Evolution of Cationic Vacancy Defects: A Motif for Surface Restructuration of OER Precatalyst

Defects have been found to enhance the electrocatalytic performance of NiFe‐LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are gene...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 51; pp. 26829 - 26836
Main Authors Wu, Yi‐jin, Yang, Jian, Tu, Teng‐xiu, Li, Wei‐qiong, Zhang, Peng‐fang, Zhou, Yao, Li, Jian‐feng, Li, Jun‐tao, Sun, Shi‐Gang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 13.12.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Defects have been found to enhance the electrocatalytic performance of NiFe‐LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are generated via aprotic‐solvent‐solvation‐induced leaking of metal cations from NiFe‐LDH nanosheets. DFT calculation and in situ Raman spectroscopic observation both reveal that the as‐generated cationic vacancy defects tend to exist as VM (M=Ni/Fe); under increasing applied voltage, they tend to assume the configuration VMOH, and eventually transform into VMOH‐H which is the most active yet most difficult to form thermodynamically. Meanwhile, with increasing voltage the surface crystalline Ni(OH)x in the NiFe‐LDH is gradually converted into disordered status; under sufficiently high voltage when oxygen bubbles start to evolve, local NiOOH species become appearing, which is the residual product from the formation of vacancy VMOH‐H. Thus, we demonstrate that the cationic defects evolve along with increasing applied voltage (VM → VMOH → VMOH‐H), and reveal the essential motif for the surface restructuration process of NiFe‐LDH (crystalline Ni(OH)x → disordered Ni(OH)x → NiOOH). Our work provides insight into defect‐induced surface restructuration behaviors of NiFe‐LDH as a typical precatalyst for efficient OER electrocatalysis. Along with increasing voltage during the OER process, the structural evolution of cationic defects within NiFe‐LDH, where the simple vacancy VM changes to VMOH and then to the most reactive VMOH‐H, and the surface restructuration, where surface crystalline Ni(OH)x is converted to disordered Ni(OH)x and then to the surface local NiOOH species, are voltage‐regulated concurrent events defining the eventual catalytic performance of the precatalyst.
AbstractList Defects have been found to enhance the electrocatalytic performance of NiFe-LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are generated via aprotic-solvent-solvation-induced leaking of metal cations from NiFe-LDH nanosheets. DFT calculation and in situ Raman spectroscopic observation both reveal that the as-generated cationic vacancy defects tend to exist as VM (M=Ni/Fe); under increasing applied voltage, they tend to assume the configuration VMOH , and eventually transform into VMOH-H which is the most active yet most difficult to form thermodynamically. Meanwhile, with increasing voltage the surface crystalline Ni(OH)x in the NiFe-LDH is gradually converted into disordered status; under sufficiently high voltage when oxygen bubbles start to evolve, local NiOOH species become appearing, which is the residual product from the formation of vacancy VMOH-H . Thus, we demonstrate that the cationic defects evolve along with increasing applied voltage (VM → VMOH → VMOH-H ), and reveal the essential motif for the surface restructuration process of NiFe-LDH (crystalline Ni(OH)x → disordered Ni(OH)x → NiOOH). Our work provides insight into defect-induced surface restructuration behaviors of NiFe-LDH as a typical precatalyst for efficient OER electrocatalysis.Defects have been found to enhance the electrocatalytic performance of NiFe-LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are generated via aprotic-solvent-solvation-induced leaking of metal cations from NiFe-LDH nanosheets. DFT calculation and in situ Raman spectroscopic observation both reveal that the as-generated cationic vacancy defects tend to exist as VM (M=Ni/Fe); under increasing applied voltage, they tend to assume the configuration VMOH , and eventually transform into VMOH-H which is the most active yet most difficult to form thermodynamically. Meanwhile, with increasing voltage the surface crystalline Ni(OH)x in the NiFe-LDH is gradually converted into disordered status; under sufficiently high voltage when oxygen bubbles start to evolve, local NiOOH species become appearing, which is the residual product from the formation of vacancy VMOH-H . Thus, we demonstrate that the cationic defects evolve along with increasing applied voltage (VM → VMOH → VMOH-H ), and reveal the essential motif for the surface restructuration process of NiFe-LDH (crystalline Ni(OH)x → disordered Ni(OH)x → NiOOH). Our work provides insight into defect-induced surface restructuration behaviors of NiFe-LDH as a typical precatalyst for efficient OER electrocatalysis.
Defects have been found to enhance the electrocatalytic performance of NiFe‐LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are generated via aprotic‐solvent‐solvation‐induced leaking of metal cations from NiFe‐LDH nanosheets. DFT calculation and in situ Raman spectroscopic observation both reveal that the as‐generated cationic vacancy defects tend to exist as V M (M=Ni/Fe); under increasing applied voltage, they tend to assume the configuration V MOH , and eventually transform into V MOH‐H which is the most active yet most difficult to form thermodynamically. Meanwhile, with increasing voltage the surface crystalline Ni(OH) x in the NiFe‐LDH is gradually converted into disordered status; under sufficiently high voltage when oxygen bubbles start to evolve, local NiOOH species become appearing, which is the residual product from the formation of vacancy V MOH‐H . Thus, we demonstrate that the cationic defects evolve along with increasing applied voltage (V M → V MOH → V MOH‐H ), and reveal the essential motif for the surface restructuration process of NiFe‐LDH (crystalline Ni(OH) x → disordered Ni(OH) x → NiOOH). Our work provides insight into defect‐induced surface restructuration behaviors of NiFe‐LDH as a typical precatalyst for efficient OER electrocatalysis.
Defects have been found to enhance the electrocatalytic performance of NiFe‐LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are generated via aprotic‐solvent‐solvation‐induced leaking of metal cations from NiFe‐LDH nanosheets. DFT calculation and in situ Raman spectroscopic observation both reveal that the as‐generated cationic vacancy defects tend to exist as VM (M=Ni/Fe); under increasing applied voltage, they tend to assume the configuration VMOH, and eventually transform into VMOH‐H which is the most active yet most difficult to form thermodynamically. Meanwhile, with increasing voltage the surface crystalline Ni(OH)x in the NiFe‐LDH is gradually converted into disordered status; under sufficiently high voltage when oxygen bubbles start to evolve, local NiOOH species become appearing, which is the residual product from the formation of vacancy VMOH‐H. Thus, we demonstrate that the cationic defects evolve along with increasing applied voltage (VM → VMOH → VMOH‐H), and reveal the essential motif for the surface restructuration process of NiFe‐LDH (crystalline Ni(OH)x → disordered Ni(OH)x → NiOOH). Our work provides insight into defect‐induced surface restructuration behaviors of NiFe‐LDH as a typical precatalyst for efficient OER electrocatalysis. Along with increasing voltage during the OER process, the structural evolution of cationic defects within NiFe‐LDH, where the simple vacancy VM changes to VMOH and then to the most reactive VMOH‐H, and the surface restructuration, where surface crystalline Ni(OH)x is converted to disordered Ni(OH)x and then to the surface local NiOOH species, are voltage‐regulated concurrent events defining the eventual catalytic performance of the precatalyst.
Defects have been found to enhance the electrocatalytic performance of NiFe‐LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are generated via aprotic‐solvent‐solvation‐induced leaking of metal cations from NiFe‐LDH nanosheets. DFT calculation and in situ Raman spectroscopic observation both reveal that the as‐generated cationic vacancy defects tend to exist as VM (M=Ni/Fe); under increasing applied voltage, they tend to assume the configuration VMOH, and eventually transform into VMOH‐H which is the most active yet most difficult to form thermodynamically. Meanwhile, with increasing voltage the surface crystalline Ni(OH)x in the NiFe‐LDH is gradually converted into disordered status; under sufficiently high voltage when oxygen bubbles start to evolve, local NiOOH species become appearing, which is the residual product from the formation of vacancy VMOH‐H. Thus, we demonstrate that the cationic defects evolve along with increasing applied voltage (VM → VMOH → VMOH‐H), and reveal the essential motif for the surface restructuration process of NiFe‐LDH (crystalline Ni(OH)x → disordered Ni(OH)x → NiOOH). Our work provides insight into defect‐induced surface restructuration behaviors of NiFe‐LDH as a typical precatalyst for efficient OER electrocatalysis.
Author Zhou, Yao
Li, Jun‐tao
Wu, Yi‐jin
Yang, Jian
Zhang, Peng‐fang
Sun, Shi‐Gang
Tu, Teng‐xiu
Li, Wei‐qiong
Li, Jian‐feng
Author_xml – sequence: 1
  givenname: Yi‐jin
  surname: Wu
  fullname: Wu, Yi‐jin
  organization: Hengyang Normal University
– sequence: 2
  givenname: Jian
  surname: Yang
  fullname: Yang, Jian
  organization: Xiamen University
– sequence: 3
  givenname: Teng‐xiu
  surname: Tu
  fullname: Tu, Teng‐xiu
  organization: Hengyang Normal University
– sequence: 4
  givenname: Wei‐qiong
  surname: Li
  fullname: Li, Wei‐qiong
  organization: Xiamen University
– sequence: 5
  givenname: Peng‐fang
  surname: Zhang
  fullname: Zhang, Peng‐fang
  organization: Liaocheng University
– sequence: 6
  givenname: Yao
  orcidid: 0000-0003-4021-6597
  surname: Zhou
  fullname: Zhou, Yao
  email: zhouy@xmu.edu.cn
  organization: Xiamen University
– sequence: 7
  givenname: Jian‐feng
  surname: Li
  fullname: Li, Jian‐feng
  organization: Xiamen University
– sequence: 8
  givenname: Jun‐tao
  surname: Li
  fullname: Li, Jun‐tao
  email: jtli@xmu.edu.cn
  organization: Xiamen University
– sequence: 9
  givenname: Shi‐Gang
  surname: Sun
  fullname: Sun, Shi‐Gang
  organization: Xiamen University
BookMark eNqFkMlLAzEUh4MouF49B7x4mZptsngrtWrBjbrcJMQ0gcg40SSj9L93al1AEE_vHb7v9x6_TbDaxtYBsIvRACNEDkwb3IAggjFhTKyADVwTXFEh6Gq_M0orIWu8DjZzfux5KRHfAPfj19h0JcQWRg9HZrEFC--MNa2dwyPnnS35EA7heSzBQx8TvO6SN9bBqcsldbZ0yXwFXI6n8Co5a4pp5rlsgzVvmux2PucWuD0e34xOq7PLk8loeFZZWiNRcS5nVCj2wBDl1CquuPUCI6pm2DFbc8FmUijJHpTFSM6MooRiLwRTlBPK6BbYX-Y-p_jS9W_pp5CtaxrTuthlTWpJKRZCqh7d-4U-xi61_XeacMQVVhzLnhosKZtizsl5_ZzCk0lzjZFetK0XbevvtnuB_RJsKB-1lGRC87emltpbaNz8nyN6eDEZ_7jvA2KT8Q
CitedBy_id crossref_primary_10_1016_j_jcis_2022_05_160
crossref_primary_10_1021_acssuschemeng_2c05705
crossref_primary_10_1016_j_jcis_2023_03_153
crossref_primary_10_1021_acssuschemeng_4c00318
crossref_primary_10_1016_j_ccr_2024_216235
crossref_primary_10_1016_j_cej_2023_146917
crossref_primary_10_1002_cssc_202401176
crossref_primary_10_1021_acsaem_3c00537
crossref_primary_10_1002_adma_202210727
crossref_primary_10_34133_energymatadv_0040
crossref_primary_10_1039_D3CC05540J
crossref_primary_10_1016_j_fuel_2024_131844
crossref_primary_10_1016_j_jallcom_2023_171304
crossref_primary_10_1016_j_cej_2022_140893
crossref_primary_10_1016_j_apcatb_2023_123470
crossref_primary_10_1016_j_apcatb_2024_123994
crossref_primary_10_1016_j_surfin_2024_104345
crossref_primary_10_1016_j_jcis_2024_05_155
crossref_primary_10_1021_acs_inorgchem_3c00963
crossref_primary_10_1002_advs_202304071
crossref_primary_10_1039_D3QI00026E
crossref_primary_10_1016_j_apcatb_2022_122091
crossref_primary_10_1016_j_jcis_2023_04_095
crossref_primary_10_1016_j_surfcoat_2024_131392
crossref_primary_10_1002_adma_202206576
crossref_primary_10_1002_advs_202409024
crossref_primary_10_1016_j_cej_2024_156430
crossref_primary_10_1016_j_catcom_2023_106698
crossref_primary_10_1039_D4CC04740K
crossref_primary_10_1002_aenm_202203401
crossref_primary_10_1002_anie_202409912
crossref_primary_10_1016_j_apcatb_2023_122955
crossref_primary_10_2139_ssrn_4193789
crossref_primary_10_3390_nano14181533
crossref_primary_10_1016_j_electacta_2024_144607
crossref_primary_10_1021_acs_iecr_3c04471
crossref_primary_10_1016_j_cej_2024_152758
crossref_primary_10_1039_D3TA01869E
crossref_primary_10_1002_smll_202301267
crossref_primary_10_1002_ange_202311909
crossref_primary_10_1007_s12274_024_6869_x
crossref_primary_10_1039_D2TA09035J
crossref_primary_10_1016_j_ijhydene_2024_10_084
crossref_primary_10_1016_j_ijhydene_2022_08_147
crossref_primary_10_2139_ssrn_4120980
crossref_primary_10_1002_smll_202406109
crossref_primary_10_1016_j_cej_2022_139686
crossref_primary_10_1016_j_cej_2024_153270
crossref_primary_10_1039_D3QI01172K
crossref_primary_10_1016_j_ijhydene_2022_09_067
crossref_primary_10_1002_adfm_202413533
crossref_primary_10_1039_D3QM00848G
crossref_primary_10_1021_jacs_3c13746
crossref_primary_10_1021_acsami_5c01983
crossref_primary_10_1016_j_est_2024_115040
crossref_primary_10_1021_acscatal_2c02946
crossref_primary_10_1039_D4CY00314D
crossref_primary_10_1039_D2TA05494A
crossref_primary_10_1039_D4TA06794K
crossref_primary_10_1039_D2NR05167B
crossref_primary_10_1039_D2SC02767D
crossref_primary_10_3390_molecules29184304
crossref_primary_10_1002_smll_202400139
crossref_primary_10_1002_adma_202411134
crossref_primary_10_1002_advs_202408754
crossref_primary_10_1021_acsanm_3c00356
crossref_primary_10_1016_j_cej_2025_159303
crossref_primary_10_1002_ange_202214541
crossref_primary_10_1021_acs_nanolett_2c01124
crossref_primary_10_1016_j_cej_2024_154235
crossref_primary_10_1016_j_jallcom_2024_175634
crossref_primary_10_1021_acsnano_4c03153
crossref_primary_10_1016_j_apsusc_2024_161066
crossref_primary_10_1002_smll_202309769
crossref_primary_10_1016_j_fuel_2025_134482
crossref_primary_10_1021_acsaem_3c03270
crossref_primary_10_1002_ange_202217815
crossref_primary_10_1021_acs_energyfuels_2c03732
crossref_primary_10_1039_D4CY00923A
crossref_primary_10_1002_smll_202306085
crossref_primary_10_1021_acsaem_4c01641
crossref_primary_10_1002_ange_202312644
crossref_primary_10_1002_adfm_202316544
crossref_primary_10_1016_j_apsusc_2023_158810
crossref_primary_10_1021_acs_inorgchem_2c04462
crossref_primary_10_1007_s11837_024_06911_w
crossref_primary_10_1002_ange_202303807
crossref_primary_10_1016_j_mtsust_2023_100601
crossref_primary_10_1021_acscatal_5c00623
crossref_primary_10_1021_acsnano_2c07542
crossref_primary_10_1016_j_electacta_2022_141546
crossref_primary_10_1039_D3EY00168G
crossref_primary_10_1016_j_cej_2024_155435
crossref_primary_10_1016_j_cej_2024_156766
crossref_primary_10_1360_SSC_2023_0119
crossref_primary_10_1002_ange_202409912
crossref_primary_10_1002_inf2_12377
crossref_primary_10_1016_j_jallcom_2024_174458
crossref_primary_10_1360_SSC_2022_0242
crossref_primary_10_1021_acsami_2c14720
crossref_primary_10_1016_j_jcis_2025_01_181
crossref_primary_10_1016_j_jece_2023_109407
crossref_primary_10_3390_molecules28031475
crossref_primary_10_1016_j_ijhydene_2024_05_368
crossref_primary_10_1038_s44221_023_00169_3
crossref_primary_10_1021_acsanm_4c03352
crossref_primary_10_1016_j_nanoen_2024_110545
crossref_primary_10_1021_acs_jpclett_1c04136
crossref_primary_10_1002_adma_202200840
crossref_primary_10_1021_acsanm_4c06065
crossref_primary_10_4274_anatoljmed_2023_37659
crossref_primary_10_1002_anie_202317512
crossref_primary_10_1016_j_ijhydene_2024_07_194
crossref_primary_10_1039_D3CS00756A
crossref_primary_10_1002_adma_202416483
crossref_primary_10_1002_aenm_202201141
crossref_primary_10_1016_j_apcatb_2023_122598
crossref_primary_10_1002_adfm_202417983
crossref_primary_10_1002_adma_202211603
crossref_primary_10_1016_j_jhazmat_2025_137622
crossref_primary_10_1016_j_ijhydene_2025_01_235
crossref_primary_10_1002_adfm_202313770
crossref_primary_10_1002_anie_202420817
crossref_primary_10_1016_j_ceramint_2023_11_392
crossref_primary_10_3390_nano14010016
crossref_primary_10_1002_cplu_202400278
crossref_primary_10_1016_j_apcatb_2024_124140
crossref_primary_10_1002_adfm_202419720
crossref_primary_10_1002_smll_202301609
crossref_primary_10_1002_adfm_202408823
crossref_primary_10_1002_adma_202209876
crossref_primary_10_1002_aenm_202202317
crossref_primary_10_1016_j_electacta_2023_143587
crossref_primary_10_1039_D4TA01848F
crossref_primary_10_1016_j_jcis_2022_07_114
crossref_primary_10_1016_j_mtcomm_2023_107102
crossref_primary_10_1007_s41918_024_00237_6
crossref_primary_10_1002_adfm_202309824
crossref_primary_10_1002_adfm_202412406
crossref_primary_10_1039_D3TA02293E
crossref_primary_10_1002_adma_202304144
crossref_primary_10_1002_ange_202420817
crossref_primary_10_1021_acscatal_3c03804
crossref_primary_10_1021_acscatal_3c00415
crossref_primary_10_1016_j_decarb_2024_100097
crossref_primary_10_1016_j_jcis_2023_11_144
crossref_primary_10_1016_j_enchem_2022_100091
crossref_primary_10_1038_s41467_024_50535_2
crossref_primary_10_1021_acs_energyfuels_3c00769
crossref_primary_10_1002_anie_202312644
crossref_primary_10_1016_j_jmat_2024_02_003
crossref_primary_10_1021_acs_est_4c00120
crossref_primary_10_1016_j_jcis_2024_06_242
crossref_primary_10_1039_D4EE04619F
crossref_primary_10_1021_acscatal_3c05550
crossref_primary_10_1016_j_cej_2025_161821
crossref_primary_10_1007_s12598_024_03006_y
crossref_primary_10_1016_j_apcatb_2023_122692
crossref_primary_10_3390_catal13030496
crossref_primary_10_1007_s12274_022_4575_0
crossref_primary_10_1016_j_apcatb_2024_124259
crossref_primary_10_1016_j_gee_2024_09_012
crossref_primary_10_1021_acsaem_4c01322
crossref_primary_10_1039_D4TA08586H
crossref_primary_10_1002_cctc_202401584
crossref_primary_10_1021_acs_inorgchem_4c00766
crossref_primary_10_1039_D4CC05433D
crossref_primary_10_1038_s41467_023_42292_5
crossref_primary_10_1039_D2TA05953C
crossref_primary_10_1016_j_fuel_2025_134438
crossref_primary_10_1016_j_surfin_2022_102312
crossref_primary_10_1016_j_apsusc_2023_158330
crossref_primary_10_1039_D3CC01493B
crossref_primary_10_1016_j_jcis_2024_05_205
crossref_primary_10_1016_j_cej_2024_150054
crossref_primary_10_1016_j_jechem_2023_06_011
crossref_primary_10_1002_anie_202217815
crossref_primary_10_1007_s12274_023_6155_3
crossref_primary_10_1002_adfm_202500568
crossref_primary_10_1016_j_cej_2022_136432
crossref_primary_10_1016_j_jechem_2023_11_043
crossref_primary_10_1021_jacs_3c13367
crossref_primary_10_1016_j_jelechem_2023_117311
crossref_primary_10_1002_adfm_202301884
crossref_primary_10_1002_adma_202311149
crossref_primary_10_1002_anie_202214541
crossref_primary_10_1007_s12274_024_6646_x
crossref_primary_10_1021_accountsmr_2c00261
crossref_primary_10_1021_acs_inorgchem_4c05429
crossref_primary_10_1016_j_jallcom_2024_177883
crossref_primary_10_1002_advs_202403206
crossref_primary_10_1021_acssuschemeng_1c08618
crossref_primary_10_1007_s40843_023_2734_y
crossref_primary_10_1002_adfm_202401122
crossref_primary_10_1002_adma_202209680
crossref_primary_10_1002_anie_202303807
crossref_primary_10_1016_j_apcata_2024_119772
crossref_primary_10_1021_acs_jpcc_4c04324
crossref_primary_10_1016_j_cej_2024_158217
crossref_primary_10_1016_j_apcatb_2023_122559
crossref_primary_10_1007_s12598_023_02590_9
crossref_primary_10_1016_j_pmatsci_2024_101410
crossref_primary_10_1021_acs_analchem_2c03992
crossref_primary_10_1039_D4SC07257J
crossref_primary_10_1002_smll_202309705
crossref_primary_10_1016_j_ijhydene_2023_10_175
crossref_primary_10_1002_adma_202211523
crossref_primary_10_1016_j_cej_2023_146183
crossref_primary_10_1016_j_jallcom_2025_179677
crossref_primary_10_1039_D4TA04550E
crossref_primary_10_1016_j_jcis_2024_07_183
crossref_primary_10_1021_acscatal_4c01407
crossref_primary_10_3390_catal14030171
crossref_primary_10_1002_smll_202203105
crossref_primary_10_1039_D4CC06285J
crossref_primary_10_1016_j_apcatb_2023_123291
crossref_primary_10_1021_acsanm_4c07004
crossref_primary_10_1002_smll_202408495
crossref_primary_10_1039_D2TA09626A
crossref_primary_10_1016_j_surfin_2023_102857
crossref_primary_10_1002_celc_202400101
crossref_primary_10_1021_acsami_4c10714
crossref_primary_10_1021_acsenergylett_4c01938
crossref_primary_10_1002_ange_202317512
crossref_primary_10_1016_j_est_2023_108073
crossref_primary_10_1002_cctc_202201100
crossref_primary_10_1016_j_jechem_2023_11_023
crossref_primary_10_1021_acsami_4c10721
crossref_primary_10_1038_s41929_024_01209_1
crossref_primary_10_1016_j_mtener_2023_101442
crossref_primary_10_1016_j_apcata_2024_119780
crossref_primary_10_1002_cey2_532
crossref_primary_10_1007_s12274_022_4618_6
crossref_primary_10_1016_j_nanoen_2024_109902
crossref_primary_10_1038_s41467_023_37091_x
crossref_primary_10_1016_j_jallcom_2025_178477
crossref_primary_10_1002_anie_202311909
crossref_primary_10_1016_j_fuel_2024_131462
crossref_primary_10_1021_acs_jpclett_2c03897
crossref_primary_10_1016_j_nanoen_2022_108044
crossref_primary_10_1039_D3GC00684K
crossref_primary_10_1002_smll_202307069
crossref_primary_10_1016_j_jcis_2025_137413
crossref_primary_10_1021_acs_inorgchem_2c04354
crossref_primary_10_1016_j_cej_2024_150841
crossref_primary_10_1002_solr_202300833
crossref_primary_10_1039_D4CY01466A
crossref_primary_10_1002_aenm_202201713
crossref_primary_10_1016_j_electacta_2022_140788
crossref_primary_10_1016_j_cjsc_2023_100200
crossref_primary_10_1016_j_nanoen_2023_108902
crossref_primary_10_1038_s41467_023_37441_9
crossref_primary_10_1002_smll_202406075
crossref_primary_10_1007_s11581_022_04774_2
crossref_primary_10_1016_j_ijhydene_2023_04_241
crossref_primary_10_1016_j_jcis_2025_01_057
crossref_primary_10_1039_D3QI02220J
crossref_primary_10_1021_acssuschemeng_3c07364
crossref_primary_10_1039_D3QI00980G
crossref_primary_10_1016_j_jcis_2024_11_007
crossref_primary_10_1016_j_seppur_2023_125469
crossref_primary_10_1016_j_fmre_2024_04_017
crossref_primary_10_1021_acssuschemeng_4c03672
crossref_primary_10_1016_j_apsusc_2023_156934
crossref_primary_10_1016_j_electacta_2023_143284
crossref_primary_10_1021_acscatal_4c05707
crossref_primary_10_1002_adma_202404772
crossref_primary_10_1021_acscatal_4c04977
crossref_primary_10_1016_j_jcis_2024_11_192
crossref_primary_10_1002_smll_202311713
crossref_primary_10_1016_j_jece_2023_110597
crossref_primary_10_1039_D3QM00801K
crossref_primary_10_1016_j_apcatb_2022_122101
crossref_primary_10_1016_j_jcis_2024_04_169
crossref_primary_10_1016_S1872_2067_24_60117_8
crossref_primary_10_1039_D2TA04879E
crossref_primary_10_1016_j_cej_2024_149383
crossref_primary_10_1021_acsaem_3c00615
crossref_primary_10_3866_PKU_WHXB202305012
crossref_primary_10_1021_acsmaterialslett_4c00835
crossref_primary_10_1002_adfm_202307947
crossref_primary_10_1038_s41578_024_00696_9
crossref_primary_10_1016_j_watres_2024_123077
crossref_primary_10_1007_s41918_024_00219_8
crossref_primary_10_1002_cssc_202400961
crossref_primary_10_1039_D4TA03296A
crossref_primary_10_1021_acs_energyfuels_2c01025
crossref_primary_10_1021_acs_nanolett_4c01078
crossref_primary_10_1002_smll_202402976
crossref_primary_10_1016_S1872_2067_23_64557_7
crossref_primary_10_1021_acs_iecr_4c01666
crossref_primary_10_1002_smll_202306473
crossref_primary_10_1016_j_jallcom_2022_166438
crossref_primary_10_1039_D2DT02908A
crossref_primary_10_1016_j_nanoen_2024_109270
crossref_primary_10_1039_D3CC01593A
crossref_primary_10_1039_D4TA02369B
crossref_primary_10_1016_j_jcis_2022_12_146
crossref_primary_10_1039_D4CS00217B
crossref_primary_10_1002_adfm_202211530
crossref_primary_10_1016_j_jcis_2024_10_026
crossref_primary_10_1002_smll_202301349
crossref_primary_10_1016_j_jece_2024_111946
crossref_primary_10_1002_sstr_202200201
crossref_primary_10_1002_adsu_202300662
crossref_primary_10_1002_smll_202302556
crossref_primary_10_1039_D5NJ00143A
crossref_primary_10_1038_s41467_024_49195_z
crossref_primary_10_1016_j_jcis_2023_11_094
crossref_primary_10_1016_j_electacta_2024_144592
crossref_primary_10_1021_acscatal_3c04067
crossref_primary_10_1016_j_apsusc_2024_160310
crossref_primary_10_3390_su151612240
crossref_primary_10_1002_smll_202400201
crossref_primary_10_1039_D3EE00142C
crossref_primary_10_1016_j_checat_2023_100789
crossref_primary_10_1016_j_cej_2024_153195
crossref_primary_10_1016_j_cclet_2023_109237
crossref_primary_10_1016_j_mtphys_2024_101399
crossref_primary_10_1063_5_0232980
crossref_primary_10_1016_j_cej_2022_135049
crossref_primary_10_1039_D4NR01168F
crossref_primary_10_1002_adfm_202200763
crossref_primary_10_1016_j_apcatb_2023_122600
crossref_primary_10_1016_j_compositesb_2025_112356
crossref_primary_10_1016_j_cej_2022_141169
crossref_primary_10_1016_j_jallcom_2024_177225
crossref_primary_10_1039_D3CC02843G
crossref_primary_10_1016_j_mtchem_2023_101798
crossref_primary_10_1016_j_jelechem_2024_118108
crossref_primary_10_12677_AAC_2023_134053
crossref_primary_10_1039_D4TA07846B
crossref_primary_10_1016_j_ijhydene_2022_11_295
crossref_primary_10_1039_D3NR01948A
crossref_primary_10_1039_D5TA00039D
crossref_primary_10_3390_en17225712
crossref_primary_10_1016_j_fuel_2023_129732
crossref_primary_10_1016_j_ijhydene_2024_02_234
crossref_primary_10_1039_D4TA08773A
crossref_primary_10_1021_acsanm_3c01002
crossref_primary_10_1016_j_apcatb_2023_123027
crossref_primary_10_1039_D4NR05426A
crossref_primary_10_1039_D3QM00423F
crossref_primary_10_1002_smll_202410006
crossref_primary_10_1016_j_checat_2024_101144
crossref_primary_10_1016_j_gee_2024_02_006
crossref_primary_10_1002_aenm_202400975
crossref_primary_10_1016_j_cej_2024_156219
crossref_primary_10_1021_acsaem_3c00521
crossref_primary_10_1039_D3NR05957J
crossref_primary_10_1007_s12598_022_02249_x
crossref_primary_10_1016_j_jcis_2025_137329
crossref_primary_10_1039_D3TA05699F
crossref_primary_10_3389_fchem_2024_1416329
crossref_primary_10_1002_smll_202411577
Cites_doi 10.1039/D1CS00186H
10.1039/C7EE01571B
10.1002/adma.202006784
10.1002/adma.202007344
10.1016/j.jcat.2018.12.012
10.1016/j.nanoen.2020.104761
10.1039/C9EE03634B
10.1021/acsenergylett.9b00867
10.1002/anie.201803136
10.1021/acs.chemmater.9b01263
10.1016/j.coelec.2020.08.013
10.1002/ange.201802923
10.1002/anie.201909939
10.1016/j.apcatb.2020.119740
10.1016/j.nanoen.2020.105606
10.1021/acs.nanolett.0c03950
10.1002/anie.202014210
10.1021/ja4027715
10.1016/j.matt.2020.09.016
10.31635/ccschem.020.202000194
10.1002/anie.201802923
10.1002/ange.201909939
10.1021/ja403102j
10.1038/ncomms5477
10.1002/smtd.201800083
10.1002/anie.201701477
10.1021/acs.chemmater.0c01067
10.1002/adma.201801526
10.1016/j.nanoen.2019.104118
10.1002/smtd.202000016
10.1021/ja502379c
10.1002/adfm.200801566
10.1002/aenm.202100358
10.1002/smll.201703323
10.1002/ange.202014210
10.1002/ange.201701477
10.1038/s41467-019-09765-y
10.1007/s12274-017-1437-2
10.1021/acscatal.9b02264
10.1039/C6EE01046F
10.1002/aenm.201902107
10.1021/ja405351s
10.1016/j.jelechem.2020.114282
10.1039/C9CE01883B
10.1002/adma.201803144
10.1002/ange.201803136
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202112447
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 26836
ExternalDocumentID 10_1002_anie_202112447
ANIE202112447
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Fujian Province
  funderid: No. 2020J05016
– fundername: the National Natural Science Foundation of China
  funderid: No. 22072124
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3507-668d3794b40363c9696cf71039d1e4c5674d87984b9c108da93231f7749362343
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 17:39:16 EDT 2025
Fri Jul 25 10:33:22 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Tue Jul 01 01:18:10 EDT 2025
Wed Jan 22 16:28:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3507-668d3794b40363c9696cf71039d1e4c5674d87984b9c108da93231f7749362343
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4021-6597
PQID 2606919618
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2583317789
proquest_journals_2606919618
crossref_primary_10_1002_anie_202112447
crossref_citationtrail_10_1002_anie_202112447
wiley_primary_10_1002_anie_202112447_ANIE202112447
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 13, 2021
PublicationDateYYYYMMDD 2021-12-13
PublicationDate_xml – month: 12
  year: 2021
  text: December 13, 2021
  day: 13
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 25
2019; 9
2019; 4
2021; 21
2021; 3
2019; 31
2019; 10
2020; 13
2021; 284
2020; 32
2020; 10
2017 2017; 56 129
2021; 50
2014; 136
2019 2019; 58 131
2020; 4
2014; 5
2018; 2
2020; 3
2021; 11
2021; 33
2020; 73
2019; 66
2018 2018; 57 130
2017; 10
2021 2021; 60 133
2013; 135
2018; 30
2020; 871
2020; 22
2009; 19
2019; 370
2016; 9
2018; 14
2021; 81
e_1_2_6_51_2
e_1_2_6_30_3
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_1
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_43_1
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_9_2
e_1_2_6_7_1
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_2
e_1_2_6_45_2
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_50_2
e_1_2_6_50_3
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_33_3
e_1_2_6_35_1
e_1_2_6_33_2
e_1_2_6_39_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_16_1
e_1_2_6_42_2
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_1
e_1_2_6_6_2
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_48_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 135
  start-page: 11580
  year: 2013
  end-page: 11586
  publication-title: J. Am. Chem. Soc.
– volume: 871
  year: 2020
  publication-title: J. Electroanal. Chem.
– volume: 57 130
  start-page: 8921 9059
  year: 2018 2018
  end-page: 8926 9064
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 12329
  year: 2013
  end-page: 12337
  publication-title: J. Am. Chem. Soc.
– volume: 25
  year: 2021
  publication-title: Curr. Opin. Electrochem.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 9
  start-page: 8882
  year: 2019
  end-page: 8892
  publication-title: ACS Catal.
– volume: 81
  year: 2021
  publication-title: Nano Energy
– volume: 370
  start-page: 378
  year: 2019
  end-page: 384
  publication-title: J. Catal.
– volume: 60 133
  start-page: 3773 3817
  year: 2021 2021
  end-page: 3780 3824
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  start-page: 6798
  year: 2019
  end-page: 6807
  publication-title: Chem. Mater.
– volume: 21
  start-page: 492
  year: 2021
  end-page: 499
  publication-title: Nano Lett.
– volume: 135
  start-page: 8452
  year: 2013
  end-page: 8455
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1412
  year: 2019
  end-page: 1418
  publication-title: ACS Energy Lett.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 58 131
  start-page: 1252 1264
  year: 2019 2019
  end-page: 1265 1277
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 284
  year: 2021
  publication-title: Appl. Catal. B
– volume: 73
  year: 2020
  publication-title: Nano Energy
– volume: 56 129
  start-page: 5867 5961
  year: 2017 2017
  end-page: 5871 5965
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 675
  year: 2021
  end-page: 685
  publication-title: CCS Chem.
– volume: 22
  start-page: 1500
  year: 2020
  end-page: 1513
  publication-title: CrystEngComm
– volume: 3
  start-page: 2124
  year: 2020
  end-page: 2137
  publication-title: Matter
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 10
  start-page: 1732
  year: 2017
  end-page: 1739
  publication-title: Nano Res.
– volume: 5
  start-page: 4477
  year: 2014
  publication-title: Nat. Commun.
– volume: 13
  start-page: 1132
  year: 2020
  end-page: 1153
  publication-title: Energy Environ. Sci.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 2020
  year: 2016
  end-page: 2024
  publication-title: Energy Environ. Sci.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 32
  start-page: 4303
  year: 2020
  end-page: 4311
  publication-title: Chem. Mater.
– volume: 50
  start-page: 8790
  year: 2021
  end-page: 8817
  publication-title: Chem. Soc. Rev.
– volume: 19
  start-page: 679
  year: 2009
  end-page: 688
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1743
  year: 2019
  publication-title: Nat. Commun.
– volume: 136
  start-page: 6744
  year: 2014
  end-page: 6753
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 15772 15919
  year: 2019 2019
  end-page: 15777 15924
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 1820
  year: 2017
  end-page: 1827
  publication-title: Energy Environ. Sci.
– ident: e_1_2_6_5_2
  doi: 10.1039/D1CS00186H
– ident: e_1_2_6_31_1
– ident: e_1_2_6_6_2
  doi: 10.1039/C7EE01571B
– ident: e_1_2_6_20_2
  doi: 10.1002/adma.202006784
– ident: e_1_2_6_40_1
– ident: e_1_2_6_16_1
  doi: 10.1002/adma.202007344
– ident: e_1_2_6_42_2
  doi: 10.1016/j.jcat.2018.12.012
– ident: e_1_2_6_28_2
  doi: 10.1016/j.nanoen.2020.104761
– ident: e_1_2_6_1_1
  doi: 10.1039/C9EE03634B
– ident: e_1_2_6_29_2
  doi: 10.1021/acsenergylett.9b00867
– ident: e_1_2_6_30_2
  doi: 10.1002/anie.201803136
– ident: e_1_2_6_14_2
  doi: 10.1021/acs.chemmater.9b01263
– ident: e_1_2_6_36_1
– ident: e_1_2_6_41_2
  doi: 10.1016/j.coelec.2020.08.013
– ident: e_1_2_6_48_2
  doi: 10.1002/ange.201802923
– ident: e_1_2_6_4_1
– ident: e_1_2_6_33_2
  doi: 10.1002/anie.201909939
– ident: e_1_2_6_8_2
  doi: 10.1016/j.apcatb.2020.119740
– ident: e_1_2_6_26_1
  doi: 10.1016/j.nanoen.2020.105606
– ident: e_1_2_6_35_1
  doi: 10.1021/acs.nanolett.0c03950
– ident: e_1_2_6_50_2
  doi: 10.1002/anie.202014210
– ident: e_1_2_6_44_1
– ident: e_1_2_6_12_2
  doi: 10.1021/ja4027715
– ident: e_1_2_6_51_2
  doi: 10.1016/j.matt.2020.09.016
– ident: e_1_2_6_39_1
  doi: 10.31635/ccschem.020.202000194
– ident: e_1_2_6_48_1
  doi: 10.1002/anie.201802923
– ident: e_1_2_6_33_3
  doi: 10.1002/ange.201909939
– ident: e_1_2_6_38_2
  doi: 10.1021/ja403102j
– ident: e_1_2_6_24_1
  doi: 10.1038/ncomms5477
– ident: e_1_2_6_21_1
  doi: 10.1002/smtd.201800083
– ident: e_1_2_6_25_1
  doi: 10.1002/anie.201701477
– ident: e_1_2_6_46_2
  doi: 10.1021/acs.chemmater.0c01067
– ident: e_1_2_6_3_1
  doi: 10.1002/adma.201801526
– ident: e_1_2_6_47_1
  doi: 10.1016/j.nanoen.2019.104118
– ident: e_1_2_6_2_1
  doi: 10.1002/smtd.202000016
– ident: e_1_2_6_37_2
  doi: 10.1021/ja502379c
– ident: e_1_2_6_34_1
  doi: 10.1002/adfm.200801566
– ident: e_1_2_6_9_2
  doi: 10.1002/aenm.202100358
– ident: e_1_2_6_19_2
  doi: 10.1002/smll.201703323
– ident: e_1_2_6_7_1
– ident: e_1_2_6_17_1
– ident: e_1_2_6_50_3
  doi: 10.1002/ange.202014210
– ident: e_1_2_6_25_2
  doi: 10.1002/ange.201701477
– ident: e_1_2_6_32_2
  doi: 10.1038/s41467-019-09765-y
– ident: e_1_2_6_10_1
– ident: e_1_2_6_27_1
– ident: e_1_2_6_15_2
  doi: 10.1007/s12274-017-1437-2
– ident: e_1_2_6_13_1
– ident: e_1_2_6_52_1
  doi: 10.1021/acscatal.9b02264
– ident: e_1_2_6_11_2
  doi: 10.1039/C6EE01046F
– ident: e_1_2_6_23_1
  doi: 10.1002/aenm.201902107
– ident: e_1_2_6_43_1
  doi: 10.1021/ja405351s
– ident: e_1_2_6_45_2
  doi: 10.1016/j.jelechem.2020.114282
– ident: e_1_2_6_18_2
  doi: 10.1039/C9CE01883B
– ident: e_1_2_6_22_1
  doi: 10.1002/adma.201803144
– ident: e_1_2_6_30_3
  doi: 10.1002/ange.201803136
– ident: e_1_2_6_49_1
SSID ssj0028806
Score 2.7218537
Snippet Defects have been found to enhance the electrocatalytic performance of NiFe‐LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration...
Defects have been found to enhance the electrocatalytic performance of NiFe-LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26829
SubjectTerms Aprotic Solvent
Cation Defect Evolution
Cations
Configurations
Crystal defects
Crystal structure
Crystallinity
Electrocatalysts
High voltage
Intermetallic compounds
Iron compounds
Metal ions
Nickel compounds
NiFe-LDH
OER Electrocatalysis
Oxygen
Oxygen evolution reactions
Solvation
Surface Reconstruction
Vacancies
Voltage
Title Evolution of Cationic Vacancy Defects: A Motif for Surface Restructuration of OER Precatalyst
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202112447
https://www.proquest.com/docview/2606919618
https://www.proquest.com/docview/2583317789
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_ii774LU6nRBB8qlubLG19G3NjCpsyP_BFSpImIMombhP0r_euaesmiKBvLU2_7i7J7y653xFyFDJpsMS2J-tcgYMitBephvIYD2RghNQmxdzhXl90b_nFfeN-Jovf8UOUATfsGdl4jR1cqnHtizQUM7DBvwMHBmYoTCfHDVuIigYlf1QAxunSixjzsAp9wdpYD2rzt8_PSl9QcxawZjNOZ5XI4lvdRpOnk-lEneiPbzSO__mZNbKSw1HadPazThbMcIMstYoqcJvkof2WGycdWdpy8VtN76TGYZmemWw7yClt0t5o8mgpYGB6PX21IH46MI6dduqsDB9w2R7QKxhkMWj0Pp5skdtO-6bV9fKSDJ5mgBw9IaKUQRdWHBeANVLraBvicnLqG64bIuRpFMYRV7H261EqAR4y3wLGjGGmZJxtk8XhaGh2CLUwnliBgb3UYl67sqmvYmFCYcHN4qZCvEIlic75yrFsxnPimJaDBIWWlEKrkOOy_Ytj6vixZbXQcJL32HECfp2Ifax_UyGH5WUQNi6gyKEZTaENpqj5YRjFFRJk6vzlTUmzf94uz3b_ctMeWcZj3EHjsypZBL2ZfcBBE3WQ2fons4L8mw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-N7gFeNsaYKBRmJKQ9BZrYdZK9VaWofLSg0iJepih2bAkxtYi2k-Cv312chA9pQhqPSew48d3Zd-e73wHshTw1VGLbS5tCoYEitReplvK4CNLAyFSbjHKH-wPZG4uT61YZTUi5MA4fonK4kWTk6zUJODmkD55QQykFGw08tGBwiwqX4CONSfD5h8MKQSpA9nQJRpx7VIe-xG1sBgcv-7_cl56Uzecqa77nHH0GVX6tCzW53V_M1b5-fAXk-K7fWYVPhUbK2o6FvsAHM1mD5U5ZCO4r_Or-KfiTTS3rOBeuZlepppWZHZo8IuQna7P-dH5jGarB7HJxb5ECbGgcQO3CMRq94Lw7ZBe4zpLf6GE2X4fxUXfU6XlFVQZPc1QePSmjjKMUK0FnwJrQdbQN6UQ5843QLRmKLArjSKhY-80oS1FD5L5FNTPGzZIL_g1qk-nEbACzuKRYSb69zFJqu7KZr2JpQmnR0hKmDl5Jk0QXkOVUOeN34sCWg4QmLakmrQ4_qvZ3Dqzjny0bJYmTQmhnCZp2MvapBE4ddqvHONl0hpJOzHSBbShLzQ_DKK5DkNPzjZGS9uC4W11t_k-n77DcG_XPkrPjwekWrNB9CqjxeQNqSEOzjWrRXO3kjP8XkAwAxg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS-RAEC48YPXFa1cczxaEfYpO0j2dxLdhDjxHmV3FFwnpTjeIMiM6I-ivtyqdxAMWYX1M0rnq6qrqrq8AdkKeGmqx7aV1oTBAkdqLVEN5XARpYGSqTUa1w6c9eXAhjq4aV--q-B0-RJVwI83I7TUp-H1m995AQ6kCG-M7DGBwhgonYVrIekzNG9r9CkAqQOl09UWce9SGvoRtrAd7H-__OC29-ZrvPdZ8yunOQ1p-rNtpcrs7Hqld_fIJx_E7f7MAc4U_yppOgBZhwgyWYKZVtoH7Cdedp0I62dCylkvganaZarLLrG3y_SD7rMlOh6Mby9AJZn_GDxbpz_rGwdOOnZjRA846fXaOVpayRs-Po19w0e38bR14RU8GT3N0HT0po4yjDitBK8CasHW0DWk9OfON0A0ZiiwK40ioWPv1KEvRP-S-RSczxqmSC74MU4PhwKwAs2hQrKTMXmapsF3ZzFexNKG0GGcJUwOvZEmiC8By6ptxlzio5SAhoiUV0Wrwuxp_76A6_jlyveRwUqjsY4KBnYx9aoBTg-3qMhKbVlDSgRmOcQzVqPlhGMU1CHJ2fvGmpNk77FRHq_9z0xb8OG93k5PD3vEazNJp2k3j83WYQhaaDfSJRmozF_tXf13_Zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+Cationic+Vacancy+Defects%3A+A+Motif+for+Surface+Restructuration+of+OER+Precatalyst&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Yi-Jin&rft.au=Yang%2C+Jian&rft.au=Tu%2C+Teng-Xiu&rft.au=Li%2C+Wei-Qiong&rft.date=2021-12-13&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=51&rft.spage=26829&rft_id=info:doi/10.1002%2Fanie.202112447&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon