Evolution of Cationic Vacancy Defects: A Motif for Surface Restructuration of OER Precatalyst
Defects have been found to enhance the electrocatalytic performance of NiFe‐LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are gene...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 51; pp. 26829 - 26836 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
13.12.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Defects have been found to enhance the electrocatalytic performance of NiFe‐LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are generated via aprotic‐solvent‐solvation‐induced leaking of metal cations from NiFe‐LDH nanosheets. DFT calculation and in situ Raman spectroscopic observation both reveal that the as‐generated cationic vacancy defects tend to exist as VM (M=Ni/Fe); under increasing applied voltage, they tend to assume the configuration VMOH, and eventually transform into VMOH‐H which is the most active yet most difficult to form thermodynamically. Meanwhile, with increasing voltage the surface crystalline Ni(OH)x in the NiFe‐LDH is gradually converted into disordered status; under sufficiently high voltage when oxygen bubbles start to evolve, local NiOOH species become appearing, which is the residual product from the formation of vacancy VMOH‐H. Thus, we demonstrate that the cationic defects evolve along with increasing applied voltage (VM → VMOH → VMOH‐H), and reveal the essential motif for the surface restructuration process of NiFe‐LDH (crystalline Ni(OH)x → disordered Ni(OH)x → NiOOH). Our work provides insight into defect‐induced surface restructuration behaviors of NiFe‐LDH as a typical precatalyst for efficient OER electrocatalysis.
Along with increasing voltage during the OER process, the structural evolution of cationic defects within NiFe‐LDH, where the simple vacancy VM changes to VMOH and then to the most reactive VMOH‐H, and the surface restructuration, where surface crystalline Ni(OH)x is converted to disordered Ni(OH)x and then to the surface local NiOOH species, are voltage‐regulated concurrent events defining the eventual catalytic performance of the precatalyst. |
---|---|
AbstractList | Defects have been found to enhance the electrocatalytic performance of NiFe-LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are generated via aprotic-solvent-solvation-induced leaking of metal cations from NiFe-LDH nanosheets. DFT calculation and in situ Raman spectroscopic observation both reveal that the as-generated cationic vacancy defects tend to exist as VM (M=Ni/Fe); under increasing applied voltage, they tend to assume the configuration VMOH , and eventually transform into VMOH-H which is the most active yet most difficult to form thermodynamically. Meanwhile, with increasing voltage the surface crystalline Ni(OH)x in the NiFe-LDH is gradually converted into disordered status; under sufficiently high voltage when oxygen bubbles start to evolve, local NiOOH species become appearing, which is the residual product from the formation of vacancy VMOH-H . Thus, we demonstrate that the cationic defects evolve along with increasing applied voltage (VM → VMOH → VMOH-H ), and reveal the essential motif for the surface restructuration process of NiFe-LDH (crystalline Ni(OH)x → disordered Ni(OH)x → NiOOH). Our work provides insight into defect-induced surface restructuration behaviors of NiFe-LDH as a typical precatalyst for efficient OER electrocatalysis.Defects have been found to enhance the electrocatalytic performance of NiFe-LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are generated via aprotic-solvent-solvation-induced leaking of metal cations from NiFe-LDH nanosheets. DFT calculation and in situ Raman spectroscopic observation both reveal that the as-generated cationic vacancy defects tend to exist as VM (M=Ni/Fe); under increasing applied voltage, they tend to assume the configuration VMOH , and eventually transform into VMOH-H which is the most active yet most difficult to form thermodynamically. Meanwhile, with increasing voltage the surface crystalline Ni(OH)x in the NiFe-LDH is gradually converted into disordered status; under sufficiently high voltage when oxygen bubbles start to evolve, local NiOOH species become appearing, which is the residual product from the formation of vacancy VMOH-H . Thus, we demonstrate that the cationic defects evolve along with increasing applied voltage (VM → VMOH → VMOH-H ), and reveal the essential motif for the surface restructuration process of NiFe-LDH (crystalline Ni(OH)x → disordered Ni(OH)x → NiOOH). Our work provides insight into defect-induced surface restructuration behaviors of NiFe-LDH as a typical precatalyst for efficient OER electrocatalysis. Defects have been found to enhance the electrocatalytic performance of NiFe‐LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are generated via aprotic‐solvent‐solvation‐induced leaking of metal cations from NiFe‐LDH nanosheets. DFT calculation and in situ Raman spectroscopic observation both reveal that the as‐generated cationic vacancy defects tend to exist as V M (M=Ni/Fe); under increasing applied voltage, they tend to assume the configuration V MOH , and eventually transform into V MOH‐H which is the most active yet most difficult to form thermodynamically. Meanwhile, with increasing voltage the surface crystalline Ni(OH) x in the NiFe‐LDH is gradually converted into disordered status; under sufficiently high voltage when oxygen bubbles start to evolve, local NiOOH species become appearing, which is the residual product from the formation of vacancy V MOH‐H . Thus, we demonstrate that the cationic defects evolve along with increasing applied voltage (V M → V MOH → V MOH‐H ), and reveal the essential motif for the surface restructuration process of NiFe‐LDH (crystalline Ni(OH) x → disordered Ni(OH) x → NiOOH). Our work provides insight into defect‐induced surface restructuration behaviors of NiFe‐LDH as a typical precatalyst for efficient OER electrocatalysis. Defects have been found to enhance the electrocatalytic performance of NiFe‐LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are generated via aprotic‐solvent‐solvation‐induced leaking of metal cations from NiFe‐LDH nanosheets. DFT calculation and in situ Raman spectroscopic observation both reveal that the as‐generated cationic vacancy defects tend to exist as VM (M=Ni/Fe); under increasing applied voltage, they tend to assume the configuration VMOH, and eventually transform into VMOH‐H which is the most active yet most difficult to form thermodynamically. Meanwhile, with increasing voltage the surface crystalline Ni(OH)x in the NiFe‐LDH is gradually converted into disordered status; under sufficiently high voltage when oxygen bubbles start to evolve, local NiOOH species become appearing, which is the residual product from the formation of vacancy VMOH‐H. Thus, we demonstrate that the cationic defects evolve along with increasing applied voltage (VM → VMOH → VMOH‐H), and reveal the essential motif for the surface restructuration process of NiFe‐LDH (crystalline Ni(OH)x → disordered Ni(OH)x → NiOOH). Our work provides insight into defect‐induced surface restructuration behaviors of NiFe‐LDH as a typical precatalyst for efficient OER electrocatalysis. Along with increasing voltage during the OER process, the structural evolution of cationic defects within NiFe‐LDH, where the simple vacancy VM changes to VMOH and then to the most reactive VMOH‐H, and the surface restructuration, where surface crystalline Ni(OH)x is converted to disordered Ni(OH)x and then to the surface local NiOOH species, are voltage‐regulated concurrent events defining the eventual catalytic performance of the precatalyst. Defects have been found to enhance the electrocatalytic performance of NiFe‐LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are generated via aprotic‐solvent‐solvation‐induced leaking of metal cations from NiFe‐LDH nanosheets. DFT calculation and in situ Raman spectroscopic observation both reveal that the as‐generated cationic vacancy defects tend to exist as VM (M=Ni/Fe); under increasing applied voltage, they tend to assume the configuration VMOH, and eventually transform into VMOH‐H which is the most active yet most difficult to form thermodynamically. Meanwhile, with increasing voltage the surface crystalline Ni(OH)x in the NiFe‐LDH is gradually converted into disordered status; under sufficiently high voltage when oxygen bubbles start to evolve, local NiOOH species become appearing, which is the residual product from the formation of vacancy VMOH‐H. Thus, we demonstrate that the cationic defects evolve along with increasing applied voltage (VM → VMOH → VMOH‐H), and reveal the essential motif for the surface restructuration process of NiFe‐LDH (crystalline Ni(OH)x → disordered Ni(OH)x → NiOOH). Our work provides insight into defect‐induced surface restructuration behaviors of NiFe‐LDH as a typical precatalyst for efficient OER electrocatalysis. |
Author | Zhou, Yao Li, Jun‐tao Wu, Yi‐jin Yang, Jian Zhang, Peng‐fang Sun, Shi‐Gang Tu, Teng‐xiu Li, Wei‐qiong Li, Jian‐feng |
Author_xml | – sequence: 1 givenname: Yi‐jin surname: Wu fullname: Wu, Yi‐jin organization: Hengyang Normal University – sequence: 2 givenname: Jian surname: Yang fullname: Yang, Jian organization: Xiamen University – sequence: 3 givenname: Teng‐xiu surname: Tu fullname: Tu, Teng‐xiu organization: Hengyang Normal University – sequence: 4 givenname: Wei‐qiong surname: Li fullname: Li, Wei‐qiong organization: Xiamen University – sequence: 5 givenname: Peng‐fang surname: Zhang fullname: Zhang, Peng‐fang organization: Liaocheng University – sequence: 6 givenname: Yao orcidid: 0000-0003-4021-6597 surname: Zhou fullname: Zhou, Yao email: zhouy@xmu.edu.cn organization: Xiamen University – sequence: 7 givenname: Jian‐feng surname: Li fullname: Li, Jian‐feng organization: Xiamen University – sequence: 8 givenname: Jun‐tao surname: Li fullname: Li, Jun‐tao email: jtli@xmu.edu.cn organization: Xiamen University – sequence: 9 givenname: Shi‐Gang surname: Sun fullname: Sun, Shi‐Gang organization: Xiamen University |
BookMark | eNqFkMlLAzEUh4MouF49B7x4mZptsngrtWrBjbrcJMQ0gcg40SSj9L93al1AEE_vHb7v9x6_TbDaxtYBsIvRACNEDkwb3IAggjFhTKyADVwTXFEh6Gq_M0orIWu8DjZzfux5KRHfAPfj19h0JcQWRg9HZrEFC--MNa2dwyPnnS35EA7heSzBQx8TvO6SN9bBqcsldbZ0yXwFXI6n8Co5a4pp5rlsgzVvmux2PucWuD0e34xOq7PLk8loeFZZWiNRcS5nVCj2wBDl1CquuPUCI6pm2DFbc8FmUijJHpTFSM6MooRiLwRTlBPK6BbYX-Y-p_jS9W_pp5CtaxrTuthlTWpJKRZCqh7d-4U-xi61_XeacMQVVhzLnhosKZtizsl5_ZzCk0lzjZFetK0XbevvtnuB_RJsKB-1lGRC87emltpbaNz8nyN6eDEZ_7jvA2KT8Q |
CitedBy_id | crossref_primary_10_1016_j_jcis_2022_05_160 crossref_primary_10_1021_acssuschemeng_2c05705 crossref_primary_10_1016_j_jcis_2023_03_153 crossref_primary_10_1021_acssuschemeng_4c00318 crossref_primary_10_1016_j_ccr_2024_216235 crossref_primary_10_1016_j_cej_2023_146917 crossref_primary_10_1002_cssc_202401176 crossref_primary_10_1021_acsaem_3c00537 crossref_primary_10_1002_adma_202210727 crossref_primary_10_34133_energymatadv_0040 crossref_primary_10_1039_D3CC05540J crossref_primary_10_1016_j_fuel_2024_131844 crossref_primary_10_1016_j_jallcom_2023_171304 crossref_primary_10_1016_j_cej_2022_140893 crossref_primary_10_1016_j_apcatb_2023_123470 crossref_primary_10_1016_j_apcatb_2024_123994 crossref_primary_10_1016_j_surfin_2024_104345 crossref_primary_10_1016_j_jcis_2024_05_155 crossref_primary_10_1021_acs_inorgchem_3c00963 crossref_primary_10_1002_advs_202304071 crossref_primary_10_1039_D3QI00026E crossref_primary_10_1016_j_apcatb_2022_122091 crossref_primary_10_1016_j_jcis_2023_04_095 crossref_primary_10_1016_j_surfcoat_2024_131392 crossref_primary_10_1002_adma_202206576 crossref_primary_10_1002_advs_202409024 crossref_primary_10_1016_j_cej_2024_156430 crossref_primary_10_1016_j_catcom_2023_106698 crossref_primary_10_1039_D4CC04740K crossref_primary_10_1002_aenm_202203401 crossref_primary_10_1002_anie_202409912 crossref_primary_10_1016_j_apcatb_2023_122955 crossref_primary_10_2139_ssrn_4193789 crossref_primary_10_3390_nano14181533 crossref_primary_10_1016_j_electacta_2024_144607 crossref_primary_10_1021_acs_iecr_3c04471 crossref_primary_10_1016_j_cej_2024_152758 crossref_primary_10_1039_D3TA01869E crossref_primary_10_1002_smll_202301267 crossref_primary_10_1002_ange_202311909 crossref_primary_10_1007_s12274_024_6869_x crossref_primary_10_1039_D2TA09035J crossref_primary_10_1016_j_ijhydene_2024_10_084 crossref_primary_10_1016_j_ijhydene_2022_08_147 crossref_primary_10_2139_ssrn_4120980 crossref_primary_10_1002_smll_202406109 crossref_primary_10_1016_j_cej_2022_139686 crossref_primary_10_1016_j_cej_2024_153270 crossref_primary_10_1039_D3QI01172K crossref_primary_10_1016_j_ijhydene_2022_09_067 crossref_primary_10_1002_adfm_202413533 crossref_primary_10_1039_D3QM00848G crossref_primary_10_1021_jacs_3c13746 crossref_primary_10_1021_acsami_5c01983 crossref_primary_10_1016_j_est_2024_115040 crossref_primary_10_1021_acscatal_2c02946 crossref_primary_10_1039_D4CY00314D crossref_primary_10_1039_D2TA05494A crossref_primary_10_1039_D4TA06794K crossref_primary_10_1039_D2NR05167B crossref_primary_10_1039_D2SC02767D crossref_primary_10_3390_molecules29184304 crossref_primary_10_1002_smll_202400139 crossref_primary_10_1002_adma_202411134 crossref_primary_10_1002_advs_202408754 crossref_primary_10_1021_acsanm_3c00356 crossref_primary_10_1016_j_cej_2025_159303 crossref_primary_10_1002_ange_202214541 crossref_primary_10_1021_acs_nanolett_2c01124 crossref_primary_10_1016_j_cej_2024_154235 crossref_primary_10_1016_j_jallcom_2024_175634 crossref_primary_10_1021_acsnano_4c03153 crossref_primary_10_1016_j_apsusc_2024_161066 crossref_primary_10_1002_smll_202309769 crossref_primary_10_1016_j_fuel_2025_134482 crossref_primary_10_1021_acsaem_3c03270 crossref_primary_10_1002_ange_202217815 crossref_primary_10_1021_acs_energyfuels_2c03732 crossref_primary_10_1039_D4CY00923A crossref_primary_10_1002_smll_202306085 crossref_primary_10_1021_acsaem_4c01641 crossref_primary_10_1002_ange_202312644 crossref_primary_10_1002_adfm_202316544 crossref_primary_10_1016_j_apsusc_2023_158810 crossref_primary_10_1021_acs_inorgchem_2c04462 crossref_primary_10_1007_s11837_024_06911_w crossref_primary_10_1002_ange_202303807 crossref_primary_10_1016_j_mtsust_2023_100601 crossref_primary_10_1021_acscatal_5c00623 crossref_primary_10_1021_acsnano_2c07542 crossref_primary_10_1016_j_electacta_2022_141546 crossref_primary_10_1039_D3EY00168G crossref_primary_10_1016_j_cej_2024_155435 crossref_primary_10_1016_j_cej_2024_156766 crossref_primary_10_1360_SSC_2023_0119 crossref_primary_10_1002_ange_202409912 crossref_primary_10_1002_inf2_12377 crossref_primary_10_1016_j_jallcom_2024_174458 crossref_primary_10_1360_SSC_2022_0242 crossref_primary_10_1021_acsami_2c14720 crossref_primary_10_1016_j_jcis_2025_01_181 crossref_primary_10_1016_j_jece_2023_109407 crossref_primary_10_3390_molecules28031475 crossref_primary_10_1016_j_ijhydene_2024_05_368 crossref_primary_10_1038_s44221_023_00169_3 crossref_primary_10_1021_acsanm_4c03352 crossref_primary_10_1016_j_nanoen_2024_110545 crossref_primary_10_1021_acs_jpclett_1c04136 crossref_primary_10_1002_adma_202200840 crossref_primary_10_1021_acsanm_4c06065 crossref_primary_10_4274_anatoljmed_2023_37659 crossref_primary_10_1002_anie_202317512 crossref_primary_10_1016_j_ijhydene_2024_07_194 crossref_primary_10_1039_D3CS00756A crossref_primary_10_1002_adma_202416483 crossref_primary_10_1002_aenm_202201141 crossref_primary_10_1016_j_apcatb_2023_122598 crossref_primary_10_1002_adfm_202417983 crossref_primary_10_1002_adma_202211603 crossref_primary_10_1016_j_jhazmat_2025_137622 crossref_primary_10_1016_j_ijhydene_2025_01_235 crossref_primary_10_1002_adfm_202313770 crossref_primary_10_1002_anie_202420817 crossref_primary_10_1016_j_ceramint_2023_11_392 crossref_primary_10_3390_nano14010016 crossref_primary_10_1002_cplu_202400278 crossref_primary_10_1016_j_apcatb_2024_124140 crossref_primary_10_1002_adfm_202419720 crossref_primary_10_1002_smll_202301609 crossref_primary_10_1002_adfm_202408823 crossref_primary_10_1002_adma_202209876 crossref_primary_10_1002_aenm_202202317 crossref_primary_10_1016_j_electacta_2023_143587 crossref_primary_10_1039_D4TA01848F crossref_primary_10_1016_j_jcis_2022_07_114 crossref_primary_10_1016_j_mtcomm_2023_107102 crossref_primary_10_1007_s41918_024_00237_6 crossref_primary_10_1002_adfm_202309824 crossref_primary_10_1002_adfm_202412406 crossref_primary_10_1039_D3TA02293E crossref_primary_10_1002_adma_202304144 crossref_primary_10_1002_ange_202420817 crossref_primary_10_1021_acscatal_3c03804 crossref_primary_10_1021_acscatal_3c00415 crossref_primary_10_1016_j_decarb_2024_100097 crossref_primary_10_1016_j_jcis_2023_11_144 crossref_primary_10_1016_j_enchem_2022_100091 crossref_primary_10_1038_s41467_024_50535_2 crossref_primary_10_1021_acs_energyfuels_3c00769 crossref_primary_10_1002_anie_202312644 crossref_primary_10_1016_j_jmat_2024_02_003 crossref_primary_10_1021_acs_est_4c00120 crossref_primary_10_1016_j_jcis_2024_06_242 crossref_primary_10_1039_D4EE04619F crossref_primary_10_1021_acscatal_3c05550 crossref_primary_10_1016_j_cej_2025_161821 crossref_primary_10_1007_s12598_024_03006_y crossref_primary_10_1016_j_apcatb_2023_122692 crossref_primary_10_3390_catal13030496 crossref_primary_10_1007_s12274_022_4575_0 crossref_primary_10_1016_j_apcatb_2024_124259 crossref_primary_10_1016_j_gee_2024_09_012 crossref_primary_10_1021_acsaem_4c01322 crossref_primary_10_1039_D4TA08586H crossref_primary_10_1002_cctc_202401584 crossref_primary_10_1021_acs_inorgchem_4c00766 crossref_primary_10_1039_D4CC05433D crossref_primary_10_1038_s41467_023_42292_5 crossref_primary_10_1039_D2TA05953C crossref_primary_10_1016_j_fuel_2025_134438 crossref_primary_10_1016_j_surfin_2022_102312 crossref_primary_10_1016_j_apsusc_2023_158330 crossref_primary_10_1039_D3CC01493B crossref_primary_10_1016_j_jcis_2024_05_205 crossref_primary_10_1016_j_cej_2024_150054 crossref_primary_10_1016_j_jechem_2023_06_011 crossref_primary_10_1002_anie_202217815 crossref_primary_10_1007_s12274_023_6155_3 crossref_primary_10_1002_adfm_202500568 crossref_primary_10_1016_j_cej_2022_136432 crossref_primary_10_1016_j_jechem_2023_11_043 crossref_primary_10_1021_jacs_3c13367 crossref_primary_10_1016_j_jelechem_2023_117311 crossref_primary_10_1002_adfm_202301884 crossref_primary_10_1002_adma_202311149 crossref_primary_10_1002_anie_202214541 crossref_primary_10_1007_s12274_024_6646_x crossref_primary_10_1021_accountsmr_2c00261 crossref_primary_10_1021_acs_inorgchem_4c05429 crossref_primary_10_1016_j_jallcom_2024_177883 crossref_primary_10_1002_advs_202403206 crossref_primary_10_1021_acssuschemeng_1c08618 crossref_primary_10_1007_s40843_023_2734_y crossref_primary_10_1002_adfm_202401122 crossref_primary_10_1002_adma_202209680 crossref_primary_10_1002_anie_202303807 crossref_primary_10_1016_j_apcata_2024_119772 crossref_primary_10_1021_acs_jpcc_4c04324 crossref_primary_10_1016_j_cej_2024_158217 crossref_primary_10_1016_j_apcatb_2023_122559 crossref_primary_10_1007_s12598_023_02590_9 crossref_primary_10_1016_j_pmatsci_2024_101410 crossref_primary_10_1021_acs_analchem_2c03992 crossref_primary_10_1039_D4SC07257J crossref_primary_10_1002_smll_202309705 crossref_primary_10_1016_j_ijhydene_2023_10_175 crossref_primary_10_1002_adma_202211523 crossref_primary_10_1016_j_cej_2023_146183 crossref_primary_10_1016_j_jallcom_2025_179677 crossref_primary_10_1039_D4TA04550E crossref_primary_10_1016_j_jcis_2024_07_183 crossref_primary_10_1021_acscatal_4c01407 crossref_primary_10_3390_catal14030171 crossref_primary_10_1002_smll_202203105 crossref_primary_10_1039_D4CC06285J crossref_primary_10_1016_j_apcatb_2023_123291 crossref_primary_10_1021_acsanm_4c07004 crossref_primary_10_1002_smll_202408495 crossref_primary_10_1039_D2TA09626A crossref_primary_10_1016_j_surfin_2023_102857 crossref_primary_10_1002_celc_202400101 crossref_primary_10_1021_acsami_4c10714 crossref_primary_10_1021_acsenergylett_4c01938 crossref_primary_10_1002_ange_202317512 crossref_primary_10_1016_j_est_2023_108073 crossref_primary_10_1002_cctc_202201100 crossref_primary_10_1016_j_jechem_2023_11_023 crossref_primary_10_1021_acsami_4c10721 crossref_primary_10_1038_s41929_024_01209_1 crossref_primary_10_1016_j_mtener_2023_101442 crossref_primary_10_1016_j_apcata_2024_119780 crossref_primary_10_1002_cey2_532 crossref_primary_10_1007_s12274_022_4618_6 crossref_primary_10_1016_j_nanoen_2024_109902 crossref_primary_10_1038_s41467_023_37091_x crossref_primary_10_1016_j_jallcom_2025_178477 crossref_primary_10_1002_anie_202311909 crossref_primary_10_1016_j_fuel_2024_131462 crossref_primary_10_1021_acs_jpclett_2c03897 crossref_primary_10_1016_j_nanoen_2022_108044 crossref_primary_10_1039_D3GC00684K crossref_primary_10_1002_smll_202307069 crossref_primary_10_1016_j_jcis_2025_137413 crossref_primary_10_1021_acs_inorgchem_2c04354 crossref_primary_10_1016_j_cej_2024_150841 crossref_primary_10_1002_solr_202300833 crossref_primary_10_1039_D4CY01466A crossref_primary_10_1002_aenm_202201713 crossref_primary_10_1016_j_electacta_2022_140788 crossref_primary_10_1016_j_cjsc_2023_100200 crossref_primary_10_1016_j_nanoen_2023_108902 crossref_primary_10_1038_s41467_023_37441_9 crossref_primary_10_1002_smll_202406075 crossref_primary_10_1007_s11581_022_04774_2 crossref_primary_10_1016_j_ijhydene_2023_04_241 crossref_primary_10_1016_j_jcis_2025_01_057 crossref_primary_10_1039_D3QI02220J crossref_primary_10_1021_acssuschemeng_3c07364 crossref_primary_10_1039_D3QI00980G crossref_primary_10_1016_j_jcis_2024_11_007 crossref_primary_10_1016_j_seppur_2023_125469 crossref_primary_10_1016_j_fmre_2024_04_017 crossref_primary_10_1021_acssuschemeng_4c03672 crossref_primary_10_1016_j_apsusc_2023_156934 crossref_primary_10_1016_j_electacta_2023_143284 crossref_primary_10_1021_acscatal_4c05707 crossref_primary_10_1002_adma_202404772 crossref_primary_10_1021_acscatal_4c04977 crossref_primary_10_1016_j_jcis_2024_11_192 crossref_primary_10_1002_smll_202311713 crossref_primary_10_1016_j_jece_2023_110597 crossref_primary_10_1039_D3QM00801K crossref_primary_10_1016_j_apcatb_2022_122101 crossref_primary_10_1016_j_jcis_2024_04_169 crossref_primary_10_1016_S1872_2067_24_60117_8 crossref_primary_10_1039_D2TA04879E crossref_primary_10_1016_j_cej_2024_149383 crossref_primary_10_1021_acsaem_3c00615 crossref_primary_10_3866_PKU_WHXB202305012 crossref_primary_10_1021_acsmaterialslett_4c00835 crossref_primary_10_1002_adfm_202307947 crossref_primary_10_1038_s41578_024_00696_9 crossref_primary_10_1016_j_watres_2024_123077 crossref_primary_10_1007_s41918_024_00219_8 crossref_primary_10_1002_cssc_202400961 crossref_primary_10_1039_D4TA03296A crossref_primary_10_1021_acs_energyfuels_2c01025 crossref_primary_10_1021_acs_nanolett_4c01078 crossref_primary_10_1002_smll_202402976 crossref_primary_10_1016_S1872_2067_23_64557_7 crossref_primary_10_1021_acs_iecr_4c01666 crossref_primary_10_1002_smll_202306473 crossref_primary_10_1016_j_jallcom_2022_166438 crossref_primary_10_1039_D2DT02908A crossref_primary_10_1016_j_nanoen_2024_109270 crossref_primary_10_1039_D3CC01593A crossref_primary_10_1039_D4TA02369B crossref_primary_10_1016_j_jcis_2022_12_146 crossref_primary_10_1039_D4CS00217B crossref_primary_10_1002_adfm_202211530 crossref_primary_10_1016_j_jcis_2024_10_026 crossref_primary_10_1002_smll_202301349 crossref_primary_10_1016_j_jece_2024_111946 crossref_primary_10_1002_sstr_202200201 crossref_primary_10_1002_adsu_202300662 crossref_primary_10_1002_smll_202302556 crossref_primary_10_1039_D5NJ00143A crossref_primary_10_1038_s41467_024_49195_z crossref_primary_10_1016_j_jcis_2023_11_094 crossref_primary_10_1016_j_electacta_2024_144592 crossref_primary_10_1021_acscatal_3c04067 crossref_primary_10_1016_j_apsusc_2024_160310 crossref_primary_10_3390_su151612240 crossref_primary_10_1002_smll_202400201 crossref_primary_10_1039_D3EE00142C crossref_primary_10_1016_j_checat_2023_100789 crossref_primary_10_1016_j_cej_2024_153195 crossref_primary_10_1016_j_cclet_2023_109237 crossref_primary_10_1016_j_mtphys_2024_101399 crossref_primary_10_1063_5_0232980 crossref_primary_10_1016_j_cej_2022_135049 crossref_primary_10_1039_D4NR01168F crossref_primary_10_1002_adfm_202200763 crossref_primary_10_1016_j_apcatb_2023_122600 crossref_primary_10_1016_j_compositesb_2025_112356 crossref_primary_10_1016_j_cej_2022_141169 crossref_primary_10_1016_j_jallcom_2024_177225 crossref_primary_10_1039_D3CC02843G crossref_primary_10_1016_j_mtchem_2023_101798 crossref_primary_10_1016_j_jelechem_2024_118108 crossref_primary_10_12677_AAC_2023_134053 crossref_primary_10_1039_D4TA07846B crossref_primary_10_1016_j_ijhydene_2022_11_295 crossref_primary_10_1039_D3NR01948A crossref_primary_10_1039_D5TA00039D crossref_primary_10_3390_en17225712 crossref_primary_10_1016_j_fuel_2023_129732 crossref_primary_10_1016_j_ijhydene_2024_02_234 crossref_primary_10_1039_D4TA08773A crossref_primary_10_1021_acsanm_3c01002 crossref_primary_10_1016_j_apcatb_2023_123027 crossref_primary_10_1039_D4NR05426A crossref_primary_10_1039_D3QM00423F crossref_primary_10_1002_smll_202410006 crossref_primary_10_1016_j_checat_2024_101144 crossref_primary_10_1016_j_gee_2024_02_006 crossref_primary_10_1002_aenm_202400975 crossref_primary_10_1016_j_cej_2024_156219 crossref_primary_10_1021_acsaem_3c00521 crossref_primary_10_1039_D3NR05957J crossref_primary_10_1007_s12598_022_02249_x crossref_primary_10_1016_j_jcis_2025_137329 crossref_primary_10_1039_D3TA05699F crossref_primary_10_3389_fchem_2024_1416329 crossref_primary_10_1002_smll_202411577 |
Cites_doi | 10.1039/D1CS00186H 10.1039/C7EE01571B 10.1002/adma.202006784 10.1002/adma.202007344 10.1016/j.jcat.2018.12.012 10.1016/j.nanoen.2020.104761 10.1039/C9EE03634B 10.1021/acsenergylett.9b00867 10.1002/anie.201803136 10.1021/acs.chemmater.9b01263 10.1016/j.coelec.2020.08.013 10.1002/ange.201802923 10.1002/anie.201909939 10.1016/j.apcatb.2020.119740 10.1016/j.nanoen.2020.105606 10.1021/acs.nanolett.0c03950 10.1002/anie.202014210 10.1021/ja4027715 10.1016/j.matt.2020.09.016 10.31635/ccschem.020.202000194 10.1002/anie.201802923 10.1002/ange.201909939 10.1021/ja403102j 10.1038/ncomms5477 10.1002/smtd.201800083 10.1002/anie.201701477 10.1021/acs.chemmater.0c01067 10.1002/adma.201801526 10.1016/j.nanoen.2019.104118 10.1002/smtd.202000016 10.1021/ja502379c 10.1002/adfm.200801566 10.1002/aenm.202100358 10.1002/smll.201703323 10.1002/ange.202014210 10.1002/ange.201701477 10.1038/s41467-019-09765-y 10.1007/s12274-017-1437-2 10.1021/acscatal.9b02264 10.1039/C6EE01046F 10.1002/aenm.201902107 10.1021/ja405351s 10.1016/j.jelechem.2020.114282 10.1039/C9CE01883B 10.1002/adma.201803144 10.1002/ange.201803136 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202112447 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 26836 |
ExternalDocumentID | 10_1002_anie_202112447 ANIE202112447 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Fujian Province funderid: No. 2020J05016 – fundername: the National Natural Science Foundation of China funderid: No. 22072124 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3507-668d3794b40363c9696cf71039d1e4c5674d87984b9c108da93231f7749362343 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 17:39:16 EDT 2025 Fri Jul 25 10:33:22 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Tue Jul 01 01:18:10 EDT 2025 Wed Jan 22 16:28:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3507-668d3794b40363c9696cf71039d1e4c5674d87984b9c108da93231f7749362343 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4021-6597 |
PQID | 2606919618 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2583317789 proquest_journals_2606919618 crossref_primary_10_1002_anie_202112447 crossref_citationtrail_10_1002_anie_202112447 wiley_primary_10_1002_anie_202112447_ANIE202112447 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 13, 2021 |
PublicationDateYYYYMMDD | 2021-12-13 |
PublicationDate_xml | – month: 12 year: 2021 text: December 13, 2021 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 25 2019; 9 2019; 4 2021; 21 2021; 3 2019; 31 2019; 10 2020; 13 2021; 284 2020; 32 2020; 10 2017 2017; 56 129 2021; 50 2014; 136 2019 2019; 58 131 2020; 4 2014; 5 2018; 2 2020; 3 2021; 11 2021; 33 2020; 73 2019; 66 2018 2018; 57 130 2017; 10 2021 2021; 60 133 2013; 135 2018; 30 2020; 871 2020; 22 2009; 19 2019; 370 2016; 9 2018; 14 2021; 81 e_1_2_6_51_2 e_1_2_6_30_3 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_34_1 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_1 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_43_1 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_9_2 e_1_2_6_7_1 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_2 e_1_2_6_45_2 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_50_2 e_1_2_6_50_3 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_33_3 e_1_2_6_35_1 e_1_2_6_33_2 e_1_2_6_39_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_16_1 e_1_2_6_42_2 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_1 e_1_2_6_6_2 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_48_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 135 start-page: 11580 year: 2013 end-page: 11586 publication-title: J. Am. Chem. Soc. – volume: 871 year: 2020 publication-title: J. Electroanal. Chem. – volume: 57 130 start-page: 8921 9059 year: 2018 2018 end-page: 8926 9064 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 12329 year: 2013 end-page: 12337 publication-title: J. Am. Chem. Soc. – volume: 25 year: 2021 publication-title: Curr. Opin. Electrochem. – volume: 14 year: 2018 publication-title: Small – volume: 9 start-page: 8882 year: 2019 end-page: 8892 publication-title: ACS Catal. – volume: 81 year: 2021 publication-title: Nano Energy – volume: 370 start-page: 378 year: 2019 end-page: 384 publication-title: J. Catal. – volume: 60 133 start-page: 3773 3817 year: 2021 2021 end-page: 3780 3824 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 start-page: 6798 year: 2019 end-page: 6807 publication-title: Chem. Mater. – volume: 21 start-page: 492 year: 2021 end-page: 499 publication-title: Nano Lett. – volume: 135 start-page: 8452 year: 2013 end-page: 8455 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1412 year: 2019 end-page: 1418 publication-title: ACS Energy Lett. – volume: 2 year: 2018 publication-title: Small Methods – volume: 66 year: 2019 publication-title: Nano Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 58 131 start-page: 1252 1264 year: 2019 2019 end-page: 1265 1277 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 284 year: 2021 publication-title: Appl. Catal. B – volume: 73 year: 2020 publication-title: Nano Energy – volume: 56 129 start-page: 5867 5961 year: 2017 2017 end-page: 5871 5965 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 675 year: 2021 end-page: 685 publication-title: CCS Chem. – volume: 22 start-page: 1500 year: 2020 end-page: 1513 publication-title: CrystEngComm – volume: 3 start-page: 2124 year: 2020 end-page: 2137 publication-title: Matter – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 year: 2020 publication-title: Small Methods – volume: 10 start-page: 1732 year: 2017 end-page: 1739 publication-title: Nano Res. – volume: 5 start-page: 4477 year: 2014 publication-title: Nat. Commun. – volume: 13 start-page: 1132 year: 2020 end-page: 1153 publication-title: Energy Environ. Sci. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 9 start-page: 2020 year: 2016 end-page: 2024 publication-title: Energy Environ. Sci. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 32 start-page: 4303 year: 2020 end-page: 4311 publication-title: Chem. Mater. – volume: 50 start-page: 8790 year: 2021 end-page: 8817 publication-title: Chem. Soc. Rev. – volume: 19 start-page: 679 year: 2009 end-page: 688 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1743 year: 2019 publication-title: Nat. Commun. – volume: 136 start-page: 6744 year: 2014 end-page: 6753 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 15772 15919 year: 2019 2019 end-page: 15777 15924 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 1820 year: 2017 end-page: 1827 publication-title: Energy Environ. Sci. – ident: e_1_2_6_5_2 doi: 10.1039/D1CS00186H – ident: e_1_2_6_31_1 – ident: e_1_2_6_6_2 doi: 10.1039/C7EE01571B – ident: e_1_2_6_20_2 doi: 10.1002/adma.202006784 – ident: e_1_2_6_40_1 – ident: e_1_2_6_16_1 doi: 10.1002/adma.202007344 – ident: e_1_2_6_42_2 doi: 10.1016/j.jcat.2018.12.012 – ident: e_1_2_6_28_2 doi: 10.1016/j.nanoen.2020.104761 – ident: e_1_2_6_1_1 doi: 10.1039/C9EE03634B – ident: e_1_2_6_29_2 doi: 10.1021/acsenergylett.9b00867 – ident: e_1_2_6_30_2 doi: 10.1002/anie.201803136 – ident: e_1_2_6_14_2 doi: 10.1021/acs.chemmater.9b01263 – ident: e_1_2_6_36_1 – ident: e_1_2_6_41_2 doi: 10.1016/j.coelec.2020.08.013 – ident: e_1_2_6_48_2 doi: 10.1002/ange.201802923 – ident: e_1_2_6_4_1 – ident: e_1_2_6_33_2 doi: 10.1002/anie.201909939 – ident: e_1_2_6_8_2 doi: 10.1016/j.apcatb.2020.119740 – ident: e_1_2_6_26_1 doi: 10.1016/j.nanoen.2020.105606 – ident: e_1_2_6_35_1 doi: 10.1021/acs.nanolett.0c03950 – ident: e_1_2_6_50_2 doi: 10.1002/anie.202014210 – ident: e_1_2_6_44_1 – ident: e_1_2_6_12_2 doi: 10.1021/ja4027715 – ident: e_1_2_6_51_2 doi: 10.1016/j.matt.2020.09.016 – ident: e_1_2_6_39_1 doi: 10.31635/ccschem.020.202000194 – ident: e_1_2_6_48_1 doi: 10.1002/anie.201802923 – ident: e_1_2_6_33_3 doi: 10.1002/ange.201909939 – ident: e_1_2_6_38_2 doi: 10.1021/ja403102j – ident: e_1_2_6_24_1 doi: 10.1038/ncomms5477 – ident: e_1_2_6_21_1 doi: 10.1002/smtd.201800083 – ident: e_1_2_6_25_1 doi: 10.1002/anie.201701477 – ident: e_1_2_6_46_2 doi: 10.1021/acs.chemmater.0c01067 – ident: e_1_2_6_3_1 doi: 10.1002/adma.201801526 – ident: e_1_2_6_47_1 doi: 10.1016/j.nanoen.2019.104118 – ident: e_1_2_6_2_1 doi: 10.1002/smtd.202000016 – ident: e_1_2_6_37_2 doi: 10.1021/ja502379c – ident: e_1_2_6_34_1 doi: 10.1002/adfm.200801566 – ident: e_1_2_6_9_2 doi: 10.1002/aenm.202100358 – ident: e_1_2_6_19_2 doi: 10.1002/smll.201703323 – ident: e_1_2_6_7_1 – ident: e_1_2_6_17_1 – ident: e_1_2_6_50_3 doi: 10.1002/ange.202014210 – ident: e_1_2_6_25_2 doi: 10.1002/ange.201701477 – ident: e_1_2_6_32_2 doi: 10.1038/s41467-019-09765-y – ident: e_1_2_6_10_1 – ident: e_1_2_6_27_1 – ident: e_1_2_6_15_2 doi: 10.1007/s12274-017-1437-2 – ident: e_1_2_6_13_1 – ident: e_1_2_6_52_1 doi: 10.1021/acscatal.9b02264 – ident: e_1_2_6_11_2 doi: 10.1039/C6EE01046F – ident: e_1_2_6_23_1 doi: 10.1002/aenm.201902107 – ident: e_1_2_6_43_1 doi: 10.1021/ja405351s – ident: e_1_2_6_45_2 doi: 10.1016/j.jelechem.2020.114282 – ident: e_1_2_6_18_2 doi: 10.1039/C9CE01883B – ident: e_1_2_6_22_1 doi: 10.1002/adma.201803144 – ident: e_1_2_6_30_3 doi: 10.1002/ange.201803136 – ident: e_1_2_6_49_1 |
SSID | ssj0028806 |
Score | 2.7218537 |
Snippet | Defects have been found to enhance the electrocatalytic performance of NiFe‐LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration... Defects have been found to enhance the electrocatalytic performance of NiFe-LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 26829 |
SubjectTerms | Aprotic Solvent Cation Defect Evolution Cations Configurations Crystal defects Crystal structure Crystallinity Electrocatalysts High voltage Intermetallic compounds Iron compounds Metal ions Nickel compounds NiFe-LDH OER Electrocatalysis Oxygen Oxygen evolution reactions Solvation Surface Reconstruction Vacancies Voltage |
Title | Evolution of Cationic Vacancy Defects: A Motif for Surface Restructuration of OER Precatalyst |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202112447 https://www.proquest.com/docview/2606919618 https://www.proquest.com/docview/2583317789 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_ii774LU6nRBB8qlubLG19G3NjCpsyP_BFSpImIMombhP0r_euaesmiKBvLU2_7i7J7y653xFyFDJpsMS2J-tcgYMitBephvIYD2RghNQmxdzhXl90b_nFfeN-Jovf8UOUATfsGdl4jR1cqnHtizQUM7DBvwMHBmYoTCfHDVuIigYlf1QAxunSixjzsAp9wdpYD2rzt8_PSl9QcxawZjNOZ5XI4lvdRpOnk-lEneiPbzSO__mZNbKSw1HadPazThbMcIMstYoqcJvkof2WGycdWdpy8VtN76TGYZmemWw7yClt0t5o8mgpYGB6PX21IH46MI6dduqsDB9w2R7QKxhkMWj0Pp5skdtO-6bV9fKSDJ5mgBw9IaKUQRdWHBeANVLraBvicnLqG64bIuRpFMYRV7H261EqAR4y3wLGjGGmZJxtk8XhaGh2CLUwnliBgb3UYl67sqmvYmFCYcHN4qZCvEIlic75yrFsxnPimJaDBIWWlEKrkOOy_Ytj6vixZbXQcJL32HECfp2Ifax_UyGH5WUQNi6gyKEZTaENpqj5YRjFFRJk6vzlTUmzf94uz3b_ctMeWcZj3EHjsypZBL2ZfcBBE3WQ2fons4L8mw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-N7gFeNsaYKBRmJKQ9BZrYdZK9VaWofLSg0iJepih2bAkxtYi2k-Cv312chA9pQhqPSew48d3Zd-e73wHshTw1VGLbS5tCoYEitReplvK4CNLAyFSbjHKH-wPZG4uT61YZTUi5MA4fonK4kWTk6zUJODmkD55QQykFGw08tGBwiwqX4CONSfD5h8MKQSpA9nQJRpx7VIe-xG1sBgcv-7_cl56Uzecqa77nHH0GVX6tCzW53V_M1b5-fAXk-K7fWYVPhUbK2o6FvsAHM1mD5U5ZCO4r_Or-KfiTTS3rOBeuZlepppWZHZo8IuQna7P-dH5jGarB7HJxb5ECbGgcQO3CMRq94Lw7ZBe4zpLf6GE2X4fxUXfU6XlFVQZPc1QePSmjjKMUK0FnwJrQdbQN6UQ5843QLRmKLArjSKhY-80oS1FD5L5FNTPGzZIL_g1qk-nEbACzuKRYSb69zFJqu7KZr2JpQmnR0hKmDl5Jk0QXkOVUOeN34sCWg4QmLakmrQ4_qvZ3Dqzjny0bJYmTQmhnCZp2MvapBE4ddqvHONl0hpJOzHSBbShLzQ_DKK5DkNPzjZGS9uC4W11t_k-n77DcG_XPkrPjwekWrNB9CqjxeQNqSEOzjWrRXO3kjP8XkAwAxg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS-RAEC48YPXFa1cczxaEfYpO0j2dxLdhDjxHmV3FFwnpTjeIMiM6I-ivtyqdxAMWYX1M0rnq6qrqrq8AdkKeGmqx7aV1oTBAkdqLVEN5XARpYGSqTUa1w6c9eXAhjq4aV--q-B0-RJVwI83I7TUp-H1m995AQ6kCG-M7DGBwhgonYVrIekzNG9r9CkAqQOl09UWce9SGvoRtrAd7H-__OC29-ZrvPdZ8yunOQ1p-rNtpcrs7Hqld_fIJx_E7f7MAc4U_yppOgBZhwgyWYKZVtoH7Cdedp0I62dCylkvganaZarLLrG3y_SD7rMlOh6Mby9AJZn_GDxbpz_rGwdOOnZjRA846fXaOVpayRs-Po19w0e38bR14RU8GT3N0HT0po4yjDitBK8CasHW0DWk9OfON0A0ZiiwK40ioWPv1KEvRP-S-RSczxqmSC74MU4PhwKwAs2hQrKTMXmapsF3ZzFexNKG0GGcJUwOvZEmiC8By6ptxlzio5SAhoiUV0Wrwuxp_76A6_jlyveRwUqjsY4KBnYx9aoBTg-3qMhKbVlDSgRmOcQzVqPlhGMU1CHJ2fvGmpNk77FRHq_9z0xb8OG93k5PD3vEazNJp2k3j83WYQhaaDfSJRmozF_tXf13_Zg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+Cationic+Vacancy+Defects%3A+A+Motif+for+Surface+Restructuration+of+OER+Precatalyst&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Yi-Jin&rft.au=Yang%2C+Jian&rft.au=Tu%2C+Teng-Xiu&rft.au=Li%2C+Wei-Qiong&rft.date=2021-12-13&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=51&rft.spage=26829&rft_id=info:doi/10.1002%2Fanie.202112447&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |