Cobalt Single‐Atom Reverse Hydrogen Spillover for Efficient Electrochemical Water Dissociation and Dechlorination
Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single‐atom electrode with Co single...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 19; pp. e202401386 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
06.05.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single‐atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co1−TiOx/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single‐atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof‐of‐concept verification, the resulting Co1−TiOx/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at −1.0 V, far superior to that of traditional indirect reduction‐driven commercial Pd/C (52 %) and direct reduction‐driven Co1−N−C (44 %). Moreover, its dechlorination rate constant of 1.64 h−1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h−1) and Co1−N−C (0.19 h−1), respectively. Our research sheds light on the rational design of hydrogen spillover‐related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications.
The immobilization of Co single atoms on the surface oxide layer of titanium foam favors the rapid diffusion of generated atomic hydrogen to adjacent Co single atoms through the reverse hydrogen spillover effect for more efficient electrochemical dechlorination of chloramphenicol, offering a promising atomic hydrogen utilization strategy for environmental and energy applications. |
---|---|
AbstractList | Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single-atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co1-TiOx/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single-atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof-of-concept verification, the resulting Co1-TiOx/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at -1.0 V, far superior to that of traditional indirect reduction-driven commercial Pd/C (52 %) and direct reduction-driven Co1-N-C (44 %). Moreover, its dechlorination rate constant of 1.64 h-1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h-1) and Co1-N-C (0.19 h-1), respectively. Our research sheds light on the rational design of hydrogen spillover-related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications.Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single-atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co1-TiOx/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single-atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof-of-concept verification, the resulting Co1-TiOx/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at -1.0 V, far superior to that of traditional indirect reduction-driven commercial Pd/C (52 %) and direct reduction-driven Co1-N-C (44 %). Moreover, its dechlorination rate constant of 1.64 h-1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h-1) and Co1-N-C (0.19 h-1), respectively. Our research sheds light on the rational design of hydrogen spillover-related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications. Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single‐atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co1−TiOx/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single‐atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof‐of‐concept verification, the resulting Co1−TiOx/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at −1.0 V, far superior to that of traditional indirect reduction‐driven commercial Pd/C (52 %) and direct reduction‐driven Co1−N−C (44 %). Moreover, its dechlorination rate constant of 1.64 h−1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h−1) and Co1−N−C (0.19 h−1), respectively. Our research sheds light on the rational design of hydrogen spillover‐related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications. Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single‐atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co 1 −TiO x /Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single‐atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof‐of‐concept verification, the resulting Co 1 −TiO x /Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at −1.0 V, far superior to that of traditional indirect reduction‐driven commercial Pd/C (52 %) and direct reduction‐driven Co 1 −N−C (44 %). Moreover, its dechlorination rate constant of 1.64 h −1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h −1 ) and Co 1 −N−C (0.19 h −1 ), respectively. Our research sheds light on the rational design of hydrogen spillover‐related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications. Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single‐atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co1−TiOx/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single‐atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof‐of‐concept verification, the resulting Co1−TiOx/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at −1.0 V, far superior to that of traditional indirect reduction‐driven commercial Pd/C (52 %) and direct reduction‐driven Co1−N−C (44 %). Moreover, its dechlorination rate constant of 1.64 h−1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h−1) and Co1−N−C (0.19 h−1), respectively. Our research sheds light on the rational design of hydrogen spillover‐related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications. The immobilization of Co single atoms on the surface oxide layer of titanium foam favors the rapid diffusion of generated atomic hydrogen to adjacent Co single atoms through the reverse hydrogen spillover effect for more efficient electrochemical dechlorination of chloramphenicol, offering a promising atomic hydrogen utilization strategy for environmental and energy applications. |
Author | Wang, Jiaxian Zhang, Lizhi Dai, Jie Hou, Wei Yao, Yancai Zheng, Qian Zhan, Guangming Zhao, Long Zou, Xingyue Wang, Ruizhao Xu, Hengyue Wang, Kaiyuan |
Author_xml | – sequence: 1 givenname: Qian surname: Zheng fullname: Zheng, Qian organization: Shanghai Jiao Tong University – sequence: 2 givenname: Hengyue orcidid: 0000-0003-4438-9647 surname: Xu fullname: Xu, Hengyue organization: Tsinghua University – sequence: 3 givenname: Yancai surname: Yao fullname: Yao, Yancai email: yyancai@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 4 givenname: Jie surname: Dai fullname: Dai, Jie organization: Shanghai Jiao Tong University – sequence: 5 givenname: Jiaxian surname: Wang fullname: Wang, Jiaxian organization: Shanghai Jiao Tong University – sequence: 6 givenname: Wei surname: Hou fullname: Hou, Wei organization: Shanghai Jiao Tong University – sequence: 7 givenname: Long surname: Zhao fullname: Zhao, Long organization: Shanghai Jiao Tong University – sequence: 8 givenname: Xingyue surname: Zou fullname: Zou, Xingyue organization: Shanghai Jiao Tong University – sequence: 9 givenname: Guangming surname: Zhan fullname: Zhan, Guangming organization: Shanghai Jiao Tong University – sequence: 10 givenname: Ruizhao surname: Wang fullname: Wang, Ruizhao organization: Shanghai Jiao Tong University – sequence: 11 givenname: Kaiyuan surname: Wang fullname: Wang, Kaiyuan organization: Shanghai Jiao Tong University – sequence: 12 givenname: Lizhi orcidid: 0000-0002-6842-9167 surname: Zhang fullname: Zhang, Lizhi email: zhanglizhi@sjtu.edu.cn organization: Shanghai Jiao Tong University |
BookMark | eNqFkU9rFDEYh4NUsK299hzw4mXW_JuZ5LhsV1soCrbiMWSSN21KNlmT2cre_Aj9jP0kznZFoSB9L3n58Twh4XeEDlJOgNApJTNKCPtgUoAZI0wQymX3Ch3SltGG9z0_mHbBedPLlr5BR7XeTbyUpDtEdZEHE0d8FdJNhMdfD_Mxr_BXuIdSAZ9vXck3kPDVOsSYpxD7XPDS-2ADpBEvI9ixZHsLq2BNxN_NODFnodZsgxlDTtgkh8_A3sZcQnqK3qLX3sQKJ3_OY_Tt4_J6cd5cfvl0sZhfNpa3pGvkIJVywg7c2dYZbobeUSP5AK3vHIUWvJvGKKdaThkbvBLecy-6oVdK9PwYvd_fuy75xwbqqFehWojRJMibqplqJVNE9WxC3z1D7_KmpOl1mhMhpOyI2lFiT9mSay3gtQ3j05fGYkLUlOhdE3rXhP7bxKTNnmnrElambP8vqL3wM0TYvkDr-eeL5T_3N6kboV8 |
CitedBy_id | crossref_primary_10_1002_cctc_202401121 crossref_primary_10_1016_j_nanoen_2025_110873 crossref_primary_10_1016_j_jcis_2025_137281 crossref_primary_10_1002_anie_202412209 crossref_primary_10_1016_j_cej_2024_156481 crossref_primary_10_1016_j_cej_2024_157872 crossref_primary_10_1038_s44160_025_00756_0 crossref_primary_10_1002_ange_202409465 crossref_primary_10_1002_ange_202422892 crossref_primary_10_1002_ange_202412209 crossref_primary_10_1039_D4TA01848F crossref_primary_10_26599_NR_2025_94907048 crossref_primary_10_1002_adma_202501387 crossref_primary_10_1016_j_apcatb_2025_125218 crossref_primary_10_1016_j_seppur_2024_131299 crossref_primary_10_1002_adma_202500371 crossref_primary_10_1016_j_apcatb_2024_124783 crossref_primary_10_1016_j_cej_2024_157817 crossref_primary_10_1007_s11426_024_2404_4 crossref_primary_10_1016_j_jallcom_2024_175883 crossref_primary_10_1002_anie_202501040 crossref_primary_10_1002_anie_202411068 crossref_primary_10_1021_acs_nanolett_5c00233 crossref_primary_10_1039_D4SC07375D crossref_primary_10_1002_anie_202416910 crossref_primary_10_1038_s41467_024_54601_7 crossref_primary_10_1016_j_jes_2024_07_005 crossref_primary_10_1021_acs_inorgchem_4c02375 crossref_primary_10_1002_adfm_202408517 crossref_primary_10_1002_anie_202409465 crossref_primary_10_1002_anie_202422892 crossref_primary_10_1016_j_ccr_2024_216321 crossref_primary_10_1039_D4EE03970J crossref_primary_10_1016_j_jcat_2024_115620 crossref_primary_10_1002_ange_202411068 crossref_primary_10_1002_ange_202416910 crossref_primary_10_1021_acscatal_4c05785 crossref_primary_10_1002_ange_202501040 |
Cites_doi | 10.1021/jacs.9b09391 10.1021/acs.jpclett.1c03808 10.1038/s41467-020-19433-1 10.1038/s41467-018-06269-z 10.1002/adfm.202207618 10.1038/s41570-016-0003 10.1038/s41467-022-28843-2 10.1038/521402a 10.1002/smll.202105329 10.1063/5.0083059 10.1038/s41929-022-00882-4 10.1021/jacs.0c00418 10.1038/s41467-020-20619-w 10.1038/s41929-023-00923-6 10.1021/acscatal.1c03382 10.1002/anie.202208215 10.1021/acscatal.5b01093 10.1038/s41467-021-24228-z 10.1038/s41467-021-20977-z 10.1038/s41467-021-23750-4 10.1007/s10853-018-2961-5 10.1002/adma.202003327 10.1126/science.1211934 10.1038/s44221-022-00002-3 10.1038/nature20782 10.1002/smll.202206750 10.1021/acsami.2c14041 10.1002/adma.201801526 10.1038/s41467-020-18567-6 10.1021/acscatal.8b00719 10.1146/annurev.pa.28.040188.000503 10.1038/s41467-020-15080-8 10.1021/acs.est.7b01128 10.1021/jacs.0c06118 10.1016/j.femsre.2004.04.001 10.1038/s41467-023-44469-4 10.1038/s41467-022-33007-3 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202401386 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202401386 ANIE202401386 |
Genre | article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2021M702117; 2022M722080 – fundername: the National Key Research and Development Program of China funderid: 2021YFA1201701 – fundername: the Natural Science Foundation of Shanghai funderid: 22ZR1431700 – fundername: Key Program of Shenzhen Science and Technology Commission funderid: JCYJ20220818095601002 – fundername: National Natural Science Foundation of China funderid: U22A20402; U21A20286; 22102100 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3506-8b899d4cb3dc5da3ab7d1a83be5f6d1e5efdddda9d953122bf94ff3f46b799473 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 10:39:04 EDT 2025 Fri Jul 25 10:06:50 EDT 2025 Thu Apr 24 23:07:45 EDT 2025 Tue Jul 01 01:47:33 EDT 2025 Wed Jan 22 17:21:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3506-8b899d4cb3dc5da3ab7d1a83be5f6d1e5efdddda9d953122bf94ff3f46b799473 |
Notes | These authors contributed equally ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6842-9167 0000-0003-4438-9647 |
PQID | 3044886092 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2958290972 proquest_journals_3044886092 crossref_citationtrail_10_1002_anie_202401386 crossref_primary_10_1002_anie_202401386 wiley_primary_10_1002_anie_202401386_ANIE202401386 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 6, 2024 |
PublicationDateYYYYMMDD | 2024-05-06 |
PublicationDate_xml | – month: 05 year: 2024 text: May 6, 2024 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 334 2017; 1 2015; 5 2019; 31 2023; 6 2020; 142 2015; 521 2019; 54 2004; 28 2023; 1 2020; 11 2019; 141 2024; 15 2017; 51 2018; 9 2018; 8 2021; 12 2021; 55 2021; 11 2021; 33 2023 2022; 5 2022; 61 2022; 9 1988; 28 2022; 13 2022; 14 2022; 32 2017; 541 2022; 18 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_40_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_14_1 e_1_2_7_41_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_43_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_26_1 e_1_2_7_47_2 e_1_2_7_27_1 e_1_2_7_48_2 e_1_2_7_28_2 e_1_2_7_29_2 e_1_2_7_25_1 e_1_2_7_30_2 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 Huang D. (e_1_2_7_8_1) 2021; 55 e_1_2_7_20_2 e_1_2_7_21_1 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_2 e_1_2_7_39_2 |
References_xml | – volume: 12 start-page: 3884 year: 2021 publication-title: Nat. Commun. – year: 2023 publication-title: Small – volume: 142 start-page: 7036 year: 2020 end-page: 7046 publication-title: J. Am. Chem. Soc. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 1199 year: 2020 publication-title: Nat. Commun. – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 9 year: 2022 publication-title: Appl Phys Rev – volume: 1 start-page: 95 year: 2023 end-page: 103 publication-title: Nat. Water – volume: 28 start-page: 83 year: 1988 end-page: 100 publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 334 start-page: 1256 year: 2011 end-page: 1260 publication-title: Science – volume: 9 start-page: 3778 year: 2018 publication-title: Nat. Commun. – volume: 54 start-page: 949 year: 2019 end-page: 973 publication-title: J. Mater. Sci. – volume: 55 start-page: 13306 year: 2021 end-page: 13316 publication-title: Environ. Sci. Technol. – volume: 5 start-page: 1110 year: 2022 end-page: 1119 publication-title: Nat. Catal. – volume: 12 start-page: 3502 year: 2021 publication-title: Nat. Commun. – volume: 28 start-page: 519 year: 2004 end-page: 542 publication-title: FEMS Microbiol. Rev. – volume: 11 start-page: 4773 year: 2020 publication-title: Nat. Commun. – volume: 1 start-page: 0003 year: 2017 publication-title: Nat. Chem. Rev. – volume: 141 start-page: 19964 year: 2019 end-page: 19968 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 5657 year: 2020 publication-title: Nat. Commun. – volume: 15 start-page: 88 year: 2024 publication-title: Nat. Commun. – volume: 8 start-page: 4288 year: 2018 end-page: 4293 publication-title: ACS Catal. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 6 start-page: 224 year: 2023 end-page: 233 publication-title: Nat. Catal. – volume: 13 start-page: 5382 year: 2022 publication-title: Nat. Commun. – volume: 142 start-page: 17403 year: 2020 end-page: 17412 publication-title: J. Am. Chem. Soc. – volume: 521 start-page: 402 year: 2015 end-page: 403 publication-title: Nature – volume: 13 start-page: 1069 year: 2022 end-page: 1076 publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 303 year: 2021 publication-title: Nat. Commun. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 13 start-page: 1189 year: 2022 publication-title: Nat. Commun. – volume: 14 start-page: 51190 year: 2022 end-page: 51199 publication-title: ACS Appl. Mater. Interfaces – volume: 541 start-page: 68 year: 2017 end-page: 71 publication-title: Nature – volume: 12 start-page: 661 year: 2021 publication-title: Nat. Commun. – volume: 51 start-page: 7599 year: 2017 end-page: 7605 publication-title: Environ. Sci. Technol. – volume: 11 start-page: 13001 year: 2021 end-page: 13019 publication-title: ACS Catal. – volume: 5 start-page: 5486 year: 2015 end-page: 5495 publication-title: ACS Catal. – volume: 55 start-page: 13306 year: 2021 ident: e_1_2_7_8_1 publication-title: Environ. Sci. Technol. – ident: e_1_2_7_4_1 doi: 10.1021/jacs.9b09391 – ident: e_1_2_7_12_2 doi: 10.1021/acs.jpclett.1c03808 – ident: e_1_2_7_32_1 doi: 10.1038/s41467-020-19433-1 – ident: e_1_2_7_37_1 – ident: e_1_2_7_19_2 doi: 10.1038/s41467-018-06269-z – ident: e_1_2_7_44_1 doi: 10.1002/adfm.202207618 – ident: e_1_2_7_10_1 doi: 10.1038/s41570-016-0003 – ident: e_1_2_7_29_2 doi: 10.1038/s41467-022-28843-2 – ident: e_1_2_7_38_2 doi: 10.1038/521402a – ident: e_1_2_7_45_1 doi: 10.1002/smll.202105329 – ident: e_1_2_7_35_2 doi: 10.1063/5.0083059 – ident: e_1_2_7_6_2 doi: 10.1038/s41929-022-00882-4 – ident: e_1_2_7_14_1 – ident: e_1_2_7_40_1 – ident: e_1_2_7_47_2 doi: 10.1021/jacs.0c00418 – ident: e_1_2_7_11_1 – ident: e_1_2_7_43_1 doi: 10.1038/s41467-020-20619-w – ident: e_1_2_7_33_1 – ident: e_1_2_7_7_2 doi: 10.1038/s41929-023-00923-6 – ident: e_1_2_7_1_1 – ident: e_1_2_7_24_1 doi: 10.1021/acscatal.1c03382 – ident: e_1_2_7_21_1 doi: 10.1002/anie.202208215 – ident: e_1_2_7_16_2 doi: 10.1021/acscatal.5b01093 – ident: e_1_2_7_20_2 doi: 10.1038/s41467-021-24228-z – ident: e_1_2_7_5_1 – ident: e_1_2_7_23_1 doi: 10.1038/s41467-021-20977-z – ident: e_1_2_7_31_1 doi: 10.1038/s41467-021-23750-4 – ident: e_1_2_7_22_1 doi: 10.1007/s10853-018-2961-5 – ident: e_1_2_7_25_1 doi: 10.1002/adma.202003327 – ident: e_1_2_7_27_1 – ident: e_1_2_7_2_2 doi: 10.1126/science.1211934 – ident: e_1_2_7_3_2 doi: 10.1038/s44221-022-00002-3 – ident: e_1_2_7_15_2 doi: 10.1038/nature20782 – ident: e_1_2_7_46_1 – ident: e_1_2_7_36_1 doi: 10.1002/smll.202206750 – ident: e_1_2_7_34_2 doi: 10.1021/acsami.2c14041 – ident: e_1_2_7_26_1 doi: 10.1002/adma.201801526 – ident: e_1_2_7_18_1 – ident: e_1_2_7_28_2 doi: 10.1038/s41467-020-18567-6 – ident: e_1_2_7_13_2 doi: 10.1021/acscatal.8b00719 – ident: e_1_2_7_41_2 doi: 10.1146/annurev.pa.28.040188.000503 – ident: e_1_2_7_39_2 doi: 10.1038/s41467-020-15080-8 – ident: e_1_2_7_9_1 doi: 10.1021/acs.est.7b01128 – ident: e_1_2_7_17_2 doi: 10.1021/jacs.0c06118 – ident: e_1_2_7_42_2 doi: 10.1016/j.femsre.2004.04.001 – ident: e_1_2_7_48_2 doi: 10.1038/s41467-023-44469-4 – ident: e_1_2_7_30_2 doi: 10.1038/s41467-022-33007-3 |
SSID | ssj0028806 |
Score | 2.6240072 |
Snippet | Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202401386 |
SubjectTerms | Catalysis Chloramphenicol Chloromycetin Cobalt Dechlorination Direct reduction Electrocatalysts Electrocatalytic Hydrodechlorination Electrochemistry Electrodes Hydrogen Hydrogen Spillover Recombination Single-atom Monolithic Electrode Titanium Titanium oxides Water Dissociation |
Title | Cobalt Single‐Atom Reverse Hydrogen Spillover for Efficient Electrochemical Water Dissociation and Dechlorination |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202401386 https://www.proquest.com/docview/3044886092 https://www.proquest.com/docview/2958290972 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQl3IpFKjYliJXQuopsLHjJD6ulkXbHjhAEdwijx8CsWTRbvYAJ34Cv5Ff0rHzWKhUIdGc8rCVxDOT-SYef0PIPmQpxDHYyPsvDFC0jZQFE6U5xCoD4xiELN-TdHye_LoUly9W8df8EN0PN28Z4XvtDVzB_HBJGupXYGN8x3yAkHvObZ-w5VHRaccfxVA56-VFnEe-Cn3L2thnh6-7v_ZKS6j5ErAGj3O8TlT7rHWiyc3BooID_fAXjeP_vMwG-djAUTqo9ecTWbHlJvkwbKvAbZH50BOGVPQMXdzEPj8-DarpLT21PpvD0vG9mU1RBenZ3fUkZINSBMF0FHgp0J3RUV1lRze0BPQCoe2MHl0vlYKq0tAjq69CKmA4tU3Oj0e_h-OoKdQQaS76aZQDRm0m0cCNFkZxBZmJVc7BCpea2ArrDG5KGokmzxg4mTjHXZJCJmWS8c9ktZyWdodQxDNCaq4Fx3DZZkpqlwstMwAnsLnukagVVKEbFnNfTGNS1PzLrPBDWXRD2SM_uvZ3NX_HP1vutnIvGjueF7yP4Wue9iXrke_dZRSBn1ZRpZ0u5gWTws9GywzbsCDkN-5UDE5-jrqjL-_p9JWs-f2QeZnuktVqtrDfEB1VsBcs4A9QAgq0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgOSwX3ojCAkZC4pTdxo6d-Fi1XXVh6WEfgpuV8UO7oqSrNj3AiZ_Ab-SXMHYeZZEQEuQWZ6w4npnMjD3-hpDXkEtIU3BJsF8YoBiXlA5sIgtIyxysZxCzfOdydp69_Si6bMJwFqbBh-gX3IJmxP91UPCwIH2wRQ0NR7AxwGMhQijkTXIrlPUO8PmTkx5BiqF4NgeMOE9CHfoOt3HIDq73v26Xts7mry5rtDmHdwl0o21STT7tb2rYN19_A3L8r8-5R-60HikdNSJ0n9xw1QOyO-4KwT0k63HADKnpKVq5hfvx7fuoXn6mJy4kdDg6-2JXS5RCenp1uYgJoRT9YDqN0BRo0ei0KbRjWmQC-gG92xWdXG7lgpaVpRNnLmI2YGx6RM4Pp2fjWdLWakgMF0OZFICBm80McGuELXkJuU3LgoMTXtrUCectXqWyCrWeMfAq8577TEKuVJbzx2SnWlbuCaHo0ghluBEcI2aXl8r4QhiVA3iB5GZAko5T2rRA5qGexkI3EMxMh6nU_VQOyJue_qqB8Pgj5V7HeN2q8lrzIUawhRwqNiCv-sfIgrCzUlZuuVlrpkTYkFY50rDI5b-8SY_mR9P-7um_dHpJdmdn74_18dH83TNyO7THREy5R3bq1cY9R2ephhdRHX4C8B8O0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCF8hQLbTESEqe0Gzt24uNqH9oCWqGWit4sP9WKJbvazR7gxE_gN_JLGDuPbSshJMgtzlhJPDOZmXjmG4Te6JzrNNUuCfYLAhTjEuW0TXihU5Vr64mOWb4zPj3L3p2z8ytV_DU-RPfDLWhG_F4HBV9af7QFDQ0V2BDfkRAgFPw2upPxvgjNG0YnHYAUAems64soTUIb-ha2sU-Ors-_bpa2vuZVjzWanMkuUu3D1pkmXw43lT4032_gOP7P2zxEDxp_FA9qAXqEbrnyMbo3bNvAPUHrYUAMqfAp2Li5-_Xj56BafMUnLqRzODz9ZlcLkEF8urycx3RQDF4wHkdgCrBneFy32TENLgH-DL7tCo8ut1KBVWnxyJmLmAsYh56is8n403CaNJ0aEkNZnyeFhrDNZkZTa5hVVOncpqqg2jHPbeqY8xYOJawAnSdEe5F5T33GdS5EltNnaKdclO45wuDQMGGoYRTiZZcrYXzBjMi19gzITQ8lLaOkaWDMQzeNuawBmIkMSym7peyhtx39sgbw-CPlXst32SjyWtI-xK8FSBbpodfdZWBB2FdRpVts1pIIFrajRQ40JDL5L3eSg9nxuDt78S-TXqG7H0cT-eF49v4luh-GYxYm30M71Wrj9sFTqvRBVIbfu50Nfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cobalt+Single%E2%80%90Atom+Reverse+Hydrogen+Spillover+for+Efficient+Electrochemical+Water+Dissociation+and+Dechlorination&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zheng%2C+Qian&rft.au=Xu%2C+Hengyue&rft.au=Yao%2C+Yancai&rft.au=Dai%2C+Jie&rft.date=2024-05-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=19&rft_id=info:doi/10.1002%2Fanie.202401386&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202401386 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |