Local Diverse Polarization Optimized Comprehensive Energy‐Storage Performance in Lead‐Free Superparaelectrics

Lead‐free dielectric ceramics with ultrahigh energy‐storage performance are the core components used in next‐generation advanced pulse power capacitors. However, the low energy storage density largely hinders their development towards miniaturization, lightweight, and integration. Here, an effective...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 44; pp. e2205787 - n/a
Main Authors Chen, Liang, Wang, Na, Zhang, Zhifei, Yu, Huifen, Wu, Jie, Deng, Shiqing, Liu, Hui, Qi, He, Chen, Jun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lead‐free dielectric ceramics with ultrahigh energy‐storage performance are the core components used in next‐generation advanced pulse power capacitors. However, the low energy storage density largely hinders their development towards miniaturization, lightweight, and integration. Here, an effective strategy of constructing local diverse polarization is designed in superparaelectrics to realize an ultrahigh energy storage density of ≈10.59 J cm−3 as well as a large efficiency of ≈87.6%. The excellent comprehensive energy‐storage performance is mainly attributed to the design of ultrasmall polar nanoregions with local diverse polarization configuration, confirmed by scanning transmission electron microscopy, leading to the reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to ceramics with single polarization configuration. Benefiting from these features, outstanding temperature/frequency/cycling stability and superior charge/discharge performance (power density ≈187.5 MW cm−3, discharge energy density ≈3.52 J cm−3, discharge rate ≈77 ns) are also achieved. This work demonstrates that local diverse polarization is a super strategy to design new dielectric materials with high energy‐storage performance. Excellent energy‐storage properties with an ultrahigh recoverable energy storage density ≈10.59 J cm−3 and a large efficiency ≈87.6% are realized in lead‐free relaxor ferroelectrics, which is responsible by the local diverse polarization design, leading to the ultrasmall polar nanoregions, reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to single polarization configuration.
AbstractList Lead‐free dielectric ceramics with ultrahigh energy‐storage performance are the core components used in next‐generation advanced pulse power capacitors. However, the low energy storage density largely hinders their development towards miniaturization, lightweight, and integration. Here, an effective strategy of constructing local diverse polarization is designed in superparaelectrics to realize an ultrahigh energy storage density of ≈10.59 J cm−3 as well as a large efficiency of ≈87.6%. The excellent comprehensive energy‐storage performance is mainly attributed to the design of ultrasmall polar nanoregions with local diverse polarization configuration, confirmed by scanning transmission electron microscopy, leading to the reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to ceramics with single polarization configuration. Benefiting from these features, outstanding temperature/frequency/cycling stability and superior charge/discharge performance (power density ≈187.5 MW cm−3, discharge energy density ≈3.52 J cm−3, discharge rate ≈77 ns) are also achieved. This work demonstrates that local diverse polarization is a super strategy to design new dielectric materials with high energy‐storage performance.
Lead-free dielectric ceramics with ultrahigh energy-storage performance are the core components used in next-generation advanced pulse power capacitors. However, the low energy storage density largely hinders their development towards miniaturization, lightweight, and integration. Here, an effective strategy of constructing local diverse polarization is designed in superparaelectrics to realize an ultrahigh energy storage density of ≈10.59 J cm-3 as well as a large efficiency of ≈87.6%. The excellent comprehensive energy-storage performance is mainly attributed to the design of ultrasmall polar nanoregions with local diverse polarization configuration, confirmed by scanning transmission electron microscopy, leading to the reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to ceramics with single polarization configuration. Benefiting from these features, outstanding temperature/frequency/cycling stability and superior charge/discharge performance (power density ≈187.5 MW cm-3 , discharge energy density ≈3.52 J cm-3 , discharge rate ≈77 ns) are also achieved. This work demonstrates that local diverse polarization is a super strategy to design new dielectric materials with high energy-storage performance.Lead-free dielectric ceramics with ultrahigh energy-storage performance are the core components used in next-generation advanced pulse power capacitors. However, the low energy storage density largely hinders their development towards miniaturization, lightweight, and integration. Here, an effective strategy of constructing local diverse polarization is designed in superparaelectrics to realize an ultrahigh energy storage density of ≈10.59 J cm-3 as well as a large efficiency of ≈87.6%. The excellent comprehensive energy-storage performance is mainly attributed to the design of ultrasmall polar nanoregions with local diverse polarization configuration, confirmed by scanning transmission electron microscopy, leading to the reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to ceramics with single polarization configuration. Benefiting from these features, outstanding temperature/frequency/cycling stability and superior charge/discharge performance (power density ≈187.5 MW cm-3 , discharge energy density ≈3.52 J cm-3 , discharge rate ≈77 ns) are also achieved. This work demonstrates that local diverse polarization is a super strategy to design new dielectric materials with high energy-storage performance.
Lead‐free dielectric ceramics with ultrahigh energy‐storage performance are the core components used in next‐generation advanced pulse power capacitors. However, the low energy storage density largely hinders their development towards miniaturization, lightweight, and integration. Here, an effective strategy of constructing local diverse polarization is designed in superparaelectrics to realize an ultrahigh energy storage density of ≈10.59 J cm −3 as well as a large efficiency of ≈87.6%. The excellent comprehensive energy‐storage performance is mainly attributed to the design of ultrasmall polar nanoregions with local diverse polarization configuration, confirmed by scanning transmission electron microscopy, leading to the reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to ceramics with single polarization configuration. Benefiting from these features, outstanding temperature/frequency/cycling stability and superior charge/discharge performance (power density ≈187.5 MW cm −3 , discharge energy density ≈3.52 J cm −3 , discharge rate ≈77 ns) are also achieved. This work demonstrates that local diverse polarization is a super strategy to design new dielectric materials with high energy‐storage performance.
Lead‐free dielectric ceramics with ultrahigh energy‐storage performance are the core components used in next‐generation advanced pulse power capacitors. However, the low energy storage density largely hinders their development towards miniaturization, lightweight, and integration. Here, an effective strategy of constructing local diverse polarization is designed in superparaelectrics to realize an ultrahigh energy storage density of ≈10.59 J cm−3 as well as a large efficiency of ≈87.6%. The excellent comprehensive energy‐storage performance is mainly attributed to the design of ultrasmall polar nanoregions with local diverse polarization configuration, confirmed by scanning transmission electron microscopy, leading to the reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to ceramics with single polarization configuration. Benefiting from these features, outstanding temperature/frequency/cycling stability and superior charge/discharge performance (power density ≈187.5 MW cm−3, discharge energy density ≈3.52 J cm−3, discharge rate ≈77 ns) are also achieved. This work demonstrates that local diverse polarization is a super strategy to design new dielectric materials with high energy‐storage performance. Excellent energy‐storage properties with an ultrahigh recoverable energy storage density ≈10.59 J cm−3 and a large efficiency ≈87.6% are realized in lead‐free relaxor ferroelectrics, which is responsible by the local diverse polarization design, leading to the ultrasmall polar nanoregions, reduced heat loss, substantially enhanced polarization, and breakdown electric field compared to single polarization configuration.
Author Deng, Shiqing
Chen, Liang
Wu, Jie
Chen, Jun
Yu, Huifen
Liu, Hui
Zhang, Zhifei
Wang, Na
Qi, He
Author_xml – sequence: 1
  givenname: Liang
  orcidid: 0000-0002-4951-2205
  surname: Chen
  fullname: Chen, Liang
  organization: University of Science and Technology Beijing
– sequence: 2
  givenname: Na
  surname: Wang
  fullname: Wang, Na
  organization: University of Science and Technology Beijing
– sequence: 3
  givenname: Zhifei
  surname: Zhang
  fullname: Zhang, Zhifei
  organization: University of Science and Technology Beijing
– sequence: 4
  givenname: Huifen
  surname: Yu
  fullname: Yu, Huifen
  organization: University of Science and Technology Beijing
– sequence: 5
  givenname: Jie
  surname: Wu
  fullname: Wu, Jie
  organization: University of Science and Technology Beijing
– sequence: 6
  givenname: Shiqing
  surname: Deng
  fullname: Deng, Shiqing
  organization: University of Science and Technology Beijing
– sequence: 7
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  organization: University of Science and Technology Beijing
– sequence: 8
  givenname: He
  orcidid: 0000-0002-3094-3574
  surname: Qi
  fullname: Qi, He
  email: qiheustb@ustb.edu.cn
  organization: University of Science and Technology Beijing
– sequence: 9
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  email: junchen@ustb.edu.cn
  organization: University of Science and Technology Beijing
BookMark eNqFkU1r3DAQhkVJoJuk154NvfTirT5t6bhskrawIYG0ZzOWR6mCLTmSN2Vz6k_ob-wvqdMtCQRKT3OY53kZ5j0iByEGJOQto0tGKf8A3QBLTjmnqtb1K7JgirNSUqMOyIIaoUpTSf2aHOV8Syk1Fa0W5G4TLfTFqb_HlLG4ij0k_wCTj6G4HCc_-AfsinUcxoTfMOSZK84Cppvdrx8_r6eY4Ga2MLmYBggWCx-KDUI3b88TYnG9HTGNkAB7tFPyNp-QQwd9xjd_5zH5en72Zf2p3Fx-_LxebUorFK1L2zInW9l1wqGiqLXmthOdpAgaOl7rylZSWte23BkAySvRVko4kOA0dUwck_f73DHFuy3mqRl8ttj3EDBuc8NragxTleIz-u4Fehu3KczXzZRgQnMuzUzJPWVTzDmha6yf_nxqSuD7htHmsYfmsYfmqYdZW77QxuQHSLt_C2YvfPc97v5DN6vTi9Wz-xu3fqGR
CitedBy_id crossref_primary_10_1021_acssuschemeng_3c03618
crossref_primary_10_1002_smll_202309796
crossref_primary_10_1007_s12598_024_02852_0
crossref_primary_10_1002_advs_202409814
crossref_primary_10_1038_s41467_025_56316_9
crossref_primary_10_1016_j_cej_2023_145705
crossref_primary_10_1016_j_ceramint_2023_10_005
crossref_primary_10_1002_adma_202313285
crossref_primary_10_1016_j_ceramint_2024_09_350
crossref_primary_10_1016_j_cej_2025_160821
crossref_primary_10_1016_j_cej_2024_156447
crossref_primary_10_1142_S2010135X23430014
crossref_primary_10_1038_s41578_023_00544_2
crossref_primary_10_1007_s10853_025_10778_w
crossref_primary_10_1016_j_ceramint_2024_11_289
crossref_primary_10_1016_j_cej_2023_147167
crossref_primary_10_1016_j_jallcom_2024_175067
crossref_primary_10_1002_adma_202302554
crossref_primary_10_1016_j_jeurceramsoc_2023_01_036
crossref_primary_10_1016_j_nanoen_2024_110065
crossref_primary_10_1016_j_ceramint_2024_12_151
crossref_primary_10_1002_adma_202409639
crossref_primary_10_1038_s41467_024_55491_5
crossref_primary_10_1016_j_ceramint_2023_02_070
crossref_primary_10_1021_acsami_4c11898
crossref_primary_10_1016_j_cej_2024_154248
crossref_primary_10_1126_science_adn8721
crossref_primary_10_1016_j_est_2024_114992
crossref_primary_10_1002_adfm_202409446
crossref_primary_10_1002_smll_202302346
crossref_primary_10_1016_j_jmat_2025_101055
crossref_primary_10_1002_adma_202409059
crossref_primary_10_1002_smll_202206840
crossref_primary_10_1038_s41467_024_51766_z
crossref_primary_10_1016_j_cej_2024_150441
crossref_primary_10_1021_jacs_2c12200
crossref_primary_10_1002_inf2_12488
crossref_primary_10_1016_j_cej_2024_157986
crossref_primary_10_1002_aenm_202403926
crossref_primary_10_1016_j_ceramint_2023_10_167
crossref_primary_10_1021_acsami_3c08791
crossref_primary_10_1038_s41467_025_56443_3
crossref_primary_10_1002_adma_202406625
crossref_primary_10_1038_s41467_024_51058_6
crossref_primary_10_1016_j_ceramint_2023_05_089
crossref_primary_10_1016_j_actamat_2025_120943
crossref_primary_10_1002_smll_202309992
crossref_primary_10_3390_molecules29133187
crossref_primary_10_1038_s41467_023_41494_1
crossref_primary_10_1039_D3EE01545A
crossref_primary_10_1002_smll_202306486
crossref_primary_10_1039_D4TA00575A
crossref_primary_10_1039_D3MH01965A
crossref_primary_10_1007_s12598_024_02934_z
crossref_primary_10_1007_s40820_023_01036_2
crossref_primary_10_1021_acssuschemeng_4c07306
crossref_primary_10_1021_acsami_4c12564
crossref_primary_10_1038_s41467_025_56194_1
crossref_primary_10_1016_j_cej_2025_160500
crossref_primary_10_1038_s41467_024_53287_1
crossref_primary_10_1039_D3TA03946C
crossref_primary_10_1016_j_cej_2023_146673
crossref_primary_10_1016_j_jmat_2023_05_002
crossref_primary_10_1039_D3TC02971A
crossref_primary_10_1016_j_actamat_2025_120931
crossref_primary_10_1063_5_0190404
crossref_primary_10_1016_j_nanoen_2024_109394
crossref_primary_10_1002_advs_202300227
crossref_primary_10_1016_j_actamat_2024_120278
crossref_primary_10_1038_s41467_025_57228_4
crossref_primary_10_1016_j_cej_2023_146426
crossref_primary_10_1016_j_jeurceramsoc_2024_02_040
crossref_primary_10_1002_smll_202303768
crossref_primary_10_1021_acsami_3c16303
crossref_primary_10_1016_j_ceramint_2024_12_353
crossref_primary_10_1016_j_ceramint_2024_07_316
crossref_primary_10_26599_JAC_2024_9220904
crossref_primary_10_1016_j_cej_2024_149154
crossref_primary_10_1016_j_cej_2023_143395
crossref_primary_10_1016_j_ceramint_2024_05_360
crossref_primary_10_1016_j_jmat_2023_09_007
crossref_primary_10_1063_5_0226576
crossref_primary_10_1016_j_ensm_2025_104205
crossref_primary_10_1002_adfm_202301027
crossref_primary_10_1002_smll_202400686
crossref_primary_10_1016_j_cej_2024_156460
crossref_primary_10_1021_acs_jpcc_4c05351
crossref_primary_10_1002_advs_202409113
crossref_primary_10_1016_j_ensm_2023_103155
crossref_primary_10_1016_j_nanoen_2025_110651
crossref_primary_10_1007_s12274_023_5571_8
crossref_primary_10_1002_adfm_202500988
crossref_primary_10_1038_s41467_025_56195_0
crossref_primary_10_1016_j_jallcom_2025_178836
crossref_primary_10_1039_D4TA07104B
crossref_primary_10_1002_adfm_202411954
crossref_primary_10_1002_advs_202307011
crossref_primary_10_1016_j_jallcom_2023_172373
crossref_primary_10_1038_s41467_024_49107_1
crossref_primary_10_1016_j_cej_2023_147974
crossref_primary_10_1039_D4TA05920D
crossref_primary_10_1038_s41467_025_56767_0
crossref_primary_10_1016_j_compositesb_2023_110630
crossref_primary_10_1016_j_cej_2024_154150
crossref_primary_10_1016_j_jeurceramsoc_2024_04_023
crossref_primary_10_1039_D4TA03145H
crossref_primary_10_1063_5_0235963
crossref_primary_10_1016_j_cej_2024_155400
crossref_primary_10_1039_D4TC03942D
crossref_primary_10_1016_j_ceramint_2024_02_036
crossref_primary_10_1016_j_ceramint_2024_11_179
crossref_primary_10_1016_j_jeurceramsoc_2023_10_070
Cites_doi 10.1021/acsami.0c02832
10.1021/acsami.0c03677
10.1002/adfm.201903877
10.1002/aenm.202101378
10.1016/j.cej.2021.130800
10.1080/00150198708016945
10.1002/aenm.201903338
10.1039/C8TA12232F
10.1002/aenm.201803048
10.1016/j.jeurceramsoc.2019.08.020
10.1016/j.nanoen.2019.104264
10.1016/j.jeurceramsoc.2019.03.030
10.1038/s41563-020-0704-x
10.1103/PhysRevB.82.224105
10.1016/j.ensm.2020.05.026
10.1039/C9TA11314B
10.1016/j.actamat.2021.116710
10.1021/acs.chemrev.0c01264
10.1021/acsami.1c25234
10.1016/j.cej.2020.127375
10.1126/science.abi7687
10.1126/science.aaw8109
10.1039/D2TA02534E
10.1016/j.pmatsci.2018.12.005
10.1021/jacs.9b07188
10.1038/s41467-022-30821-7
10.1002/aenm.202001778
10.1016/j.matchemphys.2019.121794
10.1002/adfm.202110478
10.1016/j.ensm.2021.11.043
10.1038/s41467-020-18665-5
10.1002/adfm.202111776
10.1002/adma.202201333
10.1002/smll.202106515
10.1016/j.ensm.2021.09.018
10.1002/adma.201701824
10.1143/JJAP.30.2236
10.1016/j.cej.2021.130475
10.1063/1.4995009
10.1126/science.1259869
10.1016/j.cej.2021.131465
10.1016/j.cej.2022.135789
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202205787
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202205787
ADMA202205787
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 06500186
– fundername: National Natural Science Foundation of China
  funderid: 21825102; 22161142022; 52172181; 22105017
– fundername: China Postdoctoral Science Foundation
  funderid: 2020M680345; 2021T140048
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3507-cb1f4b4dd3fe50e8882cd3d40ea8ad2786c644cfbb2f9aa4263b653fa4af80f13
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 06:42:25 EDT 2025
Sun Jul 13 04:59:00 EDT 2025
Tue Jul 01 02:33:21 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
Wed Jan 22 16:31:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3507-cb1f4b4dd3fe50e8882cd3d40ea8ad2786c644cfbb2f9aa4263b653fa4af80f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3094-3574
0000-0002-4951-2205
PQID 2731382249
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2709915652
proquest_journals_2731382249
crossref_citationtrail_10_1002_adma_202205787
crossref_primary_10_1002_adma_202205787
wiley_primary_10_1002_adma_202205787_ADMA202205787
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2021 2010 1991 2017 2019; 208 82 30 111 237
1987; 76
2021; 11
2020 2020; 12 12
2021; 420
2020 2022 2021 2022 2022 2022; 30 10 426 18 440 14
2020 2022; 10 32
2022; 34
2019 2021 2019 2022 2017; 39 121 102 45 29
2022; 13
2020; 67
2020; 11
2020; 10
2015; 348
2022 2021 2021; 32 409 425
2019 2019; 39 7
2019; 141
2019; 365
2021 2020 2019; 374 19 9
2019 2021; 29 43
e_1_2_8_21_4
e_1_2_8_21_5
e_1_2_8_21_6
e_1_2_8_1_3
e_1_2_8_2_2
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_5_1
e_1_2_8_2_3
e_1_2_8_3_2
e_1_2_8_4_1
e_1_2_8_5_3
e_1_2_8_6_2
e_1_2_8_7_1
e_1_2_8_2_5
e_1_2_8_5_2
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_21_3
e_1_2_8_1_1
e_1_2_8_14_4
e_1_2_8_17_1
e_1_2_8_14_5
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_15_1
e_1_2_8_14_3
e_1_2_8_15_2
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_12_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 39 121 102 45 29
  start-page: 5236 6124 72 541
  year: 2019 2021 2019 2022 2017
  publication-title: J. Eur. Ceram. Soc. Chem. Rev. Prog. Mater. Sci. Energy Storage Mater. Adv. Mater.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 29 43
  start-page: 383
  year: 2019 2021
  publication-title: Adv. Funct. Mater. Energy Storage Mater.
– volume: 348
  start-page: 547
  year: 2015
  publication-title: Science
– volume: 32 409 425
  year: 2022 2021 2021
  publication-title: Adv. Funct. Mater. Chem. Eng. J. Chem. Eng. J.
– volume: 76
  start-page: 241
  year: 1987
  publication-title: Ferroelectrics
– volume: 67
  year: 2020
  publication-title: Nano Energy
– volume: 10 32
  year: 2020 2022
  publication-title: Adv. Energy Mater. Adv. Funct. Mater.
– volume: 11
  start-page: 4824
  year: 2020
  publication-title: Nat. Commun.
– volume: 13
  start-page: 3089
  year: 2022
  publication-title: Nat. Commun.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 12 12
  year: 2020 2020
  publication-title: ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces
– volume: 374 19 9
  start-page: 100 999
  year: 2021 2020 2019
  publication-title: Science Nat. Mater. Adv. Energy Mater.
– volume: 208 82 30 111 237
  start-page: 2236
  year: 2021 2010 1991 2017 2019
  publication-title: Acta Mater. Phys. Rev. B Jpn. J. Appl. Phys. Appl. Phys. Lett. Mater. Chem. Phys.
– volume: 39 7
  start-page: 2899 3971
  year: 2019 2019
  publication-title: J. Eur. Ceram. Soc. J. Mater. Chem. A
– volume: 30 10 426 18 440 14
  start-page: 392 7052
  year: 2020 2022 2021 2022 2022 2022
  publication-title: Energy Storage Mater. J. Mater. Chem. A Chem. Eng. J. Small Chem. Eng. J. ACS Appl. Mater. Interfaces
– volume: 420
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 365
  start-page: 578
  year: 2019
  publication-title: Science
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– ident: e_1_2_8_11_2
  doi: 10.1021/acsami.0c02832
– ident: e_1_2_8_11_1
  doi: 10.1021/acsami.0c03677
– ident: e_1_2_8_3_1
  doi: 10.1002/adfm.201903877
– ident: e_1_2_8_20_1
  doi: 10.1002/aenm.202101378
– ident: e_1_2_8_21_3
  doi: 10.1016/j.cej.2021.130800
– ident: e_1_2_8_16_1
  doi: 10.1080/00150198708016945
– ident: e_1_2_8_6_1
  doi: 10.1002/aenm.201903338
– ident: e_1_2_8_15_2
  doi: 10.1039/C8TA12232F
– ident: e_1_2_8_1_3
  doi: 10.1002/aenm.201803048
– ident: e_1_2_8_2_1
  doi: 10.1016/j.jeurceramsoc.2019.08.020
– ident: e_1_2_8_10_1
  doi: 10.1016/j.nanoen.2019.104264
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jeurceramsoc.2019.03.030
– ident: e_1_2_8_1_2
  doi: 10.1038/s41563-020-0704-x
– ident: e_1_2_8_14_2
  doi: 10.1103/PhysRevB.82.224105
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ensm.2020.05.026
– ident: e_1_2_8_9_1
  doi: 10.1039/C9TA11314B
– ident: e_1_2_8_14_1
  doi: 10.1016/j.actamat.2021.116710
– ident: e_1_2_8_2_2
  doi: 10.1021/acs.chemrev.0c01264
– ident: e_1_2_8_21_6
  doi: 10.1021/acsami.1c25234
– ident: e_1_2_8_5_2
  doi: 10.1016/j.cej.2020.127375
– ident: e_1_2_8_1_1
  doi: 10.1126/science.abi7687
– ident: e_1_2_8_12_1
  doi: 10.1126/science.aaw8109
– ident: e_1_2_8_21_2
  doi: 10.1039/D2TA02534E
– ident: e_1_2_8_2_3
  doi: 10.1016/j.pmatsci.2018.12.005
– ident: e_1_2_8_19_1
  doi: 10.1021/jacs.9b07188
– ident: e_1_2_8_7_1
  doi: 10.1038/s41467-022-30821-7
– ident: e_1_2_8_17_1
  doi: 10.1002/aenm.202001778
– ident: e_1_2_8_14_5
  doi: 10.1016/j.matchemphys.2019.121794
– ident: e_1_2_8_5_1
  doi: 10.1002/adfm.202110478
– ident: e_1_2_8_2_4
  doi: 10.1016/j.ensm.2021.11.043
– ident: e_1_2_8_4_1
  doi: 10.1038/s41467-020-18665-5
– ident: e_1_2_8_6_2
  doi: 10.1002/adfm.202111776
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.202201333
– ident: e_1_2_8_21_4
  doi: 10.1002/smll.202106515
– ident: e_1_2_8_3_2
  doi: 10.1016/j.ensm.2021.09.018
– ident: e_1_2_8_2_5
  doi: 10.1002/adma.201701824
– ident: e_1_2_8_14_3
  doi: 10.1143/JJAP.30.2236
– ident: e_1_2_8_13_1
  doi: 10.1016/j.cej.2021.130475
– ident: e_1_2_8_14_4
  doi: 10.1063/1.4995009
– ident: e_1_2_8_18_1
  doi: 10.1126/science.1259869
– ident: e_1_2_8_5_3
  doi: 10.1016/j.cej.2021.131465
– ident: e_1_2_8_21_5
  doi: 10.1016/j.cej.2022.135789
SSID ssj0009606
Score 2.6681857
Snippet Lead‐free dielectric ceramics with ultrahigh energy‐storage performance are the core components used in next‐generation advanced pulse power capacitors....
Lead-free dielectric ceramics with ultrahigh energy-storage performance are the core components used in next-generation advanced pulse power capacitors....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2205787
SubjectTerms Ceramics
Charge density
Configurations
Dielectrics
Discharge
Electric fields
Energy storage
Flux density
Frequency stability
Heat loss
lead‐free dielectric ceramics
local diverse polarization
Materials science
Miniaturization
Polarization
relaxor ferroelectrics
Scanning transmission electron microscopy
superparaelectrics
Title Local Diverse Polarization Optimized Comprehensive Energy‐Storage Performance in Lead‐Free Superparaelectrics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202205787
https://www.proquest.com/docview/2731382249
https://www.proquest.com/docview/2709915652
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5VnNoDjxZEeFRbqVJPDs5617GPUZMIVQ1FQKTcrH3MiggwkMeFEz-hv7G_pDO24wQkhAQ3WzurtXd3Zr-xZ75h7HtLaCe88UFolQqkxKvE2BSBHCQhxCLVLcp3HpzEx0P5a6RGK1n8JT9E_cGNNKOw16Tg2kyPlqSh2hW8QZQoipsOjTAFbBEqOlvyRxE8L8j2IhWksUwWrI2hOHra_emptISaq4C1OHH6G0wvnrUMNLlqzmemaR-e0Ti-52U22XoFR3mn3D9b7APkn9mnFZLCL-z-Nx13vFsEcAA_JV-4St7kf9Dg3IwfwHGyKxO4LMPhea_IKPz3-PccXXq0WPx0mZ_Axzmnwp7Y2p8A8PP5HUyIgbysyDO202027Pcufh4HVaGGwEaIJwNrWl4a6VzkQYWATrWwLnIyBJ3gVmgnsUXYZb0xwqdaE0e8iVXktdQ-CX0r2mFr-W0Ou4wn2rZdCqA8yhmTGoQoOIiMpAt9W7UbLFgsVGYrFnMqpnGdlfzLIqOpzOqpbLAftfxdyd_xouTBYt2zSo-nGYI7ImlEH7XBvtXNqIH0W0XncDsnGUTZ6AYr0WCiWORXRso63UGnvtt7S6d99pGuy6TIA7Y2m8zhENHRzHwtNOA_jTMLlw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOUAPhVJQtxRwJSROabOOnU2OK9rVQnfbirYSt8i_YgXNttvdS088As_IkzDj_GyLVCHBLYnHcmJ77G-cmW8A3nW5stxrH8VGykgIvMq0yRHIuSx2Kc9Vl-Kdx0fp8Fx8-iIbb0KKhan4IdoDN9KMsF6TgtOB9N6SNVTZQBxEkaI46x7CI0rrHayqz0sGKQLogW4vkVGeiqzhbYz53t36d_elJdi8DVnDnjN4Crp528rV5NvuYq53zc0fRI7_9TnPYK1GpKxfTaF1eODK57B6i6dwA65GtOOx_eDD4dgJmcN1_CY7xjXnYnLjLKOlZea-Vh7x7CAEFf768fMUrXpctNjJMkSBTUpGuT2xdDBzjp0uLt2MSMirpDwTc_0CzgcHZx-GUZ2rITIJQsrI6K4XWlibeCdjh3Y1NzaxInYqw9nQy1KDyMt4rbnPlSKaeJ3KxCuhfBb7bvISVspp6TaBZcr0bO6c9Cinda4RpWAjIhE29j3Z60DUjFRhaiJzyqfxvagomHlBXVm0XdmB9638ZUXhca_kdjPwRa3K1wXiO-JpRDO1AzttMSoh_VlRpZsuSAaBNlrCkneAh1H-S0tFf3_cb--2_qXSW3g8PBuPitHHo8NX8ISeVzGS27Ayny3cawRLc_0mqMNvNJMPsg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB7RIqFy4B8RWmCRkHpy66x3HfsYkUZtaUtEqdSbtT-zIgLckCaXnngEnrFPwoztOGklhAQ32zsr27szs9_YO98AvOtK42WwIYqd1pFSdJRZlxOQwyzGVOamy_nOxyfp_pk6PNfnK1n8NT9E-8GNLaPy12zgEx92l6Shxle8QZwoSkq3BndVGmes14NPSwIpxucV216iozxV2YK2MZa7N_vfXJaWWHMVsVZLzvAhmMXD1jtNvu7MZ3bHXd3icfyft3kEDxo8Kvq1Aj2GO1g-gfsrLIVP4ccRr3diUO3gQDHiYLjJ3hQfyeN8H1-hF-xYpvil3g8v9qqUwuufv04ppieXJUbLBAUxLgVX9qTW4RRRnM4nOGUK8rokz9hdPoOz4d7n9_tRU6khcgkBysjZblBWeZ8E1DFSVC2dT7yK0WSkC70sdYS7XLBWhtwYJom3qU6CUSZkcegmz2G9vCjxBYjMuJ7PEXUgOWtzSxiFbqIS5ePQ070ORIuJKlxDY87VNL4VNQGzLHgoi3YoO7Ddyk9qAo8_Sm4t5r1oDPmyIHTHLI0UpHbgbdtMJsj_VUyJF3OWIZhNcbCWHZDVJP_lTkV_cNxvz17-S6c3cG80GBZHBycfNmGDL9cJkluwPpvO8RUhpZl9XRnDbxtiDmo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Diverse+Polarization+Optimized+Comprehensive+Energy%E2%80%90Storage+Performance+in+Lead%E2%80%90Free+Superparaelectrics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Liang&rft.au=Wang%2C+Na&rft.au=Zhang%2C+Zhifei&rft.au=Yu%2C+Huifen&rft.date=2022-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=44&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202205787&rft.externalDBID=10.1002%252Fadma.202205787&rft.externalDocID=ADMA202205787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon