Cobalt Single‐Atom Reverse Hydrogen Spillover for Efficient Electrochemical Water Dissociation and Dechlorination

Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single‐atom electrode with Co single...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 19; pp. e202401386 - n/a
Main Authors Zheng, Qian, Xu, Hengyue, Yao, Yancai, Dai, Jie, Wang, Jiaxian, Hou, Wei, Zhao, Long, Zou, Xingyue, Zhan, Guangming, Wang, Ruizhao, Wang, Kaiyuan, Zhang, Lizhi
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.05.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single‐atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co1−TiOx/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single‐atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof‐of‐concept verification, the resulting Co1−TiOx/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at −1.0 V, far superior to that of traditional indirect reduction‐driven commercial Pd/C (52 %) and direct reduction‐driven Co1−N−C (44 %). Moreover, its dechlorination rate constant of 1.64 h−1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h−1) and Co1−N−C (0.19 h−1), respectively. Our research sheds light on the rational design of hydrogen spillover‐related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications. The immobilization of Co single atoms on the surface oxide layer of titanium foam favors the rapid diffusion of generated atomic hydrogen to adjacent Co single atoms through the reverse hydrogen spillover effect for more efficient electrochemical dechlorination of chloramphenicol, offering a promising atomic hydrogen utilization strategy for environmental and energy applications.
AbstractList Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single-atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co1-TiOx/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single-atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof-of-concept verification, the resulting Co1-TiOx/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at -1.0 V, far superior to that of traditional indirect reduction-driven commercial Pd/C (52 %) and direct reduction-driven Co1-N-C (44 %). Moreover, its dechlorination rate constant of 1.64 h-1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h-1) and Co1-N-C (0.19 h-1), respectively. Our research sheds light on the rational design of hydrogen spillover-related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications.Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single-atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co1-TiOx/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single-atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof-of-concept verification, the resulting Co1-TiOx/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at -1.0 V, far superior to that of traditional indirect reduction-driven commercial Pd/C (52 %) and direct reduction-driven Co1-N-C (44 %). Moreover, its dechlorination rate constant of 1.64 h-1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h-1) and Co1-N-C (0.19 h-1), respectively. Our research sheds light on the rational design of hydrogen spillover-related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications.
Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single‐atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co1−TiOx/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single‐atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof‐of‐concept verification, the resulting Co1−TiOx/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at −1.0 V, far superior to that of traditional indirect reduction‐driven commercial Pd/C (52 %) and direct reduction‐driven Co1−N−C (44 %). Moreover, its dechlorination rate constant of 1.64 h−1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h−1) and Co1−N−C (0.19 h−1), respectively. Our research sheds light on the rational design of hydrogen spillover‐related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications.
Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single‐atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co 1 −TiO x /Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single‐atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof‐of‐concept verification, the resulting Co 1 −TiO x /Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at −1.0 V, far superior to that of traditional indirect reduction‐driven commercial Pd/C (52 %) and direct reduction‐driven Co 1 −N−C (44 %). Moreover, its dechlorination rate constant of 1.64 h −1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h −1 ) and Co 1 −N−C (0.19 h −1 ), respectively. Our research sheds light on the rational design of hydrogen spillover‐related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications.
Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single‐atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co1−TiOx/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single‐atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof‐of‐concept verification, the resulting Co1−TiOx/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at −1.0 V, far superior to that of traditional indirect reduction‐driven commercial Pd/C (52 %) and direct reduction‐driven Co1−N−C (44 %). Moreover, its dechlorination rate constant of 1.64 h−1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h−1) and Co1−N−C (0.19 h−1), respectively. Our research sheds light on the rational design of hydrogen spillover‐related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications. The immobilization of Co single atoms on the surface oxide layer of titanium foam favors the rapid diffusion of generated atomic hydrogen to adjacent Co single atoms through the reverse hydrogen spillover effect for more efficient electrochemical dechlorination of chloramphenicol, offering a promising atomic hydrogen utilization strategy for environmental and energy applications.
Author Wang, Jiaxian
Zhang, Lizhi
Dai, Jie
Hou, Wei
Yao, Yancai
Zheng, Qian
Zhan, Guangming
Zhao, Long
Zou, Xingyue
Wang, Ruizhao
Xu, Hengyue
Wang, Kaiyuan
Author_xml – sequence: 1
  givenname: Qian
  surname: Zheng
  fullname: Zheng, Qian
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Hengyue
  orcidid: 0000-0003-4438-9647
  surname: Xu
  fullname: Xu, Hengyue
  organization: Tsinghua University
– sequence: 3
  givenname: Yancai
  surname: Yao
  fullname: Yao, Yancai
  email: yyancai@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 4
  givenname: Jie
  surname: Dai
  fullname: Dai, Jie
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Jiaxian
  surname: Wang
  fullname: Wang, Jiaxian
  organization: Shanghai Jiao Tong University
– sequence: 6
  givenname: Wei
  surname: Hou
  fullname: Hou, Wei
  organization: Shanghai Jiao Tong University
– sequence: 7
  givenname: Long
  surname: Zhao
  fullname: Zhao, Long
  organization: Shanghai Jiao Tong University
– sequence: 8
  givenname: Xingyue
  surname: Zou
  fullname: Zou, Xingyue
  organization: Shanghai Jiao Tong University
– sequence: 9
  givenname: Guangming
  surname: Zhan
  fullname: Zhan, Guangming
  organization: Shanghai Jiao Tong University
– sequence: 10
  givenname: Ruizhao
  surname: Wang
  fullname: Wang, Ruizhao
  organization: Shanghai Jiao Tong University
– sequence: 11
  givenname: Kaiyuan
  surname: Wang
  fullname: Wang, Kaiyuan
  organization: Shanghai Jiao Tong University
– sequence: 12
  givenname: Lizhi
  orcidid: 0000-0002-6842-9167
  surname: Zhang
  fullname: Zhang, Lizhi
  email: zhanglizhi@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
BookMark eNqFkU9rFDEYh4NUsK299hzw4mXW_JuZ5LhsV1soCrbiMWSSN21KNlmT2cre_Aj9jP0kznZFoSB9L3n58Twh4XeEDlJOgNApJTNKCPtgUoAZI0wQymX3Ch3SltGG9z0_mHbBedPLlr5BR7XeTbyUpDtEdZEHE0d8FdJNhMdfD_Mxr_BXuIdSAZ9vXck3kPDVOsSYpxD7XPDS-2ADpBEvI9ixZHsLq2BNxN_NODFnodZsgxlDTtgkh8_A3sZcQnqK3qLX3sQKJ3_OY_Tt4_J6cd5cfvl0sZhfNpa3pGvkIJVywg7c2dYZbobeUSP5AK3vHIUWvJvGKKdaThkbvBLecy-6oVdK9PwYvd_fuy75xwbqqFehWojRJMibqplqJVNE9WxC3z1D7_KmpOl1mhMhpOyI2lFiT9mSay3gtQ3j05fGYkLUlOhdE3rXhP7bxKTNnmnrElambP8vqL3wM0TYvkDr-eeL5T_3N6kboV8
CitedBy_id crossref_primary_10_1002_cctc_202401121
crossref_primary_10_1016_j_nanoen_2025_110873
crossref_primary_10_1016_j_jcis_2025_137281
crossref_primary_10_1002_anie_202412209
crossref_primary_10_1016_j_cej_2024_156481
crossref_primary_10_1016_j_cej_2024_157872
crossref_primary_10_1038_s44160_025_00756_0
crossref_primary_10_1002_ange_202409465
crossref_primary_10_1002_ange_202422892
crossref_primary_10_1002_ange_202412209
crossref_primary_10_1039_D4TA01848F
crossref_primary_10_26599_NR_2025_94907048
crossref_primary_10_1002_adma_202501387
crossref_primary_10_1016_j_apcatb_2025_125218
crossref_primary_10_1016_j_seppur_2024_131299
crossref_primary_10_1002_adma_202500371
crossref_primary_10_1016_j_apcatb_2024_124783
crossref_primary_10_1016_j_cej_2024_157817
crossref_primary_10_1007_s11426_024_2404_4
crossref_primary_10_1016_j_jallcom_2024_175883
crossref_primary_10_1002_anie_202501040
crossref_primary_10_1002_anie_202411068
crossref_primary_10_1021_acs_nanolett_5c00233
crossref_primary_10_1039_D4SC07375D
crossref_primary_10_1002_anie_202416910
crossref_primary_10_1038_s41467_024_54601_7
crossref_primary_10_1016_j_jes_2024_07_005
crossref_primary_10_1021_acs_inorgchem_4c02375
crossref_primary_10_1002_adfm_202408517
crossref_primary_10_1002_anie_202409465
crossref_primary_10_1002_anie_202422892
crossref_primary_10_1016_j_ccr_2024_216321
crossref_primary_10_1039_D4EE03970J
crossref_primary_10_1016_j_jcat_2024_115620
crossref_primary_10_1002_ange_202411068
crossref_primary_10_1002_ange_202416910
crossref_primary_10_1021_acscatal_4c05785
crossref_primary_10_1002_ange_202501040
Cites_doi 10.1021/jacs.9b09391
10.1021/acs.jpclett.1c03808
10.1038/s41467-020-19433-1
10.1038/s41467-018-06269-z
10.1002/adfm.202207618
10.1038/s41570-016-0003
10.1038/s41467-022-28843-2
10.1038/521402a
10.1002/smll.202105329
10.1063/5.0083059
10.1038/s41929-022-00882-4
10.1021/jacs.0c00418
10.1038/s41467-020-20619-w
10.1038/s41929-023-00923-6
10.1021/acscatal.1c03382
10.1002/anie.202208215
10.1021/acscatal.5b01093
10.1038/s41467-021-24228-z
10.1038/s41467-021-20977-z
10.1038/s41467-021-23750-4
10.1007/s10853-018-2961-5
10.1002/adma.202003327
10.1126/science.1211934
10.1038/s44221-022-00002-3
10.1038/nature20782
10.1002/smll.202206750
10.1021/acsami.2c14041
10.1002/adma.201801526
10.1038/s41467-020-18567-6
10.1021/acscatal.8b00719
10.1146/annurev.pa.28.040188.000503
10.1038/s41467-020-15080-8
10.1021/acs.est.7b01128
10.1021/jacs.0c06118
10.1016/j.femsre.2004.04.001
10.1038/s41467-023-44469-4
10.1038/s41467-022-33007-3
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202401386
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202401386
ANIE202401386
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2021M702117; 2022M722080
– fundername: the National Key Research and Development Program of China
  funderid: 2021YFA1201701
– fundername: the Natural Science Foundation of Shanghai
  funderid: 22ZR1431700
– fundername: Key Program of Shenzhen Science and Technology Commission
  funderid: JCYJ20220818095601002
– fundername: National Natural Science Foundation of China
  funderid: U22A20402; U21A20286; 22102100
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3506-8b899d4cb3dc5da3ab7d1a83be5f6d1e5efdddda9d953122bf94ff3f46b799473
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 10:39:04 EDT 2025
Fri Jul 25 10:06:50 EDT 2025
Thu Apr 24 23:07:45 EDT 2025
Tue Jul 01 01:47:33 EDT 2025
Wed Jan 22 17:21:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3506-8b899d4cb3dc5da3ab7d1a83be5f6d1e5efdddda9d953122bf94ff3f46b799473
Notes These authors contributed equally
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6842-9167
0000-0003-4438-9647
PQID 3044886092
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2958290972
proquest_journals_3044886092
crossref_citationtrail_10_1002_anie_202401386
crossref_primary_10_1002_anie_202401386
wiley_primary_10_1002_anie_202401386_ANIE202401386
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 6, 2024
PublicationDateYYYYMMDD 2024-05-06
PublicationDate_xml – month: 05
  year: 2024
  text: May 6, 2024
  day: 06
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 334
2017; 1
2015; 5
2019; 31
2023; 6
2020; 142
2015; 521
2019; 54
2004; 28
2023; 1
2020; 11
2019; 141
2024; 15
2017; 51
2018; 9
2018; 8
2021; 12
2021; 55
2021; 11
2021; 33
2023
2022; 5
2022; 61
2022; 9
1988; 28
2022; 13
2022; 14
2022; 32
2017; 541
2022; 18
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_40_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_14_1
e_1_2_7_41_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_43_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_47_2
e_1_2_7_27_1
e_1_2_7_48_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_1
e_1_2_7_30_2
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
Huang D. (e_1_2_7_8_1) 2021; 55
e_1_2_7_20_2
e_1_2_7_21_1
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_2
e_1_2_7_39_2
References_xml – volume: 12
  start-page: 3884
  year: 2021
  publication-title: Nat. Commun.
– year: 2023
  publication-title: Small
– volume: 142
  start-page: 7036
  year: 2020
  end-page: 7046
  publication-title: J. Am. Chem. Soc.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 1199
  year: 2020
  publication-title: Nat. Commun.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 9
  year: 2022
  publication-title: Appl Phys Rev
– volume: 1
  start-page: 95
  year: 2023
  end-page: 103
  publication-title: Nat. Water
– volume: 28
  start-page: 83
  year: 1988
  end-page: 100
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 334
  start-page: 1256
  year: 2011
  end-page: 1260
  publication-title: Science
– volume: 9
  start-page: 3778
  year: 2018
  publication-title: Nat. Commun.
– volume: 54
  start-page: 949
  year: 2019
  end-page: 973
  publication-title: J. Mater. Sci.
– volume: 55
  start-page: 13306
  year: 2021
  end-page: 13316
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 1110
  year: 2022
  end-page: 1119
  publication-title: Nat. Catal.
– volume: 12
  start-page: 3502
  year: 2021
  publication-title: Nat. Commun.
– volume: 28
  start-page: 519
  year: 2004
  end-page: 542
  publication-title: FEMS Microbiol. Rev.
– volume: 11
  start-page: 4773
  year: 2020
  publication-title: Nat. Commun.
– volume: 1
  start-page: 0003
  year: 2017
  publication-title: Nat. Chem. Rev.
– volume: 141
  start-page: 19964
  year: 2019
  end-page: 19968
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 5657
  year: 2020
  publication-title: Nat. Commun.
– volume: 15
  start-page: 88
  year: 2024
  publication-title: Nat. Commun.
– volume: 8
  start-page: 4288
  year: 2018
  end-page: 4293
  publication-title: ACS Catal.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 6
  start-page: 224
  year: 2023
  end-page: 233
  publication-title: Nat. Catal.
– volume: 13
  start-page: 5382
  year: 2022
  publication-title: Nat. Commun.
– volume: 142
  start-page: 17403
  year: 2020
  end-page: 17412
  publication-title: J. Am. Chem. Soc.
– volume: 521
  start-page: 402
  year: 2015
  end-page: 403
  publication-title: Nature
– volume: 13
  start-page: 1069
  year: 2022
  end-page: 1076
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 303
  year: 2021
  publication-title: Nat. Commun.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1189
  year: 2022
  publication-title: Nat. Commun.
– volume: 14
  start-page: 51190
  year: 2022
  end-page: 51199
  publication-title: ACS Appl. Mater. Interfaces
– volume: 541
  start-page: 68
  year: 2017
  end-page: 71
  publication-title: Nature
– volume: 12
  start-page: 661
  year: 2021
  publication-title: Nat. Commun.
– volume: 51
  start-page: 7599
  year: 2017
  end-page: 7605
  publication-title: Environ. Sci. Technol.
– volume: 11
  start-page: 13001
  year: 2021
  end-page: 13019
  publication-title: ACS Catal.
– volume: 5
  start-page: 5486
  year: 2015
  end-page: 5495
  publication-title: ACS Catal.
– volume: 55
  start-page: 13306
  year: 2021
  ident: e_1_2_7_8_1
  publication-title: Environ. Sci. Technol.
– ident: e_1_2_7_4_1
  doi: 10.1021/jacs.9b09391
– ident: e_1_2_7_12_2
  doi: 10.1021/acs.jpclett.1c03808
– ident: e_1_2_7_32_1
  doi: 10.1038/s41467-020-19433-1
– ident: e_1_2_7_37_1
– ident: e_1_2_7_19_2
  doi: 10.1038/s41467-018-06269-z
– ident: e_1_2_7_44_1
  doi: 10.1002/adfm.202207618
– ident: e_1_2_7_10_1
  doi: 10.1038/s41570-016-0003
– ident: e_1_2_7_29_2
  doi: 10.1038/s41467-022-28843-2
– ident: e_1_2_7_38_2
  doi: 10.1038/521402a
– ident: e_1_2_7_45_1
  doi: 10.1002/smll.202105329
– ident: e_1_2_7_35_2
  doi: 10.1063/5.0083059
– ident: e_1_2_7_6_2
  doi: 10.1038/s41929-022-00882-4
– ident: e_1_2_7_14_1
– ident: e_1_2_7_40_1
– ident: e_1_2_7_47_2
  doi: 10.1021/jacs.0c00418
– ident: e_1_2_7_11_1
– ident: e_1_2_7_43_1
  doi: 10.1038/s41467-020-20619-w
– ident: e_1_2_7_33_1
– ident: e_1_2_7_7_2
  doi: 10.1038/s41929-023-00923-6
– ident: e_1_2_7_1_1
– ident: e_1_2_7_24_1
  doi: 10.1021/acscatal.1c03382
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.202208215
– ident: e_1_2_7_16_2
  doi: 10.1021/acscatal.5b01093
– ident: e_1_2_7_20_2
  doi: 10.1038/s41467-021-24228-z
– ident: e_1_2_7_5_1
– ident: e_1_2_7_23_1
  doi: 10.1038/s41467-021-20977-z
– ident: e_1_2_7_31_1
  doi: 10.1038/s41467-021-23750-4
– ident: e_1_2_7_22_1
  doi: 10.1007/s10853-018-2961-5
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.202003327
– ident: e_1_2_7_27_1
– ident: e_1_2_7_2_2
  doi: 10.1126/science.1211934
– ident: e_1_2_7_3_2
  doi: 10.1038/s44221-022-00002-3
– ident: e_1_2_7_15_2
  doi: 10.1038/nature20782
– ident: e_1_2_7_46_1
– ident: e_1_2_7_36_1
  doi: 10.1002/smll.202206750
– ident: e_1_2_7_34_2
  doi: 10.1021/acsami.2c14041
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.201801526
– ident: e_1_2_7_18_1
– ident: e_1_2_7_28_2
  doi: 10.1038/s41467-020-18567-6
– ident: e_1_2_7_13_2
  doi: 10.1021/acscatal.8b00719
– ident: e_1_2_7_41_2
  doi: 10.1146/annurev.pa.28.040188.000503
– ident: e_1_2_7_39_2
  doi: 10.1038/s41467-020-15080-8
– ident: e_1_2_7_9_1
  doi: 10.1021/acs.est.7b01128
– ident: e_1_2_7_17_2
  doi: 10.1021/jacs.0c06118
– ident: e_1_2_7_42_2
  doi: 10.1016/j.femsre.2004.04.001
– ident: e_1_2_7_48_2
  doi: 10.1038/s41467-023-44469-4
– ident: e_1_2_7_30_2
  doi: 10.1038/s41467-022-33007-3
SSID ssj0028806
Score 2.6240072
Snippet Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202401386
SubjectTerms Catalysis
Chloramphenicol
Chloromycetin
Cobalt
Dechlorination
Direct reduction
Electrocatalysts
Electrocatalytic Hydrodechlorination
Electrochemistry
Electrodes
Hydrogen
Hydrogen Spillover
Recombination
Single-atom Monolithic Electrode
Titanium
Titanium oxides
Water Dissociation
Title Cobalt Single‐Atom Reverse Hydrogen Spillover for Efficient Electrochemical Water Dissociation and Dechlorination
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202401386
https://www.proquest.com/docview/3044886092
https://www.proquest.com/docview/2958290972
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQl3IpFKjYliJXQuopsLHjJD6ulkXbHjhAEdwijx8CsWTRbvYAJ34Cv5Ff0rHzWKhUIdGc8rCVxDOT-SYef0PIPmQpxDHYyPsvDFC0jZQFE6U5xCoD4xiELN-TdHye_LoUly9W8df8EN0PN28Z4XvtDVzB_HBJGupXYGN8x3yAkHvObZ-w5VHRaccfxVA56-VFnEe-Cn3L2thnh6-7v_ZKS6j5ErAGj3O8TlT7rHWiyc3BooID_fAXjeP_vMwG-djAUTqo9ecTWbHlJvkwbKvAbZH50BOGVPQMXdzEPj8-DarpLT21PpvD0vG9mU1RBenZ3fUkZINSBMF0FHgp0J3RUV1lRze0BPQCoe2MHl0vlYKq0tAjq69CKmA4tU3Oj0e_h-OoKdQQaS76aZQDRm0m0cCNFkZxBZmJVc7BCpea2ArrDG5KGokmzxg4mTjHXZJCJmWS8c9ktZyWdodQxDNCaq4Fx3DZZkpqlwstMwAnsLnukagVVKEbFnNfTGNS1PzLrPBDWXRD2SM_uvZ3NX_HP1vutnIvGjueF7yP4Wue9iXrke_dZRSBn1ZRpZ0u5gWTws9GywzbsCDkN-5UDE5-jrqjL-_p9JWs-f2QeZnuktVqtrDfEB1VsBcs4A9QAgq0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgOSwX3ojCAkZC4pTdxo6d-Fi1XXVh6WEfgpuV8UO7oqSrNj3AiZ_Ab-SXMHYeZZEQEuQWZ6w4npnMjD3-hpDXkEtIU3BJsF8YoBiXlA5sIgtIyxysZxCzfOdydp69_Si6bMJwFqbBh-gX3IJmxP91UPCwIH2wRQ0NR7AxwGMhQijkTXIrlPUO8PmTkx5BiqF4NgeMOE9CHfoOt3HIDq73v26Xts7mry5rtDmHdwl0o21STT7tb2rYN19_A3L8r8-5R-60HikdNSJ0n9xw1QOyO-4KwT0k63HADKnpKVq5hfvx7fuoXn6mJy4kdDg6-2JXS5RCenp1uYgJoRT9YDqN0BRo0ei0KbRjWmQC-gG92xWdXG7lgpaVpRNnLmI2YGx6RM4Pp2fjWdLWakgMF0OZFICBm80McGuELXkJuU3LgoMTXtrUCectXqWyCrWeMfAq8577TEKuVJbzx2SnWlbuCaHo0ghluBEcI2aXl8r4QhiVA3iB5GZAko5T2rRA5qGexkI3EMxMh6nU_VQOyJue_qqB8Pgj5V7HeN2q8lrzIUawhRwqNiCv-sfIgrCzUlZuuVlrpkTYkFY50rDI5b-8SY_mR9P-7um_dHpJdmdn74_18dH83TNyO7THREy5R3bq1cY9R2ephhdRHX4C8B8O0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCF8hQLbTESEqe0Gzt24uNqH9oCWqGWit4sP9WKJbvazR7gxE_gN_JLGDuPbSshJMgtzlhJPDOZmXjmG4Te6JzrNNUuCfYLAhTjEuW0TXihU5Vr64mOWb4zPj3L3p2z8ytV_DU-RPfDLWhG_F4HBV9af7QFDQ0V2BDfkRAgFPw2upPxvgjNG0YnHYAUAems64soTUIb-ha2sU-Ors-_bpa2vuZVjzWanMkuUu3D1pkmXw43lT4032_gOP7P2zxEDxp_FA9qAXqEbrnyMbo3bNvAPUHrYUAMqfAp2Li5-_Xj56BafMUnLqRzODz9ZlcLkEF8urycx3RQDF4wHkdgCrBneFy32TENLgH-DL7tCo8ut1KBVWnxyJmLmAsYh56is8n403CaNJ0aEkNZnyeFhrDNZkZTa5hVVOncpqqg2jHPbeqY8xYOJawAnSdEe5F5T33GdS5EltNnaKdclO45wuDQMGGoYRTiZZcrYXzBjMi19gzITQ8lLaOkaWDMQzeNuawBmIkMSym7peyhtx39sgbw-CPlXst32SjyWtI-xK8FSBbpodfdZWBB2FdRpVts1pIIFrajRQ40JDL5L3eSg9nxuDt78S-TXqG7H0cT-eF49v4luh-GYxYm30M71Wrj9sFTqvRBVIbfu50Nfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cobalt+Single%E2%80%90Atom+Reverse+Hydrogen+Spillover+for+Efficient+Electrochemical+Water+Dissociation+and+Dechlorination&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zheng%2C+Qian&rft.au=Xu%2C+Hengyue&rft.au=Yao%2C+Yancai&rft.au=Dai%2C+Jie&rft.date=2024-05-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=19&rft_id=info:doi/10.1002%2Fanie.202401386&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202401386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon