Synergetic Cobalt‐Copper‐Based Bimetal–Organic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution

The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the high‐performance energy conversion and storage technologies. Herein, we report novel CoCu‐based bimetallic metal–organic framework nanoboxes (CoCu‐MOF NBs...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 50; pp. 26397 - 26402
Main Authors Cheng, Weiren, Wu, Zhi‐Peng, Luan, Deyan, Zang, Shuang‐Quan, Lou, Xiong Wen (David)
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.12.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the high‐performance energy conversion and storage technologies. Herein, we report novel CoCu‐based bimetallic metal–organic framework nanoboxes (CoCu‐MOF NBs) as promising catalysts toward efficient electrochemical oxygen evolution reaction (OER), fabricated via a successive cation and ligand exchange strategy. With the highly exposed bimetal centers and the well‐designed architecture, the CoCu‐MOF NBs show excellent OER activity and stability, with a small overpotential of 271 mV at 10 mA cm−2 and a high turnover frequency value of 0.326 s−1 at an overpotential of 300 mV. In combination of quasi in situ X‐ray absorption fine structure spectroscopy and density‐functional theory calculations, the post‐formed CoCu‐based oxyhydroxide analogue during OER is believed to account for the high OER activity of CoCu‐MOF NBs, where the electronic synergy between Co and neighbouring Cu atoms promotes the O−O bond coupling toward fast OER kinetics. Cobalt‐copper‐based conductive bimetal–organic framework nanoboxes (CoCu‐MOF NBs) have been synthesized as a promising oxygen electrocatalyst, through a successive cation and ligand exchange strategy. With the bimetallic synergetic effect and the well‐designed hollow architecture, the CoCu‐MOF NBs show excellent electrocatalytic activity and robust long‐term stability toward efficient oxygen evolution electrocatalysis.
AbstractList The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the high‐performance energy conversion and storage technologies. Herein, we report novel CoCu‐based bimetallic metal–organic framework nanoboxes (CoCu‐MOF NBs) as promising catalysts toward efficient electrochemical oxygen evolution reaction (OER), fabricated via a successive cation and ligand exchange strategy. With the highly exposed bimetal centers and the well‐designed architecture, the CoCu‐MOF NBs show excellent OER activity and stability, with a small overpotential of 271 mV at 10 mA cm−2 and a high turnover frequency value of 0.326 s−1 at an overpotential of 300 mV. In combination of quasi in situ X‐ray absorption fine structure spectroscopy and density‐functional theory calculations, the post‐formed CoCu‐based oxyhydroxide analogue during OER is believed to account for the high OER activity of CoCu‐MOF NBs, where the electronic synergy between Co and neighbouring Cu atoms promotes the O−O bond coupling toward fast OER kinetics. Cobalt‐copper‐based conductive bimetal–organic framework nanoboxes (CoCu‐MOF NBs) have been synthesized as a promising oxygen electrocatalyst, through a successive cation and ligand exchange strategy. With the bimetallic synergetic effect and the well‐designed hollow architecture, the CoCu‐MOF NBs show excellent electrocatalytic activity and robust long‐term stability toward efficient oxygen evolution electrocatalysis.
The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the high‐performance energy conversion and storage technologies. Herein, we report novel CoCu‐based bimetallic metal–organic framework nanoboxes (CoCu‐MOF NBs) as promising catalysts toward efficient electrochemical oxygen evolution reaction (OER), fabricated via a successive cation and ligand exchange strategy. With the highly exposed bimetal centers and the well‐designed architecture, the CoCu‐MOF NBs show excellent OER activity and stability, with a small overpotential of 271 mV at 10 mA cm−2 and a high turnover frequency value of 0.326 s−1 at an overpotential of 300 mV. In combination of quasi in situ X‐ray absorption fine structure spectroscopy and density‐functional theory calculations, the post‐formed CoCu‐based oxyhydroxide analogue during OER is believed to account for the high OER activity of CoCu‐MOF NBs, where the electronic synergy between Co and neighbouring Cu atoms promotes the O−O bond coupling toward fast OER kinetics.
The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the high-performance energy conversion and storage technologies. Herein, we report novel CoCu-based bimetallic metal-organic framework nanoboxes (CoCu-MOF NBs) as promising catalysts toward efficient electrochemical oxygen evolution reaction (OER), fabricated via a successive cation and ligand exchange strategy. With the highly exposed bimetal centers and the well-designed architecture, the CoCu-MOF NBs show excellent OER activity and stability, with a small overpotential of 271 mV at 10 mA cm-2 and a high turnover frequency value of 0.326 s-1 at an overpotential of 300 mV. In combination of quasi in situ X-ray absorption fine structure spectroscopy and density-functional theory calculations, the post-formed CoCu-based oxyhydroxide analogue during OER is believed to account for the high OER activity of CoCu-MOF NBs, where the electronic synergy between Co and neighbouring Cu atoms promotes the O-O bond coupling toward fast OER kinetics.The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the high-performance energy conversion and storage technologies. Herein, we report novel CoCu-based bimetallic metal-organic framework nanoboxes (CoCu-MOF NBs) as promising catalysts toward efficient electrochemical oxygen evolution reaction (OER), fabricated via a successive cation and ligand exchange strategy. With the highly exposed bimetal centers and the well-designed architecture, the CoCu-MOF NBs show excellent OER activity and stability, with a small overpotential of 271 mV at 10 mA cm-2 and a high turnover frequency value of 0.326 s-1 at an overpotential of 300 mV. In combination of quasi in situ X-ray absorption fine structure spectroscopy and density-functional theory calculations, the post-formed CoCu-based oxyhydroxide analogue during OER is believed to account for the high OER activity of CoCu-MOF NBs, where the electronic synergy between Co and neighbouring Cu atoms promotes the O-O bond coupling toward fast OER kinetics.
The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the high‐performance energy conversion and storage technologies. Herein, we report novel CoCu‐based bimetallic metal–organic framework nanoboxes (CoCu‐MOF NBs) as promising catalysts toward efficient electrochemical oxygen evolution reaction (OER), fabricated via a successive cation and ligand exchange strategy. With the highly exposed bimetal centers and the well‐designed architecture, the CoCu‐MOF NBs show excellent OER activity and stability, with a small overpotential of 271 mV at 10 mA cm −2 and a high turnover frequency value of 0.326 s −1 at an overpotential of 300 mV. In combination of quasi in situ X‐ray absorption fine structure spectroscopy and density‐functional theory calculations, the post‐formed CoCu‐based oxyhydroxide analogue during OER is believed to account for the high OER activity of CoCu‐MOF NBs, where the electronic synergy between Co and neighbouring Cu atoms promotes the O−O bond coupling toward fast OER kinetics.
Author Lou, Xiong Wen (David)
Luan, Deyan
Zang, Shuang‐Quan
Cheng, Weiren
Wu, Zhi‐Peng
Author_xml – sequence: 1
  givenname: Weiren
  orcidid: 0000-0001-6938-6296
  surname: Cheng
  fullname: Cheng, Weiren
  organization: Nanyang Technological University
– sequence: 2
  givenname: Zhi‐Peng
  orcidid: 0000-0002-5422-1349
  surname: Wu
  fullname: Wu, Zhi‐Peng
  organization: Zhengzhou University
– sequence: 3
  givenname: Deyan
  orcidid: 0000-0003-3987-0989
  surname: Luan
  fullname: Luan, Deyan
  organization: Nanyang Technological University
– sequence: 4
  givenname: Shuang‐Quan
  orcidid: 0000-0002-6728-0559
  surname: Zang
  fullname: Zang, Shuang‐Quan
  organization: Zhengzhou University
– sequence: 5
  givenname: Xiong Wen (David)
  orcidid: 0000-0002-5557-4437
  surname: Lou
  fullname: Lou, Xiong Wen (David)
  email: xwlou@ntu.edu.sg, davidlou88@gmail.com
  organization: Nanyang Technological University
BookMark eNqFkbtu2zAUhoUgBXJp184CunSRw4skimNiKG2AIB6azsIRdegypUiXpOO4Ux6hQN4wT1IZLlogQJHp_MP3kYf8T7JD5x1m2XtKZpQQdgbO4IwRRikTojrIjmnFaMGF4IdTLjkvRFPRo-wkxruJbxpSH2c_v2wdhiUmo_K578Gm58dfc79aYZjCBUQc8gszYgL7_Pi0CMvpFpVfBhhx48P3_Aac7_0Dxjz5DYQhb7U2yqBLeWtRpeDVNxyNApsvHrZLdHl77-06Ge_eZm802Ijv_szT7Otlezv_XFwvPl3Nz68LxStSFZrXimnNJAPGiQY5sEbVQoKQg9QNLSWTQGrFBdC-lD0QpVXdczEMmlGh-Gn2cX_uKvgfa4ypG01UaC049OvYsarhnNSsKSf0wwv0zq-Dm7brWE24bJrpCyeq3FMq-BgD6k6ZBLsnpQDGdpR0u0K6XSHd30ImbfZCWwUzQtj-X5B7YWMsbl-hu_Obq_af-xtvX6U3
CitedBy_id crossref_primary_10_3390_catal13020415
crossref_primary_10_1002_eem2_12740
crossref_primary_10_1016_j_apsusc_2024_159784
crossref_primary_10_1073_pnas_2202382119
crossref_primary_10_1021_jacs_3c12820
crossref_primary_10_1021_acs_inorgchem_4c00089
crossref_primary_10_1021_acs_jpcc_3c06800
crossref_primary_10_1039_D2NR00522K
crossref_primary_10_1016_j_jcis_2023_04_122
crossref_primary_10_1002_cssc_202401176
crossref_primary_10_1021_acsanm_4c00544
crossref_primary_10_1016_j_inoche_2023_110835
crossref_primary_10_1016_j_ijhydene_2023_10_223
crossref_primary_10_1002_aenm_202301224
crossref_primary_10_2139_ssrn_4110405
crossref_primary_10_1016_j_jpowsour_2024_235065
crossref_primary_10_1002_anie_202305828
crossref_primary_10_1002_aenm_202204177
crossref_primary_10_1016_j_jece_2021_106989
crossref_primary_10_1016_j_nanoen_2022_107297
crossref_primary_10_1039_D3TA01869E
crossref_primary_10_1021_acsami_2c09272
crossref_primary_10_1016_j_jechem_2022_05_041
crossref_primary_10_1016_j_jcis_2024_09_175
crossref_primary_10_1039_D4TC02996H
crossref_primary_10_3390_ma17102195
crossref_primary_10_1016_j_apcatb_2022_121706
crossref_primary_10_1021_acsmaterialslett_2c00751
crossref_primary_10_1002_adma_202301359
crossref_primary_10_1021_acs_inorgchem_4c02204
crossref_primary_10_1016_j_cej_2023_142654
crossref_primary_10_1016_j_jece_2023_109662
crossref_primary_10_1016_j_chempr_2023_09_009
crossref_primary_10_1039_D3QI00112A
crossref_primary_10_1039_D5TC00412H
crossref_primary_10_1016_j_cej_2024_157234
crossref_primary_10_1039_D2TA04966J
crossref_primary_10_2139_ssrn_4136210
crossref_primary_10_1016_j_cej_2024_156303
crossref_primary_10_1039_D4CS00432A
crossref_primary_10_1016_j_jpowsour_2022_231685
crossref_primary_10_1007_s12274_023_5389_4
crossref_primary_10_1039_D2DT01837C
crossref_primary_10_1039_D4TC02046D
crossref_primary_10_1002_smll_202207413
crossref_primary_10_1021_acs_jpcc_2c05854
crossref_primary_10_1021_acsami_2c05299
crossref_primary_10_1039_D4AY01175A
crossref_primary_10_1039_D2TA08066D
crossref_primary_10_1002_smll_202202248
crossref_primary_10_1016_j_ijhydene_2023_11_037
crossref_primary_10_1039_D3AY01804K
crossref_primary_10_1016_j_ijhydene_2023_09_257
crossref_primary_10_1002_adma_202207888
crossref_primary_10_1039_D2QM01177H
crossref_primary_10_1007_s11581_022_04774_2
crossref_primary_10_1016_j_apcatb_2024_124453
crossref_primary_10_1002_aenm_202300604
crossref_primary_10_1016_j_apcatb_2023_123184
crossref_primary_10_1016_j_nanoen_2023_108349
crossref_primary_10_1039_D3TC00825H
crossref_primary_10_1016_j_jcis_2023_11_104
crossref_primary_10_1016_j_colsurfa_2023_132419
crossref_primary_10_1021_acs_jpclett_3c00103
crossref_primary_10_3390_molecules28083622
crossref_primary_10_1016_j_jpowsour_2022_231908
crossref_primary_10_1016_j_jallcom_2022_164527
crossref_primary_10_1007_s40242_022_1504_4
crossref_primary_10_1016_j_jallcom_2023_169413
crossref_primary_10_1016_j_jallcom_2022_165059
crossref_primary_10_1039_D4DT01459F
crossref_primary_10_1002_ange_202305828
crossref_primary_10_2139_ssrn_4160387
crossref_primary_10_1016_j_cej_2022_137961
crossref_primary_10_1016_j_ijhydene_2022_09_126
crossref_primary_10_1016_j_ijhydene_2023_06_322
crossref_primary_10_1002_aenm_202303442
crossref_primary_10_1002_smll_202301473
crossref_primary_10_1016_j_seppur_2022_122526
crossref_primary_10_1002_anie_202216008
crossref_primary_10_1016_j_jcis_2025_137356
crossref_primary_10_3390_ma16093372
crossref_primary_10_1039_D3NJ01275A
crossref_primary_10_1016_j_ijhydene_2022_05_002
crossref_primary_10_1016_j_ijhydene_2022_07_078
crossref_primary_10_1016_j_jece_2023_111577
crossref_primary_10_1016_j_microc_2023_109185
crossref_primary_10_1039_D3DT01175E
crossref_primary_10_1002_adma_202408580
crossref_primary_10_1002_sstr_202300293
crossref_primary_10_1016_j_mtener_2024_101595
crossref_primary_10_1016_j_apcata_2023_119030
crossref_primary_10_1016_j_jcis_2023_01_074
crossref_primary_10_1039_D3TA03197G
crossref_primary_10_1007_s42864_024_00275_z
crossref_primary_10_1016_j_ijhydene_2023_03_127
crossref_primary_10_1039_D2TA04340H
crossref_primary_10_1021_acsanm_4c01984
crossref_primary_10_1021_acssuschemeng_2c01124
crossref_primary_10_1016_j_ijhydene_2024_02_361
crossref_primary_10_1016_j_apsusc_2022_155123
crossref_primary_10_1002_chem_202301129
crossref_primary_10_1021_acsaem_3c01215
crossref_primary_10_2139_ssrn_4119155
crossref_primary_10_1007_s11581_025_06116_4
crossref_primary_10_3389_fenrg_2024_1373522
crossref_primary_10_1016_j_jcis_2024_09_040
crossref_primary_10_1002_smll_202304045
crossref_primary_10_1039_D4CE00483C
crossref_primary_10_1002_chem_202403141
crossref_primary_10_1016_j_jcis_2022_09_085
crossref_primary_10_1039_D2RA07661F
crossref_primary_10_1002_smll_202206768
crossref_primary_10_1038_s41467_024_46872_x
crossref_primary_10_1002_smll_202207611
crossref_primary_10_1007_s11426_023_1725_8
crossref_primary_10_1016_j_apenergy_2022_119999
crossref_primary_10_1016_j_electacta_2022_141035
crossref_primary_10_1016_j_ccr_2023_215450
crossref_primary_10_1039_D1TA09424F
crossref_primary_10_20517_cs_2024_26
crossref_primary_10_1016_j_ccr_2023_215452
crossref_primary_10_1016_j_mcat_2023_113817
crossref_primary_10_1002_aic_18290
crossref_primary_10_1016_j_psep_2024_07_096
crossref_primary_10_1002_cey2_344
crossref_primary_10_1016_j_apcatb_2022_121988
crossref_primary_10_1021_acsami_3c03619
crossref_primary_10_1016_j_surfin_2024_104165
crossref_primary_10_1002_ange_202216008
crossref_primary_10_1016_j_jcis_2023_11_148
Cites_doi 10.1039/C8TA08508K
10.1002/ange.201502836
10.1002/chem.201903482
10.1038/nenergy.2016.184
10.1039/D0CC05876A
10.1039/D0CE01796E
10.1016/j.cej.2020.126198
10.1126/science.aaf1525
10.1002/adfm.202003889
10.1038/s41467-020-16237-1
10.1038/s41560-021-00796-8
10.1021/acs.jpclett.0c01258
10.1002/anie.202103058
10.1021/jacs.0c04458
10.1016/j.nanoen.2019.104296
10.1002/adfm.202007602
10.1021/acscatal.1c01973
10.1002/anie.201502836
10.1016/j.mattod.2021.01.008
10.1021/acsenergylett.9b01758
10.1038/s41467-020-19729-2
10.1016/j.chempr.2018.11.010
10.1038/s41467-018-05019-5
10.1126/sciadv.abg2580
10.1002/adma.201906432
10.1126/sciadv.aav6009
10.1002/ange.202103058
10.1021/jacs.1c01525
10.1038/s41467-018-08144-3
10.1038/s41467-019-12857-4
10.1038/ncomms15194
10.1038/s41560-020-00709-1
10.1002/adfm.201910274
10.1002/cey2.45
10.1002/ange.202008129
10.1002/adfm.202004009
10.1002/anie.201612635
10.1021/acsenergylett.8b02343
10.1126/science.aat7918
10.1002/advs.202000012
10.1021/ja405997s
10.1002/anie.202008129
10.1038/s41929-018-0141-2
10.1038/s41560-018-0308-8
10.1002/ange.201612635
10.1038/ncomms15341
10.1016/j.nanoen.2019.104371
10.1039/C8RA05964K
10.1021/jacs.5b00281
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202112775
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 26402
ExternalDocumentID 10_1002_anie_202112775
ANIE202112775
Genre shortCommunication
GrantInformation_xml – fundername: Ministry of Education Singapore
  funderid: MOE2017-T2-2-003
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3505-f36c2ff292a230fa9d28c679a79d9f814929a06c37a1b49ba0cfc6b37ddf217c3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:16:43 EDT 2025
Fri Jul 25 11:49:48 EDT 2025
Tue Jul 01 01:18:10 EDT 2025
Thu Apr 24 22:58:03 EDT 2025
Wed Jan 22 16:26:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3505-f36c2ff292a230fa9d28c679a79d9f814929a06c37a1b49ba0cfc6b37ddf217c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5557-4437
0000-0002-6728-0559
0000-0001-6938-6296
0000-0003-3987-0989
0000-0002-5422-1349
PQID 2603988785
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2583306284
proquest_journals_2603988785
crossref_citationtrail_10_1002_anie_202112775
crossref_primary_10_1002_anie_202112775
wiley_primary_10_1002_anie_202112775_ANIE202112775
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 6, 2021
PublicationDateYYYYMMDD 2021-12-06
PublicationDate_xml – month: 12
  year: 2021
  text: December 6, 2021
  day: 06
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 46
2019; 7
2021; 7
2021; 6
2017; 8
2019; 4
2018; 360
2021; 23
2019; 5
2020; 142
2019; 10
2021; 405
2020 2020; 59 132
2020; 56
2020; 11
2020; 32
2017 2017; 56 129
2021; 143
2020; 7
2018; 9
2020; 5
2018; 8
2021; 31
2016; 1
2020; 2
2021; 11
2015; 137
2020; 30
2018; 1
2019; 25
2021 2021; 60 133
2015 2015; 54 127
2016; 352
2013; 135
2020; 68
e_1_2_2_4_1
e_1_2_2_24_2
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_22_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_41_1
e_1_2_2_43_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_26_1
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_38_2
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_15_1
e_1_2_2_36_1
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_3_1
e_1_2_2_40_1
e_1_2_2_40_2
e_1_2_2_42_1
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_27_1
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_1
e_1_2_2_31_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_14_2
References_xml – volume: 9
  start-page: 2609
  year: 2018
  publication-title: Nat. Commun.
– volume: 360
  start-page: 707
  year: 2018
  end-page: 708
  publication-title: Science
– volume: 25
  start-page: 15830
  year: 2019
  end-page: 15836
  publication-title: Chem. Eur. J.
– volume: 46
  start-page: 109
  year: 2021
  end-page: 124
  publication-title: Mater. Today
– volume: 137
  start-page: 3638
  year: 2015
  end-page: 3648
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 1172
  year: 2021
  end-page: 1180
  publication-title: CrystEngComm
– volume: 4
  start-page: 115
  year: 2019
  end-page: 122
  publication-title: Nat. Energy
– volume: 135
  start-page: 13521
  year: 2013
  end-page: 13530
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 8848
  year: 2021
  end-page: 8871
  publication-title: ACS Catal.
– volume: 56
  start-page: 15387
  year: 2020
  end-page: 15405
  publication-title: Chem. Commun.
– volume: 7
  start-page: 1616
  year: 2019
  end-page: 1628
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 711
  year: 2018
  end-page: 719
  publication-title: Nat. Catal.
– volume: 142
  start-page: 12367
  year: 2020
  end-page: 12373
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 352
  start-page: 333
  year: 2016
  end-page: 337
  publication-title: Science
– volume: 54 127
  start-page: 8722 8846
  year: 2015 2015
  end-page: 8727 8851
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 4948
  year: 2019
  publication-title: Nat. Commun.
– volume: 405
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 59 132
  start-page: 18234 18391
  year: 2020 2020
  end-page: 18239 18396
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 162
  year: 2019
  publication-title: Nat. Commun.
– volume: 60 133
  start-page: 11841 11947
  year: 2021 2021
  end-page: 11846 11952
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 15341
  year: 2017
  publication-title: Nat. Commun.
– volume: 4
  start-page: 2719
  year: 2019
  end-page: 2730
  publication-title: ACS Energy Lett.
– volume: 143
  start-page: 5201
  year: 2021
  end-page: 5211
  publication-title: J. Am. Chem. Soc.
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 8
  start-page: 32296
  year: 2018
  end-page: 32303
  publication-title: RSC Adv.
– volume: 56 129
  start-page: 3897 3955
  year: 2017 2017
  end-page: 3900 3958
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 4
  start-page: 328
  year: 2019
  end-page: 336
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 15194
  year: 2017
  publication-title: Nat. Commun.
– volume: 11
  start-page: 6181
  year: 2020
  publication-title: Nat. Commun.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 5
  start-page: 445
  year: 2019
  end-page: 459
  publication-title: Chem
– volume: 11
  start-page: 2522
  year: 2020
  publication-title: Nat. Commun.
– volume: 11
  start-page: 5008
  year: 2020
  end-page: 5014
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  start-page: 16184
  year: 2016
  publication-title: Nat. Energy
– volume: 2
  start-page: 203
  year: 2020
  end-page: 222
  publication-title: Carbon Energy
– volume: 5
  start-page: 881
  year: 2020
  end-page: 890
  publication-title: Nat. Energy
– volume: 6
  start-page: 506
  year: 2021
  end-page: 516
  publication-title: Nat. Energy
– ident: e_1_2_2_30_1
  doi: 10.1039/C8TA08508K
– ident: e_1_2_2_40_2
  doi: 10.1002/ange.201502836
– ident: e_1_2_2_33_1
  doi: 10.1002/chem.201903482
– ident: e_1_2_2_16_1
  doi: 10.1038/nenergy.2016.184
– ident: e_1_2_2_41_1
  doi: 10.1039/D0CC05876A
– ident: e_1_2_2_20_1
  doi: 10.1039/D0CE01796E
– ident: e_1_2_2_28_1
  doi: 10.1016/j.cej.2020.126198
– ident: e_1_2_2_7_1
  doi: 10.1126/science.aaf1525
– ident: e_1_2_2_37_1
  doi: 10.1002/adfm.202003889
– ident: e_1_2_2_6_1
  doi: 10.1038/s41467-020-16237-1
– ident: e_1_2_2_2_1
  doi: 10.1038/s41560-021-00796-8
– ident: e_1_2_2_9_1
  doi: 10.1021/acs.jpclett.0c01258
– ident: e_1_2_2_24_1
  doi: 10.1002/anie.202103058
– ident: e_1_2_2_15_1
  doi: 10.1021/jacs.0c04458
– ident: e_1_2_2_36_1
  doi: 10.1016/j.nanoen.2019.104296
– ident: e_1_2_2_4_1
  doi: 10.1002/adfm.202007602
– ident: e_1_2_2_10_1
  doi: 10.1021/acscatal.1c01973
– ident: e_1_2_2_40_1
  doi: 10.1002/anie.201502836
– ident: e_1_2_2_25_1
  doi: 10.1016/j.mattod.2021.01.008
– ident: e_1_2_2_44_1
  doi: 10.1021/acsenergylett.9b01758
– ident: e_1_2_2_32_1
  doi: 10.1038/s41467-020-19729-2
– ident: e_1_2_2_31_1
  doi: 10.1016/j.chempr.2018.11.010
– ident: e_1_2_2_35_1
  doi: 10.1038/s41467-018-05019-5
– ident: e_1_2_2_3_1
  doi: 10.1126/sciadv.abg2580
– ident: e_1_2_2_5_1
  doi: 10.1002/adma.201906432
– ident: e_1_2_2_23_1
  doi: 10.1126/sciadv.aav6009
– ident: e_1_2_2_24_2
  doi: 10.1002/ange.202103058
– ident: e_1_2_2_43_1
  doi: 10.1021/jacs.1c01525
– ident: e_1_2_2_11_1
  doi: 10.1038/s41467-018-08144-3
– ident: e_1_2_2_13_1
  doi: 10.1038/s41467-019-12857-4
– ident: e_1_2_2_26_1
  doi: 10.1038/ncomms15194
– ident: e_1_2_2_19_1
  doi: 10.1038/s41560-020-00709-1
– ident: e_1_2_2_8_1
  doi: 10.1002/adfm.201910274
– ident: e_1_2_2_12_1
  doi: 10.1002/cey2.45
– ident: e_1_2_2_14_2
  doi: 10.1002/ange.202008129
– ident: e_1_2_2_39_1
  doi: 10.1002/adfm.202004009
– ident: e_1_2_2_38_1
  doi: 10.1002/anie.201612635
– ident: e_1_2_2_21_1
  doi: 10.1021/acsenergylett.8b02343
– ident: e_1_2_2_1_1
  doi: 10.1126/science.aat7918
– ident: e_1_2_2_17_1
  doi: 10.1002/advs.202000012
– ident: e_1_2_2_42_1
  doi: 10.1021/ja405997s
– ident: e_1_2_2_14_1
  doi: 10.1002/anie.202008129
– ident: e_1_2_2_45_1
  doi: 10.1038/s41929-018-0141-2
– ident: e_1_2_2_18_1
  doi: 10.1038/s41560-018-0308-8
– ident: e_1_2_2_38_2
  doi: 10.1002/ange.201612635
– ident: e_1_2_2_34_1
  doi: 10.1038/ncomms15341
– ident: e_1_2_2_29_1
  doi: 10.1016/j.nanoen.2019.104371
– ident: e_1_2_2_27_1
  doi: 10.1039/C8RA05964K
– ident: e_1_2_2_22_1
  doi: 10.1021/jacs.5b00281
SSID ssj0028806
Score 2.6631262
Snippet The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26397
SubjectTerms bimetallic synergy
Bimetals
Catalysts
Catalytic converters
Cobalt
Copper
Density functional theory
electrocatalysis
Electrocatalysts
Electrochemistry
Energy conversion
Energy storage
Fine structure
hollow nanostructure
Metal-organic frameworks
MOFs
OER
Oxygen
Oxygen evolution reactions
Spectroscopy
Ultrastructure
Title Synergetic Cobalt‐Copper‐Based Bimetal–Organic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202112775
https://www.proquest.com/docview/2603988785
https://www.proquest.com/docview/2583306284
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEA7iRS_rrg921JUsCJ5ae5KeZHLUoQd3YRV8gLcmqSQg6vTg9CzqyZ8g-A_9JVb6pS4sgt7SJKG7U6lUVXd9XxGy6WKFdt3GkZVORAkwVKk4hkgYpRPUEK3KKhF_DsT-afL7rHf2CsVf8UO0H9yCZpTndVBwbSY7L6ShAYGN8R0GMEzKgDIPCVvBKzpq-aMYbs4KXsR5FKrQN6yNMdt5O_2tVXpxNV87rKXFGS4Q3TxrlWhysT0tzDbc_UPj-JmX-Uq-1O4o3a32zzcy40aLZG7QVIFbInfHtwEdGKCOdBC4Q4qn-4dBPh67a2zsoQ20dO_8yqEP_3T_WCE7gQ6blC-Kp3du8hs3oUWZoEvTkrMCTR1Nqwo8UFMW0MObW9zNNP1ba8MyOR2mJ4P9qK7XEAFHRyryXADznimmMbDxWlnWByGVlsoq38dYjCkdC-BSd02ijI7BgzBcWusxMgK-QmZH-ch9JxS6fZBgMRy0LJE60Vz5rhfa6F7PWpAdEjXyyqAmMw81NS6zioaZZWFFs3ZFO2SrHT-uaDz-O3K9EX9Wq_Mkw6CPKzyO-9j9s-1GSYS_K3rk8imOCfi1gEhNOoSVsn7nTtnuwa-0vVr9yKQ1Mh_aZXqNWCezxfXU_UAnqTAbpSI8Ax1RDd8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RONBLn6BuS1tXqsQpkLWz9voIq6wWClupBam3yE8Jtd2sIFsBJ35Cpf5DfknHzoOCVFWityR2lMTj8cw4830D8N6lEu26TRMrHE8yQ1Gl0tQkXEuVoYYoGatEHE755Djb_zJoswkDFqbmh-g23IJmxPU6KHjYkN6-YQ0NEGwM8DCCoUIMHsBKKOsdo6pPHYMUxelZA4wYS0Id-pa3MaXbt--_bZdunM0_XdZoc8aPQbdvW6eafN1aVHrLXN4hcvyvz3kCjxqPlOzUU-gpLLnZM1gdtYXgnsPl54sAEAxoRzIK9CHV9dXPUTmfu1M82EUzaMnuyXeHbvz11a8a3GnIuM36IriAl7o8d2ekijm6JI-0FWjtSF4X4TENawH5eH6BE5rkPxqFWIPjcX40miRNyYbEMPSlEs-4od5TSRXGNl5JS4eGC6mEtNIPMRyjUqXcMKH6OpNapcYbrpmw1mNwZNg6LM_KmXsBxPSHRhiLEaGlmVCZYtL3PVdaDQbWGtGDpBVYYRo-81BW41tRMzHTIoxo0Y1oDza7_vOayeOvPTda-ReNRp8VGPcxiSvyEJvfdc0oifCDRc1cucA-AcIWQKlZD2gU9j-eVOxM9_Lu7OV9bnoLq5Ojw4PiYG_64RU8DNdjtg3fgOXqdOFeo89U6TdRK34D5WIR-g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL5VWxUMBISJzSZu2sHR_bbVYtjwUBlXqLnLEtVYXNqs2itqf-BCT-YX9Jx3m1RUJIcEtiW0k8Hs9MMt83AK9drMmu2ziyyskoQU4qFccYyUKbhDTE6LpKxIep3N5N3u6N9q6g-Bt-iP6DW9CMer8OCj63fv2SNDQgsCm-owCGKzW6CbcSGadhXW997gmkOK3OBl8kRBTK0He0jTFfvz7-ulm69DWveqy1yZksg-ketsk0OVhbVMUanv7G4_g_b3Mf7rX-KNtoFtADuOFmD-HOuCsD9whOv5wEeGDAOrJxIA-pzs9-jsv53B3SwSYZQcs29787cuLPz3410E5kky7ni9H2XRblsTtiVZ2hy7KatIJsHcuaEjzYchawj8cntJxZ9qNVh8ewO8m-jrejtmBDhII8qcgLidx7rrmhyMYbbXmKUmmjtNU-pWCMaxNLFMoMi0QXJkaPshDKWk-hEYoVWJqVM_cEGA5TVGgpHrQ8USYxQvuhl6Ywo5G1qAYQdfLKsWUzD0U1vuUNDzPPw4zm_YwO4E3ff97wePyx52on_rzV56Ocoj6haT9OqflV30ySCL9XzMyVC-oTAGwBkpoMgNey_sud8o3pTtafPf2XQS_h9qetSf5-Z_ruGdwNl-tUG7kKS9Xhwj0nh6kqXtQ6cQHFTxCy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergetic+Cobalt%E2%80%90Copper%E2%80%90Based+Bimetal%E2%80%93Organic+Framework+Nanoboxes+toward+Efficient+Electrochemical+Oxygen+Evolution&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cheng%2C+Weiren&rft.au=Wu%2C+Zhi%E2%80%90Peng&rft.au=Luan%2C+Deyan&rft.au=Zang%2C+Shuang%E2%80%90Quan&rft.date=2021-12-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=50&rft.spage=26397&rft.epage=26402&rft_id=info:doi/10.1002%2Fanie.202112775&rft.externalDBID=10.1002%252Fanie.202112775&rft.externalDocID=ANIE202112775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon