The drag exerted by weakly dissipative trapped lee waves on the atmosphere: Application to Scorer's two‐layer model
Although it is known that trapped lee waves propagating at low levels in a stratified atmosphere exert a drag on the mountains that generate them, the distribution of the corresponding reaction force exerted on the atmospheric mean circulation, defined by the wave momentum flux profiles, has not bee...
Saved in:
Published in | Quarterly journal of the Royal Meteorological Society Vol. 148; no. 748; pp. 3211 - 3230 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.10.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0035-9009 1477-870X |
DOI | 10.1002/qj.4355 |
Cover
Abstract | Although it is known that trapped lee waves propagating at low levels in a stratified atmosphere exert a drag on the mountains that generate them, the distribution of the corresponding reaction force exerted on the atmospheric mean circulation, defined by the wave momentum flux profiles, has not been established, because for inviscid trapped lee waves these profiles oscillate indefinitely downstream. A framework is developed here for the unambiguous calculation of momentum flux profiles produced by trapped lee waves, which circumvents the difficulties plaguing the inviscid trapped lee wave theory. Using linear theory, and taking Scorer's two‐layer atmosphere as an example, the waves are assumed to be subject to a small dissipation, expressed as a Rayleigh damping. The resulting wave pattern decays downstream, so the momentum flux profile integrated over the area occupied by the waves converges to a well‐defined form. Remarkably, for weak dissipation, this form is independent of the value of Rayleigh damping coefficient, and the inviscid drag, determined in previous studies, is recovered as the momentum flux at the surface. The divergence of this momentum flux profile accounts for the areally integrated drag exerted by the waves on the atmosphere. The application of this framework to this and other types of trapped lee waves potentially enables the development of physically based parametrizations of the effects of trapped lee waves on the atmosphere.
Normalized vertical flux of horizontal wave momentum (left panel) and its divergence (right panel) from linear theory, for the two‐layer atmosphere of Scorer, from the perfectly inviscid formula of Broad (Q. J. R. Meteorol. Soc., 2002, 128, 2167–2173) (black dotted line) and from the new quasi‐inviscid formula proposed in this study (red solid line). The ratio between the Scorer parameters in the upper and lower layer is l2/l1=0.2$$ {l}_2/{l}_1=0.2 $$, the dimensionless height of the interface between the two layers is l1H/π=0.6$$ {l}_1H/\pi =0.6 $$, and the dimensionless mountain width is l1a=2$$ {l}_1a=2 $$. |
---|---|
AbstractList | Although it is known that trapped lee waves propagating at low levels in a stratified atmosphere exert a drag on the mountains that generate them, the distribution of the corresponding reaction force exerted on the atmospheric mean circulation, defined by the wave momentum flux profiles, has not been established, because for inviscid trapped lee waves these profiles oscillate indefinitely downstream. A framework is developed here for the unambiguous calculation of momentum flux profiles produced by trapped lee waves, which circumvents the difficulties plaguing the inviscid trapped lee wave theory. Using linear theory, and taking Scorer's two‐layer atmosphere as an example, the waves are assumed to be subject to a small dissipation, expressed as a Rayleigh damping. The resulting wave pattern decays downstream, so the momentum flux profile integrated over the area occupied by the waves converges to a well‐defined form. Remarkably, for weak dissipation, this form is independent of the value of Rayleigh damping coefficient, and the inviscid drag, determined in previous studies, is recovered as the momentum flux at the surface. The divergence of this momentum flux profile accounts for the areally integrated drag exerted by the waves on the atmosphere. The application of this framework to this and other types of trapped lee waves potentially enables the development of physically based parametrizations of the effects of trapped lee waves on the atmosphere.
Normalized vertical flux of horizontal wave momentum (left panel) and its divergence (right panel) from linear theory, for the two‐layer atmosphere of Scorer, from the perfectly inviscid formula of Broad (Q. J. R. Meteorol. Soc., 2002, 128, 2167–2173) (black dotted line) and from the new quasi‐inviscid formula proposed in this study (red solid line). The ratio between the Scorer parameters in the upper and lower layer is l2/l1=0.2$$ {l}_2/{l}_1=0.2 $$, the dimensionless height of the interface between the two layers is l1H/π=0.6$$ {l}_1H/\pi =0.6 $$, and the dimensionless mountain width is l1a=2$$ {l}_1a=2 $$. Although it is known that trapped lee waves propagating at low levels in a stratified atmosphere exert a drag on the mountains that generate them, the distribution of the corresponding reaction force exerted on the atmospheric mean circulation, defined by the wave momentum flux profiles, has not been established, because for inviscid trapped lee waves these profiles oscillate indefinitely downstream. A framework is developed here for the unambiguous calculation of momentum flux profiles produced by trapped lee waves, which circumvents the difficulties plaguing the inviscid trapped lee wave theory. Using linear theory, and taking Scorer's two‐layer atmosphere as an example, the waves are assumed to be subject to a small dissipation, expressed as a Rayleigh damping. The resulting wave pattern decays downstream, so the momentum flux profile integrated over the area occupied by the waves converges to a well‐defined form. Remarkably, for weak dissipation, this form is independent of the value of Rayleigh damping coefficient, and the inviscid drag, determined in previous studies, is recovered as the momentum flux at the surface. The divergence of this momentum flux profile accounts for the areally integrated drag exerted by the waves on the atmosphere. The application of this framework to this and other types of trapped lee waves potentially enables the development of physically based parametrizations of the effects of trapped lee waves on the atmosphere. |
Author | Teixeira, Miguel A. C. Argaín, José L. |
Author_xml | – sequence: 1 givenname: Miguel A. C. orcidid: 0000-0003-1205-3233 surname: Teixeira fullname: Teixeira, Miguel A. C. email: m.a.teixeira@reading.ac.uk organization: University of Reading – sequence: 2 givenname: José L. orcidid: 0000-0001-9140-0867 surname: Argaín fullname: Argaín, José L. organization: University of Algarve |
BookMark | eNp1kM1Kw0AUhQepYFvFVxhw0YWk3vxMJnFXir8URKzgLkySG5uYdtKZtDE7H8Fn9EmctK5E4cJd3O-cyzkD0lvJFRJyasPYBnAu1sXYcxk7IH3b49wKOLz0SB_AZVYIEB6RgdYFADDu8D7ZzBdIUyVeKb6jqjGlcUsbFG9lS9Nc67wSdb5FWitRVeZaItJGbFFTuaK10Yp6KXW1QIWXdFJVZZ4YQXeT9CmRCtVI07qRXx-fpWhR0aVMsTwmh5koNZ787CF5vr6aT2-t2cPN3XQysxKXAbPSOPO9wIdQsMwJRMzQ53GcMh74KUDgeDwTNrfDJHRC38sCFOii73gYQOA7JvKQnO19KyXXG9R1VMiNWpmXkcNNSbwbQ432VKKk1gqzqFL5Uqg2siHqOo3WRdR1akjrF5nk9S6v6Scv_-DP93yTl9j-Zxs93u_ob0GbiaU |
CitedBy_id | crossref_primary_10_1007_s11430_023_1204_6 crossref_primary_10_1002_qj_4832 crossref_primary_10_1002_qj_4921 |
Cites_doi | 10.1175/1520-0469(1997)054<1943:TEOCLO>2.0.CO;2 10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2 10.1175/1520-0469(2004)061<1040:AAMOMW>2.0.CO;2 10.1002/qj.3177 10.1256/003590002320603593 10.1175/JAS-D-12-0350.1 10.1002/qj.49712454606 10.1002/qj.49712353704 10.1002/qj.2008 10.1175/1520-0469(1995)052<4010:DBMWDT>2.0.CO;2 10.1002/qj.49709540402 10.1175/JAS4020.1 10.1002/qj.49712555920 10.1002/qj.4262 10.1016/S0065-2687(08)60262-9 10.1256/qj.05.220 10.1256/qj.05.174 10.1002/qj.49707532308 10.1175/1520-0469(1998)055<1429:AMSONT>2.0.CO;2 10.1175/1520-0469(1984)041<1073:ASPADF>2.0.CO;2 10.1175/JAS3631.1 10.1016/j.euromechflu.2014.02.004 10.1007/s10546-008-9329-3 10.1175/2009JAS3065.1 10.1175/1520-0469(1976)033<0507:TGOLWB>2.0.CO;2 10.1175/2007JAS2577.1 10.1002/qj.49708235303 10.1002/qj.49711649310 10.1002/qj.1874 10.1007/s10546-017-0260-3 10.1175/JAS-D-20-0085.1 10.1016/S0065-2687(08)60429-X 10.1017/CBO9780511619649 10.1034/j.1600-0870.1998.00002.x 10.1017/S0022112067000515 10.1175/JAS-D-21-0263.1 10.1002/qj.49712152504 10.1175/JAS3640.1 10.1002/qj.3920 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
DOI | 10.1002/qj.4355 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1477-870X |
EndPage | 3230 |
ExternalDocumentID | 10_1002_qj_4355 QJ4355 |
Genre | researchArticle |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- OHT OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ UB1 VOH W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XOL XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7TG 7TN AAMMB AEFGJ AGXDD AIDQK AIDYY F1W H96 KL. L.G |
ID | FETCH-LOGICAL-c3505-dbf648609a5f28ab5e67bbd5786d008247fa1719c92964f8eae3e624e80862003 |
IEDL.DBID | 24P |
ISSN | 0035-9009 |
IngestDate | Fri Jul 25 09:26:35 EDT 2025 Tue Jul 01 00:43:58 EDT 2025 Thu Apr 24 23:08:30 EDT 2025 Wed Jan 22 16:22:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 748 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3505-dbf648609a5f28ab5e67bbd5786d008247fa1719c92964f8eae3e624e80862003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9140-0867 0000-0003-1205-3233 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.4355 |
PQID | 2735575575 |
PQPubID | 1016432 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2735575575 crossref_primary_10_1002_qj_4355 crossref_citationtrail_10_1002_qj_4355 wiley_primary_10_1002_qj_4355_QJ4355 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Reading |
PublicationTitle | Quarterly journal of the Royal Meteorological Society |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 1995; 52 2009; 66 1984; 41 1990; 32 2004; 61 1949; 75 2012 2021; 147 1969; 95 2013b; 70 2009 2007 2006; 132 2014; 47 1999; 125 2003 2009; 130 1967; 27 1987; 44 2006; 63 1990; 116 1960; 22 2021; 78 1976; 33 2013a; 139 1956; 82 1997; 54 2022; 9 1997; 123 2002; 128 2008; 65 1998; 50 2017; 165 2017; 143 2007; 64 1995; 121 1998; 124 2012; 138 1979; 21 2022; 148 1998; 55 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Stensrud D.J. (e_1_2_7_31_1) 2009 Xu X. (e_1_2_7_43_1) 2021; 78 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_35_1 e_1_2_7_20_1 Nappo C.J. (e_1_2_7_21_1) 2012 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Eliassen A. (e_1_2_7_10_1) 1960; 22 |
References_xml | – year: 2009 – volume: 78 start-page: 1807 year: 2021 end-page: 1822 article-title: On the momentum flux of vertically propagating orographic gravity waves excited in nonhydrostatic flow over three‐dimensional orography publication-title: Journal of the Atmospheric Sciences – volume: 121 start-page: 1005 year: 1995 end-page: 1021 article-title: Gravity‐wave drag parametrization over complex terrain: The effect of critical‐level absorption in directional wind‐shear publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 123 start-page: 101 year: 1997 end-page: 127 article-title: A new subgrid‐scale orographic drag parametrization: Its formulation and testing publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 66 start-page: 3419 year: 2009 end-page: 3433 article-title: On the momentum fluxes associated with mountain waves in directionally sheared flows publication-title: Journal of the Atmospheric Sciences – volume: 50 start-page: 12 year: 1998 end-page: 25 article-title: Linear mountain drag and averaged pseudo‐momentum flux profiles in the presence of trapped‐lee waves publication-title: Tellus A – volume: 9 start-page: 1601 year: 2022 end-page: 1614 article-title: Mountain waves produced by a stratified flow with a boundary layer. Part III: Trapped lee waves and horizontal momentum transport publication-title: Journal of the Atmospheric Sciences – year: 2007 – volume: 27 start-page: 513 year: 1967 end-page: 539 article-title: The critical layer for internal gravity waves in a shear flow publication-title: Journal of Fluid Mechanics – year: 2003 – volume: 47 start-page: 16 year: 2014 end-page: 31 article-title: The gravity wave momentum flux in hydrostatic flow with directional shear over elliptical mountains publication-title: European Journal of Mechanics – B/Fluids – volume: 165 start-page: 145 year: 2017 end-page: 160 article-title: Estimation of surface‐layer scaling parameters in the unstable boundary layer: Implications for orographic flow speed‐up publication-title: Boundary‐Layer Meteorology – volume: 55 start-page: 1429 year: 1998 end-page: 1445 article-title: A modelling study of non‐stationary trapped mountain lee waves. Part II: Nonlinearity publication-title: Journal of the Atmospheric Sciences – volume: 148 start-page: 1300 year: 2022 end-page: 1318 article-title: The daytime trapped lee wave pattern and evolution induced by two small‐scale mountains of different heights publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 125 start-page: 2743 year: 1999 end-page: 2765 article-title: Numerical simulations of orographic gravity waves in flows which back with height publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 130 start-page: 15 year: 2009 end-page: 28 article-title: Estimation of the friction velocity in stably stratified boundary‐layer flows over hills publication-title: Boundary‐Layer Meteorology – volume: 52 start-page: 4010 year: 1995 end-page: 4032 article-title: Do breaking mountain waves decelerate the local mean flow? publication-title: Journal of the Atmospheric Sciences – volume: 65 start-page: 1912 year: 2008 end-page: 1926 article-title: Mountain waves in two‐layer sheared flows: Critical level effects; wave reflection and drag enhancement publication-title: Journal of the Atmospheric Sciences – volume: 33 start-page: 507 year: 1976 end-page: 519 article-title: The generation of lee waves by the Blue Ridge publication-title: Journal of the Atmospheric Sciences – volume: 32 start-page: 287 year: 1990 end-page: 338 article-title: Symmetries; conservation laws; and Hamiltonian structure in geophysical fluid dynamics publication-title: Advances in Geophysics – volume: 21 start-page: 87 year: 1979 end-page: 230 article-title: The influence of mountains on the atmosphere publication-title: Advances in Geophysics – volume: 147 start-page: 321 year: 2021 end-page: 340 article-title: The effect of a stable boundary layer on orographic gravity wave drag publication-title: Quarterly Journal of the Royal Meteorological Society – year: 2012 – volume: 132 start-page: 2415 year: 2006 end-page: 2438 article-title: Flow separation and rotor formation beneath two‐dimensional trapped lee waves publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 61 start-page: 1040 year: 2004 end-page: 1054 article-title: An analytical model of mountain wave drag for wind profiles with shear and curvature publication-title: Journal of the Atmospheric Sciences – volume: 138 start-page: 1325 year: 2012 end-page: 1337 article-title: The importance of friction in mountain wave drag amplification by scorer parameter resonance publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 64 start-page: 3363 year: 2007 end-page: 3371 article-title: The reflection of a stationary gravity wave by a viscous boundary layer publication-title: Journal of the Atmospheric Sciences – volume: 54 start-page: 1943 year: 1997 end-page: 1960 article-title: The effect of critical levels on 3D orographic flows: Linear regime publication-title: Journal of the Atmospheric Sciences – volume: 22 start-page: 1 year: 1960 end-page: 23 article-title: On the transfer of energy in stationary mountain waves publication-title: Geofysiske Publikasjoner – volume: 124 start-page: 463 year: 1998 end-page: 493 article-title: A new gravity‐wave‐drag scheme incorporating anisotropic orography and low‐level wave breaking. Impact upon the climate of the UK Meteorological Office Unified Model publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 95 start-page: 213 year: 1969 end-page: 243 article-title: Momentum transport by gravity waves publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 78 start-page: 399 year: 2021 end-page: 415 article-title: A large‐eddy simulation study on the diurnally evolving nonlinear trapped lee waves over a two‐dimensional steep mountain publication-title: Journal of the Atmospheric Sciences – volume: 82 start-page: 266 year: 1956 end-page: 274 article-title: Airflow over mountains: The lee wave amplitude publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 63 start-page: 617 year: 2006 end-page: 633 article-title: Interaction between trapped waves and boundary layers publication-title: Journal of the Atmospheric Sciences – volume: 41 start-page: 1073 year: 1984 end-page: 1084 article-title: Analytical surface pressure and drag for linear hydrostatic flow over three‐dimensional elliptical mountains publication-title: Journal of the Atmospheric Sciences – volume: 132 start-page: 2439 year: 2006 end-page: 2458 article-title: A linear model of gravity wave drag for hydrostatic sheared flow over elliptical mountains publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 128 start-page: 2167 year: 2002 end-page: 2173 article-title: Momentum flux due to trapped lee waves forced by mountains publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 44 start-page: 1775 year: 1987 end-page: 1800 article-title: The effect of orographically excited gravity‐wave drag on the general circulation of the lower stratosphere and troposphere publication-title: Journal of the Atmospheric Sciences – volume: 143 start-page: 3244 year: 2017 end-page: 3258 article-title: Drag associated with 3D trapped lee waves over an axisymmetric obstacle in two‐layer atmospheres publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 63 start-page: 774 year: 2006 end-page: 781 article-title: A theory of gravity wave absorption by a boundary layer publication-title: Journal of the Atmospheric Sciences – volume: 116 start-page: 741 year: 1990 end-page: 752 article-title: Observation and interpretation of wave clouds over Macquarie Island publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 139 start-page: 964 year: 2013a end-page: 981 article-title: Drag produced by trapped lee waves and propagating mountain and propagating mountain waves in a two‐layer atmosphere publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 75 start-page: 41 year: 1949 end-page: 56 article-title: Theory of waves in the lee of mountains publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 70 start-page: 2930 year: 2013b end-page: 2947 article-title: Orographic drag associated with lee waves trapped at an inversion publication-title: Journal of the Atmospheric Sciences – ident: e_1_2_7_12_1 doi: 10.1175/1520-0469(1997)054<1943:TEOCLO>2.0.CO;2 – ident: e_1_2_7_18_1 doi: 10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2 – ident: e_1_2_7_39_1 doi: 10.1175/1520-0469(2004)061<1040:AAMOMW>2.0.CO;2 – ident: e_1_2_7_37_1 doi: 10.1002/qj.3177 – volume-title: An introduction to atmospheric gravity waves year: 2012 ident: e_1_2_7_21_1 – ident: e_1_2_7_7_1 doi: 10.1256/003590002320603593 – ident: e_1_2_7_34_1 doi: 10.1175/JAS-D-12-0350.1 – ident: e_1_2_7_11_1 doi: 10.1002/qj.49712454606 – ident: e_1_2_7_17_1 doi: 10.1002/qj.49712353704 – ident: e_1_2_7_33_1 doi: 10.1002/qj.2008 – volume: 78 start-page: 1807 year: 2021 ident: e_1_2_7_43_1 article-title: On the momentum flux of vertically propagating orographic gravity waves excited in nonhydrostatic flow over three‐dimensional orography publication-title: Journal of the Atmospheric Sciences – ident: e_1_2_7_9_1 doi: 10.1175/1520-0469(1995)052<4010:DBMWDT>2.0.CO;2 – ident: e_1_2_7_6_1 doi: 10.1002/qj.49709540402 – ident: e_1_2_7_16_1 doi: 10.1175/JAS4020.1 – ident: e_1_2_7_26_1 doi: 10.1002/qj.49712555920 – ident: e_1_2_7_45_1 doi: 10.1002/qj.4262 – ident: e_1_2_7_28_1 doi: 10.1016/S0065-2687(08)60262-9 – ident: e_1_2_7_35_1 doi: 10.1256/qj.05.220 – ident: e_1_2_7_42_1 doi: 10.1256/qj.05.174 – ident: e_1_2_7_23_1 doi: 10.1002/qj.49707532308 – ident: e_1_2_7_20_1 doi: 10.1175/1520-0469(1998)055<1429:AMSONT>2.0.CO;2 – ident: e_1_2_7_22_1 doi: 10.1175/1520-0469(1984)041<1073:ASPADF>2.0.CO;2 – volume: 22 start-page: 1 year: 1960 ident: e_1_2_7_10_1 article-title: On the transfer of energy in stationary mountain waves publication-title: Geofysiske Publikasjoner – ident: e_1_2_7_29_1 doi: 10.1175/JAS3631.1 – ident: e_1_2_7_2_1 – volume-title: Parametrization schemes: Keys to understanding numerical weather prediction models year: 2009 ident: e_1_2_7_31_1 – ident: e_1_2_7_40_1 doi: 10.1016/j.euromechflu.2014.02.004 – ident: e_1_2_7_3_1 doi: 10.1007/s10546-008-9329-3 – ident: e_1_2_7_36_1 doi: 10.1175/2009JAS3065.1 – ident: e_1_2_7_27_1 doi: 10.1175/1520-0469(1976)033<0507:TGOLWB>2.0.CO;2 – ident: e_1_2_7_38_1 doi: 10.1175/2007JAS2577.1 – ident: e_1_2_7_8_1 doi: 10.1002/qj.49708235303 – ident: e_1_2_7_19_1 doi: 10.1002/qj.49711649310 – ident: e_1_2_7_32_1 doi: 10.1002/qj.1874 – ident: e_1_2_7_4_1 doi: 10.1007/s10546-017-0260-3 – ident: e_1_2_7_44_1 doi: 10.1175/JAS-D-20-0085.1 – ident: e_1_2_7_24_1 doi: 10.1016/S0065-2687(08)60429-X – ident: e_1_2_7_14_1 doi: 10.1017/CBO9780511619649 – ident: e_1_2_7_15_1 doi: 10.1034/j.1600-0870.1998.00002.x – ident: e_1_2_7_5_1 doi: 10.1017/S0022112067000515 – ident: e_1_2_7_30_1 doi: 10.1175/JAS-D-21-0263.1 – ident: e_1_2_7_25_1 doi: 10.1002/qj.49712152504 – ident: e_1_2_7_13_1 doi: 10.1175/JAS3640.1 – ident: e_1_2_7_41_1 doi: 10.1002/qj.3920 |
SSID | ssj0005727 |
Score | 2.391221 |
Snippet | Although it is known that trapped lee waves propagating at low levels in a stratified atmosphere exert a drag on the mountains that generate them, the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3211 |
SubjectTerms | Atmosphere Atmospheric circulation Damping Decay Drag Fluctuations gravity wave drag Lee waves linear wave theory Momentum flux Momentum transfer mountain waves Mountains wave momentum flux wave trapping weak dissipation Wind shear |
Title | The drag exerted by weakly dissipative trapped lee waves on the atmosphere: Application to Scorer's two‐layer model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.4355 https://www.proquest.com/docview/2735575575 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3JSsRAEIYbl4sXccVxow6ip-iYyeptGBURR1zBW-juVESNkzGJDnPzEXxGn8SqTnQUEYRACOm-dKXSX2__L8RGrIMk9pAioHi2SsvYCt3Es2jEHCeBJ_3EyDF0T72ja-f4xr35ZvVV6UN8TbhxZpj_NSe4VMXOSDT06X6bunp3XEzywVp2bbCds9HuDr92a225VkgcUZ2X5ao7dcWfHdGILr8zqulkDmfEdE2H0K7COSvGsDcnGl0C2yw389-wCZ30jijTPM2LZwozxLm8BfZOInoENYQByod0CLzUbjZMvyCUuez36W2KCAP5ggVkPSD2A1k-ZgVLC-AetEeL2VBmcMkKl_lWAeUge399SyXRORjnnAVxfXhw1TmyaicFS7cIcaxYJR67TYXSTexAKhc9X6mYstWLGQIcP5G7_m6oQ16FTQKU2ELPdjDgEQ814qKY6GU9XBLgSGY4lvVCh1CKAFFhM9Ta0Vr5zaZsiM3PZo10LTPObhdpVAkk29HTfcTt3xDwVbBfKWv8LrL6GZeoTq0iIt5yiTHpaogNE6u_qkfnx3xb_l-xFTFl89EGs1FvVUyU-TOuEXCUat18Wutisr3fPbmkp_0L-wOjv9Xu |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NTttAEMdHhR7g0lKgaii0c0D05BASf_aGaFFKCRIFJKQerN31uCqYODgOET3xCDxjn6Qza4e0oEoIyZJleVeyPbve387O_gdgPTFhmvjEFtDirTIqcSIv9R2eMSdp6KsgtXIMvQO_e-LunXqndVSl7IWp9CHuHG7SM-z_Wjq4OKQ3p6qhl2dNHuu9GXjuMmbIxOvTt6l0lBfU6Vo7nhMxSFQbZqXqZl3x35Foipd_Q6odZXZfwvfJ81XBJefNUamb5tc96canvcACvKjhE7er1vIKnlF_ERo95ua8sO513MCd7CdDrL1aghG3IkwK9QMlNRPDKeprHJM6z65RVvJtPPYVYVmowYDvZkQ4Vlc0xLyPjJaoyot8KMoF9BG3p2vlWOZ4JAKaxYchluP8981tphj-0SbmWYaT3c_HO12nTtTgmA4TlJPo1JdkVpHy0naotEd-oHXCPwM_EcZwg1RtBVuRiWSRNw1JUYf8tkuhTKjYRK9htp_36Q2gqwQRRTWMXCY15k9NrcgY1xgdtFqqARsTo8WmVjGXZBpZXOkvt-PLs1i-agPwruCgEu54WGR1YvW47rnDmHHOY4TlowHr1nz_qx4f7slp5XHF3sNc97i3H-9_Ofj6FubbsovCxgSuwmxZjGiN2abU72wj_gNlVfcC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS-RAEMcbV2HZy7Lqyo7row6ip-iYyXNvog7qrqKo4C30o1rUOBkz0cGbH8HP6CexqhMdRRaEQAjpvnSl0r_uqv6XEEtGJ9ZESBZQvFulpfHS0EYerZiNTSIZWyfHsH8Q7ZwGe2fh2ZtSX7U-xOuGG3uG-1-zg_eNXRuJht5crtJUH34RExzqY5_0g8NRdkfcVGvthF5KHFGfl-Wua03H9xPRiC7fMqqbZLo_xPeGDmGjNuekGMPelGjtE9gWpdv_hmXYzC-IMt3TtLglM4Mp5Tlw7SSiR1D3MER5ld8Dh9pdwvQdQlXKfp_e5ogwlHc4gKIHxH4gq-tiwNIC-Ac2RsFsqAo4ZoXLcmUA1bB4enjMJdE5uMo5P8Vpd_tkc8drKil4ukOI4xllI642lcrQ-olUIUaxUoa8NTIMAUFs5Xq8nuqUo7A2QYkdjPwAE17x0CDOiPFe0cNfAgLJDMeyXhgQShEgKmynWgdaq7jdli2x_DKsmW5kxrnaRZ7VAsl-dnOZ8fi3BLw27NfKGh-bzL3YJWtca5ARb4XEmHS1xJKz1f-6Z0d7fJv9XLNF8fVwq5v92z34-1t88_mUg8vZmxPjVXmL88QelVpwX9kzVULWDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+drag+exerted+by+weakly+dissipative+trapped+lee+waves+on+the+atmosphere%3A+Application+to+Scorer%27s+two%E2%80%90layer+model&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Teixeira%2C+Miguel+A.+C.&rft.au=Arga%C3%ADn%2C+Jos%C3%A9+L.&rft.date=2022-10-01&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=148&rft.issue=748&rft.spage=3211&rft.epage=3230&rft_id=info:doi/10.1002%2Fqj.4355&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qj_4355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon |