Dissecting the Flash Chemistry of Electrogenerated Reactive Intermediates by Microdroplet Fusion Mass Spectrometry
A novel mass spectrometric method for probing the flash chemistry of electrogenerated reactive intermediates was developed based on rapid collision mixing of electrosprayed microdroplets by using a theta‐glass capillary. The two individual microchannels of the theta‐glass capillary are asymmetricall...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 34; pp. 18494 - 18498 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
16.08.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel mass spectrometric method for probing the flash chemistry of electrogenerated reactive intermediates was developed based on rapid collision mixing of electrosprayed microdroplets by using a theta‐glass capillary. The two individual microchannels of the theta‐glass capillary are asymmetrically or symmetrically fabricated with a carbon bipolar electrode to produce intermediates in situ. Microdroplets containing the newly formed intermediates collide with those of the invoked reactants at sub‐10 microsecond level, making it a powerful tool for exploring their ultrafast initial transformations. As a proof‐of‐concept, we present the identification of the key radical cation intermediate in the oxidative dimerization of 8‐methyl‐1,2,3,4‐tetrahydroquinoline and also the first disclosure of previously hidden nitrenium ion involved reaction pathway in the C−H/N−H cross‐coupling between N,N′‐dimethylaniline and phenothiazine.
Microreactor on the fly: A special microreactor that permits mass spectrometric probing the flash chemistry of electrogenerated reactive intermediates was demonstrated based on collision mixing of electrosprayed microdroplets, which employed a theta‐glass capillary integrated with carbon bipolar electrodes to produce short‐lived intermediates in situ. |
---|---|
AbstractList | A novel mass spectrometric method for probing the flash chemistry of electrogenerated reactive intermediates was developed based on rapid collision mixing of electrosprayed microdroplets by using a theta‐glass capillary. The two individual microchannels of the theta‐glass capillary are asymmetrically or symmetrically fabricated with a carbon bipolar electrode to produce intermediates in situ. Microdroplets containing the newly formed intermediates collide with those of the invoked reactants at sub‐10 microsecond level, making it a powerful tool for exploring their ultrafast initial transformations. As a proof‐of‐concept, we present the identification of the key radical cation intermediate in the oxidative dimerization of 8‐methyl‐1,2,3,4‐tetrahydroquinoline and also the first disclosure of previously hidden nitrenium ion involved reaction pathway in the C−H/N−H cross‐coupling between N,N′‐dimethylaniline and phenothiazine. A novel mass spectrometric method for probing the flash chemistry of electrogenerated reactive intermediates was developed based on rapid collision mixing of electrosprayed microdroplets by using a theta‐glass capillary. The two individual microchannels of the theta‐glass capillary are asymmetrically or symmetrically fabricated with a carbon bipolar electrode to produce intermediates in situ. Microdroplets containing the newly formed intermediates collide with those of the invoked reactants at sub‐10 microsecond level, making it a powerful tool for exploring their ultrafast initial transformations. As a proof‐of‐concept, we present the identification of the key radical cation intermediate in the oxidative dimerization of 8‐methyl‐1,2,3,4‐tetrahydroquinoline and also the first disclosure of previously hidden nitrenium ion involved reaction pathway in the C−H/N−H cross‐coupling between N,N′‐dimethylaniline and phenothiazine. Microreactor on the fly: A special microreactor that permits mass spectrometric probing the flash chemistry of electrogenerated reactive intermediates was demonstrated based on collision mixing of electrosprayed microdroplets, which employed a theta‐glass capillary integrated with carbon bipolar electrodes to produce short‐lived intermediates in situ. A novel mass spectrometric method for probing the flash chemistry of electrogenerated reactive intermediates was developed based on rapid collision mixing of electrosprayed microdroplets by using a theta-glass capillary. The two individual microchannels of the theta-glass capillary are asymmetrically or symmetrically fabricated with a carbon bipolar electrode to produce intermediates in situ. Microdroplets containing the newly formed intermediates collide with those of the invoked reactants at sub-10 microsecond level, making it a powerful tool for exploring their ultrafast initial transformations. As a proof-of-concept, we present the identification of the key radical cation intermediate in the oxidative dimerization of 8-methyl-1,2,3,4-tetrahydroquinoline and also the first disclosure of previously hidden nitrenium ion involved reaction pathway in the C-H/N-H cross-coupling between N,N'-dimethylaniline and phenothiazine.A novel mass spectrometric method for probing the flash chemistry of electrogenerated reactive intermediates was developed based on rapid collision mixing of electrosprayed microdroplets by using a theta-glass capillary. The two individual microchannels of the theta-glass capillary are asymmetrically or symmetrically fabricated with a carbon bipolar electrode to produce intermediates in situ. Microdroplets containing the newly formed intermediates collide with those of the invoked reactants at sub-10 microsecond level, making it a powerful tool for exploring their ultrafast initial transformations. As a proof-of-concept, we present the identification of the key radical cation intermediate in the oxidative dimerization of 8-methyl-1,2,3,4-tetrahydroquinoline and also the first disclosure of previously hidden nitrenium ion involved reaction pathway in the C-H/N-H cross-coupling between N,N'-dimethylaniline and phenothiazine. |
Author | Hu, Jun Gao, Hang Wang, Ting Zhang, Wen‐Jun Xia, Xing‐Hua Yu, Qiao Zhang, Nan Chen, Yun Hao, Han Chen, Hong‐Yuan Xu, Jing‐Juan |
Author_xml | – sequence: 1 givenname: Jun surname: Hu fullname: Hu, Jun organization: Nanjing Medical University – sequence: 2 givenname: Ting surname: Wang fullname: Wang, Ting organization: Nanjing University – sequence: 3 givenname: Wen‐Jun surname: Zhang fullname: Zhang, Wen‐Jun organization: Nanjing Medical University – sequence: 4 givenname: Han surname: Hao fullname: Hao, Han organization: University of Toronto – sequence: 5 givenname: Qiao surname: Yu fullname: Yu, Qiao organization: Nanjing University – sequence: 6 givenname: Hang surname: Gao fullname: Gao, Hang organization: Nanjing University – sequence: 7 givenname: Nan surname: Zhang fullname: Zhang, Nan organization: Nanjing University – sequence: 8 givenname: Yun surname: Chen fullname: Chen, Yun email: ychen@njmu.edu.cn organization: Nanjing Medical University – sequence: 9 givenname: Xing‐Hua surname: Xia fullname: Xia, Xing‐Hua organization: Nanjing University – sequence: 10 givenname: Hong‐Yuan surname: Chen fullname: Chen, Hong‐Yuan organization: Nanjing University – sequence: 11 givenname: Jing‐Juan orcidid: 0000-0001-9579-9318 surname: Xu fullname: Xu, Jing‐Juan email: xujj@nju.edu.cn organization: Nanjing University |
BookMark | eNqFkUtLAzEURoMoqNWt64AbN1PznE6WUlst-AAf6yGTuWMj06QmqdJ_b7SiIIirhJtzLvn49tG28w4QOqJkSAlhp9pZGDLCKCmVkFtoj0pGCz4a8e18F5wXo0rSXbQf43Pmq4qUeyic2xjBJOuecJoDnvY6zvF4DgsbU1hj3-FJn9-DfwIHQSdo8R3oLLwCnrkEYQGtzeOImzW-tib4NvhlDwlPV9F6h691jPh--bljAXnnAdrpdB_h8OscoMfp5GF8WVzdXszGZ1eF4ZLIomqMboUA0ylRmooo4KUuO8pkQ7tGgZA6TxuQRJeqk23JpSBMKNYpRlVp-ACdbPYug39ZQUx1zmSg77UDv4o1k4JyxhkRGT3-hT77VXD5d5mSileCE5kpsaFyyBgDdLWxSaccMgVt-5qS-qOI-qOI-ruIrA1_actgFzqs_xbURnizPaz_oeuzm9nkx30HWY2e_w |
CitedBy_id | crossref_primary_10_1002_ange_202306460 crossref_primary_10_1016_j_aca_2023_341794 crossref_primary_10_1016_j_aca_2025_343854 crossref_primary_10_1021_jacs_2c07385 crossref_primary_10_1002_cplu_202300646 crossref_primary_10_1002_ange_202318169 crossref_primary_10_1021_acs_analchem_3c03494 crossref_primary_10_1039_D2SC01317G crossref_primary_10_1021_acs_analchem_3c02980 crossref_primary_10_1002_cjoc_202200134 crossref_primary_10_1002_anie_202318169 crossref_primary_10_1002_chem_202402215 crossref_primary_10_1016_j_xcrp_2022_100917 crossref_primary_10_1002_ange_202219302 crossref_primary_10_1002_adom_202102687 crossref_primary_10_1016_j_chempr_2024_02_020 crossref_primary_10_1039_D2CC04363G crossref_primary_10_1002_ange_202215801 crossref_primary_10_1039_D3SC03870J crossref_primary_10_1002_cjoc_202200523 crossref_primary_10_1016_j_talanta_2023_125008 crossref_primary_10_1002_anie_202306460 crossref_primary_10_1021_cbmi_3c00061 crossref_primary_10_1016_j_cclet_2024_110708 crossref_primary_10_1002_anie_202215801 crossref_primary_10_1016_j_fmre_2023_08_016 crossref_primary_10_1021_acs_analchem_4c04117 crossref_primary_10_1002_anie_202219302 |
Cites_doi | 10.1021/acs.chemrev.7b00475 10.1016/S0006-3495(98)77977-9 10.1038/s41467-018-07882-8 10.1002/ange.201609595 10.1002/ange.200702200 10.1021/ac100390t 10.1039/C6CC06423J 10.1002/anie.201711060 10.1002/anie.202007736 10.1002/ange.201700012 10.1002/ange.202009819 10.1070/RC2008v077n05ABEH003760 10.1002/ange.202013478 10.1021/jacs.5b13081 10.1002/anie.202016895 10.1126/science.aaf1389 10.1002/anie.200906886 10.1021/ac502545r 10.1002/anie.201609595 10.1002/ange.201711060 10.1002/anie.201700012 10.1002/anie.202013478 10.1039/C8SC00251G 10.1021/acscatal.7b04137 10.1002/anie.201506316 10.1021/ac7025139 10.1002/ange.201506316 10.1002/ange.202008577 10.1039/C8CC09899A 10.1021/acs.chemrev.7b00532 10.1002/ange.200906886 10.1021/ac300845n 10.1039/C9CC09629A 10.1021/jacs.8b07327 10.1039/C5SC02939B 10.1021/acs.chemrev.7b00397 10.1021/jacs.5b03862 10.1002/anie.202008577 10.1021/jacs.7b03541 10.1002/pro.5560070415 10.1073/pnas.1503689112 10.1255/ejms.1198 10.1126/science.aba3823 10.1002/anie.200702200 10.1002/anie.202009819 10.1002/ange.202016895 10.1002/ange.202007736 10.1021/acs.accounts.9b00512 10.1039/D0CC08209K |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202106945 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 18498 |
ExternalDocumentID | 10_1002_anie_202106945 ANIE202106945 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20200668 – fundername: State Key Laboratory of Analytical Chemistry for Life Science funderid: SKLACLS2103 – fundername: National Natural Science Foundation of China funderid: 22034003; 22004071 – fundername: China Postdoctoral Science Foundation funderid: 2020M681662; 2021T140336 – fundername: Excellent Research Program of Nanjing University funderid: ZYJH004 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3505-8bcad44ecf946c809e36a6f125b1fb9e45ac80be50a69f5d635402492f92196c3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 00:57:43 EDT 2025 Fri Jul 25 10:24:37 EDT 2025 Tue Jul 01 01:18:03 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Wed Jan 22 16:29:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3505-8bcad44ecf946c809e36a6f125b1fb9e45ac80be50a69f5d635402492f92196c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9579-9318 |
PQID | 2559384305 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2541323204 proquest_journals_2559384305 crossref_citationtrail_10_1002_anie_202106945 crossref_primary_10_1002_anie_202106945 wiley_primary_10_1002_anie_202106945_ANIE202106945 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 16, 2021 |
PublicationDateYYYYMMDD | 2021-08-16 |
PublicationDate_xml | – month: 08 year: 2021 text: August 16, 2021 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 140 2019; 52 2019; 55 2019; 10 2020 2020; 59 132 2020; 368 2016; 52 2010 2010; 49 122 2012; 18 2008; 77 2020; 56 2017 2017; 56 129 2017; 117 2017; 139 2010; 82 2014; 86 2021; 57 2018; 9 2018; 8 2016; 7 2015; 137 2018; 118 2018 2018; 57 130 2015; 112 2007 2007; 46 119 2021 2021; 60 133 2015 2015; 54 127 2016; 352 2016; 138 1998; 74 1998; 7 2008; 80 2012; 84 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_6_1 e_1_2_2_20_3 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_2 e_1_2_2_41_3 e_1_2_2_43_1 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_8_3 e_1_2_2_47_1 e_1_2_2_13_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_19_3 e_1_2_2_30_1 e_1_2_2_19_2 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_15_2 e_1_2_2_13_3 e_1_2_2_36_1 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_23_2 e_1_2_2_5_2 e_1_2_2_5_3 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_42_1 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_46_1 e_1_2_2_46_2 e_1_2_2_12_3 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_12_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_31_1 e_1_2_2_16_3 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_35_1 |
References_xml | – volume: 368 start-page: 1352 year: 2020 end-page: 1357 publication-title: Science – volume: 82 start-page: 4494 year: 2010 end-page: 4500 publication-title: Anal. Chem. – volume: 84 start-page: 4647 year: 2012 end-page: 4651 publication-title: Anal. Chem. – volume: 57 start-page: 2955 year: 2021 end-page: 2958 publication-title: Chem. Commun. – volume: 7 start-page: 329 year: 2016 end-page: 332 publication-title: Chem. Sci. – volume: 8 start-page: 1192 year: 2018 end-page: 1196 publication-title: ACS Catal. – volume: 137 start-page: 7274 year: 2015 end-page: 7277 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 1809 year: 2019 end-page: 1812 publication-title: Chem. Commun. – volume: 56 129 start-page: 682 698 year: 2017 2017 end-page: 684 700 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 3453 year: 2016 end-page: 3460 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 20890 21076 year: 2020 2020 end-page: 20894 21080 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 3309 year: 2019 end-page: 3324 publication-title: Acc. Chem. Res. – volume: 56 start-page: 2163 year: 2020 end-page: 2166 publication-title: Chem. Commun. – volume: 118 start-page: 4702 year: 2018 end-page: 4730 publication-title: Chem. Rev. – volume: 74 start-page: 2714 year: 1998 end-page: 2721 publication-title: Biophys. J. – volume: 59 132 start-page: 18244 18401 year: 2020 2020 end-page: 18248 18405 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 19862 20034 year: 2020 2020 end-page: 19867 20039 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 2943 2979 year: 2021 2021 end-page: 2947 2983 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 5724 year: 2018 end-page: 5729 publication-title: Chem. Sci. – volume: 18 start-page: 439 year: 2012 end-page: 446 publication-title: Eur. J. Mass Spectrom. – volume: 7 start-page: 975 year: 1998 end-page: 982 publication-title: Protein Sci. – volume: 52 start-page: 12218 year: 2016 end-page: 12221 publication-title: Chem. Commun. – volume: 86 start-page: 9315 year: 2014 end-page: 9321 publication-title: Anal. Chem. – volume: 77 start-page: 395 year: 2008 publication-title: Russ. Chem. Rev. – volume: 80 start-page: 2531 year: 2008 end-page: 2538 publication-title: Anal. Chem. – volume: 54 127 start-page: 11183 11335 year: 2015 2015 end-page: 11185 11337 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 6851 year: 2017 end-page: 6854 publication-title: J. Am. Chem. Soc. – volume: 49 122 start-page: 3053 3117 year: 2010 2010 end-page: 3056 3120 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 1 year: 2019 end-page: 10 publication-title: Nat. Commun. – volume: 352 start-page: 691 year: 2016 end-page: 694 publication-title: Science – volume: 56 129 start-page: 3009 3055 year: 2017 2017 end-page: 3013 3059 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 112 start-page: 3898 year: 2015 end-page: 3903 publication-title: Proc. Natl. Acad. Sci. USA – volume: 60 133 start-page: 6419 6490 year: 2021 2021 end-page: 6424 6495 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 13128 year: 2018 end-page: 13135 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 5985 year: 2018 end-page: 5999 publication-title: Chem. Rev. – volume: 46 119 start-page: 7591 7735 year: 2007 2007 end-page: 7594 7738 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 5594 5694 year: 2018 2018 end-page: 5619 5721 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 13230 year: 2017 end-page: 13319 publication-title: Chem. Rev. – ident: e_1_2_2_2_2 doi: 10.1021/acs.chemrev.7b00475 – ident: e_1_2_2_32_1 doi: 10.1016/S0006-3495(98)77977-9 – ident: e_1_2_2_38_2 doi: 10.1038/s41467-018-07882-8 – ident: e_1_2_2_8_3 doi: 10.1002/ange.201609595 – ident: e_1_2_2_20_3 doi: 10.1002/ange.200702200 – ident: e_1_2_2_21_2 doi: 10.1021/ac100390t – ident: e_1_2_2_29_1 doi: 10.1039/C6CC06423J – ident: e_1_2_2_5_2 doi: 10.1002/anie.201711060 – ident: e_1_2_2_42_1 doi: 10.1002/anie.202007736 – ident: e_1_2_2_46_2 doi: 10.1002/ange.201700012 – ident: e_1_2_2_12_3 doi: 10.1002/ange.202009819 – ident: e_1_2_2_44_2 doi: 10.1070/RC2008v077n05ABEH003760 – ident: e_1_2_2_41_3 doi: 10.1002/ange.202013478 – ident: e_1_2_2_37_1 – ident: e_1_2_2_26_2 doi: 10.1021/jacs.5b13081 – ident: e_1_2_2_13_2 doi: 10.1002/anie.202016895 – ident: e_1_2_2_10_2 doi: 10.1126/science.aaf1389 – ident: e_1_2_2_19_2 doi: 10.1002/anie.200906886 – ident: e_1_2_2_25_1 – ident: e_1_2_2_28_2 doi: 10.1021/ac502545r – ident: e_1_2_2_8_2 doi: 10.1002/anie.201609595 – ident: e_1_2_2_5_3 doi: 10.1002/ange.201711060 – ident: e_1_2_2_46_1 doi: 10.1002/anie.201700012 – ident: e_1_2_2_41_2 doi: 10.1002/anie.202013478 – ident: e_1_2_2_34_1 doi: 10.1039/C8SC00251G – ident: e_1_2_2_14_1 – ident: e_1_2_2_35_1 doi: 10.1021/acscatal.7b04137 – ident: e_1_2_2_16_2 doi: 10.1002/anie.201506316 – ident: e_1_2_2_23_2 doi: 10.1021/ac7025139 – ident: e_1_2_2_22_1 – ident: e_1_2_2_16_3 doi: 10.1002/ange.201506316 – ident: e_1_2_2_17_2 doi: 10.1002/ange.202008577 – ident: e_1_2_2_40_2 doi: 10.1039/C8CC09899A – ident: e_1_2_2_6_1 – ident: e_1_2_2_7_2 doi: 10.1021/acs.chemrev.7b00532 – ident: e_1_2_2_9_1 – ident: e_1_2_2_19_3 doi: 10.1002/ange.200906886 – ident: e_1_2_2_24_2 doi: 10.1021/ac300845n – ident: e_1_2_2_43_1 – ident: e_1_2_2_47_1 doi: 10.1039/C9CC09629A – ident: e_1_2_2_1_1 – ident: e_1_2_2_39_2 doi: 10.1021/jacs.8b07327 – ident: e_1_2_2_45_2 doi: 10.1039/C5SC02939B – ident: e_1_2_2_4_2 doi: 10.1021/acs.chemrev.7b00397 – ident: e_1_2_2_15_2 doi: 10.1021/jacs.5b03862 – ident: e_1_2_2_17_1 doi: 10.1002/anie.202008577 – ident: e_1_2_2_27_2 doi: 10.1021/jacs.7b03541 – ident: e_1_2_2_33_1 doi: 10.1002/pro.5560070415 – ident: e_1_2_2_30_1 doi: 10.1073/pnas.1503689112 – ident: e_1_2_2_18_1 – ident: e_1_2_2_31_1 doi: 10.1255/ejms.1198 – ident: e_1_2_2_11_2 doi: 10.1126/science.aba3823 – ident: e_1_2_2_20_2 doi: 10.1002/anie.200702200 – ident: e_1_2_2_12_2 doi: 10.1002/anie.202009819 – ident: e_1_2_2_13_3 doi: 10.1002/ange.202016895 – ident: e_1_2_2_42_2 doi: 10.1002/ange.202007736 – ident: e_1_2_2_3_2 doi: 10.1021/acs.accounts.9b00512 – ident: e_1_2_2_36_1 doi: 10.1039/D0CC08209K |
SSID | ssj0028806 |
Score | 2.5101566 |
Snippet | A novel mass spectrometric method for probing the flash chemistry of electrogenerated reactive intermediates was developed based on rapid collision mixing of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 18494 |
SubjectTerms | Cross coupling Dimerization electrospray ionization Intermediates Mass spectrometry Mass spectroscopy Microchannels microdroplet reaction Phenothiazine reactive radical intermediate |
Title | Dissecting the Flash Chemistry of Electrogenerated Reactive Intermediates by Microdroplet Fusion Mass Spectrometry |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202106945 https://www.proquest.com/docview/2559384305 https://www.proquest.com/docview/2541323204 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iRS--xWqVCIKn6HaTjcmxaIsK9VAt9LYk2ayC2pY-Dvrrncl2VyuIoLd9TJLdPL9MZr4h5ASmO6684yxJTMKEixSzufNMKSG4B8jsY3RO7tzJ65647Sf9L178BT9EpXDDkRHmaxzgxk7OP0lD0QMb9newZZFaoJc5GmwhKupW_FExdM7CvYhzhlHoS9bGKD5fTL64Kn1Cza-ANaw47XViym8tDE2ez2ZTe-bev9E4_udnNsjaHI7SZtF_NsmSH2yRlcsyCtw2GV_hgb1D42gKWJG2AW0_0UqADnPaKiLpPAYCawCwtOtNmEVpUDcG3xQAtNS-0Q6a_2VjNFqf0vYMNXW0A_Cd3o9CHq8e8twhvXbr4fKazeM0MMcBQDFlncmE8C7XQjoVac-lkTlAJ9vIrfYiMfDU-iQyUudJJlHXhEyFuYb5Ujq-S5YHw4HfI1Q0nARMofQFz4TOrTLWGB2JTCdQhIprhJXtlLo5iTnG0nhJC_rlOMWaTKuarJHTSn5U0Hf8KFkvmz2dD-NJivstrpAVrUaOq9dQwXiqYgZ-OEMZwAGASyNRI3Fo419KSpt3N63qbv8viQ7IKl6jbrsh62R5Op75QwBHU3sUBsAHDQ4HXg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Rb9MwED6N8TBeBgwQ3QZ4Eognb2nsePYDD9PaqmVrH8Ym7S3YjgMSWzt1rdD4V_wVfhF3TpMxpGkS0h54TOI4ie3zfXe5-w7gLW53QgcveJbZjEufaO5KH7jWUoqAkDmklJw8HKn-ifx4mp0uwc86F6bih2gcbiQZcb8mASeH9M41ayilYKOBhzaLMrKOqzwIV9_Rarv8MOjgFL9L0173eL_PF4UFuBeo8bl23hZSBl8aqbxOTBDKqhJ1vWuXzgSZWTzrQpZYZcqsUOQcIWq90qCAKy-w3wfwkMqIE11_56hhrEpRHKqEJiE41b2veSKTdOfm-97Ug9fg9k-IHHVc7zH8qkenCm35tj2fuW3_4y_iyP9q-J7A6gJxs71KRJ7CUhivwcp-XejuGUw7FJPgKf6bIRxmPTQovrKmAZuUrFsVC_oSOboRo7OjYKOiYNGjGtNvELMzd8WGFOFYTCkuf8Z6c3JGsiFaKOzTRezjPGCfz-HkXj75BSyPJ-PwEphse4WwSZtdUUhTOm2dtSaRhcnwETptAa8XRu4XPO1ULuQsrxim05xmLm9mrgXvm_YXFUPJrS0363WWL3aqy5xMSqGJ-K0FW81lHGD6cWTHYTKnNgh1EHonsgVpXFR3PCnfGw26zdH6v9z0Blb6x8PD_HAwOtiAR3SeXPlttQnLs-k8vEIsOHOvo_Qx-Hzf6_U32TtkuQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED-NIcFe-D-tsA0jgXjylsaOsR94mNZGK6MVGkzaW7AdGySgrbpWaHwqvsq-0e6SJmNICAlpDzwmcZzE9vl-d7n7HcBz3O6EDl7wLLMZlz7R3EUfuNZSioCQOaSUnDwcqYNj-eYkO1mBn00uTM0P0TrcSDKq_ZoEfFrG3UvSUMrARvsOTRZlZBNWeRjOvqPRdvp60MMZfpGmef_D_gFf1hXgXqDC59p5W0oZfDRSeZ2YIJRVEVW960ZngswsnnUhS6wyMSsV-UaIWS8alG_lBfZ7A25KlRgqFtE7agmrUpSGOp9JCE5l7xuayCTdvfq-V9XgJbb9FSFXKi6_C-fN4NSRLV92FnO343_8xhv5P43ePbizxNtsrxaQ-7ASxg_g9n5T5u4hzHoUkeAp-pshGGY5mhOfWduATSLr16WCPlUM3YjQ2VGwlZpglT-1Sr5BxM7cGRtSfGM5o6j8OcsX5IpkQ7RP2Ptp1ce3gH0-guNr-eR1WB1PxmEDmOx6haBJm1eilCY6bZ21JpGlyfAROu0Ab9ZF4Zcs7VQs5GtR80unBc1c0c5cB1627ac1P8kfW242y6xY7lOnBRmUQhPtWweetZdxgOm3kR2HyYLaINBB4J3IDqTVmvrLk4q90aDfHj3-l5uewq13vbx4OxgdPoE1Ok1-_K7ahNX5bBG2EAjO3XYleww-XvdyvQAnSGNo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissecting+the+Flash+Chemistry+of+Electrogenerated+Reactive+Intermediates+by+Microdroplet+Fusion+Mass+Spectrometry&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Hu%2C+Jun&rft.au=Wang%2C+Ting&rft.au=Wen%E2%80%90Jun+Zhang&rft.au=Han%2C+Hao&rft.date=2021-08-16&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=34&rft.spage=18494&rft.epage=18498&rft_id=info:doi/10.1002%2Fanie.202106945&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |