Synergetic Cobalt‐Copper‐Based Bimetal–Organic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution
The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the high‐performance energy conversion and storage technologies. Herein, we report novel CoCu‐based bimetallic metal–organic framework nanoboxes (CoCu‐MOF NBs...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 50; pp. 26397 - 26402 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
06.12.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the high‐performance energy conversion and storage technologies. Herein, we report novel CoCu‐based bimetallic metal–organic framework nanoboxes (CoCu‐MOF NBs) as promising catalysts toward efficient electrochemical oxygen evolution reaction (OER), fabricated via a successive cation and ligand exchange strategy. With the highly exposed bimetal centers and the well‐designed architecture, the CoCu‐MOF NBs show excellent OER activity and stability, with a small overpotential of 271 mV at 10 mA cm−2 and a high turnover frequency value of 0.326 s−1 at an overpotential of 300 mV. In combination of quasi in situ X‐ray absorption fine structure spectroscopy and density‐functional theory calculations, the post‐formed CoCu‐based oxyhydroxide analogue during OER is believed to account for the high OER activity of CoCu‐MOF NBs, where the electronic synergy between Co and neighbouring Cu atoms promotes the O−O bond coupling toward fast OER kinetics.
Cobalt‐copper‐based conductive bimetal–organic framework nanoboxes (CoCu‐MOF NBs) have been synthesized as a promising oxygen electrocatalyst, through a successive cation and ligand exchange strategy. With the bimetallic synergetic effect and the well‐designed hollow architecture, the CoCu‐MOF NBs show excellent electrocatalytic activity and robust long‐term stability toward efficient oxygen evolution electrocatalysis. |
---|---|
AbstractList | The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the high‐performance energy conversion and storage technologies. Herein, we report novel CoCu‐based bimetallic metal–organic framework nanoboxes (CoCu‐MOF NBs) as promising catalysts toward efficient electrochemical oxygen evolution reaction (OER), fabricated via a successive cation and ligand exchange strategy. With the highly exposed bimetal centers and the well‐designed architecture, the CoCu‐MOF NBs show excellent OER activity and stability, with a small overpotential of 271 mV at 10 mA cm−2 and a high turnover frequency value of 0.326 s−1 at an overpotential of 300 mV. In combination of quasi in situ X‐ray absorption fine structure spectroscopy and density‐functional theory calculations, the post‐formed CoCu‐based oxyhydroxide analogue during OER is believed to account for the high OER activity of CoCu‐MOF NBs, where the electronic synergy between Co and neighbouring Cu atoms promotes the O−O bond coupling toward fast OER kinetics.
Cobalt‐copper‐based conductive bimetal–organic framework nanoboxes (CoCu‐MOF NBs) have been synthesized as a promising oxygen electrocatalyst, through a successive cation and ligand exchange strategy. With the bimetallic synergetic effect and the well‐designed hollow architecture, the CoCu‐MOF NBs show excellent electrocatalytic activity and robust long‐term stability toward efficient oxygen evolution electrocatalysis. The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the high‐performance energy conversion and storage technologies. Herein, we report novel CoCu‐based bimetallic metal–organic framework nanoboxes (CoCu‐MOF NBs) as promising catalysts toward efficient electrochemical oxygen evolution reaction (OER), fabricated via a successive cation and ligand exchange strategy. With the highly exposed bimetal centers and the well‐designed architecture, the CoCu‐MOF NBs show excellent OER activity and stability, with a small overpotential of 271 mV at 10 mA cm−2 and a high turnover frequency value of 0.326 s−1 at an overpotential of 300 mV. In combination of quasi in situ X‐ray absorption fine structure spectroscopy and density‐functional theory calculations, the post‐formed CoCu‐based oxyhydroxide analogue during OER is believed to account for the high OER activity of CoCu‐MOF NBs, where the electronic synergy between Co and neighbouring Cu atoms promotes the O−O bond coupling toward fast OER kinetics. The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the high-performance energy conversion and storage technologies. Herein, we report novel CoCu-based bimetallic metal-organic framework nanoboxes (CoCu-MOF NBs) as promising catalysts toward efficient electrochemical oxygen evolution reaction (OER), fabricated via a successive cation and ligand exchange strategy. With the highly exposed bimetal centers and the well-designed architecture, the CoCu-MOF NBs show excellent OER activity and stability, with a small overpotential of 271 mV at 10 mA cm-2 and a high turnover frequency value of 0.326 s-1 at an overpotential of 300 mV. In combination of quasi in situ X-ray absorption fine structure spectroscopy and density-functional theory calculations, the post-formed CoCu-based oxyhydroxide analogue during OER is believed to account for the high OER activity of CoCu-MOF NBs, where the electronic synergy between Co and neighbouring Cu atoms promotes the O-O bond coupling toward fast OER kinetics.The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the high-performance energy conversion and storage technologies. Herein, we report novel CoCu-based bimetallic metal-organic framework nanoboxes (CoCu-MOF NBs) as promising catalysts toward efficient electrochemical oxygen evolution reaction (OER), fabricated via a successive cation and ligand exchange strategy. With the highly exposed bimetal centers and the well-designed architecture, the CoCu-MOF NBs show excellent OER activity and stability, with a small overpotential of 271 mV at 10 mA cm-2 and a high turnover frequency value of 0.326 s-1 at an overpotential of 300 mV. In combination of quasi in situ X-ray absorption fine structure spectroscopy and density-functional theory calculations, the post-formed CoCu-based oxyhydroxide analogue during OER is believed to account for the high OER activity of CoCu-MOF NBs, where the electronic synergy between Co and neighbouring Cu atoms promotes the O-O bond coupling toward fast OER kinetics. The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the high‐performance energy conversion and storage technologies. Herein, we report novel CoCu‐based bimetallic metal–organic framework nanoboxes (CoCu‐MOF NBs) as promising catalysts toward efficient electrochemical oxygen evolution reaction (OER), fabricated via a successive cation and ligand exchange strategy. With the highly exposed bimetal centers and the well‐designed architecture, the CoCu‐MOF NBs show excellent OER activity and stability, with a small overpotential of 271 mV at 10 mA cm −2 and a high turnover frequency value of 0.326 s −1 at an overpotential of 300 mV. In combination of quasi in situ X‐ray absorption fine structure spectroscopy and density‐functional theory calculations, the post‐formed CoCu‐based oxyhydroxide analogue during OER is believed to account for the high OER activity of CoCu‐MOF NBs, where the electronic synergy between Co and neighbouring Cu atoms promotes the O−O bond coupling toward fast OER kinetics. |
Author | Lou, Xiong Wen (David) Luan, Deyan Zang, Shuang‐Quan Cheng, Weiren Wu, Zhi‐Peng |
Author_xml | – sequence: 1 givenname: Weiren orcidid: 0000-0001-6938-6296 surname: Cheng fullname: Cheng, Weiren organization: Nanyang Technological University – sequence: 2 givenname: Zhi‐Peng orcidid: 0000-0002-5422-1349 surname: Wu fullname: Wu, Zhi‐Peng organization: Zhengzhou University – sequence: 3 givenname: Deyan orcidid: 0000-0003-3987-0989 surname: Luan fullname: Luan, Deyan organization: Nanyang Technological University – sequence: 4 givenname: Shuang‐Quan orcidid: 0000-0002-6728-0559 surname: Zang fullname: Zang, Shuang‐Quan organization: Zhengzhou University – sequence: 5 givenname: Xiong Wen (David) orcidid: 0000-0002-5557-4437 surname: Lou fullname: Lou, Xiong Wen (David) email: xwlou@ntu.edu.sg, davidlou88@gmail.com organization: Nanyang Technological University |
BookMark | eNqFkbtu2zAUhoUgBXJp184CunSRw4skimNiKG2AIB6azsIRdegypUiXpOO4Ux6hQN4wT1IZLlogQJHp_MP3kYf8T7JD5x1m2XtKZpQQdgbO4IwRRikTojrIjmnFaMGF4IdTLjkvRFPRo-wkxruJbxpSH2c_v2wdhiUmo_K578Gm58dfc79aYZjCBUQc8gszYgL7_Pi0CMvpFpVfBhhx48P3_Aac7_0Dxjz5DYQhb7U2yqBLeWtRpeDVNxyNApsvHrZLdHl77-06Ge_eZm802Ijv_szT7Otlezv_XFwvPl3Nz68LxStSFZrXimnNJAPGiQY5sEbVQoKQg9QNLSWTQGrFBdC-lD0QpVXdczEMmlGh-Gn2cX_uKvgfa4ypG01UaC049OvYsarhnNSsKSf0wwv0zq-Dm7brWE24bJrpCyeq3FMq-BgD6k6ZBLsnpQDGdpR0u0K6XSHd30ImbfZCWwUzQtj-X5B7YWMsbl-hu_Obq_af-xtvX6U3 |
CitedBy_id | crossref_primary_10_3390_catal13020415 crossref_primary_10_1002_eem2_12740 crossref_primary_10_1016_j_apsusc_2024_159784 crossref_primary_10_1073_pnas_2202382119 crossref_primary_10_1021_jacs_3c12820 crossref_primary_10_1021_acs_inorgchem_4c00089 crossref_primary_10_1021_acs_jpcc_3c06800 crossref_primary_10_1039_D2NR00522K crossref_primary_10_1016_j_jcis_2023_04_122 crossref_primary_10_1002_cssc_202401176 crossref_primary_10_1021_acsanm_4c00544 crossref_primary_10_1016_j_inoche_2023_110835 crossref_primary_10_1016_j_ijhydene_2023_10_223 crossref_primary_10_1002_aenm_202301224 crossref_primary_10_2139_ssrn_4110405 crossref_primary_10_1016_j_jpowsour_2024_235065 crossref_primary_10_1002_anie_202305828 crossref_primary_10_1002_aenm_202204177 crossref_primary_10_1016_j_jece_2021_106989 crossref_primary_10_1016_j_nanoen_2022_107297 crossref_primary_10_1039_D3TA01869E crossref_primary_10_1021_acsami_2c09272 crossref_primary_10_1016_j_jechem_2022_05_041 crossref_primary_10_1016_j_jcis_2024_09_175 crossref_primary_10_1039_D4TC02996H crossref_primary_10_3390_ma17102195 crossref_primary_10_1016_j_apcatb_2022_121706 crossref_primary_10_1021_acsmaterialslett_2c00751 crossref_primary_10_1002_adma_202301359 crossref_primary_10_1021_acs_inorgchem_4c02204 crossref_primary_10_1016_j_cej_2023_142654 crossref_primary_10_1016_j_jece_2023_109662 crossref_primary_10_1016_j_chempr_2023_09_009 crossref_primary_10_1039_D3QI00112A crossref_primary_10_1039_D5TC00412H crossref_primary_10_1016_j_cej_2024_157234 crossref_primary_10_1039_D2TA04966J crossref_primary_10_2139_ssrn_4136210 crossref_primary_10_1016_j_cej_2024_156303 crossref_primary_10_1039_D4CS00432A crossref_primary_10_1016_j_jpowsour_2022_231685 crossref_primary_10_1007_s12274_023_5389_4 crossref_primary_10_1039_D2DT01837C crossref_primary_10_1039_D4TC02046D crossref_primary_10_1002_smll_202207413 crossref_primary_10_1021_acs_jpcc_2c05854 crossref_primary_10_1021_acsami_2c05299 crossref_primary_10_1039_D4AY01175A crossref_primary_10_1039_D2TA08066D crossref_primary_10_1002_smll_202202248 crossref_primary_10_1016_j_ijhydene_2023_11_037 crossref_primary_10_1039_D3AY01804K crossref_primary_10_1016_j_ijhydene_2023_09_257 crossref_primary_10_1002_adma_202207888 crossref_primary_10_1039_D2QM01177H crossref_primary_10_1007_s11581_022_04774_2 crossref_primary_10_1016_j_apcatb_2024_124453 crossref_primary_10_1002_aenm_202300604 crossref_primary_10_1016_j_apcatb_2023_123184 crossref_primary_10_1016_j_nanoen_2023_108349 crossref_primary_10_1039_D3TC00825H crossref_primary_10_1016_j_jcis_2023_11_104 crossref_primary_10_1016_j_colsurfa_2023_132419 crossref_primary_10_1021_acs_jpclett_3c00103 crossref_primary_10_3390_molecules28083622 crossref_primary_10_1016_j_jpowsour_2022_231908 crossref_primary_10_1016_j_jallcom_2022_164527 crossref_primary_10_1007_s40242_022_1504_4 crossref_primary_10_1016_j_jallcom_2023_169413 crossref_primary_10_1016_j_jallcom_2022_165059 crossref_primary_10_1039_D4DT01459F crossref_primary_10_1002_ange_202305828 crossref_primary_10_2139_ssrn_4160387 crossref_primary_10_1016_j_cej_2022_137961 crossref_primary_10_1016_j_ijhydene_2022_09_126 crossref_primary_10_1016_j_ijhydene_2023_06_322 crossref_primary_10_1002_aenm_202303442 crossref_primary_10_1002_smll_202301473 crossref_primary_10_1016_j_seppur_2022_122526 crossref_primary_10_1002_anie_202216008 crossref_primary_10_1016_j_jcis_2025_137356 crossref_primary_10_3390_ma16093372 crossref_primary_10_1039_D3NJ01275A crossref_primary_10_1016_j_ijhydene_2022_05_002 crossref_primary_10_1016_j_ijhydene_2022_07_078 crossref_primary_10_1016_j_jece_2023_111577 crossref_primary_10_1016_j_microc_2023_109185 crossref_primary_10_1039_D3DT01175E crossref_primary_10_1002_adma_202408580 crossref_primary_10_1002_sstr_202300293 crossref_primary_10_1016_j_mtener_2024_101595 crossref_primary_10_1016_j_apcata_2023_119030 crossref_primary_10_1016_j_jcis_2023_01_074 crossref_primary_10_1039_D3TA03197G crossref_primary_10_1007_s42864_024_00275_z crossref_primary_10_1016_j_ijhydene_2023_03_127 crossref_primary_10_1039_D2TA04340H crossref_primary_10_1021_acsanm_4c01984 crossref_primary_10_1021_acssuschemeng_2c01124 crossref_primary_10_1016_j_ijhydene_2024_02_361 crossref_primary_10_1016_j_apsusc_2022_155123 crossref_primary_10_1002_chem_202301129 crossref_primary_10_1021_acsaem_3c01215 crossref_primary_10_2139_ssrn_4119155 crossref_primary_10_1007_s11581_025_06116_4 crossref_primary_10_3389_fenrg_2024_1373522 crossref_primary_10_1016_j_jcis_2024_09_040 crossref_primary_10_1002_smll_202304045 crossref_primary_10_1039_D4CE00483C crossref_primary_10_1002_chem_202403141 crossref_primary_10_1016_j_jcis_2022_09_085 crossref_primary_10_1039_D2RA07661F crossref_primary_10_1002_smll_202206768 crossref_primary_10_1038_s41467_024_46872_x crossref_primary_10_1002_smll_202207611 crossref_primary_10_1007_s11426_023_1725_8 crossref_primary_10_1016_j_apenergy_2022_119999 crossref_primary_10_1016_j_electacta_2022_141035 crossref_primary_10_1016_j_ccr_2023_215450 crossref_primary_10_1039_D1TA09424F crossref_primary_10_20517_cs_2024_26 crossref_primary_10_1016_j_ccr_2023_215452 crossref_primary_10_1016_j_mcat_2023_113817 crossref_primary_10_1002_aic_18290 crossref_primary_10_1016_j_psep_2024_07_096 crossref_primary_10_1002_cey2_344 crossref_primary_10_1016_j_apcatb_2022_121988 crossref_primary_10_1021_acsami_3c03619 crossref_primary_10_1016_j_surfin_2024_104165 crossref_primary_10_1002_ange_202216008 crossref_primary_10_1016_j_jcis_2023_11_148 |
Cites_doi | 10.1039/C8TA08508K 10.1002/ange.201502836 10.1002/chem.201903482 10.1038/nenergy.2016.184 10.1039/D0CC05876A 10.1039/D0CE01796E 10.1016/j.cej.2020.126198 10.1126/science.aaf1525 10.1002/adfm.202003889 10.1038/s41467-020-16237-1 10.1038/s41560-021-00796-8 10.1021/acs.jpclett.0c01258 10.1002/anie.202103058 10.1021/jacs.0c04458 10.1016/j.nanoen.2019.104296 10.1002/adfm.202007602 10.1021/acscatal.1c01973 10.1002/anie.201502836 10.1016/j.mattod.2021.01.008 10.1021/acsenergylett.9b01758 10.1038/s41467-020-19729-2 10.1016/j.chempr.2018.11.010 10.1038/s41467-018-05019-5 10.1126/sciadv.abg2580 10.1002/adma.201906432 10.1126/sciadv.aav6009 10.1002/ange.202103058 10.1021/jacs.1c01525 10.1038/s41467-018-08144-3 10.1038/s41467-019-12857-4 10.1038/ncomms15194 10.1038/s41560-020-00709-1 10.1002/adfm.201910274 10.1002/cey2.45 10.1002/ange.202008129 10.1002/adfm.202004009 10.1002/anie.201612635 10.1021/acsenergylett.8b02343 10.1126/science.aat7918 10.1002/advs.202000012 10.1021/ja405997s 10.1002/anie.202008129 10.1038/s41929-018-0141-2 10.1038/s41560-018-0308-8 10.1002/ange.201612635 10.1038/ncomms15341 10.1016/j.nanoen.2019.104371 10.1039/C8RA05964K 10.1021/jacs.5b00281 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202112775 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 26402 |
ExternalDocumentID | 10_1002_anie_202112775 ANIE202112775 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: Ministry of Education Singapore funderid: MOE2017-T2-2-003 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3505-f36c2ff292a230fa9d28c679a79d9f814929a06c37a1b49ba0cfc6b37ddf217c3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:16:43 EDT 2025 Fri Jul 25 11:49:48 EDT 2025 Tue Jul 01 01:18:10 EDT 2025 Thu Apr 24 22:58:03 EDT 2025 Wed Jan 22 16:26:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3505-f36c2ff292a230fa9d28c679a79d9f814929a06c37a1b49ba0cfc6b37ddf217c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5557-4437 0000-0002-6728-0559 0000-0001-6938-6296 0000-0003-3987-0989 0000-0002-5422-1349 |
PQID | 2603988785 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2583306284 proquest_journals_2603988785 crossref_citationtrail_10_1002_anie_202112775 crossref_primary_10_1002_anie_202112775 wiley_primary_10_1002_anie_202112775_ANIE202112775 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 6, 2021 |
PublicationDateYYYYMMDD | 2021-12-06 |
PublicationDate_xml | – month: 12 year: 2021 text: December 6, 2021 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 46 2019; 7 2021; 7 2021; 6 2017; 8 2019; 4 2018; 360 2021; 23 2019; 5 2020; 142 2019; 10 2021; 405 2020 2020; 59 132 2020; 56 2020; 11 2020; 32 2017 2017; 56 129 2021; 143 2020; 7 2018; 9 2020; 5 2018; 8 2021; 31 2016; 1 2020; 2 2021; 11 2015; 137 2020; 30 2018; 1 2019; 25 2021 2021; 60 133 2015 2015; 54 127 2016; 352 2013; 135 2020; 68 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_22_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_41_1 e_1_2_2_43_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_45_1 e_1_2_2_26_1 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_38_2 e_1_2_2_11_1 e_1_2_2_30_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_15_1 e_1_2_2_36_1 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_3_1 e_1_2_2_40_1 e_1_2_2_40_2 e_1_2_2_42_1 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_27_1 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_1 e_1_2_2_31_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_16_1 e_1_2_2_35_1 e_1_2_2_14_2 |
References_xml | – volume: 9 start-page: 2609 year: 2018 publication-title: Nat. Commun. – volume: 360 start-page: 707 year: 2018 end-page: 708 publication-title: Science – volume: 25 start-page: 15830 year: 2019 end-page: 15836 publication-title: Chem. Eur. J. – volume: 46 start-page: 109 year: 2021 end-page: 124 publication-title: Mater. Today – volume: 137 start-page: 3638 year: 2015 end-page: 3648 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 1172 year: 2021 end-page: 1180 publication-title: CrystEngComm – volume: 4 start-page: 115 year: 2019 end-page: 122 publication-title: Nat. Energy – volume: 135 start-page: 13521 year: 2013 end-page: 13530 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 8848 year: 2021 end-page: 8871 publication-title: ACS Catal. – volume: 56 start-page: 15387 year: 2020 end-page: 15405 publication-title: Chem. Commun. – volume: 7 start-page: 1616 year: 2019 end-page: 1628 publication-title: J. Mater. Chem. A – volume: 1 start-page: 711 year: 2018 end-page: 719 publication-title: Nat. Catal. – volume: 142 start-page: 12367 year: 2020 end-page: 12373 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 352 start-page: 333 year: 2016 end-page: 337 publication-title: Science – volume: 54 127 start-page: 8722 8846 year: 2015 2015 end-page: 8727 8851 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 4948 year: 2019 publication-title: Nat. Commun. – volume: 405 year: 2021 publication-title: Chem. Eng. J. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 59 132 start-page: 18234 18391 year: 2020 2020 end-page: 18239 18396 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 162 year: 2019 publication-title: Nat. Commun. – volume: 60 133 start-page: 11841 11947 year: 2021 2021 end-page: 11846 11952 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 15341 year: 2017 publication-title: Nat. Commun. – volume: 4 start-page: 2719 year: 2019 end-page: 2730 publication-title: ACS Energy Lett. – volume: 143 start-page: 5201 year: 2021 end-page: 5211 publication-title: J. Am. Chem. Soc. – volume: 68 year: 2020 publication-title: Nano Energy – volume: 8 start-page: 32296 year: 2018 end-page: 32303 publication-title: RSC Adv. – volume: 56 129 start-page: 3897 3955 year: 2017 2017 end-page: 3900 3958 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 4 start-page: 328 year: 2019 end-page: 336 publication-title: ACS Energy Lett. – volume: 8 start-page: 15194 year: 2017 publication-title: Nat. Commun. – volume: 11 start-page: 6181 year: 2020 publication-title: Nat. Commun. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 5 start-page: 445 year: 2019 end-page: 459 publication-title: Chem – volume: 11 start-page: 2522 year: 2020 publication-title: Nat. Commun. – volume: 11 start-page: 5008 year: 2020 end-page: 5014 publication-title: J. Phys. Chem. Lett. – volume: 1 start-page: 16184 year: 2016 publication-title: Nat. Energy – volume: 2 start-page: 203 year: 2020 end-page: 222 publication-title: Carbon Energy – volume: 5 start-page: 881 year: 2020 end-page: 890 publication-title: Nat. Energy – volume: 6 start-page: 506 year: 2021 end-page: 516 publication-title: Nat. Energy – ident: e_1_2_2_30_1 doi: 10.1039/C8TA08508K – ident: e_1_2_2_40_2 doi: 10.1002/ange.201502836 – ident: e_1_2_2_33_1 doi: 10.1002/chem.201903482 – ident: e_1_2_2_16_1 doi: 10.1038/nenergy.2016.184 – ident: e_1_2_2_41_1 doi: 10.1039/D0CC05876A – ident: e_1_2_2_20_1 doi: 10.1039/D0CE01796E – ident: e_1_2_2_28_1 doi: 10.1016/j.cej.2020.126198 – ident: e_1_2_2_7_1 doi: 10.1126/science.aaf1525 – ident: e_1_2_2_37_1 doi: 10.1002/adfm.202003889 – ident: e_1_2_2_6_1 doi: 10.1038/s41467-020-16237-1 – ident: e_1_2_2_2_1 doi: 10.1038/s41560-021-00796-8 – ident: e_1_2_2_9_1 doi: 10.1021/acs.jpclett.0c01258 – ident: e_1_2_2_24_1 doi: 10.1002/anie.202103058 – ident: e_1_2_2_15_1 doi: 10.1021/jacs.0c04458 – ident: e_1_2_2_36_1 doi: 10.1016/j.nanoen.2019.104296 – ident: e_1_2_2_4_1 doi: 10.1002/adfm.202007602 – ident: e_1_2_2_10_1 doi: 10.1021/acscatal.1c01973 – ident: e_1_2_2_40_1 doi: 10.1002/anie.201502836 – ident: e_1_2_2_25_1 doi: 10.1016/j.mattod.2021.01.008 – ident: e_1_2_2_44_1 doi: 10.1021/acsenergylett.9b01758 – ident: e_1_2_2_32_1 doi: 10.1038/s41467-020-19729-2 – ident: e_1_2_2_31_1 doi: 10.1016/j.chempr.2018.11.010 – ident: e_1_2_2_35_1 doi: 10.1038/s41467-018-05019-5 – ident: e_1_2_2_3_1 doi: 10.1126/sciadv.abg2580 – ident: e_1_2_2_5_1 doi: 10.1002/adma.201906432 – ident: e_1_2_2_23_1 doi: 10.1126/sciadv.aav6009 – ident: e_1_2_2_24_2 doi: 10.1002/ange.202103058 – ident: e_1_2_2_43_1 doi: 10.1021/jacs.1c01525 – ident: e_1_2_2_11_1 doi: 10.1038/s41467-018-08144-3 – ident: e_1_2_2_13_1 doi: 10.1038/s41467-019-12857-4 – ident: e_1_2_2_26_1 doi: 10.1038/ncomms15194 – ident: e_1_2_2_19_1 doi: 10.1038/s41560-020-00709-1 – ident: e_1_2_2_8_1 doi: 10.1002/adfm.201910274 – ident: e_1_2_2_12_1 doi: 10.1002/cey2.45 – ident: e_1_2_2_14_2 doi: 10.1002/ange.202008129 – ident: e_1_2_2_39_1 doi: 10.1002/adfm.202004009 – ident: e_1_2_2_38_1 doi: 10.1002/anie.201612635 – ident: e_1_2_2_21_1 doi: 10.1021/acsenergylett.8b02343 – ident: e_1_2_2_1_1 doi: 10.1126/science.aat7918 – ident: e_1_2_2_17_1 doi: 10.1002/advs.202000012 – ident: e_1_2_2_42_1 doi: 10.1021/ja405997s – ident: e_1_2_2_14_1 doi: 10.1002/anie.202008129 – ident: e_1_2_2_45_1 doi: 10.1038/s41929-018-0141-2 – ident: e_1_2_2_18_1 doi: 10.1038/s41560-018-0308-8 – ident: e_1_2_2_38_2 doi: 10.1002/ange.201612635 – ident: e_1_2_2_34_1 doi: 10.1038/ncomms15341 – ident: e_1_2_2_29_1 doi: 10.1016/j.nanoen.2019.104371 – ident: e_1_2_2_27_1 doi: 10.1039/C8RA05964K – ident: e_1_2_2_22_1 doi: 10.1021/jacs.5b00281 |
SSID | ssj0028806 |
Score | 2.6631262 |
Snippet | The development of efficient oxygen electrocatalysts and understanding their underlying catalytic mechanism are of significant importance for the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 26397 |
SubjectTerms | bimetallic synergy Bimetals Catalysts Catalytic converters Cobalt Copper Density functional theory electrocatalysis Electrocatalysts Electrochemistry Energy conversion Energy storage Fine structure hollow nanostructure Metal-organic frameworks MOFs OER Oxygen Oxygen evolution reactions Spectroscopy Ultrastructure |
Title | Synergetic Cobalt‐Copper‐Based Bimetal–Organic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202112775 https://www.proquest.com/docview/2603988785 https://www.proquest.com/docview/2583306284 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEA7iRS_rrg921JUsCJ5ae5KeZHLUoQd3YRV8gLcmqSQg6vTg9CzqyZ8g-A_9JVb6pS4sgt7SJKG7U6lUVXd9XxGy6WKFdt3GkZVORAkwVKk4hkgYpRPUEK3KKhF_DsT-afL7rHf2CsVf8UO0H9yCZpTndVBwbSY7L6ShAYGN8R0GMEzKgDIPCVvBKzpq-aMYbs4KXsR5FKrQN6yNMdt5O_2tVXpxNV87rKXFGS4Q3TxrlWhysT0tzDbc_UPj-JmX-Uq-1O4o3a32zzcy40aLZG7QVIFbInfHtwEdGKCOdBC4Q4qn-4dBPh67a2zsoQ20dO_8yqEP_3T_WCE7gQ6blC-Kp3du8hs3oUWZoEvTkrMCTR1Nqwo8UFMW0MObW9zNNP1ba8MyOR2mJ4P9qK7XEAFHRyryXADznimmMbDxWlnWByGVlsoq38dYjCkdC-BSd02ijI7BgzBcWusxMgK-QmZH-ch9JxS6fZBgMRy0LJE60Vz5rhfa6F7PWpAdEjXyyqAmMw81NS6zioaZZWFFs3ZFO2SrHT-uaDz-O3K9EX9Wq_Mkw6CPKzyO-9j9s-1GSYS_K3rk8imOCfi1gEhNOoSVsn7nTtnuwa-0vVr9yKQ1Mh_aZXqNWCezxfXU_UAnqTAbpSI8Ax1RDd8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RONBLn6BuS1tXqsQpkLWz9voIq6wWClupBam3yE8Jtd2sIFsBJ35Cpf5DfknHzoOCVFWityR2lMTj8cw4830D8N6lEu26TRMrHE8yQ1Gl0tQkXEuVoYYoGatEHE755Djb_zJoswkDFqbmh-g23IJmxPU6KHjYkN6-YQ0NEGwM8DCCoUIMHsBKKOsdo6pPHYMUxelZA4wYS0Id-pa3MaXbt--_bZdunM0_XdZoc8aPQbdvW6eafN1aVHrLXN4hcvyvz3kCjxqPlOzUU-gpLLnZM1gdtYXgnsPl54sAEAxoRzIK9CHV9dXPUTmfu1M82EUzaMnuyXeHbvz11a8a3GnIuM36IriAl7o8d2ekijm6JI-0FWjtSF4X4TENawH5eH6BE5rkPxqFWIPjcX40miRNyYbEMPSlEs-4od5TSRXGNl5JS4eGC6mEtNIPMRyjUqXcMKH6OpNapcYbrpmw1mNwZNg6LM_KmXsBxPSHRhiLEaGlmVCZYtL3PVdaDQbWGtGDpBVYYRo-81BW41tRMzHTIoxo0Y1oDza7_vOayeOvPTda-ReNRp8VGPcxiSvyEJvfdc0oifCDRc1cucA-AcIWQKlZD2gU9j-eVOxM9_Lu7OV9bnoLq5Ojw4PiYG_64RU8DNdjtg3fgOXqdOFeo89U6TdRK34D5WIR-g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL5VWxUMBISJzSZu2sHR_bbVYtjwUBlXqLnLEtVYXNqs2itqf-BCT-YX9Jx3m1RUJIcEtiW0k8Hs9MMt83AK9drMmu2ziyyskoQU4qFccYyUKbhDTE6LpKxIep3N5N3u6N9q6g-Bt-iP6DW9CMer8OCj63fv2SNDQgsCm-owCGKzW6CbcSGadhXW997gmkOK3OBl8kRBTK0He0jTFfvz7-ulm69DWveqy1yZksg-ketsk0OVhbVMUanv7G4_g_b3Mf7rX-KNtoFtADuOFmD-HOuCsD9whOv5wEeGDAOrJxIA-pzs9-jsv53B3SwSYZQcs29787cuLPz3410E5kky7ni9H2XRblsTtiVZ2hy7KatIJsHcuaEjzYchawj8cntJxZ9qNVh8ewO8m-jrejtmBDhII8qcgLidx7rrmhyMYbbXmKUmmjtNU-pWCMaxNLFMoMi0QXJkaPshDKWk-hEYoVWJqVM_cEGA5TVGgpHrQ8USYxQvuhl6Ywo5G1qAYQdfLKsWUzD0U1vuUNDzPPw4zm_YwO4E3ff97wePyx52on_rzV56Ocoj6haT9OqflV30ySCL9XzMyVC-oTAGwBkpoMgNey_sud8o3pTtafPf2XQS_h9qetSf5-Z_ruGdwNl-tUG7kKS9Xhwj0nh6kqXtQ6cQHFTxCy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergetic+Cobalt%E2%80%90Copper%E2%80%90Based+Bimetal%E2%80%93Organic+Framework+Nanoboxes+toward+Efficient+Electrochemical+Oxygen+Evolution&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cheng%2C+Weiren&rft.au=Wu%2C+Zhi%E2%80%90Peng&rft.au=Luan%2C+Deyan&rft.au=Zang%2C+Shuang%E2%80%90Quan&rft.date=2021-12-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=50&rft.spage=26397&rft.epage=26402&rft_id=info:doi/10.1002%2Fanie.202112775&rft.externalDBID=10.1002%252Fanie.202112775&rft.externalDocID=ANIE202112775 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |