The drag exerted by weakly dissipative trapped lee waves on the atmosphere: Application to Scorer's two‐layer model

Although it is known that trapped lee waves propagating at low levels in a stratified atmosphere exert a drag on the mountains that generate them, the distribution of the corresponding reaction force exerted on the atmospheric mean circulation, defined by the wave momentum flux profiles, has not bee...

Full description

Saved in:
Bibliographic Details
Published inQuarterly journal of the Royal Meteorological Society Vol. 148; no. 748; pp. 3211 - 3230
Main Authors Teixeira, Miguel A. C., Argaín, José L.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.10.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0035-9009
1477-870X
DOI10.1002/qj.4355

Cover

Abstract Although it is known that trapped lee waves propagating at low levels in a stratified atmosphere exert a drag on the mountains that generate them, the distribution of the corresponding reaction force exerted on the atmospheric mean circulation, defined by the wave momentum flux profiles, has not been established, because for inviscid trapped lee waves these profiles oscillate indefinitely downstream. A framework is developed here for the unambiguous calculation of momentum flux profiles produced by trapped lee waves, which circumvents the difficulties plaguing the inviscid trapped lee wave theory. Using linear theory, and taking Scorer's two‐layer atmosphere as an example, the waves are assumed to be subject to a small dissipation, expressed as a Rayleigh damping. The resulting wave pattern decays downstream, so the momentum flux profile integrated over the area occupied by the waves converges to a well‐defined form. Remarkably, for weak dissipation, this form is independent of the value of Rayleigh damping coefficient, and the inviscid drag, determined in previous studies, is recovered as the momentum flux at the surface. The divergence of this momentum flux profile accounts for the areally integrated drag exerted by the waves on the atmosphere. The application of this framework to this and other types of trapped lee waves potentially enables the development of physically based parametrizations of the effects of trapped lee waves on the atmosphere. Normalized vertical flux of horizontal wave momentum (left panel) and its divergence (right panel) from linear theory, for the two‐layer atmosphere of Scorer, from the perfectly inviscid formula of Broad (Q. J. R. Meteorol. Soc., 2002, 128, 2167–2173) (black dotted line) and from the new quasi‐inviscid formula proposed in this study (red solid line). The ratio between the Scorer parameters in the upper and lower layer is l2/l1=0.2$$ {l}_2/{l}_1=0.2 $$, the dimensionless height of the interface between the two layers is l1H/π=0.6$$ {l}_1H/\pi =0.6 $$, and the dimensionless mountain width is l1a=2$$ {l}_1a=2 $$.
AbstractList Although it is known that trapped lee waves propagating at low levels in a stratified atmosphere exert a drag on the mountains that generate them, the distribution of the corresponding reaction force exerted on the atmospheric mean circulation, defined by the wave momentum flux profiles, has not been established, because for inviscid trapped lee waves these profiles oscillate indefinitely downstream. A framework is developed here for the unambiguous calculation of momentum flux profiles produced by trapped lee waves, which circumvents the difficulties plaguing the inviscid trapped lee wave theory. Using linear theory, and taking Scorer's two‐layer atmosphere as an example, the waves are assumed to be subject to a small dissipation, expressed as a Rayleigh damping. The resulting wave pattern decays downstream, so the momentum flux profile integrated over the area occupied by the waves converges to a well‐defined form. Remarkably, for weak dissipation, this form is independent of the value of Rayleigh damping coefficient, and the inviscid drag, determined in previous studies, is recovered as the momentum flux at the surface. The divergence of this momentum flux profile accounts for the areally integrated drag exerted by the waves on the atmosphere. The application of this framework to this and other types of trapped lee waves potentially enables the development of physically based parametrizations of the effects of trapped lee waves on the atmosphere. Normalized vertical flux of horizontal wave momentum (left panel) and its divergence (right panel) from linear theory, for the two‐layer atmosphere of Scorer, from the perfectly inviscid formula of Broad (Q. J. R. Meteorol. Soc., 2002, 128, 2167–2173) (black dotted line) and from the new quasi‐inviscid formula proposed in this study (red solid line). The ratio between the Scorer parameters in the upper and lower layer is l2/l1=0.2$$ {l}_2/{l}_1=0.2 $$, the dimensionless height of the interface between the two layers is l1H/π=0.6$$ {l}_1H/\pi =0.6 $$, and the dimensionless mountain width is l1a=2$$ {l}_1a=2 $$.
Although it is known that trapped lee waves propagating at low levels in a stratified atmosphere exert a drag on the mountains that generate them, the distribution of the corresponding reaction force exerted on the atmospheric mean circulation, defined by the wave momentum flux profiles, has not been established, because for inviscid trapped lee waves these profiles oscillate indefinitely downstream. A framework is developed here for the unambiguous calculation of momentum flux profiles produced by trapped lee waves, which circumvents the difficulties plaguing the inviscid trapped lee wave theory. Using linear theory, and taking Scorer's two‐layer atmosphere as an example, the waves are assumed to be subject to a small dissipation, expressed as a Rayleigh damping. The resulting wave pattern decays downstream, so the momentum flux profile integrated over the area occupied by the waves converges to a well‐defined form. Remarkably, for weak dissipation, this form is independent of the value of Rayleigh damping coefficient, and the inviscid drag, determined in previous studies, is recovered as the momentum flux at the surface. The divergence of this momentum flux profile accounts for the areally integrated drag exerted by the waves on the atmosphere. The application of this framework to this and other types of trapped lee waves potentially enables the development of physically based parametrizations of the effects of trapped lee waves on the atmosphere.
Author Teixeira, Miguel A. C.
Argaín, José L.
Author_xml – sequence: 1
  givenname: Miguel A. C.
  orcidid: 0000-0003-1205-3233
  surname: Teixeira
  fullname: Teixeira, Miguel A. C.
  email: m.a.teixeira@reading.ac.uk
  organization: University of Reading
– sequence: 2
  givenname: José L.
  orcidid: 0000-0001-9140-0867
  surname: Argaín
  fullname: Argaín, José L.
  organization: University of Algarve
BookMark eNp1kM1Kw0AUhQepYFvFVxhw0YWk3vxMJnFXir8URKzgLkySG5uYdtKZtDE7H8Fn9EmctK5E4cJd3O-cyzkD0lvJFRJyasPYBnAu1sXYcxk7IH3b49wKOLz0SB_AZVYIEB6RgdYFADDu8D7ZzBdIUyVeKb6jqjGlcUsbFG9lS9Nc67wSdb5FWitRVeZaItJGbFFTuaK10Yp6KXW1QIWXdFJVZZ4YQXeT9CmRCtVI07qRXx-fpWhR0aVMsTwmh5koNZ787CF5vr6aT2-t2cPN3XQysxKXAbPSOPO9wIdQsMwJRMzQ53GcMh74KUDgeDwTNrfDJHRC38sCFOii73gYQOA7JvKQnO19KyXXG9R1VMiNWpmXkcNNSbwbQ432VKKk1gqzqFL5Uqg2siHqOo3WRdR1akjrF5nk9S6v6Scv_-DP93yTl9j-Zxs93u_ob0GbiaU
CitedBy_id crossref_primary_10_1007_s11430_023_1204_6
crossref_primary_10_1002_qj_4832
crossref_primary_10_1002_qj_4921
Cites_doi 10.1175/1520-0469(1997)054<1943:TEOCLO>2.0.CO;2
10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2
10.1175/1520-0469(2004)061<1040:AAMOMW>2.0.CO;2
10.1002/qj.3177
10.1256/003590002320603593
10.1175/JAS-D-12-0350.1
10.1002/qj.49712454606
10.1002/qj.49712353704
10.1002/qj.2008
10.1175/1520-0469(1995)052<4010:DBMWDT>2.0.CO;2
10.1002/qj.49709540402
10.1175/JAS4020.1
10.1002/qj.49712555920
10.1002/qj.4262
10.1016/S0065-2687(08)60262-9
10.1256/qj.05.220
10.1256/qj.05.174
10.1002/qj.49707532308
10.1175/1520-0469(1998)055<1429:AMSONT>2.0.CO;2
10.1175/1520-0469(1984)041<1073:ASPADF>2.0.CO;2
10.1175/JAS3631.1
10.1016/j.euromechflu.2014.02.004
10.1007/s10546-008-9329-3
10.1175/2009JAS3065.1
10.1175/1520-0469(1976)033<0507:TGOLWB>2.0.CO;2
10.1175/2007JAS2577.1
10.1002/qj.49708235303
10.1002/qj.49711649310
10.1002/qj.1874
10.1007/s10546-017-0260-3
10.1175/JAS-D-20-0085.1
10.1016/S0065-2687(08)60429-X
10.1017/CBO9780511619649
10.1034/j.1600-0870.1998.00002.x
10.1017/S0022112067000515
10.1175/JAS-D-21-0263.1
10.1002/qj.49712152504
10.1175/JAS3640.1
10.1002/qj.3920
ContentType Journal Article
Copyright 2022 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOI 10.1002/qj.4355
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1477-870X
EndPage 3230
ExternalDocumentID 10_1002_qj_4355
QJ4355
Genre researchArticle
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XOL
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7TG
7TN
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c3505-dbf648609a5f28ab5e67bbd5786d008247fa1719c92964f8eae3e624e80862003
IEDL.DBID 24P
ISSN 0035-9009
IngestDate Fri Jul 25 09:26:35 EDT 2025
Tue Jul 01 00:43:58 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Wed Jan 22 16:22:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 748
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3505-dbf648609a5f28ab5e67bbd5786d008247fa1719c92964f8eae3e624e80862003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9140-0867
0000-0003-1205-3233
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.4355
PQID 2735575575
PQPubID 1016432
PageCount 20
ParticipantIDs proquest_journals_2735575575
crossref_primary_10_1002_qj_4355
crossref_citationtrail_10_1002_qj_4355
wiley_primary_10_1002_qj_4355_QJ4355
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Reading
PublicationTitle Quarterly journal of the Royal Meteorological Society
PublicationYear 2022
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 1995; 52
2009; 66
1984; 41
1990; 32
2004; 61
1949; 75
2012
2021; 147
1969; 95
2013b; 70
2009
2007
2006; 132
2014; 47
1999; 125
2003
2009; 130
1967; 27
1987; 44
2006; 63
1990; 116
1960; 22
2021; 78
1976; 33
2013a; 139
1956; 82
1997; 54
2022; 9
1997; 123
2002; 128
2008; 65
1998; 50
2017; 165
2017; 143
2007; 64
1995; 121
1998; 124
2012; 138
1979; 21
2022; 148
1998; 55
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Stensrud D.J. (e_1_2_7_31_1) 2009
Xu X. (e_1_2_7_43_1) 2021; 78
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_35_1
e_1_2_7_20_1
Nappo C.J. (e_1_2_7_21_1) 2012
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Eliassen A. (e_1_2_7_10_1) 1960; 22
References_xml – year: 2009
– volume: 78
  start-page: 1807
  year: 2021
  end-page: 1822
  article-title: On the momentum flux of vertically propagating orographic gravity waves excited in nonhydrostatic flow over three‐dimensional orography
  publication-title: Journal of the Atmospheric Sciences
– volume: 121
  start-page: 1005
  year: 1995
  end-page: 1021
  article-title: Gravity‐wave drag parametrization over complex terrain: The effect of critical‐level absorption in directional wind‐shear
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 123
  start-page: 101
  year: 1997
  end-page: 127
  article-title: A new subgrid‐scale orographic drag parametrization: Its formulation and testing
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 66
  start-page: 3419
  year: 2009
  end-page: 3433
  article-title: On the momentum fluxes associated with mountain waves in directionally sheared flows
  publication-title: Journal of the Atmospheric Sciences
– volume: 50
  start-page: 12
  year: 1998
  end-page: 25
  article-title: Linear mountain drag and averaged pseudo‐momentum flux profiles in the presence of trapped‐lee waves
  publication-title: Tellus A
– volume: 9
  start-page: 1601
  year: 2022
  end-page: 1614
  article-title: Mountain waves produced by a stratified flow with a boundary layer. Part III: Trapped lee waves and horizontal momentum transport
  publication-title: Journal of the Atmospheric Sciences
– year: 2007
– volume: 27
  start-page: 513
  year: 1967
  end-page: 539
  article-title: The critical layer for internal gravity waves in a shear flow
  publication-title: Journal of Fluid Mechanics
– year: 2003
– volume: 47
  start-page: 16
  year: 2014
  end-page: 31
  article-title: The gravity wave momentum flux in hydrostatic flow with directional shear over elliptical mountains
  publication-title: European Journal of Mechanics – B/Fluids
– volume: 165
  start-page: 145
  year: 2017
  end-page: 160
  article-title: Estimation of surface‐layer scaling parameters in the unstable boundary layer: Implications for orographic flow speed‐up
  publication-title: Boundary‐Layer Meteorology
– volume: 55
  start-page: 1429
  year: 1998
  end-page: 1445
  article-title: A modelling study of non‐stationary trapped mountain lee waves. Part II: Nonlinearity
  publication-title: Journal of the Atmospheric Sciences
– volume: 148
  start-page: 1300
  year: 2022
  end-page: 1318
  article-title: The daytime trapped lee wave pattern and evolution induced by two small‐scale mountains of different heights
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 125
  start-page: 2743
  year: 1999
  end-page: 2765
  article-title: Numerical simulations of orographic gravity waves in flows which back with height
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 130
  start-page: 15
  year: 2009
  end-page: 28
  article-title: Estimation of the friction velocity in stably stratified boundary‐layer flows over hills
  publication-title: Boundary‐Layer Meteorology
– volume: 52
  start-page: 4010
  year: 1995
  end-page: 4032
  article-title: Do breaking mountain waves decelerate the local mean flow?
  publication-title: Journal of the Atmospheric Sciences
– volume: 65
  start-page: 1912
  year: 2008
  end-page: 1926
  article-title: Mountain waves in two‐layer sheared flows: Critical level effects; wave reflection and drag enhancement
  publication-title: Journal of the Atmospheric Sciences
– volume: 33
  start-page: 507
  year: 1976
  end-page: 519
  article-title: The generation of lee waves by the Blue Ridge
  publication-title: Journal of the Atmospheric Sciences
– volume: 32
  start-page: 287
  year: 1990
  end-page: 338
  article-title: Symmetries; conservation laws; and Hamiltonian structure in geophysical fluid dynamics
  publication-title: Advances in Geophysics
– volume: 21
  start-page: 87
  year: 1979
  end-page: 230
  article-title: The influence of mountains on the atmosphere
  publication-title: Advances in Geophysics
– volume: 147
  start-page: 321
  year: 2021
  end-page: 340
  article-title: The effect of a stable boundary layer on orographic gravity wave drag
  publication-title: Quarterly Journal of the Royal Meteorological Society
– year: 2012
– volume: 132
  start-page: 2415
  year: 2006
  end-page: 2438
  article-title: Flow separation and rotor formation beneath two‐dimensional trapped lee waves
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 61
  start-page: 1040
  year: 2004
  end-page: 1054
  article-title: An analytical model of mountain wave drag for wind profiles with shear and curvature
  publication-title: Journal of the Atmospheric Sciences
– volume: 138
  start-page: 1325
  year: 2012
  end-page: 1337
  article-title: The importance of friction in mountain wave drag amplification by scorer parameter resonance
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 64
  start-page: 3363
  year: 2007
  end-page: 3371
  article-title: The reflection of a stationary gravity wave by a viscous boundary layer
  publication-title: Journal of the Atmospheric Sciences
– volume: 54
  start-page: 1943
  year: 1997
  end-page: 1960
  article-title: The effect of critical levels on 3D orographic flows: Linear regime
  publication-title: Journal of the Atmospheric Sciences
– volume: 22
  start-page: 1
  year: 1960
  end-page: 23
  article-title: On the transfer of energy in stationary mountain waves
  publication-title: Geofysiske Publikasjoner
– volume: 124
  start-page: 463
  year: 1998
  end-page: 493
  article-title: A new gravity‐wave‐drag scheme incorporating anisotropic orography and low‐level wave breaking. Impact upon the climate of the UK Meteorological Office Unified Model
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 95
  start-page: 213
  year: 1969
  end-page: 243
  article-title: Momentum transport by gravity waves
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 78
  start-page: 399
  year: 2021
  end-page: 415
  article-title: A large‐eddy simulation study on the diurnally evolving nonlinear trapped lee waves over a two‐dimensional steep mountain
  publication-title: Journal of the Atmospheric Sciences
– volume: 82
  start-page: 266
  year: 1956
  end-page: 274
  article-title: Airflow over mountains: The lee wave amplitude
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 63
  start-page: 617
  year: 2006
  end-page: 633
  article-title: Interaction between trapped waves and boundary layers
  publication-title: Journal of the Atmospheric Sciences
– volume: 41
  start-page: 1073
  year: 1984
  end-page: 1084
  article-title: Analytical surface pressure and drag for linear hydrostatic flow over three‐dimensional elliptical mountains
  publication-title: Journal of the Atmospheric Sciences
– volume: 132
  start-page: 2439
  year: 2006
  end-page: 2458
  article-title: A linear model of gravity wave drag for hydrostatic sheared flow over elliptical mountains
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 128
  start-page: 2167
  year: 2002
  end-page: 2173
  article-title: Momentum flux due to trapped lee waves forced by mountains
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 44
  start-page: 1775
  year: 1987
  end-page: 1800
  article-title: The effect of orographically excited gravity‐wave drag on the general circulation of the lower stratosphere and troposphere
  publication-title: Journal of the Atmospheric Sciences
– volume: 143
  start-page: 3244
  year: 2017
  end-page: 3258
  article-title: Drag associated with 3D trapped lee waves over an axisymmetric obstacle in two‐layer atmospheres
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 63
  start-page: 774
  year: 2006
  end-page: 781
  article-title: A theory of gravity wave absorption by a boundary layer
  publication-title: Journal of the Atmospheric Sciences
– volume: 116
  start-page: 741
  year: 1990
  end-page: 752
  article-title: Observation and interpretation of wave clouds over Macquarie Island
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 139
  start-page: 964
  year: 2013a
  end-page: 981
  article-title: Drag produced by trapped lee waves and propagating mountain and propagating mountain waves in a two‐layer atmosphere
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 75
  start-page: 41
  year: 1949
  end-page: 56
  article-title: Theory of waves in the lee of mountains
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 70
  start-page: 2930
  year: 2013b
  end-page: 2947
  article-title: Orographic drag associated with lee waves trapped at an inversion
  publication-title: Journal of the Atmospheric Sciences
– ident: e_1_2_7_12_1
  doi: 10.1175/1520-0469(1997)054<1943:TEOCLO>2.0.CO;2
– ident: e_1_2_7_18_1
  doi: 10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2
– ident: e_1_2_7_39_1
  doi: 10.1175/1520-0469(2004)061<1040:AAMOMW>2.0.CO;2
– ident: e_1_2_7_37_1
  doi: 10.1002/qj.3177
– volume-title: An introduction to atmospheric gravity waves
  year: 2012
  ident: e_1_2_7_21_1
– ident: e_1_2_7_7_1
  doi: 10.1256/003590002320603593
– ident: e_1_2_7_34_1
  doi: 10.1175/JAS-D-12-0350.1
– ident: e_1_2_7_11_1
  doi: 10.1002/qj.49712454606
– ident: e_1_2_7_17_1
  doi: 10.1002/qj.49712353704
– ident: e_1_2_7_33_1
  doi: 10.1002/qj.2008
– volume: 78
  start-page: 1807
  year: 2021
  ident: e_1_2_7_43_1
  article-title: On the momentum flux of vertically propagating orographic gravity waves excited in nonhydrostatic flow over three‐dimensional orography
  publication-title: Journal of the Atmospheric Sciences
– ident: e_1_2_7_9_1
  doi: 10.1175/1520-0469(1995)052<4010:DBMWDT>2.0.CO;2
– ident: e_1_2_7_6_1
  doi: 10.1002/qj.49709540402
– ident: e_1_2_7_16_1
  doi: 10.1175/JAS4020.1
– ident: e_1_2_7_26_1
  doi: 10.1002/qj.49712555920
– ident: e_1_2_7_45_1
  doi: 10.1002/qj.4262
– ident: e_1_2_7_28_1
  doi: 10.1016/S0065-2687(08)60262-9
– ident: e_1_2_7_35_1
  doi: 10.1256/qj.05.220
– ident: e_1_2_7_42_1
  doi: 10.1256/qj.05.174
– ident: e_1_2_7_23_1
  doi: 10.1002/qj.49707532308
– ident: e_1_2_7_20_1
  doi: 10.1175/1520-0469(1998)055<1429:AMSONT>2.0.CO;2
– ident: e_1_2_7_22_1
  doi: 10.1175/1520-0469(1984)041<1073:ASPADF>2.0.CO;2
– volume: 22
  start-page: 1
  year: 1960
  ident: e_1_2_7_10_1
  article-title: On the transfer of energy in stationary mountain waves
  publication-title: Geofysiske Publikasjoner
– ident: e_1_2_7_29_1
  doi: 10.1175/JAS3631.1
– ident: e_1_2_7_2_1
– volume-title: Parametrization schemes: Keys to understanding numerical weather prediction models
  year: 2009
  ident: e_1_2_7_31_1
– ident: e_1_2_7_40_1
  doi: 10.1016/j.euromechflu.2014.02.004
– ident: e_1_2_7_3_1
  doi: 10.1007/s10546-008-9329-3
– ident: e_1_2_7_36_1
  doi: 10.1175/2009JAS3065.1
– ident: e_1_2_7_27_1
  doi: 10.1175/1520-0469(1976)033<0507:TGOLWB>2.0.CO;2
– ident: e_1_2_7_38_1
  doi: 10.1175/2007JAS2577.1
– ident: e_1_2_7_8_1
  doi: 10.1002/qj.49708235303
– ident: e_1_2_7_19_1
  doi: 10.1002/qj.49711649310
– ident: e_1_2_7_32_1
  doi: 10.1002/qj.1874
– ident: e_1_2_7_4_1
  doi: 10.1007/s10546-017-0260-3
– ident: e_1_2_7_44_1
  doi: 10.1175/JAS-D-20-0085.1
– ident: e_1_2_7_24_1
  doi: 10.1016/S0065-2687(08)60429-X
– ident: e_1_2_7_14_1
  doi: 10.1017/CBO9780511619649
– ident: e_1_2_7_15_1
  doi: 10.1034/j.1600-0870.1998.00002.x
– ident: e_1_2_7_5_1
  doi: 10.1017/S0022112067000515
– ident: e_1_2_7_30_1
  doi: 10.1175/JAS-D-21-0263.1
– ident: e_1_2_7_25_1
  doi: 10.1002/qj.49712152504
– ident: e_1_2_7_13_1
  doi: 10.1175/JAS3640.1
– ident: e_1_2_7_41_1
  doi: 10.1002/qj.3920
SSID ssj0005727
Score 2.391221
Snippet Although it is known that trapped lee waves propagating at low levels in a stratified atmosphere exert a drag on the mountains that generate them, the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3211
SubjectTerms Atmosphere
Atmospheric circulation
Damping
Decay
Drag
Fluctuations
gravity wave drag
Lee waves
linear wave theory
Momentum flux
Momentum transfer
mountain waves
Mountains
wave momentum flux
wave trapping
weak dissipation
Wind shear
Title The drag exerted by weakly dissipative trapped lee waves on the atmosphere: Application to Scorer's two‐layer model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.4355
https://www.proquest.com/docview/2735575575
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3JSsRAEIYbl4sXccVxow6ip-iYyeptGBURR1zBW-juVESNkzGJDnPzEXxGn8SqTnQUEYRACOm-dKXSX2__L8RGrIMk9pAioHi2SsvYCt3Es2jEHCeBJ_3EyDF0T72ja-f4xr35ZvVV6UN8TbhxZpj_NSe4VMXOSDT06X6bunp3XEzywVp2bbCds9HuDr92a225VkgcUZ2X5ao7dcWfHdGILr8zqulkDmfEdE2H0K7COSvGsDcnGl0C2yw389-wCZ30jijTPM2LZwozxLm8BfZOInoENYQByod0CLzUbjZMvyCUuez36W2KCAP5ggVkPSD2A1k-ZgVLC-AetEeL2VBmcMkKl_lWAeUge399SyXRORjnnAVxfXhw1TmyaicFS7cIcaxYJR67TYXSTexAKhc9X6mYstWLGQIcP5G7_m6oQ16FTQKU2ELPdjDgEQ814qKY6GU9XBLgSGY4lvVCh1CKAFFhM9Ta0Vr5zaZsiM3PZo10LTPObhdpVAkk29HTfcTt3xDwVbBfKWv8LrL6GZeoTq0iIt5yiTHpaogNE6u_qkfnx3xb_l-xFTFl89EGs1FvVUyU-TOuEXCUat18Wutisr3fPbmkp_0L-wOjv9Xu
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NTttAEMdHhR7g0lKgaii0c0D05BASf_aGaFFKCRIFJKQerN31uCqYODgOET3xCDxjn6Qza4e0oEoIyZJleVeyPbve387O_gdgPTFhmvjEFtDirTIqcSIv9R2eMSdp6KsgtXIMvQO_e-LunXqndVSl7IWp9CHuHG7SM-z_Wjq4OKQ3p6qhl2dNHuu9GXjuMmbIxOvTt6l0lBfU6Vo7nhMxSFQbZqXqZl3x35Foipd_Q6odZXZfwvfJ81XBJefNUamb5tc96canvcACvKjhE7er1vIKnlF_ERo95ua8sO513MCd7CdDrL1aghG3IkwK9QMlNRPDKeprHJM6z65RVvJtPPYVYVmowYDvZkQ4Vlc0xLyPjJaoyot8KMoF9BG3p2vlWOZ4JAKaxYchluP8981tphj-0SbmWYaT3c_HO12nTtTgmA4TlJPo1JdkVpHy0naotEd-oHXCPwM_EcZwg1RtBVuRiWSRNw1JUYf8tkuhTKjYRK9htp_36Q2gqwQRRTWMXCY15k9NrcgY1xgdtFqqARsTo8WmVjGXZBpZXOkvt-PLs1i-agPwruCgEu54WGR1YvW47rnDmHHOY4TlowHr1nz_qx4f7slp5XHF3sNc97i3H-9_Ofj6FubbsovCxgSuwmxZjGiN2abU72wj_gNlVfcC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS-RAEMcbV2HZy7Lqyo7row6ip-iYyXNvog7qrqKo4C30o1rUOBkz0cGbH8HP6CexqhMdRRaEQAjpvnSl0r_uqv6XEEtGJ9ZESBZQvFulpfHS0EYerZiNTSIZWyfHsH8Q7ZwGe2fh2ZtSX7U-xOuGG3uG-1-zg_eNXRuJht5crtJUH34RExzqY5_0g8NRdkfcVGvthF5KHFGfl-Wua03H9xPRiC7fMqqbZLo_xPeGDmGjNuekGMPelGjtE9gWpdv_hmXYzC-IMt3TtLglM4Mp5Tlw7SSiR1D3MER5ld8Dh9pdwvQdQlXKfp_e5ogwlHc4gKIHxH4gq-tiwNIC-Ac2RsFsqAo4ZoXLcmUA1bB4enjMJdE5uMo5P8Vpd_tkc8drKil4ukOI4xllI642lcrQ-olUIUaxUoa8NTIMAUFs5Xq8nuqUo7A2QYkdjPwAE17x0CDOiPFe0cNfAgLJDMeyXhgQShEgKmynWgdaq7jdli2x_DKsmW5kxrnaRZ7VAsl-dnOZ8fi3BLw27NfKGh-bzL3YJWtca5ARb4XEmHS1xJKz1f-6Z0d7fJv9XLNF8fVwq5v92z34-1t88_mUg8vZmxPjVXmL88QelVpwX9kzVULWDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+drag+exerted+by+weakly+dissipative+trapped+lee+waves+on+the+atmosphere%3A+Application+to+Scorer%27s+two%E2%80%90layer+model&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Teixeira%2C+Miguel+A.+C.&rft.au=Arga%C3%ADn%2C+Jos%C3%A9+L.&rft.date=2022-10-01&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=148&rft.issue=748&rft.spage=3211&rft.epage=3230&rft_id=info:doi/10.1002%2Fqj.4355&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qj_4355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon