzLHgoi3YoO7Ddyk9qAo8_Sm4t5r1oDPmyIHTHLI0UpHbgbdtMJsj_VUyJF3OWIZhNcbCWHZDVJP_lTkV_cNxvz17-S6c3cG80GBZHBycfNmGDL9cJkluwPpvO8RUhpZl9XRnDbxtiDmo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Diverse+Polarization+Optimized+Comprehensive+Energy%E2%80%90Storage+Performance+in+Lead%E2%80%90Free+Superparaelectrics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Liang&rft.au=Wang%2C+Na&rft.au=Zhang%2C+Zhifei&rft.au=Yu%2C+Huifen&rft.date=2022-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=44&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202205787&rft.externalDBID=10.1002%252Fadma.202205787&rft.externalDocID=ADMA202205787 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |