A Novel CNN-Based Framework for Alzheimer’s Disease Detection Using EEG Spectrogram Representations

Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring t...

Full description

Saved in:
Bibliographic Details
Published inJournal of personalized medicine Vol. 15; no. 1; p. 27
Main Authors Stefanou, Konstantinos, Tzimourta, Katerina D., Bellos, Christos, Stergios, Georgios, Markoglou, Konstantinos, Gionanidis, Emmanouil, Tsipouras, Markos G., Giannakeas, Nikolaos, Tzallas, Alexandros T., Miltiadous, Andreas
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.01.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches. Methods: To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals. The approach incorporates advanced preprocessing techniques and CNN classification of FFT-based spectrograms and is evaluated using the leave-N-subjects-out validation, ensuring robust cross-subject generalizability. Results: The results indicate that the proposed methodology outperforms state-of-the-art machine learning and EEG-specific neural network models, achieving an accuracy of 79.45% for AD/CN classification and 80.69% for AD+FTD/CN classification. Conclusions: These results highlight the potential of EEG-based deep learning models for early dementia screening, enabling more efficient, scalable, and accessible diagnostic tools.
AbstractList Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches. Methods: To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals. The approach incorporates advanced preprocessing techniques and CNN classification of FFT-based spectrograms and is evaluated using the leave-N-subjects-out validation, ensuring robust cross-subject generalizability. Results: The results indicate that the proposed methodology outperforms state-of-the-art machine learning and EEG-specific neural network models, achieving an accuracy of 79.45% for AD/CN classification and 80.69% for AD+FTD/CN classification. Conclusions: These results highlight the potential of EEG-based deep learning models for early dementia screening, enabling more efficient, scalable, and accessible diagnostic tools.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches. Methods: To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals. The approach incorporates advanced preprocessing techniques and CNN classification of FFT-based spectrograms and is evaluated using the leave-N-subjects-out validation, ensuring robust cross-subject generalizability. Results: The results indicate that the proposed methodology outperforms state-of-the-art machine learning and EEG-specific neural network models, achieving an accuracy of 79.45% for AD/CN classification and 80.69% for AD+FTD/CN classification. Conclusions: These results highlight the potential of EEG-based deep learning models for early dementia screening, enabling more efficient, scalable, and accessible diagnostic tools.Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches. Methods: To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals. The approach incorporates advanced preprocessing techniques and CNN classification of FFT-based spectrograms and is evaluated using the leave-N-subjects-out validation, ensuring robust cross-subject generalizability. Results: The results indicate that the proposed methodology outperforms state-of-the-art machine learning and EEG-specific neural network models, achieving an accuracy of 79.45% for AD/CN classification and 80.69% for AD+FTD/CN classification. Conclusions: These results highlight the potential of EEG-based deep learning models for early dementia screening, enabling more efficient, scalable, and accessible diagnostic tools.
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches. Methods: To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals. The approach incorporates advanced preprocessing techniques and CNN classification of FFT-based spectrograms and is evaluated using the leave-N-subjects-out validation, ensuring robust cross-subject generalizability. Results: The results indicate that the proposed methodology outperforms state-of-the-art machine learning and EEG-specific neural network models, achieving an accuracy of 79.45% for AD/CN classification and 80.69% for AD+FTD/CN classification. Conclusions: These results highlight the potential of EEG-based deep learning models for early dementia screening, enabling more efficient, scalable, and accessible diagnostic tools.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches. To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals. The approach incorporates advanced preprocessing techniques and CNN classification of FFT-based spectrograms and is evaluated using the leave-N-subjects-out validation, ensuring robust cross-subject generalizability. The results indicate that the proposed methodology outperforms state-of-the-art machine learning and EEG-specific neural network models, achieving an accuracy of 79.45% for AD/CN classification and 80.69% for AD+FTD/CN classification. These results highlight the potential of EEG-based deep learning models for early dementia screening, enabling more efficient, scalable, and accessible diagnostic tools.
Audience Academic
Author Tsipouras, Markos G.
Tzallas, Alexandros T.
Miltiadous, Andreas
Tzimourta, Katerina D.
Stergios, Georgios
Gionanidis, Emmanouil
Markoglou, Konstantinos
Giannakeas, Nikolaos
Bellos, Christos
Stefanou, Konstantinos
AuthorAffiliation 1 Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, 47100 Arta, Greece; kstefan@gmail.com (K.S.); tzallas@uoi.gr (A.T.T.)
3 School of Science & Technology, Hellenic Open University, 26335 Patra, Greece
2 Department of Electrical and Computer Engineering, Faculty of Engineering, University of Western Macedonia, 50100 Kozani, Greece; ktzimourta@uowm.gr (K.D.T.)
AuthorAffiliation_xml – name: 1 Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, 47100 Arta, Greece; kstefan@gmail.com (K.S.); tzallas@uoi.gr (A.T.T.)
– name: 2 Department of Electrical and Computer Engineering, Faculty of Engineering, University of Western Macedonia, 50100 Kozani, Greece; ktzimourta@uowm.gr (K.D.T.)
– name: 3 School of Science & Technology, Hellenic Open University, 26335 Patra, Greece
Author_xml – sequence: 1
  givenname: Konstantinos
  surname: Stefanou
  fullname: Stefanou, Konstantinos
– sequence: 2
  givenname: Katerina D.
  orcidid: 0000-0001-9640-7005
  surname: Tzimourta
  fullname: Tzimourta, Katerina D.
– sequence: 3
  givenname: Christos
  orcidid: 0000-0001-5638-7580
  surname: Bellos
  fullname: Bellos, Christos
– sequence: 4
  givenname: Georgios
  surname: Stergios
  fullname: Stergios, Georgios
– sequence: 5
  givenname: Konstantinos
  surname: Markoglou
  fullname: Markoglou, Konstantinos
– sequence: 6
  givenname: Emmanouil
  surname: Gionanidis
  fullname: Gionanidis, Emmanouil
– sequence: 7
  givenname: Markos G.
  orcidid: 0000-0002-6757-1698
  surname: Tsipouras
  fullname: Tsipouras, Markos G.
– sequence: 8
  givenname: Nikolaos
  orcidid: 0000-0002-0615-783X
  surname: Giannakeas
  fullname: Giannakeas, Nikolaos
– sequence: 9
  givenname: Alexandros T.
  orcidid: 0000-0001-9043-1290
  surname: Tzallas
  fullname: Tzallas, Alexandros T.
– sequence: 10
  givenname: Andreas
  orcidid: 0000-0003-0675-9088
  surname: Miltiadous
  fullname: Miltiadous, Andreas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39852219$$D View this record in MEDLINE/PubMed
BookMark eNptks1u1DAQxy1UREvpiTuyxAUJpfgjtuMTWrbbglQtEtCzlTiTrZfEDvZuEZx4DV6PJ8GhZbVFeA4ezfzmb49mHqMDHzwg9JSSU841ebUeByoIJYSpB-iIESWKsmTyYM8_RCcprUk-lWBMkkfokOvJpfoIwQwvww30eL5cFm_qBC0-j_UAX0P8jLsQ8az_fg1ugPjrx8-Ez1yCDOEz2IDduODxVXJ-hReLC_xxzKEYVrkcf4AxQgK_qScoPUEPu7pPcHJ3H6Or88Wn-dvi8v3Fu_nssrBcEFVYJToOsmsFU1zJinNWAm1AUi0VNI1sVUs6pXlOQcNtJ5jVQATjtuIaBD9Gr291x20zQGvzB2LdmzG6oY7fTKiduZ_x7tqswo2hVEmpSZkVXtwpxPBlC2ljBpcs9H3tIWyT4VRoWUktaEaf_4Ouwzb63N8fKhNVth21qnswznchP2wnUTOrOBOlVHTSOv0Pla2Fwdk88s7l-L2CZ_ud7lr8O9kMvLwFbAwpReh2CCVmWh2ztzr8NykVtCc
Cites_doi 10.1186/s13195-023-01280-z
10.1016/j.heliyon.2023.e14858
10.1002/mco2.532
10.1186/s12868-024-00877-w
10.1109/TELFOR59449.2023.10372658
10.1093/sleep/zsad241
10.1016/j.measen.2023.100749
10.3390/a16050255
10.3390/bioengineering11050418
10.1016/j.jneumeth.2003.10.009
10.3389/fnhum.2021.700627
10.3390/brainsci14050487
10.3390/brainsci13040695
10.1007/s11277-020-07742-z
10.1088/1741-2552/aace8c
10.1109/CBMS58004.2023.00335
10.1088/1741-2552/aae5d8
10.1016/S1388-2457(99)00076-0
10.2147/NDT.S38821
10.3389/fnagi.2013.00060
10.3389/fnhum.2018.00456
10.1002/hbm.23730
10.1016/j.ahr.2022.100098
10.1097/00019442-200506000-00005
10.3390/diagnostics11081437
10.1109/PROC.1967.5957
10.2147/PRBM.S459954
10.3390/app13031605
10.1016/j.mcna.2018.10.009
10.1007/s11571-024-10152-7
10.1177/155005941104200308
10.1007/s11357-023-01041-8
10.3390/data8060095
10.1088/1749-4699/8/1/014008
10.1016/j.clinph.2017.06.251
10.1109/ACCESS.2023.3294618
10.1109/ACCESS.2022.3232563
10.1007/s11517-017-1685-z
10.1016/j.bspc.2022.103646
10.1111/j.1479-8301.2010.00326.x
10.1111/jgs.16027
10.3390/ijms241411732
10.3390/diagnostics14192189
10.1212/WNL.0000000000006473
10.1016/j.clinph.2021.05.012
10.1001/archneur.57.4.454
10.1007/s10044-023-01156-w
10.1016/j.neucom.2020.09.017
10.1155/2018/5174815
10.1080/03091902.2017.1394389
10.1016/S1474-4422(05)70223-4
10.3389/fnhum.2023.1190203
10.3389/fnins.2023.1272834
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/jpm15010027
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4426
ExternalDocumentID PMC11766904
A832546711
39852219
10_3390_jpm15010027
Genre Journal Article
GeographicLocations Greece
GeographicLocations_xml – name: Greece
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EMOBN
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
GROUPED_DOAJ
NPM
PMFND
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c3507-c75f3e6fd52737683324e1be61967ebb6d7d0f793683eb3cf52c9e0523c839e53
IEDL.DBID M48
ISSN 2075-4426
IngestDate Thu Aug 21 18:40:38 EDT 2025
Thu Jul 10 22:01:24 EDT 2025
Wed Jul 23 11:40:52 EDT 2025
Tue Jun 17 21:58:34 EDT 2025
Tue Jun 10 20:59:05 EDT 2025
Wed Jan 29 09:33:48 EST 2025
Tue Jul 01 01:39:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deep learning
spectogram
CNN
Alzheimer’s disease
FFT
EEG
frontotemporal dementia
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3507-c75f3e6fd52737683324e1be61967ebb6d7d0f793683eb3cf52c9e0523c839e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6757-1698
0000-0003-0675-9088
0000-0001-9043-1290
0000-0001-9640-7005
0000-0002-0615-783X
0000-0001-5638-7580
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/jpm15010027
PMID 39852219
PQID 3159513838
PQPubID 2032376
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11766904
proquest_miscellaneous_3159686951
proquest_journals_3159513838
gale_infotracmisc_A832546711
gale_infotracacademiconefile_A832546711
pubmed_primary_39852219
crossref_primary_10_3390_jpm15010027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250114
PublicationDateYYYYMMDD 2025-01-14
PublicationDate_xml – month: 1
  year: 2025
  text: 20250114
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of personalized medicine
PublicationTitleAlternate J Pers Med
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_13
Schirrmeister (ref_45) 2017; 38
ref_57
ref_12
ref_11
Rostamikia (ref_27) 2024; 18
ref_52
Neary (ref_8) 2005; 4
ref_51
ref_18
ref_59
Delorme (ref_38) 2004; 134
Amodio (ref_17) 1999; 110
Gao (ref_3) 2019; 67
Miltiadous (ref_15) 2023; 11
ref_61
ref_60
Cheng (ref_28) 2023; 26
Sharmila (ref_21) 2018; 42
Singh (ref_22) 2020; 14
Cassani (ref_54) 2018; 2018
Xie (ref_50) 2024; 17
ref_24
Cochran (ref_19) 1967; 55
Shin (ref_5) 2005; 13
ref_20
Singh (ref_23) 2021; 116
Xia (ref_29) 2023; 9
Fide (ref_48) 2021; 132
ref_26
Leela (ref_56) 2023; 27
Miyakoshi (ref_41) 2023; 46
Mumtaz (ref_25) 2018; 56
Trambaiolli (ref_33) 2017; 128
Emilien (ref_14) 2000; 57
Wan (ref_55) 2021; 421
ref_35
ref_34
ref_31
Wang (ref_32) 2024; 46
ref_30
Atri (ref_1) 2019; 103
Sun (ref_58) 2024; 5
ref_39
Kurlowicz (ref_37) 1999; 25
Bergstra (ref_46) 2015; 8
Miltiadous (ref_4) 2023; 11
Azami (ref_10) 2023; 15
Waytowich (ref_44) 2018; 15
ref_47
ref_42
ref_40
Kirshner (ref_7) 2014; 10
ref_2
Rodinskaia (ref_62) 2022; 2
Miltiadous (ref_36) 2023; 1
Fonseca (ref_49) 2011; 42
Lawhern (ref_43) 2018; 15
ref_9
Ishii (ref_53) 2010; 10
Geraedts (ref_16) 2018; 91
ref_6
References_xml – volume: 15
  start-page: 133
  year: 2023
  ident: ref_10
  article-title: Beta to Theta Power Ratio in EEG Periodic Components as a Potential Biomarker in Mild Cognitive Impairment and Alzheimer’s Dementia
  publication-title: Alzheimer’s Res. Ther.
  doi: 10.1186/s13195-023-01280-z
– volume: 9
  start-page: e14858
  year: 2023
  ident: ref_29
  article-title: A Novel Method for Diagnosing Alzheimer’s Disease Using Deep Pyramid CNN Based on EEG Signals
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e14858
– volume: 5
  start-page: e532
  year: 2024
  ident: ref_58
  article-title: Precise Prediction of Cerebrospinal Fluid Amyloid Beta Protein for Early Alzheimer’s Disease Detection Using Multimodal Data
  publication-title: MedComm
  doi: 10.1002/mco2.532
– ident: ref_52
  doi: 10.1186/s12868-024-00877-w
– ident: ref_61
  doi: 10.1109/TELFOR59449.2023.10372658
– volume: 46
  start-page: zsad241
  year: 2023
  ident: ref_41
  article-title: Artifact Subspace Reconstruction: A Candidate for a Dream Solution for EEG Studies, Sleep or Awake
  publication-title: Sleep
  doi: 10.1093/sleep/zsad241
– volume: 27
  start-page: 100749
  year: 2023
  ident: ref_56
  article-title: Prediction and Classification of Alzheimer Disease Categories Using Integrated Deep Transfer Learning Approach
  publication-title: Meas. Sens.
  doi: 10.1016/j.measen.2023.100749
– ident: ref_31
  doi: 10.3390/a16050255
– volume: 1
  start-page: 88
  year: 2023
  ident: ref_36
  article-title: A Dataset of EEG Recordings from: Alzheimer’s Disease, Frontotemporal Dementia and Healthy Subjects
  publication-title: OpenNeuro
– ident: ref_39
– ident: ref_51
  doi: 10.3390/bioengineering11050418
– volume: 134
  start-page: 9
  year: 2004
  ident: ref_38
  article-title: EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref_42
– ident: ref_57
  doi: 10.3389/fnhum.2021.700627
– ident: ref_60
  doi: 10.3390/brainsci14050487
– ident: ref_24
  doi: 10.3390/brainsci13040695
– volume: 116
  start-page: 845
  year: 2021
  ident: ref_23
  article-title: Detection of Epileptic Seizure EEG Signal Using Multiscale Entropies and Complete Ensemble Empirical Mode Decomposition
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-020-07742-z
– volume: 15
  start-page: 056013
  year: 2018
  ident: ref_43
  article-title: EEGNet: A Compact Convolutional Neural Network for EEG-Based Brain–Computer Interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– ident: ref_13
  doi: 10.1109/CBMS58004.2023.00335
– volume: 15
  start-page: 066031
  year: 2018
  ident: ref_44
  article-title: Compact Convolutional Neural Networks for Classification of Asynchronous Steady-State Visual Evoked Potentials
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aae5d8
– volume: 110
  start-page: 1334
  year: 1999
  ident: ref_17
  article-title: Spectral versus Visual EEG Analysis in Mild Hepatic Encephalopathy
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00076-0
– volume: 10
  start-page: 1045
  year: 2014
  ident: ref_7
  article-title: Frontotemporal Dementia and Primary Progressive Aphasia, a Review
  publication-title: Neuropsychiatr. Dis. Treat.
  doi: 10.2147/NDT.S38821
– ident: ref_20
– ident: ref_47
  doi: 10.3389/fnagi.2013.00060
– ident: ref_26
  doi: 10.3389/fnhum.2018.00456
– volume: 38
  start-page: 5391
  year: 2017
  ident: ref_45
  article-title: Deep Learning with Convolutional Neural Networks for EEG Decoding and Visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– volume: 2
  start-page: 100098
  year: 2022
  ident: ref_62
  article-title: EEG Coherence as a Marker of Functional Connectivity Disruption in Alzheimer’s Disease
  publication-title: Aging Health Res.
  doi: 10.1016/j.ahr.2022.100098
– volume: 13
  start-page: 469
  year: 2005
  ident: ref_5
  article-title: Neuropsychiatric Symptoms and Quality of Life in Alzheimer Disease
  publication-title: Am. J. Geriatr. Psychiatry
  doi: 10.1097/00019442-200506000-00005
– ident: ref_11
– ident: ref_6
  doi: 10.3390/diagnostics11081437
– volume: 55
  start-page: 1664
  year: 1967
  ident: ref_19
  article-title: What Is the Fast Fourier Transform?
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1967.5957
– volume: 17
  start-page: 2995
  year: 2024
  ident: ref_50
  article-title: Resting-State Alpha Activity in the Frontal and Occipital Lobes and Assessment of Cognitive Impairment in Depression Patients
  publication-title: Psychol. Res. Behav. Manag.
  doi: 10.2147/PRBM.S459954
– ident: ref_40
  doi: 10.3390/app13031605
– volume: 103
  start-page: 263
  year: 2019
  ident: ref_1
  article-title: The Alzheimer’s Disease Clinical Spectrum
  publication-title: Med. Clin. N. Am.
  doi: 10.1016/j.mcna.2018.10.009
– volume: 18
  start-page: 3447
  year: 2024
  ident: ref_27
  article-title: EEG-Based Classification of Alzheimer’s Disease and Frontotemporal Dementia: A Comprehensive Analysis of Discriminative Features
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-024-10152-7
– volume: 42
  start-page: 185
  year: 2011
  ident: ref_49
  article-title: EEG Theta and Alpha Reactivity on Opening the Eyes in the Diagnosis of Alzheimer’s Disease
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/155005941104200308
– volume: 46
  start-page: 751
  year: 2024
  ident: ref_32
  article-title: The Effect of Aperiodic Components in Distinguishing Alzheimer’s Disease from Frontotemporal Dementia
  publication-title: Geroscience
  doi: 10.1007/s11357-023-01041-8
– ident: ref_35
  doi: 10.3390/data8060095
– volume: 8
  start-page: 014008
  year: 2015
  ident: ref_46
  article-title: Hyperopt: A Python Library for Model Selection and Hyperparameter Optimization
  publication-title: Comput. Sci. Discov.
  doi: 10.1088/1749-4699/8/1/014008
– volume: 128
  start-page: 2058
  year: 2017
  ident: ref_33
  article-title: Feature Selection before EEG Classification Supports the Diagnosis of Alzheimer’s Disease
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2017.06.251
– volume: 11
  start-page: 71840
  year: 2023
  ident: ref_4
  article-title: DICE-Net: A Novel Convolution-Transformer Architecture for Alzheimer Detection in EEG Signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3294618
– volume: 11
  start-page: 564
  year: 2023
  ident: ref_15
  article-title: Machine Learning Algorithms for Epilepsy Detection Based on Published EEG Databases: A Systematic Review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3232563
– volume: 56
  start-page: 233
  year: 2018
  ident: ref_25
  article-title: A Machine Learning Framework Involving EEG-Based Functional Connectivity to Diagnose Major Depressive Disorder (MDD)
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-017-1685-z
– ident: ref_2
– ident: ref_12
– volume: 25
  start-page: 8
  year: 1999
  ident: ref_37
  article-title: The Mini-Mental State Examination (MMSE)
  publication-title: J. Gerontol. Nurs.
– ident: ref_18
  doi: 10.1016/j.bspc.2022.103646
– volume: 10
  start-page: 138
  year: 2010
  ident: ref_53
  article-title: Frontal Shift of Posterior Alpha Activity Is Correlated with Cognitive Impairment in Early Alzheimer’s Disease: A Magnetoencephalography-Beamformer Study
  publication-title: Psychogeriatrics
  doi: 10.1111/j.1479-8301.2010.00326.x
– volume: 67
  start-page: 1361
  year: 2019
  ident: ref_3
  article-title: Incidence of Dementia and Alzheimer Disease Over Time: A Meta-Analysis
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/jgs.16027
– ident: ref_9
  doi: 10.3390/ijms241411732
– ident: ref_59
  doi: 10.3390/diagnostics14192189
– volume: 91
  start-page: 871
  year: 2018
  ident: ref_16
  article-title: Clinical Correlates of Quantitative EEG in Parkinson Disease
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000006473
– volume: 132
  start-page: 2019
  year: 2021
  ident: ref_48
  article-title: Resting-State EEG Alpha/Theta Power Ratio Discriminates Early-Onset Alzheimer’s Disease from Healthy Controls
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2021.05.012
– volume: 57
  start-page: 454
  year: 2000
  ident: ref_14
  article-title: Prospects for Pharmacological Intervention in Alzheimer Disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.57.4.454
– volume: 26
  start-page: 1303
  year: 2023
  ident: ref_28
  article-title: Multi-Scale Spatial–Temporal Convolutional Neural Network for Skeleton-Based Action Recognition
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-023-01156-w
– volume: 421
  start-page: 1
  year: 2021
  ident: ref_55
  article-title: A Review on Transfer Learning in EEG Signal Analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.017
– volume: 2018
  start-page: 5174815
  year: 2018
  ident: ref_54
  article-title: Systematic Review on Resting-State EEG for Alzheimer’s Disease Diagnosis and Progression Assessment
  publication-title: Dis. Markers
  doi: 10.1155/2018/5174815
– volume: 42
  start-page: 1
  year: 2018
  ident: ref_21
  article-title: Epileptic Seizure Detection Using DWT-Based Approximate Entropy, Shannon Entropy and Support Vector Machine: A Case Study
  publication-title: J. Med. Eng. Technol.
  doi: 10.1080/03091902.2017.1394389
– volume: 4
  start-page: 771
  year: 2005
  ident: ref_8
  article-title: Frontotemporal Dementia
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(05)70223-4
– ident: ref_34
  doi: 10.3389/fnhum.2023.1190203
– ident: ref_30
  doi: 10.3389/fnins.2023.1272834
– volume: 14
  start-page: 239
  year: 2020
  ident: ref_22
  article-title: Multiclass Classification of EEG Signal for Epilepsy Detection Using DWT Based SVD and Fuzzy KNN Classifier
  publication-title: Intell. Decis. Technol.
SSID ssj0000852260
Score 2.319273
Snippet Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing...
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and...
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing...
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 27
SubjectTerms Advertising executives
Alzheimer's disease
Artificial intelligence
Biomarkers
Brain research
Classification
Cognitive ability
Deep learning
Dementia
Dementia disorders
Development and progression
Disease
Diseases
EEG
Electroencephalography
Fourier transforms
Frontotemporal dementia
Greece
Machine learning
Magnetic resonance imaging
Memory
Neural networks
Neurodegeneration
Neurodegenerative diseases
Neurophysiology
Older people
Patients
Signal processing
Tomography
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwEB5RkKpeqpb-pdDKSEicLOJ14iQntMAuCImoQiBxizb2RIAgu2UXDpx4DV6vT9KZxLvd9MAll3GUaGY88409PwDbSVzFkXWVzCp6RKmycoS9VNpSK0yNU3rEtcOnuTm-iE4u40t_4Db1aZVzm9gYaje2fEa-q8nvxoriqXRv8lvy1Ci-XfUjNN7AGpnglIKvtf1B_utsccpCgILwRdgW5mmK73dvJneEgbjxaNJxRf8b5CWP1M2WXHI_ww_w3uNG0W8F_RFWsF6Ht6f-ZvwTYF_k40e8FQd5LvfJNTkxnOddCQKmon_7dIXXd3j_5_llKg7bexlxiLMmF6sWTe6AGAyOBI-kn7VpW-KsSZT19Un19DNcDAfnB8fSj1CQVhPSk5ZkodFUjvusUWShCT-hKpHCJpNgWRqXuLCiPUokCqttFfdshnxUbAk5Yay_wGo9rvEbCKNdVpoYLXcTrka6DKMyoeglxAozlyYBbM-5WUzaThkFRRjM9GKJ6QHsMKcL3j_ETjvyZQD0Ee5EVfTJxMRkvZUKYLOzkvTedslzWRV-302Lf1oSwNaCzG9yLlmN44d2jUkNrQvgayvaxQ_rjBVGZQGkHaEvFnA37i6lvr5qunIrbrWZhdH31_9rA971eIRwqKSKNmF1dv-APwjXzMqfXnn_ApS2-iM
  priority: 102
  providerName: ProQuest
Title A Novel CNN-Based Framework for Alzheimer’s Disease Detection Using EEG Spectrogram Representations
URI https://www.ncbi.nlm.nih.gov/pubmed/39852219
https://www.proquest.com/docview/3159513838
https://www.proquest.com/docview/3159686951
https://pubmed.ncbi.nlm.nih.gov/PMC11766904
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEB7ygNJLafpUm5gtBHLaVuuVVtIhFCexEwoWJcTgm7BWI5LgyKntlCan_I3-vf6SzuhhrFB60WV30TKzu_N9u_MA2A_83Pdslssop48XKisn2A2lTbXC0GRKTzh2eBibs5H3beyPN6ApxlkLcPFPasf1pEbz6edfP-6_0oY_ZMZJlP3L9e0NwRrOJRpswjaZpIB36LDG-deVMxbBDL5v6ZKJlB6ZpSpW7-n4lnV6ekavGam2A-WaRRq8hBc1lBS9Svc7sIHFK3g2rB_LXwP2RDz7iVNxHMfyiKxVJgaNK5YgrCp604dLvLrB-Z_H3wtxUj3ViBNclu5ZhSjdCUS_fyq4Sv2y8uQS56XvbB2yVCzewGjQvzg-k3VVBWk1gT9pST0aTZ5x6jUiG5ogFaoUiUmZANPUZEHm5rRtqYmYts39ro2Qb48tgSn09VvYKmYFvgdhdBalxkfLCYbziU5dLw2I0LiYY5SFgQP7jTST2yp5RkKkg4WerAndgQOWdMJKJnHaSR0ZQD_h5FRJj04dnw50pRzYbfWkrWDbzY2ukmYlJZoAm6-IiIcOfFo180h2Lytwdlf1MaGhfg68q1S7mrCOePGoyIGwpfRVB07Q3W4pri7LRN2Ks29Grvfh_9P-CM-7XFXYVVJ5u7C1nN_hHkGdZdqB7aN-_P28A5unY9UpF_Vf9Lj_Aw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqQRcEOVpKLBIRZxW9Xr9PKAqbRJS2liotFJvbrweq0WtE5oUVE79G_wJfhS_hBk_QsyBWy-57FpZzfOb3XkAbARe7rkmy2WU048bKiPH6ITSpFph6GdKj7l2eBT7wyP347F3vAK_mloYTqtsbGJpqLOJ4TvyTU1-11MUT4Vb06-Sp0bx62ozQqMSiz28_k4h2-z9bo_4-9ZxBv3DnaGspwpIown8SEPH0-jnGbceI7CtCVKgSpEiCT_ANPWzILNzEltaokjT5J5jIuTbU0NgAnlKBJn8VVdTKNOB1e1-_OlgcatDAIbwjF0VAmod2ZtfpheEubjRadByff86gCUP2M7OXHJ3gwdwv8apolsJ1hqsYPEQ7ozql_hHgF0RT77hudiJY7lNrjATgybPSxAQFt3zH6d4doGXv29-zkSvegcSPZyXuV-FKHMVRL__QXyelpN4OE1MHJSJuXU9VDF7DEe3Qtwn0CkmBT4D4essSn0PDXcvzsc6td00oGjJxhyjLAws2GiomUyrzhwJRTRM9GSJ6Ba8Y0onrK9ETjOuyw7oT7jzVdIlk-aRt1DKgvXWTtIz015ueJXUej5L_kqlBW8Wy_wl564VOLmq9vihT_sseFqxdnFgHbHAqMiCsMX0xQbu_t1eKc5Oyy7gilt7Rrb7_P_neg13h4ej_WR_N957AfccHl9sK6ncdejML6_wJWGqefqqFmQBJ7etO38A7Fs11w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5VqVRxQfxjKLBIRZxW8XrttX1AKG0SWkqtqlCpNxOvx2pR64QmBcGJ1-BVeByehBn_hJgDt15y2bWymp3Z-Wb3mxmArTAoAt_mhYwL-vEjZeUEvUjaTCuMTK70hHOHDxKze-y_PQlO1uBXmwvDtMr2TKwO6nxq-Y68r8nvBoriqahfNLSIw-H49eyz5A5S_NLattOoVWQfv32l8G3-am9Ie_3C88ajDzu7sukwIK0mICQtLVWjKXIuQ0bAWxO8QJUhRRUmxCwzeZi7BakwDVHUaYvAszHyTaolYIHcMYKO__WQoiK3B-vbo-TwaHnDQ2CGsI1bJwVqHbv9T7MLwl9c9DTsuMF_ncGKN-wyNVdc3_gW3GwwqxjUSnYb1rC8AxsHzav8XcCBSKZf8FzsJIncJreYi3HL-RIEisXg_Pspnl3g5e8fP-diWL8JiSEuKh5YKSreghiN3oj3s6orD1PGxFFF0m1yo8r5PTi-FuHeh145LfEhCKPzODMBWq5kXEx05vpZSJGTiwXGeRQ6sNVKM53VVTpSim5Y6OmK0B14yZJO2XZJnHbSpCDQn3AVrHRAx1tAnkMpBzY7M8nmbHe43au0sfl5-ldDHXi-HOYvmcdW4vSqnmMiQ_MceFBv7XLBOmaFUbEDUWfTlxO4Enh3pDw7rSqCKy7zGbv-o_-v6xlskM2k7_aS_cdww-NOxq6Syt-E3uLyCp8QvFpkTxs9FvDxuk3nDzO-Ogw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+CNN-Based+Framework+for+Alzheimer%E2%80%99s+Disease+Detection+Using+EEG+Spectrogram+Representations&rft.jtitle=Journal+of+personalized+medicine&rft.au=Stefanou%2C+Konstantinos&rft.au=Tzimourta%2C+Katerina+D&rft.au=Bellos%2C+Christos&rft.au=Stergios%2C+Georgios&rft.date=2025-01-14&rft.pub=MDPI+AG&rft.issn=2075-4426&rft.eissn=2075-4426&rft.volume=15&rft.issue=1&rft_id=info:doi/10.3390%2Fjpm15010027&rft.externalDocID=A832546711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4426&client=summon