A Novel CNN-Based Framework for Alzheimer’s Disease Detection Using EEG Spectrogram Representations
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring t...
Saved in:
Published in | Journal of personalized medicine Vol. 15; no. 1; p. 27 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
14.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches. Methods: To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals. The approach incorporates advanced preprocessing techniques and CNN classification of FFT-based spectrograms and is evaluated using the leave-N-subjects-out validation, ensuring robust cross-subject generalizability. Results: The results indicate that the proposed methodology outperforms state-of-the-art machine learning and EEG-specific neural network models, achieving an accuracy of 79.45% for AD/CN classification and 80.69% for AD+FTD/CN classification. Conclusions: These results highlight the potential of EEG-based deep learning models for early dementia screening, enabling more efficient, scalable, and accessible diagnostic tools. |
---|---|
AbstractList | Background:
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches.
Methods:
To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals. The approach incorporates advanced preprocessing techniques and CNN classification of FFT-based spectrograms and is evaluated using the leave-N-subjects-out validation, ensuring robust cross-subject generalizability.
Results:
The results indicate that the proposed methodology outperforms state-of-the-art machine learning and EEG-specific neural network models, achieving an accuracy of 79.45% for AD/CN classification and 80.69% for AD+FTD/CN classification.
Conclusions:
These results highlight the potential of EEG-based deep learning models for early dementia screening, enabling more efficient, scalable, and accessible diagnostic tools. Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches. Methods: To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals. The approach incorporates advanced preprocessing techniques and CNN classification of FFT-based spectrograms and is evaluated using the leave-N-subjects-out validation, ensuring robust cross-subject generalizability. Results: The results indicate that the proposed methodology outperforms state-of-the-art machine learning and EEG-specific neural network models, achieving an accuracy of 79.45% for AD/CN classification and 80.69% for AD+FTD/CN classification. Conclusions: These results highlight the potential of EEG-based deep learning models for early dementia screening, enabling more efficient, scalable, and accessible diagnostic tools.Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches. Methods: To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals. The approach incorporates advanced preprocessing techniques and CNN classification of FFT-based spectrograms and is evaluated using the leave-N-subjects-out validation, ensuring robust cross-subject generalizability. Results: The results indicate that the proposed methodology outperforms state-of-the-art machine learning and EEG-specific neural network models, achieving an accuracy of 79.45% for AD/CN classification and 80.69% for AD+FTD/CN classification. Conclusions: These results highlight the potential of EEG-based deep learning models for early dementia screening, enabling more efficient, scalable, and accessible diagnostic tools. Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches. Methods: To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals. The approach incorporates advanced preprocessing techniques and CNN classification of FFT-based spectrograms and is evaluated using the leave-N-subjects-out validation, ensuring robust cross-subject generalizability. Results: The results indicate that the proposed methodology outperforms state-of-the-art machine learning and EEG-specific neural network models, achieving an accuracy of 79.45% for AD/CN classification and 80.69% for AD+FTD/CN classification. Conclusions: These results highlight the potential of EEG-based deep learning models for early dementia screening, enabling more efficient, scalable, and accessible diagnostic tools. Alzheimer's disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches. To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals. The approach incorporates advanced preprocessing techniques and CNN classification of FFT-based spectrograms and is evaluated using the leave-N-subjects-out validation, ensuring robust cross-subject generalizability. The results indicate that the proposed methodology outperforms state-of-the-art machine learning and EEG-specific neural network models, achieving an accuracy of 79.45% for AD/CN classification and 80.69% for AD+FTD/CN classification. These results highlight the potential of EEG-based deep learning models for early dementia screening, enabling more efficient, scalable, and accessible diagnostic tools. |
Audience | Academic |
Author | Tsipouras, Markos G. Tzallas, Alexandros T. Miltiadous, Andreas Tzimourta, Katerina D. Stergios, Georgios Gionanidis, Emmanouil Markoglou, Konstantinos Giannakeas, Nikolaos Bellos, Christos Stefanou, Konstantinos |
AuthorAffiliation | 1 Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, 47100 Arta, Greece; kstefan@gmail.com (K.S.); tzallas@uoi.gr (A.T.T.) 3 School of Science & Technology, Hellenic Open University, 26335 Patra, Greece 2 Department of Electrical and Computer Engineering, Faculty of Engineering, University of Western Macedonia, 50100 Kozani, Greece; ktzimourta@uowm.gr (K.D.T.) |
AuthorAffiliation_xml | – name: 1 Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, 47100 Arta, Greece; kstefan@gmail.com (K.S.); tzallas@uoi.gr (A.T.T.) – name: 2 Department of Electrical and Computer Engineering, Faculty of Engineering, University of Western Macedonia, 50100 Kozani, Greece; ktzimourta@uowm.gr (K.D.T.) – name: 3 School of Science & Technology, Hellenic Open University, 26335 Patra, Greece |
Author_xml | – sequence: 1 givenname: Konstantinos surname: Stefanou fullname: Stefanou, Konstantinos – sequence: 2 givenname: Katerina D. orcidid: 0000-0001-9640-7005 surname: Tzimourta fullname: Tzimourta, Katerina D. – sequence: 3 givenname: Christos orcidid: 0000-0001-5638-7580 surname: Bellos fullname: Bellos, Christos – sequence: 4 givenname: Georgios surname: Stergios fullname: Stergios, Georgios – sequence: 5 givenname: Konstantinos surname: Markoglou fullname: Markoglou, Konstantinos – sequence: 6 givenname: Emmanouil surname: Gionanidis fullname: Gionanidis, Emmanouil – sequence: 7 givenname: Markos G. orcidid: 0000-0002-6757-1698 surname: Tsipouras fullname: Tsipouras, Markos G. – sequence: 8 givenname: Nikolaos orcidid: 0000-0002-0615-783X surname: Giannakeas fullname: Giannakeas, Nikolaos – sequence: 9 givenname: Alexandros T. orcidid: 0000-0001-9043-1290 surname: Tzallas fullname: Tzallas, Alexandros T. – sequence: 10 givenname: Andreas orcidid: 0000-0003-0675-9088 surname: Miltiadous fullname: Miltiadous, Andreas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39852219$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1u1DAQxy1UREvpiTuyxAUJpfgjtuMTWrbbglQtEtCzlTiTrZfEDvZuEZx4DV6PJ8GhZbVFeA4ezfzmb49mHqMDHzwg9JSSU841ebUeByoIJYSpB-iIESWKsmTyYM8_RCcprUk-lWBMkkfokOvJpfoIwQwvww30eL5cFm_qBC0-j_UAX0P8jLsQ8az_fg1ugPjrx8-Ez1yCDOEz2IDduODxVXJ-hReLC_xxzKEYVrkcf4AxQgK_qScoPUEPu7pPcHJ3H6Or88Wn-dvi8v3Fu_nssrBcEFVYJToOsmsFU1zJinNWAm1AUi0VNI1sVUs6pXlOQcNtJ5jVQATjtuIaBD9Gr291x20zQGvzB2LdmzG6oY7fTKiduZ_x7tqswo2hVEmpSZkVXtwpxPBlC2ljBpcs9H3tIWyT4VRoWUktaEaf_4Ouwzb63N8fKhNVth21qnswznchP2wnUTOrOBOlVHTSOv0Pla2Fwdk88s7l-L2CZ_ud7lr8O9kMvLwFbAwpReh2CCVmWh2ztzr8NykVtCc |
Cites_doi | 10.1186/s13195-023-01280-z 10.1016/j.heliyon.2023.e14858 10.1002/mco2.532 10.1186/s12868-024-00877-w 10.1109/TELFOR59449.2023.10372658 10.1093/sleep/zsad241 10.1016/j.measen.2023.100749 10.3390/a16050255 10.3390/bioengineering11050418 10.1016/j.jneumeth.2003.10.009 10.3389/fnhum.2021.700627 10.3390/brainsci14050487 10.3390/brainsci13040695 10.1007/s11277-020-07742-z 10.1088/1741-2552/aace8c 10.1109/CBMS58004.2023.00335 10.1088/1741-2552/aae5d8 10.1016/S1388-2457(99)00076-0 10.2147/NDT.S38821 10.3389/fnagi.2013.00060 10.3389/fnhum.2018.00456 10.1002/hbm.23730 10.1016/j.ahr.2022.100098 10.1097/00019442-200506000-00005 10.3390/diagnostics11081437 10.1109/PROC.1967.5957 10.2147/PRBM.S459954 10.3390/app13031605 10.1016/j.mcna.2018.10.009 10.1007/s11571-024-10152-7 10.1177/155005941104200308 10.1007/s11357-023-01041-8 10.3390/data8060095 10.1088/1749-4699/8/1/014008 10.1016/j.clinph.2017.06.251 10.1109/ACCESS.2023.3294618 10.1109/ACCESS.2022.3232563 10.1007/s11517-017-1685-z 10.1016/j.bspc.2022.103646 10.1111/j.1479-8301.2010.00326.x 10.1111/jgs.16027 10.3390/ijms241411732 10.3390/diagnostics14192189 10.1212/WNL.0000000000006473 10.1016/j.clinph.2021.05.012 10.1001/archneur.57.4.454 10.1007/s10044-023-01156-w 10.1016/j.neucom.2020.09.017 10.1155/2018/5174815 10.1080/03091902.2017.1394389 10.1016/S1474-4422(05)70223-4 10.3389/fnhum.2023.1190203 10.3389/fnins.2023.1272834 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/jpm15010027 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2075-4426 |
ExternalDocumentID | PMC11766904 A832546711 39852219 10_3390_jpm15010027 |
Genre | Journal Article |
GeographicLocations | Greece |
GeographicLocations_xml | – name: Greece |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EMOBN GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM GROUPED_DOAJ NPM PMFND ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c3507-c75f3e6fd52737683324e1be61967ebb6d7d0f793683eb3cf52c9e0523c839e53 |
IEDL.DBID | M48 |
ISSN | 2075-4426 |
IngestDate | Thu Aug 21 18:40:38 EDT 2025 Thu Jul 10 22:01:24 EDT 2025 Wed Jul 23 11:40:52 EDT 2025 Tue Jun 17 21:58:34 EDT 2025 Tue Jun 10 20:59:05 EDT 2025 Wed Jan 29 09:33:48 EST 2025 Tue Jul 01 01:39:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | deep learning spectogram CNN Alzheimer’s disease FFT EEG frontotemporal dementia |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3507-c75f3e6fd52737683324e1be61967ebb6d7d0f793683eb3cf52c9e0523c839e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6757-1698 0000-0003-0675-9088 0000-0001-9043-1290 0000-0001-9640-7005 0000-0002-0615-783X 0000-0001-5638-7580 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/jpm15010027 |
PMID | 39852219 |
PQID | 3159513838 |
PQPubID | 2032376 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11766904 proquest_miscellaneous_3159686951 proquest_journals_3159513838 gale_infotracmisc_A832546711 gale_infotracacademiconefile_A832546711 pubmed_primary_39852219 crossref_primary_10_3390_jpm15010027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250114 |
PublicationDateYYYYMMDD | 2025-01-14 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250114 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of personalized medicine |
PublicationTitleAlternate | J Pers Med |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_13 Schirrmeister (ref_45) 2017; 38 ref_57 ref_12 ref_11 Rostamikia (ref_27) 2024; 18 ref_52 Neary (ref_8) 2005; 4 ref_51 ref_18 ref_59 Delorme (ref_38) 2004; 134 Amodio (ref_17) 1999; 110 Gao (ref_3) 2019; 67 Miltiadous (ref_15) 2023; 11 ref_61 ref_60 Cheng (ref_28) 2023; 26 Sharmila (ref_21) 2018; 42 Singh (ref_22) 2020; 14 Cassani (ref_54) 2018; 2018 Xie (ref_50) 2024; 17 ref_24 Cochran (ref_19) 1967; 55 Shin (ref_5) 2005; 13 ref_20 Singh (ref_23) 2021; 116 Xia (ref_29) 2023; 9 Fide (ref_48) 2021; 132 ref_26 Leela (ref_56) 2023; 27 Miyakoshi (ref_41) 2023; 46 Mumtaz (ref_25) 2018; 56 Trambaiolli (ref_33) 2017; 128 Emilien (ref_14) 2000; 57 Wan (ref_55) 2021; 421 ref_35 ref_34 ref_31 Wang (ref_32) 2024; 46 ref_30 Atri (ref_1) 2019; 103 Sun (ref_58) 2024; 5 ref_39 Kurlowicz (ref_37) 1999; 25 Bergstra (ref_46) 2015; 8 Miltiadous (ref_4) 2023; 11 Azami (ref_10) 2023; 15 Waytowich (ref_44) 2018; 15 ref_47 ref_42 ref_40 Kirshner (ref_7) 2014; 10 ref_2 Rodinskaia (ref_62) 2022; 2 Miltiadous (ref_36) 2023; 1 Fonseca (ref_49) 2011; 42 Lawhern (ref_43) 2018; 15 ref_9 Ishii (ref_53) 2010; 10 Geraedts (ref_16) 2018; 91 ref_6 |
References_xml | – volume: 15 start-page: 133 year: 2023 ident: ref_10 article-title: Beta to Theta Power Ratio in EEG Periodic Components as a Potential Biomarker in Mild Cognitive Impairment and Alzheimer’s Dementia publication-title: Alzheimer’s Res. Ther. doi: 10.1186/s13195-023-01280-z – volume: 9 start-page: e14858 year: 2023 ident: ref_29 article-title: A Novel Method for Diagnosing Alzheimer’s Disease Using Deep Pyramid CNN Based on EEG Signals publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e14858 – volume: 5 start-page: e532 year: 2024 ident: ref_58 article-title: Precise Prediction of Cerebrospinal Fluid Amyloid Beta Protein for Early Alzheimer’s Disease Detection Using Multimodal Data publication-title: MedComm doi: 10.1002/mco2.532 – ident: ref_52 doi: 10.1186/s12868-024-00877-w – ident: ref_61 doi: 10.1109/TELFOR59449.2023.10372658 – volume: 46 start-page: zsad241 year: 2023 ident: ref_41 article-title: Artifact Subspace Reconstruction: A Candidate for a Dream Solution for EEG Studies, Sleep or Awake publication-title: Sleep doi: 10.1093/sleep/zsad241 – volume: 27 start-page: 100749 year: 2023 ident: ref_56 article-title: Prediction and Classification of Alzheimer Disease Categories Using Integrated Deep Transfer Learning Approach publication-title: Meas. Sens. doi: 10.1016/j.measen.2023.100749 – ident: ref_31 doi: 10.3390/a16050255 – volume: 1 start-page: 88 year: 2023 ident: ref_36 article-title: A Dataset of EEG Recordings from: Alzheimer’s Disease, Frontotemporal Dementia and Healthy Subjects publication-title: OpenNeuro – ident: ref_39 – ident: ref_51 doi: 10.3390/bioengineering11050418 – volume: 134 start-page: 9 year: 2004 ident: ref_38 article-title: EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref_42 – ident: ref_57 doi: 10.3389/fnhum.2021.700627 – ident: ref_60 doi: 10.3390/brainsci14050487 – ident: ref_24 doi: 10.3390/brainsci13040695 – volume: 116 start-page: 845 year: 2021 ident: ref_23 article-title: Detection of Epileptic Seizure EEG Signal Using Multiscale Entropies and Complete Ensemble Empirical Mode Decomposition publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-020-07742-z – volume: 15 start-page: 056013 year: 2018 ident: ref_43 article-title: EEGNet: A Compact Convolutional Neural Network for EEG-Based Brain–Computer Interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – ident: ref_13 doi: 10.1109/CBMS58004.2023.00335 – volume: 15 start-page: 066031 year: 2018 ident: ref_44 article-title: Compact Convolutional Neural Networks for Classification of Asynchronous Steady-State Visual Evoked Potentials publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aae5d8 – volume: 110 start-page: 1334 year: 1999 ident: ref_17 article-title: Spectral versus Visual EEG Analysis in Mild Hepatic Encephalopathy publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00076-0 – volume: 10 start-page: 1045 year: 2014 ident: ref_7 article-title: Frontotemporal Dementia and Primary Progressive Aphasia, a Review publication-title: Neuropsychiatr. Dis. Treat. doi: 10.2147/NDT.S38821 – ident: ref_20 – ident: ref_47 doi: 10.3389/fnagi.2013.00060 – ident: ref_26 doi: 10.3389/fnhum.2018.00456 – volume: 38 start-page: 5391 year: 2017 ident: ref_45 article-title: Deep Learning with Convolutional Neural Networks for EEG Decoding and Visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – volume: 2 start-page: 100098 year: 2022 ident: ref_62 article-title: EEG Coherence as a Marker of Functional Connectivity Disruption in Alzheimer’s Disease publication-title: Aging Health Res. doi: 10.1016/j.ahr.2022.100098 – volume: 13 start-page: 469 year: 2005 ident: ref_5 article-title: Neuropsychiatric Symptoms and Quality of Life in Alzheimer Disease publication-title: Am. J. Geriatr. Psychiatry doi: 10.1097/00019442-200506000-00005 – ident: ref_11 – ident: ref_6 doi: 10.3390/diagnostics11081437 – volume: 55 start-page: 1664 year: 1967 ident: ref_19 article-title: What Is the Fast Fourier Transform? publication-title: Proc. IEEE doi: 10.1109/PROC.1967.5957 – volume: 17 start-page: 2995 year: 2024 ident: ref_50 article-title: Resting-State Alpha Activity in the Frontal and Occipital Lobes and Assessment of Cognitive Impairment in Depression Patients publication-title: Psychol. Res. Behav. Manag. doi: 10.2147/PRBM.S459954 – ident: ref_40 doi: 10.3390/app13031605 – volume: 103 start-page: 263 year: 2019 ident: ref_1 article-title: The Alzheimer’s Disease Clinical Spectrum publication-title: Med. Clin. N. Am. doi: 10.1016/j.mcna.2018.10.009 – volume: 18 start-page: 3447 year: 2024 ident: ref_27 article-title: EEG-Based Classification of Alzheimer’s Disease and Frontotemporal Dementia: A Comprehensive Analysis of Discriminative Features publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-024-10152-7 – volume: 42 start-page: 185 year: 2011 ident: ref_49 article-title: EEG Theta and Alpha Reactivity on Opening the Eyes in the Diagnosis of Alzheimer’s Disease publication-title: Clin. EEG Neurosci. doi: 10.1177/155005941104200308 – volume: 46 start-page: 751 year: 2024 ident: ref_32 article-title: The Effect of Aperiodic Components in Distinguishing Alzheimer’s Disease from Frontotemporal Dementia publication-title: Geroscience doi: 10.1007/s11357-023-01041-8 – ident: ref_35 doi: 10.3390/data8060095 – volume: 8 start-page: 014008 year: 2015 ident: ref_46 article-title: Hyperopt: A Python Library for Model Selection and Hyperparameter Optimization publication-title: Comput. Sci. Discov. doi: 10.1088/1749-4699/8/1/014008 – volume: 128 start-page: 2058 year: 2017 ident: ref_33 article-title: Feature Selection before EEG Classification Supports the Diagnosis of Alzheimer’s Disease publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2017.06.251 – volume: 11 start-page: 71840 year: 2023 ident: ref_4 article-title: DICE-Net: A Novel Convolution-Transformer Architecture for Alzheimer Detection in EEG Signals publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3294618 – volume: 11 start-page: 564 year: 2023 ident: ref_15 article-title: Machine Learning Algorithms for Epilepsy Detection Based on Published EEG Databases: A Systematic Review publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3232563 – volume: 56 start-page: 233 year: 2018 ident: ref_25 article-title: A Machine Learning Framework Involving EEG-Based Functional Connectivity to Diagnose Major Depressive Disorder (MDD) publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-017-1685-z – ident: ref_2 – ident: ref_12 – volume: 25 start-page: 8 year: 1999 ident: ref_37 article-title: The Mini-Mental State Examination (MMSE) publication-title: J. Gerontol. Nurs. – ident: ref_18 doi: 10.1016/j.bspc.2022.103646 – volume: 10 start-page: 138 year: 2010 ident: ref_53 article-title: Frontal Shift of Posterior Alpha Activity Is Correlated with Cognitive Impairment in Early Alzheimer’s Disease: A Magnetoencephalography-Beamformer Study publication-title: Psychogeriatrics doi: 10.1111/j.1479-8301.2010.00326.x – volume: 67 start-page: 1361 year: 2019 ident: ref_3 article-title: Incidence of Dementia and Alzheimer Disease Over Time: A Meta-Analysis publication-title: J. Am. Geriatr. Soc. doi: 10.1111/jgs.16027 – ident: ref_9 doi: 10.3390/ijms241411732 – ident: ref_59 doi: 10.3390/diagnostics14192189 – volume: 91 start-page: 871 year: 2018 ident: ref_16 article-title: Clinical Correlates of Quantitative EEG in Parkinson Disease publication-title: Neurology doi: 10.1212/WNL.0000000000006473 – volume: 132 start-page: 2019 year: 2021 ident: ref_48 article-title: Resting-State EEG Alpha/Theta Power Ratio Discriminates Early-Onset Alzheimer’s Disease from Healthy Controls publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2021.05.012 – volume: 57 start-page: 454 year: 2000 ident: ref_14 article-title: Prospects for Pharmacological Intervention in Alzheimer Disease publication-title: Arch. Neurol. doi: 10.1001/archneur.57.4.454 – volume: 26 start-page: 1303 year: 2023 ident: ref_28 article-title: Multi-Scale Spatial–Temporal Convolutional Neural Network for Skeleton-Based Action Recognition publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-023-01156-w – volume: 421 start-page: 1 year: 2021 ident: ref_55 article-title: A Review on Transfer Learning in EEG Signal Analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.017 – volume: 2018 start-page: 5174815 year: 2018 ident: ref_54 article-title: Systematic Review on Resting-State EEG for Alzheimer’s Disease Diagnosis and Progression Assessment publication-title: Dis. Markers doi: 10.1155/2018/5174815 – volume: 42 start-page: 1 year: 2018 ident: ref_21 article-title: Epileptic Seizure Detection Using DWT-Based Approximate Entropy, Shannon Entropy and Support Vector Machine: A Case Study publication-title: J. Med. Eng. Technol. doi: 10.1080/03091902.2017.1394389 – volume: 4 start-page: 771 year: 2005 ident: ref_8 article-title: Frontotemporal Dementia publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(05)70223-4 – ident: ref_34 doi: 10.3389/fnhum.2023.1190203 – ident: ref_30 doi: 10.3389/fnins.2023.1272834 – volume: 14 start-page: 239 year: 2020 ident: ref_22 article-title: Multiclass Classification of EEG Signal for Epilepsy Detection Using DWT Based SVD and Fuzzy KNN Classifier publication-title: Intell. Decis. Technol. |
SSID | ssj0000852260 |
Score | 2.319273 |
Snippet | Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing... Alzheimer's disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and... Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing... Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 27 |
SubjectTerms | Advertising executives Alzheimer's disease Artificial intelligence Biomarkers Brain research Classification Cognitive ability Deep learning Dementia Dementia disorders Development and progression Disease Diseases EEG Electroencephalography Fourier transforms Frontotemporal dementia Greece Machine learning Magnetic resonance imaging Memory Neural networks Neurodegeneration Neurodegenerative diseases Neurophysiology Older people Patients Signal processing Tomography Wavelet transforms |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwEB5RkKpeqpb-pdDKSEicLOJ14iQntMAuCImoQiBxizb2RIAgu2UXDpx4DV6vT9KZxLvd9MAll3GUaGY88409PwDbSVzFkXWVzCp6RKmycoS9VNpSK0yNU3rEtcOnuTm-iE4u40t_4Db1aZVzm9gYaje2fEa-q8nvxoriqXRv8lvy1Ci-XfUjNN7AGpnglIKvtf1B_utsccpCgILwRdgW5mmK73dvJneEgbjxaNJxRf8b5CWP1M2WXHI_ww_w3uNG0W8F_RFWsF6Ht6f-ZvwTYF_k40e8FQd5LvfJNTkxnOddCQKmon_7dIXXd3j_5_llKg7bexlxiLMmF6sWTe6AGAyOBI-kn7VpW-KsSZT19Un19DNcDAfnB8fSj1CQVhPSk5ZkodFUjvusUWShCT-hKpHCJpNgWRqXuLCiPUokCqttFfdshnxUbAk5Yay_wGo9rvEbCKNdVpoYLXcTrka6DKMyoeglxAozlyYBbM-5WUzaThkFRRjM9GKJ6QHsMKcL3j_ETjvyZQD0Ee5EVfTJxMRkvZUKYLOzkvTedslzWRV-302Lf1oSwNaCzG9yLlmN44d2jUkNrQvgayvaxQ_rjBVGZQGkHaEvFnA37i6lvr5qunIrbrWZhdH31_9rA971eIRwqKSKNmF1dv-APwjXzMqfXnn_ApS2-iM priority: 102 providerName: ProQuest |
Title | A Novel CNN-Based Framework for Alzheimer’s Disease Detection Using EEG Spectrogram Representations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39852219 https://www.proquest.com/docview/3159513838 https://www.proquest.com/docview/3159686951 https://pubmed.ncbi.nlm.nih.gov/PMC11766904 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEB7ygNJLafpUm5gtBHLaVuuVVtIhFCexEwoWJcTgm7BWI5LgyKntlCan_I3-vf6SzuhhrFB60WV30TKzu_N9u_MA2A_83Pdslssop48XKisn2A2lTbXC0GRKTzh2eBibs5H3beyPN6ApxlkLcPFPasf1pEbz6edfP-6_0oY_ZMZJlP3L9e0NwRrOJRpswjaZpIB36LDG-deVMxbBDL5v6ZKJlB6ZpSpW7-n4lnV6ekavGam2A-WaRRq8hBc1lBS9Svc7sIHFK3g2rB_LXwP2RDz7iVNxHMfyiKxVJgaNK5YgrCp604dLvLrB-Z_H3wtxUj3ViBNclu5ZhSjdCUS_fyq4Sv2y8uQS56XvbB2yVCzewGjQvzg-k3VVBWk1gT9pST0aTZ5x6jUiG5ogFaoUiUmZANPUZEHm5rRtqYmYts39ro2Qb48tgSn09VvYKmYFvgdhdBalxkfLCYbziU5dLw2I0LiYY5SFgQP7jTST2yp5RkKkg4WerAndgQOWdMJKJnHaSR0ZQD_h5FRJj04dnw50pRzYbfWkrWDbzY2ukmYlJZoAm6-IiIcOfFo180h2Lytwdlf1MaGhfg68q1S7mrCOePGoyIGwpfRVB07Q3W4pri7LRN2Ks29Grvfh_9P-CM-7XFXYVVJ5u7C1nN_hHkGdZdqB7aN-_P28A5unY9UpF_Vf9Lj_Aw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqQRcEOVpKLBIRZxW9Xr9PKAqbRJS2liotFJvbrweq0WtE5oUVE79G_wJfhS_hBk_QsyBWy-57FpZzfOb3XkAbARe7rkmy2WU048bKiPH6ITSpFph6GdKj7l2eBT7wyP347F3vAK_mloYTqtsbGJpqLOJ4TvyTU1-11MUT4Vb06-Sp0bx62ozQqMSiz28_k4h2-z9bo_4-9ZxBv3DnaGspwpIown8SEPH0-jnGbceI7CtCVKgSpEiCT_ANPWzILNzEltaokjT5J5jIuTbU0NgAnlKBJn8VVdTKNOB1e1-_OlgcatDAIbwjF0VAmod2ZtfpheEubjRadByff86gCUP2M7OXHJ3gwdwv8apolsJ1hqsYPEQ7ozql_hHgF0RT77hudiJY7lNrjATgybPSxAQFt3zH6d4doGXv29-zkSvegcSPZyXuV-FKHMVRL__QXyelpN4OE1MHJSJuXU9VDF7DEe3Qtwn0CkmBT4D4essSn0PDXcvzsc6td00oGjJxhyjLAws2GiomUyrzhwJRTRM9GSJ6Ba8Y0onrK9ETjOuyw7oT7jzVdIlk-aRt1DKgvXWTtIz015ueJXUej5L_kqlBW8Wy_wl564VOLmq9vihT_sseFqxdnFgHbHAqMiCsMX0xQbu_t1eKc5Oyy7gilt7Rrb7_P_neg13h4ej_WR_N957AfccHl9sK6ncdejML6_wJWGqefqqFmQBJ7etO38A7Fs11w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5VqVRxQfxjKLBIRZxW8XrttX1AKG0SWkqtqlCpNxOvx2pR64QmBcGJ1-BVeByehBn_hJgDt15y2bWymp3Z-Wb3mxmArTAoAt_mhYwL-vEjZeUEvUjaTCuMTK70hHOHDxKze-y_PQlO1uBXmwvDtMr2TKwO6nxq-Y68r8nvBoriqahfNLSIw-H49eyz5A5S_NLattOoVWQfv32l8G3-am9Ie_3C88ajDzu7sukwIK0mICQtLVWjKXIuQ0bAWxO8QJUhRRUmxCwzeZi7BakwDVHUaYvAszHyTaolYIHcMYKO__WQoiK3B-vbo-TwaHnDQ2CGsI1bJwVqHbv9T7MLwl9c9DTsuMF_ncGKN-wyNVdc3_gW3GwwqxjUSnYb1rC8AxsHzav8XcCBSKZf8FzsJIncJreYi3HL-RIEisXg_Pspnl3g5e8fP-diWL8JiSEuKh5YKSreghiN3oj3s6orD1PGxFFF0m1yo8r5PTi-FuHeh145LfEhCKPzODMBWq5kXEx05vpZSJGTiwXGeRQ6sNVKM53VVTpSim5Y6OmK0B14yZJO2XZJnHbSpCDQn3AVrHRAx1tAnkMpBzY7M8nmbHe43au0sfl5-ldDHXi-HOYvmcdW4vSqnmMiQ_MceFBv7XLBOmaFUbEDUWfTlxO4Enh3pDw7rSqCKy7zGbv-o_-v6xlskM2k7_aS_cdww-NOxq6Syt-E3uLyCp8QvFpkTxs9FvDxuk3nDzO-Ogw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+CNN-Based+Framework+for+Alzheimer%E2%80%99s+Disease+Detection+Using+EEG+Spectrogram+Representations&rft.jtitle=Journal+of+personalized+medicine&rft.au=Stefanou%2C+Konstantinos&rft.au=Tzimourta%2C+Katerina+D&rft.au=Bellos%2C+Christos&rft.au=Stergios%2C+Georgios&rft.date=2025-01-14&rft.pub=MDPI+AG&rft.issn=2075-4426&rft.eissn=2075-4426&rft.volume=15&rft.issue=1&rft_id=info:doi/10.3390%2Fjpm15010027&rft.externalDocID=A832546711 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4426&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4426&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4426&client=summon |