Toward Practical High‐Energy‐Density Lithium–Sulfur Pouch Cells: A Review
Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy‐storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg−1. Evaluation and analysis on practical Li–S pouch cells are essential for achieving actual high energy density under working conditio...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 35; pp. e2201555 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy‐storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg−1. Evaluation and analysis on practical Li–S pouch cells are essential for achieving actual high energy density under working conditions and affording developing directions for practical applications. This review aims to afford a comprehensive overview of high‐energy‐density Li–S pouch cells regarding 7 years of development and to point out further research directions. Key design parameters to achieve actual high energy density are addressed first, to define the research boundaries distinguished from coin‐cell‐level evaluation. Systematic analysis of the published literature and cutting‐edge performances is then conducted to demonstrate the achieved progress and the gap toward practical applications. Following that, failure analysis as well as promotion strategies at the pouch cell level are, respectively, discussed to reveal the unique working and failure mechanism that shall be accordingly addressed. Finally, perspectives toward high‐performance Li–S pouch cells are presented regarding the challenges and opportunities of this field.
High‐energy‐density lithium–sulfur pouch cells are cpomprehensively reviewed regarding the key design parameters, the current performances, and recent advances on failure analysis and promotion strategies on cathode, electrolyte, and anode. |
---|---|
AbstractList | Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy‐storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg−1. Evaluation and analysis on practical Li–S pouch cells are essential for achieving actual high energy density under working conditions and affording developing directions for practical applications. This review aims to afford a comprehensive overview of high‐energy‐density Li–S pouch cells regarding 7 years of development and to point out further research directions. Key design parameters to achieve actual high energy density are addressed first, to define the research boundaries distinguished from coin‐cell‐level evaluation. Systematic analysis of the published literature and cutting‐edge performances is then conducted to demonstrate the achieved progress and the gap toward practical applications. Following that, failure analysis as well as promotion strategies at the pouch cell level are, respectively, discussed to reveal the unique working and failure mechanism that shall be accordingly addressed. Finally, perspectives toward high‐performance Li–S pouch cells are presented regarding the challenges and opportunities of this field. Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy‐storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg −1 . Evaluation and analysis on practical Li–S pouch cells are essential for achieving actual high energy density under working conditions and affording developing directions for practical applications. This review aims to afford a comprehensive overview of high‐energy‐density Li–S pouch cells regarding 7 years of development and to point out further research directions. Key design parameters to achieve actual high energy density are addressed first, to define the research boundaries distinguished from coin‐cell‐level evaluation. Systematic analysis of the published literature and cutting‐edge performances is then conducted to demonstrate the achieved progress and the gap toward practical applications. Following that, failure analysis as well as promotion strategies at the pouch cell level are, respectively, discussed to reveal the unique working and failure mechanism that shall be accordingly addressed. Finally, perspectives toward high‐performance Li–S pouch cells are presented regarding the challenges and opportunities of this field. Lithium-sulfur (Li-S) batteries promise great potential as high-energy-density energy-storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg-1 . Evaluation and analysis on practical Li-S pouch cells are essential for achieving actual high energy density under working conditions and affording developing directions for practical applications. This review aims to afford a comprehensive overview of high-energy-density Li-S pouch cells regarding 7 years of development and to point out further research directions. Key design parameters to achieve actual high energy density are addressed first, to define the research boundaries distinguished from coin-cell-level evaluation. Systematic analysis of the published literature and cutting-edge performances is then conducted to demonstrate the achieved progress and the gap toward practical applications. Following that, failure analysis as well as promotion strategies at the pouch cell level are, respectively, discussed to reveal the unique working and failure mechanism that shall be accordingly addressed. Finally, perspectives toward high-performance Li-S pouch cells are presented regarding the challenges and opportunities of this field.Lithium-sulfur (Li-S) batteries promise great potential as high-energy-density energy-storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg-1 . Evaluation and analysis on practical Li-S pouch cells are essential for achieving actual high energy density under working conditions and affording developing directions for practical applications. This review aims to afford a comprehensive overview of high-energy-density Li-S pouch cells regarding 7 years of development and to point out further research directions. Key design parameters to achieve actual high energy density are addressed first, to define the research boundaries distinguished from coin-cell-level evaluation. Systematic analysis of the published literature and cutting-edge performances is then conducted to demonstrate the achieved progress and the gap toward practical applications. Following that, failure analysis as well as promotion strategies at the pouch cell level are, respectively, discussed to reveal the unique working and failure mechanism that shall be accordingly addressed. Finally, perspectives toward high-performance Li-S pouch cells are presented regarding the challenges and opportunities of this field. Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy‐storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg−1. Evaluation and analysis on practical Li–S pouch cells are essential for achieving actual high energy density under working conditions and affording developing directions for practical applications. This review aims to afford a comprehensive overview of high‐energy‐density Li–S pouch cells regarding 7 years of development and to point out further research directions. Key design parameters to achieve actual high energy density are addressed first, to define the research boundaries distinguished from coin‐cell‐level evaluation. Systematic analysis of the published literature and cutting‐edge performances is then conducted to demonstrate the achieved progress and the gap toward practical applications. Following that, failure analysis as well as promotion strategies at the pouch cell level are, respectively, discussed to reveal the unique working and failure mechanism that shall be accordingly addressed. Finally, perspectives toward high‐performance Li–S pouch cells are presented regarding the challenges and opportunities of this field. High‐energy‐density lithium–sulfur pouch cells are cpomprehensively reviewed regarding the key design parameters, the current performances, and recent advances on failure analysis and promotion strategies on cathode, electrolyte, and anode. |
Author | Zhao, Meng Huang, Jia‐Qi Hou, Li‐Peng Li, Bo‐Quan Chen, Zi‐Xian Zhang, Xue‐Qiang |
Author_xml | – sequence: 1 givenname: Zi‐Xian surname: Chen fullname: Chen, Zi‐Xian organization: Beijing Institute of Technology – sequence: 2 givenname: Meng surname: Zhao fullname: Zhao, Meng organization: Beijing Institute of Technology – sequence: 3 givenname: Li‐Peng surname: Hou fullname: Hou, Li‐Peng organization: Tsinghua University – sequence: 4 givenname: Xue‐Qiang surname: Zhang fullname: Zhang, Xue‐Qiang organization: Beijing Institute of Technology – sequence: 5 givenname: Bo‐Quan surname: Li fullname: Li, Bo‐Quan email: libq@bit.edu.cn organization: Beijing Institute of Technology – sequence: 6 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology |
BookMark | eNqFkM1Kw0AUhQdRsK1uXQfcuEm9M8lkEnehVStUKlrXw2R6a0fyozOJpTsfQfAN-ySmVBQK4urexfcdDqdL9suqREJOKPQpADtXs0L1GTAGlHO-RzqUM-qHkPB90oEk4H4ShfEh6Tr3DABJBFGHTKbVUtmZd2eVro1WuTcyT4v1-8dlifZp1T5DLJ2pV97Y1AvTFOv3z4cmnzfWu6savfAGmOfuwku9e3wzuDwiB3OVOzz-vj3yeHU5HYz88eT6ZpCOfR1w4D5XIaiIMTpH1CyjQmQ0E4EIdKxUEKLWAaNhENNQaYxowhF5nGUcUFDGMwh65Gyb-2Kr1wZdLQvjdNtFlVg1TrKIt1rMEtGipzvoc9XYsm0nmYBYQJSIsKXCLaVt5ZzFudSmVrWpytoqk0sKcrOy3Kwsf1Zutf6O9mJNoezqbyHZCkuT4-ofWqbD2_TX_QLQz5MV |
CitedBy_id | crossref_primary_10_1007_s12274_022_5227_0 crossref_primary_10_1016_j_jpowsour_2025_236682 crossref_primary_10_1002_adma_202413325 crossref_primary_10_1002_advs_202304915 crossref_primary_10_1021_acs_energyfuels_3c02538 crossref_primary_10_1039_D4NR02220C crossref_primary_10_1016_j_cej_2023_141862 crossref_primary_10_1016_j_jechem_2023_01_038 crossref_primary_10_1016_j_est_2024_110898 crossref_primary_10_1016_j_cej_2024_150574 crossref_primary_10_1002_advs_202404245 crossref_primary_10_1002_ange_202400343 crossref_primary_10_1021_acsami_4c18988 crossref_primary_10_1002_batt_202400544 crossref_primary_10_1021_acsami_4c09591 crossref_primary_10_1021_acsenergylett_4c03177 crossref_primary_10_1039_D4NJ04198D crossref_primary_10_1007_s40820_023_01137_y crossref_primary_10_1016_j_cej_2024_156845 crossref_primary_10_1002_ange_202307802 crossref_primary_10_1021_acsnano_3c09333 crossref_primary_10_1039_D3TA05632E crossref_primary_10_1039_D3TA01569F crossref_primary_10_1039_D3EE03185C crossref_primary_10_1016_j_est_2023_107767 crossref_primary_10_1021_acs_jpcb_3c08374 crossref_primary_10_1002_ange_202305466 crossref_primary_10_1016_j_cej_2024_151938 crossref_primary_10_1016_j_jechem_2023_02_009 crossref_primary_10_1002_smll_202309422 crossref_primary_10_1016_j_cej_2023_142386 crossref_primary_10_1021_acsami_2c12507 crossref_primary_10_1016_j_est_2023_107917 crossref_primary_10_1021_acsami_3c16184 crossref_primary_10_1007_s40843_022_2462_x crossref_primary_10_3390_molecules29245881 crossref_primary_10_1016_j_partic_2023_11_006 crossref_primary_10_1016_j_jechem_2023_08_015 crossref_primary_10_1021_jacs_4c02603 crossref_primary_10_1016_j_est_2024_113412 crossref_primary_10_1021_acsami_3c14048 crossref_primary_10_1021_acsami_2c18976 crossref_primary_10_1016_j_jechem_2022_08_027 crossref_primary_10_1002_adsu_202300101 crossref_primary_10_1002_eem2_12688 crossref_primary_10_1039_D3EE01599H crossref_primary_10_3390_nano14120990 crossref_primary_10_1002_eem2_12844 crossref_primary_10_1021_acsami_2c11667 crossref_primary_10_1039_D4TA04671D crossref_primary_10_1038_s44286_024_00115_4 crossref_primary_10_1039_D4TA05849F crossref_primary_10_1002_smll_202311850 crossref_primary_10_3390_polym14204359 crossref_primary_10_1039_D3EE04358D crossref_primary_10_1002_anie_202307802 crossref_primary_10_1021_acsnano_3c02634 crossref_primary_10_1002_aenm_202400035 crossref_primary_10_1016_j_cej_2023_141723 crossref_primary_10_1002_eom2_12416 crossref_primary_10_1021_acs_accounts_3c00400 crossref_primary_10_1002_adma_202500079 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1021_acsaem_4c02712 crossref_primary_10_1002_smll_202409740 crossref_primary_10_1002_smll_202206616 crossref_primary_10_1016_j_molstruc_2023_135828 crossref_primary_10_1002_inf2_12359 crossref_primary_10_1021_acssuschemeng_4c04531 crossref_primary_10_1016_j_matlet_2022_133537 crossref_primary_10_1021_acsami_4c05252 crossref_primary_10_1039_D4CC02263G crossref_primary_10_1016_j_cej_2022_138115 crossref_primary_10_1007_s11581_023_04996_y crossref_primary_10_1002_adfm_202405122 crossref_primary_10_3390_nano13172492 crossref_primary_10_1002_aenm_202300611 crossref_primary_10_1016_j_jcis_2024_05_140 crossref_primary_10_1016_j_jechem_2022_09_011 crossref_primary_10_1016_j_matt_2022_11_019 crossref_primary_10_1002_anie_202416176 crossref_primary_10_1007_s41918_023_00188_4 crossref_primary_10_1002_smll_202308550 crossref_primary_10_1016_j_jechem_2022_12_050 crossref_primary_10_1002_advs_202407304 crossref_primary_10_1021_acsnano_4c09892 crossref_primary_10_1021_acsnano_3c06826 crossref_primary_10_1016_j_jcis_2023_01_135 crossref_primary_10_1002_sus2_191 crossref_primary_10_1002_smll_202202917 crossref_primary_10_1002_smll_202205470 crossref_primary_10_1002_smll_202303781 crossref_primary_10_1002_adma_202212039 crossref_primary_10_1002_aenm_202301770 crossref_primary_10_1002_cssc_202202009 crossref_primary_10_1007_s12274_023_5683_1 crossref_primary_10_1007_s40820_023_01120_7 crossref_primary_10_1039_D2NR07194K crossref_primary_10_1007_s12598_024_02704_x crossref_primary_10_1016_j_cej_2023_145862 crossref_primary_10_1002_advs_202404328 crossref_primary_10_1002_ange_202416176 crossref_primary_10_1021_acsami_3c01574 crossref_primary_10_1002_smll_202303490 crossref_primary_10_1016_j_jechem_2022_09_029 crossref_primary_10_1021_jacs_3c02786 crossref_primary_10_1016_j_jcis_2024_05_123 crossref_primary_10_1002_smll_202402725 crossref_primary_10_1016_j_nxener_2023_100012 crossref_primary_10_1039_D4CC03177F crossref_primary_10_1360_SSC_2023_0248 crossref_primary_10_1002_adfm_202405814 crossref_primary_10_1038_s44286_024_00038_0 crossref_primary_10_1002_aenm_202402506 crossref_primary_10_1016_j_jechem_2023_03_008 crossref_primary_10_1039_D3EE01774E crossref_primary_10_1002_aenm_202304412 crossref_primary_10_1002_aic_17940 crossref_primary_10_1039_D4EE00391H crossref_primary_10_1016_j_cej_2023_144402 crossref_primary_10_1039_D3YA00423F crossref_primary_10_1039_D3EE02675B crossref_primary_10_1002_adfm_202418043 crossref_primary_10_1002_adsu_202400555 crossref_primary_10_1002_adfm_202304541 crossref_primary_10_1002_anie_202400343 crossref_primary_10_34133_energymatadv_0010 crossref_primary_10_1021_acs_chemrev_3c00919 crossref_primary_10_1016_j_cej_2024_155028 crossref_primary_10_1016_j_partic_2023_04_010 crossref_primary_10_1002_aenm_202202474 crossref_primary_10_1002_adma_202411197 crossref_primary_10_1002_cssc_202401401 crossref_primary_10_1016_j_apsusc_2022_154556 crossref_primary_10_1002_batt_202200467 crossref_primary_10_1002_sstr_202300179 crossref_primary_10_1002_adma_202400508 crossref_primary_10_1063_5_0110449 crossref_primary_10_1016_j_mattod_2025_01_002 crossref_primary_10_1002_anie_202305466 crossref_primary_10_1002_advs_202207442 crossref_primary_10_1016_j_jechem_2022_10_012 crossref_primary_10_1002_adfm_202400262 crossref_primary_10_3390_electronics12173662 crossref_primary_10_1021_acs_chemmater_4c02120 crossref_primary_10_1021_acsnano_2c11300 crossref_primary_10_1039_D4TA01997K crossref_primary_10_1021_jacsau_3c00710 crossref_primary_10_3390_batteries11030089 crossref_primary_10_3390_nano14040384 crossref_primary_10_1016_j_jcis_2024_06_230 crossref_primary_10_1021_acssuschemeng_4c02312 crossref_primary_10_1002_adma_202205678 crossref_primary_10_1016_j_mtener_2024_101640 crossref_primary_10_1021_acsnano_3c05676 crossref_primary_10_1002_adfm_202417776 crossref_primary_10_1002_cssc_202402006 crossref_primary_10_1016_j_jechem_2023_07_003 crossref_primary_10_1002_smll_202206375 crossref_primary_10_1021_acsami_4c05577 crossref_primary_10_1002_adfm_202312550 crossref_primary_10_1002_adma_202307651 crossref_primary_10_1016_j_est_2023_108559 crossref_primary_10_1134_S1070363223110221 crossref_primary_10_1039_D3TA06057H crossref_primary_10_1021_acsenergylett_3c00826 crossref_primary_10_1021_acs_inorgchem_2c02897 crossref_primary_10_1016_j_ccr_2023_215055 crossref_primary_10_1016_j_apmate_2025_100280 crossref_primary_10_1038_s44172_024_00321_1 crossref_primary_10_1021_acs_energyfuels_4c02385 crossref_primary_10_1002_cey2_585 crossref_primary_10_1016_j_jechem_2023_03_015 crossref_primary_10_1039_D2QI02324E crossref_primary_10_1002_adma_202414047 |
Cites_doi | 10.1039/D0EE02797A 10.1002/anie.202003136 10.1002/aenm.201900161 10.1149/2.0551701jes 10.1039/D1EE00508A 10.1021/jacs.1c09107 10.1007/s11581-021-04122-w 10.1002/aenm.202000082 10.1016/j.joule.2020.05.012 10.1002/anie.202104053 10.1002/ente.201900111 10.1021/jp500382s 10.1016/j.cej.2020.126823 10.1038/nmat4778 10.1002/adma.201806532 10.1038/nmat2460 10.1109/JPROC.2012.2190170 10.1021/cr500062v 10.1016/j.isci.2020.101576 10.1038/srep08763 10.1016/j.ensm.2018.08.010 10.1002/adfm.201704865 10.1149/2.046304jes 10.1021/acs.nanolett.0c01778 10.1016/j.chempr.2021.12.023 10.1002/anie.202007159 10.1016/j.carbon.2020.01.037 10.1016/j.electacta.2017.05.034 10.1016/j.nanoen.2018.07.015 10.1021/acsami.1c04194 10.1016/j.nanoen.2017.07.002 10.1038/nchem.2085 10.1021/acs.nanolett.5b04189 10.1016/j.jpowsour.2014.04.018 10.1021/acs.chemrev.8b00422 10.1149/2.0131801jes 10.1002/aenm.201401801 10.1002/adfm.202100586 10.1007/s12274-020-3181-2 10.1039/D1EE01113H 10.1002/admt.201600052 10.1016/j.chempr.2020.09.015 10.1002/aenm.201401986 10.3389/fenrg.2019.00123 10.1002/adma.202003012 10.1126/science.1212741 10.1016/j.ensm.2017.09.001 10.1002/anie.202101958 10.20517/energymater.2021.17 10.1038/ncomms2163 10.1039/c002639e 10.1021/acs.jpcc.8b06077 10.1002/smtd.201900344 10.1016/j.joule.2022.02.015 10.1002/adma.202007298 10.1021/acsnano.5b07347 10.1021/acs.nanolett.5b04166 10.1002/advs.202101182 10.1021/acsami.0c08027 10.1002/anie.201810132 10.1039/C9CS00635D 10.1002/advs.201903168 10.1021/cm500575q 10.1016/j.electacta.2017.06.164 10.1002/anie.201605676 10.1016/j.ensm.2021.05.038 10.1016/j.joule.2020.03.020 10.1021/acsenergylett.6b00194 10.1038/nnano.2017.16 10.1002/adma.201604685 10.1149/2.0981714jes 10.1002/adma.201705590 10.1016/j.jpowsour.2021.229503 10.1021/acsenergylett.0c00292 10.1038/srep14949 10.1002/anie.202103303 10.1126/science.aas9343 10.1002/aenm.201802207 10.1038/s41565-020-00797-w 10.1016/j.jechem.2021.07.010 10.1002/batt.202100359 10.1021/acscentsci.0c00449 10.1039/C8CS00826D 10.1021/jacs.6b12358 10.1038/s41560-019-0338-x 10.1002/anie.202007740 10.1002/anie.202103470 10.1016/j.esci.2021.08.001 10.1038/s41467-020-19070-8 10.1038/ncomms8436 10.1038/s41560-019-0351-0 10.1021/jacs.7b05371 10.1002/adma.201700007 10.1016/j.cej.2019.122353 10.1021/ac2032244 10.1149/2.0081514jes 10.1021/acsenergylett.0c02527 10.1038/nenergy.2016.132 10.1007/s10008-020-04648-5 10.1038/451652a 10.1002/adma.201700598 10.1016/j.ensm.2016.09.003 10.1002/anie.202016240 10.1039/D0EE02088E 10.1038/s41560-018-0107-2 10.1002/aenm.201700260 10.1016/j.joule.2020.02.006 10.1021/acsami.5b02160 10.1002/adma.201303166 10.1021/acsami.0c10453 10.1016/j.matt.2019.07.002 10.1021/acsami.7b08317 10.1002/smsc.202100058 10.1002/adma.202004741 10.1016/j.ensm.2020.04.035 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202201555 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202201555 ADMA202201555 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2021YFB2400300 – fundername: ShanXi Science and Technology Department funderid: 20191102003 – fundername: National Natural Science Foundation of China funderid: 22109007 – fundername: Beijing Natural Science Foundation funderid: JQ20004 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3505-5a40a6221feec2b177b1b7373c8aa34ecc32143814ace6195ee58bb50e7125b03 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 18:47:45 EDT 2025 Fri Jul 25 03:37:57 EDT 2025 Tue Jul 01 02:33:16 EDT 2025 Thu Apr 24 22:53:05 EDT 2025 Wed Jan 22 16:24:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3505-5a40a6221feec2b177b1b7373c8aa34ecc32143814ace6195ee58bb50e7125b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7394-9186 |
PQID | 2708706974 |
PQPubID | 2045203 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2656198297 proquest_journals_2708706974 crossref_citationtrail_10_1002_adma_202201555 crossref_primary_10_1002_adma_202201555 wiley_primary_10_1002_adma_202201555_ADMA202201555 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 1, 2022 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 1, 2022 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2021; 27 2018; 165 2008 2011 2019; 451 334 4 2020; 20 2020; 59 2019; 18 2020; 13 2021 2020 2020 2021 2020 2020 2020 2020 2021 2021 2021 2021 2021 2022 2022; 60 23 379 406 5 59 161 32 14 13 60 143 1 8 5 2020; 12 2020; 11 2022; 66 2012 2015 2016; 100 7 16 2015 2015 2021; 5 7 6 2020; 6 2020 2018; 7 57 2020; 4 2017; 39 2017 2017; 12 29 2016 2012; 55 3 2020; 49 2018 2019 2018; 118 9 3 2014 2014; 264 26 2017; 164 2010; 3 2017; 243 2015 2018 2020 2021 2021; 6 11 32 1 1 2021; 40 2017 2013 2017; 247 160 164 2017 2014; 7 114 2014; 118 2019; 7 2021; 8 2020 2019; 4 7 2019; 9 2021 2021; 60 31 2018; 28 2015 2020; 162 4 2019; 4 2015; 5 2019; 31 2019; 1 2017; 29 2020 2015; 10 5 2017; 139 2013 2016 2017; 25 10 139 2021; 14 2016 2020 2021; 16 59 33 2021; 16 2021 2020; 489 30 2016; 1 2016 2018 2017; 1 361 29 2022; 6 2009; 8 2020; 24 2018; 51 2019 2018; 48 30 2021; 60 2019 2016; 4 16 2017 2018; 9 122 2012; 84 e_1_2_8_22_3 e_1_2_8_68_3 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_26_2 e_1_2_8_68_2 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_5_3 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_30_7 e_1_2_8_30_6 e_1_2_8_15_1 e_1_2_8_30_9 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_30_8 e_1_2_8_19_3 e_1_2_8_30_3 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_30_5 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_30_4 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_3 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_28_1 e_1_2_8_20_5 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_3_3 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_20_2 e_1_2_8_66_2 e_1_2_8_20_3 e_1_2_8_20_4 e_1_2_8_62_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_51_1 e_1_2_8_27_2 e_1_2_8_23_2 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_8_3 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_61_1 e_1_2_8_16_2 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_30_10 e_1_2_8_30_12 e_1_2_8_30_11 e_1_2_8_30_14 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_30_13 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_30_15 e_1_2_8_54_1 e_1_2_8_50_1 |
References_xml | – volume: 10 5 year: 2020 2015 publication-title: Adv. Energy Mater. Adv. Energy Mater. – volume: 25 10 139 start-page: 6547 4111 year: 2013 2016 2017 publication-title: Adv. Mater. ACS Nano J. Am. Chem. Soc. – volume: 247 160 164 start-page: 569 A610 year: 2017 2013 2017 publication-title: Electrochim. Acta J. Electrochem. Soc. J. Electrochem. Soc. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 5215 year: 2020 publication-title: Nat. Commun. – volume: 4 16 start-page: 549 year: 2019 2016 publication-title: Small Methods Nano Lett. – volume: 6 start-page: 3297 year: 2020 publication-title: Chem – volume: 1 361 29 start-page: 777 year: 2016 2018 2017 publication-title: Nat. Energy Science Adv. Mater. – volume: 13 start-page: 4808 year: 2020 publication-title: Energy Environ. Sci. – volume: 4 7 start-page: 539 123 year: 2020 2019 publication-title: Joule Front. Energy Res. – volume: 6 start-page: 1095 year: 2020 publication-title: ACS Cent. Sci. – volume: 24 start-page: 1397 year: 2020 publication-title: J. Solid State Electrochem. – volume: 27 start-page: 3347 year: 2021 publication-title: Ionics – volume: 165 year: 2018 publication-title: J. Electrochem. Soc. – volume: 7 114 year: 2017 2014 publication-title: Adv. Energy Mater. Chem. Rev. – volume: 60 31 year: 2021 2021 publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. – volume: 162 4 start-page: 1445 year: 2015 2020 publication-title: J. Electrochem. Soc. Joule – volume: 1 start-page: 503 year: 2016 publication-title: ACS Energy Lett. – volume: 49 start-page: 2140 year: 2020 publication-title: Chem. Soc. Rev. – volume: 5 7 6 start-page: 537 year: 2015 2015 2021 publication-title: Adv. Energy Mater. ACS Appl. Mater. Interfaces ACS Energy Lett. – volume: 12 29 start-page: 194 year: 2017 2017 publication-title: Nat. Nanotechnol. Adv. Mater. – volume: 51 start-page: 668 year: 2018 publication-title: Nano Energy – volume: 48 30 start-page: 3279 year: 2019 2018 publication-title: Chem. Soc. Rev. Adv. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 5391 year: 2020 publication-title: Nano Lett. – volume: 9 122 year: 2017 2018 publication-title: ACS Appl. Mater. Interfaces J. Phys. Chem. C – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 4 start-page: 1121 year: 2020 publication-title: Joule – volume: 39 start-page: 262 year: 2017 publication-title: Nano Energy – volume: 16 start-page: 166 year: 2021 publication-title: Nat. Nanotechnol. – volume: 18 start-page: 414 year: 2019 publication-title: Energy Storage Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 100 7 16 start-page: 1518 19 70 year: 2012 2015 2016 publication-title: Proc. IEEE Nat. Chem. Nat. Mater. – volume: 489 30 start-page: 87 year: 2021 2020 publication-title: J. Power Sources Energy Storage Mater. – volume: 8 start-page: 500 year: 2009 publication-title: Nat. Mater. – volume: 13 start-page: 3620 year: 2020 publication-title: Energy Environ. Sci. – volume: 164 year: 2017 publication-title: J. Electrochem. Soc. – volume: 139 start-page: 8458 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 8763 year: 2015 publication-title: Sci. Rep. – volume: 60 23 379 406 5 59 161 32 14 13 60 143 1 8 5 start-page: 1177 190 4115 44 1083 year: 2021 2020 2020 2021 2020 2020 2020 2020 2021 2021 2021 2021 2021 2022 2022 publication-title: Angew. Chem., Int. Ed. iScience Chem. Eng. J. Chem. Eng. J. ACS Energy Lett. Angew. Chem., Int. Ed. Carbon Adv. Mater. Energy Environ. Sci. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. J. Am. Chem. Soc. eScience Chem Batteries Supercaps – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 55 3 start-page: 1166 year: 2016 2012 publication-title: Angew. Chem., Int. Ed. Nat. Commun. – volume: 264 26 start-page: 30 3403 year: 2014 2014 publication-title: J. Power Sources Chem. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 6 11 32 1 1 start-page: 7436 24 year: 2015 2018 2020 2021 2021 publication-title: Nat. Commun. Energy Storage Mater. Adv. Mater. Energy Mater. Small Sci. – volume: 4 start-page: 374 year: 2019 publication-title: Nat. Energy – volume: 16 59 33 start-page: 519 9011 year: 2016 2020 2021 publication-title: Nano Lett. Angew. Chem., Int. Ed. Adv. Mater. – volume: 6 start-page: 906 year: 2022 publication-title: Joule – volume: 84 start-page: 3973 year: 2012 publication-title: Anal. Chem. – volume: 3 start-page: 1531 year: 2010 publication-title: Energy Environ. Sci. – volume: 1 start-page: 1047 year: 2019 publication-title: Matter – volume: 6 start-page: 18 year: 2017 publication-title: Energy Storage Mater. – volume: 451 334 4 start-page: 652 928 180 year: 2008 2011 2019 publication-title: Nature Science Nat. Energy – volume: 118 9 3 start-page: 267 year: 2018 2019 2018 publication-title: Chem. Rev. Adv. Energy Mater. Nat. Energy – volume: 118 start-page: 5733 year: 2014 publication-title: J. Phys. Chem. C – volume: 14 start-page: 5423 year: 2021 publication-title: Energy Environ. Sci. – volume: 66 start-page: 24 year: 2022 publication-title: J. Energy Chem. – volume: 1 year: 2016 publication-title: Adv. Mater. Technol. – volume: 243 start-page: 26 year: 2017 publication-title: Electrochim. Acta – volume: 7 57 year: 2020 2018 publication-title: Adv. Sci. Angew. Chem., Int. Ed. – volume: 40 start-page: 415 year: 2021 publication-title: Energy Storage Mater. – volume: 7 year: 2019 publication-title: Energy Technol. – volume: 14 start-page: 1355 year: 2021 publication-title: Nano Res. – ident: e_1_2_8_13_1 doi: 10.1039/D0EE02797A – ident: e_1_2_8_19_2 doi: 10.1002/anie.202003136 – ident: e_1_2_8_3_2 doi: 10.1002/aenm.201900161 – ident: e_1_2_8_68_3 doi: 10.1149/2.0551701jes – ident: e_1_2_8_30_9 doi: 10.1039/D1EE00508A – ident: e_1_2_8_30_12 doi: 10.1021/jacs.1c09107 – ident: e_1_2_8_42_1 doi: 10.1007/s11581-021-04122-w – ident: e_1_2_8_7_1 doi: 10.1002/aenm.202000082 – ident: e_1_2_8_29_2 doi: 10.1016/j.joule.2020.05.012 – ident: e_1_2_8_27_1 doi: 10.1002/anie.202104053 – ident: e_1_2_8_37_1 doi: 10.1002/ente.201900111 – ident: e_1_2_8_10_1 doi: 10.1021/jp500382s – ident: e_1_2_8_30_4 doi: 10.1016/j.cej.2020.126823 – ident: e_1_2_8_1_3 doi: 10.1038/nmat4778 – ident: e_1_2_8_17_1 doi: 10.1002/adma.201806532 – ident: e_1_2_8_14_1 doi: 10.1038/nmat2460 – ident: e_1_2_8_1_1 doi: 10.1109/JPROC.2012.2190170 – ident: e_1_2_8_6_2 doi: 10.1021/cr500062v – ident: e_1_2_8_30_2 doi: 10.1016/j.isci.2020.101576 – ident: e_1_2_8_52_1 doi: 10.1038/srep08763 – ident: e_1_2_8_33_1 doi: 10.1016/j.ensm.2018.08.010 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.201704865 – ident: e_1_2_8_68_2 doi: 10.1149/2.046304jes – ident: e_1_2_8_58_1 doi: 10.1021/acs.nanolett.0c01778 – ident: e_1_2_8_30_14 doi: 10.1016/j.chempr.2021.12.023 – ident: e_1_2_8_30_6 doi: 10.1002/anie.202007159 – ident: e_1_2_8_30_7 doi: 10.1016/j.carbon.2020.01.037 – ident: e_1_2_8_39_1 doi: 10.1016/j.electacta.2017.05.034 – ident: e_1_2_8_48_1 doi: 10.1016/j.nanoen.2018.07.015 – ident: e_1_2_8_30_10 doi: 10.1021/acsami.1c04194 – ident: e_1_2_8_64_1 doi: 10.1016/j.nanoen.2017.07.002 – ident: e_1_2_8_1_2 doi: 10.1038/nchem.2085 – ident: e_1_2_8_54_2 doi: 10.1021/acs.nanolett.5b04189 – ident: e_1_2_8_26_1 doi: 10.1016/j.jpowsour.2014.04.018 – ident: e_1_2_8_3_1 doi: 10.1021/acs.chemrev.8b00422 – ident: e_1_2_8_59_1 doi: 10.1149/2.0131801jes – ident: e_1_2_8_8_1 doi: 10.1002/aenm.201401801 – ident: e_1_2_8_27_2 doi: 10.1002/adfm.202100586 – ident: e_1_2_8_46_1 doi: 10.1007/s12274-020-3181-2 – ident: e_1_2_8_57_1 doi: 10.1039/D1EE01113H – ident: e_1_2_8_35_1 doi: 10.1002/admt.201600052 – ident: e_1_2_8_45_1 doi: 10.1016/j.chempr.2020.09.015 – ident: e_1_2_8_7_2 doi: 10.1002/aenm.201401986 – ident: e_1_2_8_23_2 doi: 10.3389/fenrg.2019.00123 – ident: e_1_2_8_20_3 doi: 10.1002/adma.202003012 – ident: e_1_2_8_2_2 doi: 10.1126/science.1212741 – ident: e_1_2_8_20_2 doi: 10.1016/j.ensm.2017.09.001 – ident: e_1_2_8_65_1 doi: 10.1002/anie.202101958 – ident: e_1_2_8_20_4 doi: 10.20517/energymater.2021.17 – ident: e_1_2_8_18_2 doi: 10.1038/ncomms2163 – ident: e_1_2_8_15_1 doi: 10.1039/c002639e – ident: e_1_2_8_16_2 doi: 10.1021/acs.jpcc.8b06077 – ident: e_1_2_8_54_1 doi: 10.1002/smtd.201900344 – ident: e_1_2_8_67_1 doi: 10.1016/j.joule.2022.02.015 – ident: e_1_2_8_19_3 doi: 10.1002/adma.202007298 – ident: e_1_2_8_22_2 doi: 10.1021/acsnano.5b07347 – ident: e_1_2_8_19_1 doi: 10.1021/acs.nanolett.5b04166 – ident: e_1_2_8_40_1 doi: 10.1002/advs.202101182 – ident: e_1_2_8_32_1 doi: 10.1021/acsami.0c08027 – ident: e_1_2_8_31_2 doi: 10.1002/anie.201810132 – ident: e_1_2_8_21_1 doi: 10.1039/C9CS00635D – ident: e_1_2_8_31_1 doi: 10.1002/advs.201903168 – ident: e_1_2_8_26_2 doi: 10.1021/cm500575q – ident: e_1_2_8_68_1 doi: 10.1016/j.electacta.2017.06.164 – ident: e_1_2_8_18_1 doi: 10.1002/anie.201605676 – ident: e_1_2_8_47_1 doi: 10.1016/j.ensm.2021.05.038 – ident: e_1_2_8_62_1 doi: 10.1016/j.joule.2020.03.020 – ident: e_1_2_8_63_1 doi: 10.1021/acsenergylett.6b00194 – ident: e_1_2_8_4_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_8_5_3 doi: 10.1002/adma.201604685 – ident: e_1_2_8_60_1 doi: 10.1149/2.0981714jes – ident: e_1_2_8_9_2 doi: 10.1002/adma.201705590 – ident: e_1_2_8_66_1 doi: 10.1016/j.jpowsour.2021.229503 – ident: e_1_2_8_30_5 doi: 10.1021/acsenergylett.0c00292 – ident: e_1_2_8_24_1 doi: 10.1038/srep14949 – ident: e_1_2_8_30_11 doi: 10.1002/anie.202103303 – ident: e_1_2_8_5_2 doi: 10.1126/science.aas9343 – ident: e_1_2_8_12_1 doi: 10.1002/aenm.201802207 – ident: e_1_2_8_51_1 doi: 10.1038/s41565-020-00797-w – ident: e_1_2_8_41_1 doi: 10.1016/j.jechem.2021.07.010 – ident: e_1_2_8_30_15 doi: 10.1002/batt.202100359 – ident: e_1_2_8_25_1 doi: 10.1021/acscentsci.0c00449 – ident: e_1_2_8_9_1 doi: 10.1039/C8CS00826D – ident: e_1_2_8_55_1 doi: 10.1021/jacs.6b12358 – ident: e_1_2_8_2_3 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_8_56_1 doi: 10.1002/anie.202007740 – ident: e_1_2_8_61_1 doi: 10.1002/anie.202103470 – ident: e_1_2_8_30_13 doi: 10.1016/j.esci.2021.08.001 – ident: e_1_2_8_50_1 doi: 10.1038/s41467-020-19070-8 – ident: e_1_2_8_20_1 doi: 10.1038/ncomms8436 – ident: e_1_2_8_44_1 doi: 10.1038/s41560-019-0351-0 – ident: e_1_2_8_22_3 doi: 10.1021/jacs.7b05371 – ident: e_1_2_8_4_2 doi: 10.1002/adma.201700007 – ident: e_1_2_8_30_3 doi: 10.1016/j.cej.2019.122353 – ident: e_1_2_8_11_1 doi: 10.1021/ac2032244 – ident: e_1_2_8_29_1 doi: 10.1149/2.0081514jes – ident: e_1_2_8_8_3 doi: 10.1021/acsenergylett.0c02527 – ident: e_1_2_8_5_1 doi: 10.1038/nenergy.2016.132 – ident: e_1_2_8_53_1 doi: 10.1007/s10008-020-04648-5 – ident: e_1_2_8_2_1 doi: 10.1038/451652a – ident: e_1_2_8_43_1 doi: 10.1002/adma.201700598 – ident: e_1_2_8_36_1 doi: 10.1016/j.ensm.2016.09.003 – ident: e_1_2_8_30_1 doi: 10.1002/anie.202016240 – ident: e_1_2_8_38_1 doi: 10.1039/D0EE02088E – ident: e_1_2_8_3_3 doi: 10.1038/s41560-018-0107-2 – ident: e_1_2_8_6_1 doi: 10.1002/aenm.201700260 – ident: e_1_2_8_23_1 doi: 10.1016/j.joule.2020.02.006 – ident: e_1_2_8_8_2 doi: 10.1021/acsami.5b02160 – ident: e_1_2_8_22_1 doi: 10.1002/adma.201303166 – ident: e_1_2_8_34_1 doi: 10.1021/acsami.0c10453 – ident: e_1_2_8_49_1 doi: 10.1016/j.matt.2019.07.002 – ident: e_1_2_8_16_1 doi: 10.1021/acsami.7b08317 – ident: e_1_2_8_20_5 doi: 10.1002/smsc.202100058 – ident: e_1_2_8_30_8 doi: 10.1002/adma.202004741 – ident: e_1_2_8_66_2 doi: 10.1016/j.ensm.2020.04.035 |
SSID | ssj0009606 |
Score | 2.703299 |
SecondaryResourceType | review_article |
Snippet | Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy‐storage devices due to their ultrahigh theoretical energy density of... Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy‐storage devices due to their ultrahigh theoretical energy density of 2600... Lithium-sulfur (Li-S) batteries promise great potential as high-energy-density energy-storage devices due to their ultrahigh theoretical energy density of 2600... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2201555 |
SubjectTerms | Design parameters Energy Energy storage Failure analysis Failure mechanisms high energy density high sulfur loading Lithium sulfur batteries low electrolyte/sulfur ratio (E/S ratio) Materials science pouch cells Storage batteries |
Title | Toward Practical High‐Energy‐Density Lithium–Sulfur Pouch Cells: A Review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201555 https://www.proquest.com/docview/2708706974 https://www.proquest.com/docview/2656198297 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FqtVVhA8pU03m2zirfRBEV9oC72F3WSLxdpKmxz01J8g-A_7S9zJJmkriKC3DZnNY2cn80125luEzkNOQ9vrhypM5Z5BJfEMj4jQ6LuhZC6lnqPZPm-ddpde9ezeUhW_5ofIf7iBZSTfazBwLqaVBWkoDxPeIELA60OVOSRsASp6WPBHATxPyPYs2_Ac6masjSaprHZf9UoLqLkMWBOP09pCPHtWnWjyXI4jUQ7ev9E4_udlttFmCkdxTc-fHbQmR7toY4mkcA_ddZLMWqyZjZRKMeSGzGcfzaRsUDUakAQfveHrQfQ0iF_ms8_HeNiPJ_h-HAdPuC6Hw-klrmG9DrGPuq1mp9420m0YjMBS-MiwOTW5Q0i1L2VAgK5KVAWzmBW4nFtUzQHY7Eh5fsoDqeIxW0rbFcI2JVPoSZjWASqMxiN5iLDgIWPA4ceZUEiIC8bVla2qCJRYaNlFZGRq8IOUoxy2yhj6ml2Z-DBQfj5QRXSRy79qdo4fJUuZVv3USqc-YSYs86qQqojO8tPKvmDRhI_kOFYyCvBWPShALiKSqPCXO_m1xk0tPzr6S6djtA5tncpWQoVoEssThX0icZrM7y8osvxO |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB7xcyg9FGhBTcvPIrXqycRZr7M2EoeIgEIJtCpB4mZ27Y1ATZOK2EJw4hEq9Ul4FR6BJ2HGGztQqapUiQM3_4x_dmdmZ2Z39huAD4kSiR92EwxTVegIw0Mn5DpxukFiZCBEWLdonwf11pH4fOwfT8BNsRfG4kOUE26kGfl4TQpOE9LVMWqoSnLgIM7J7Bd5lXvm8gKjtuHmbhNZ_JHzne3OVssZFRZwYg8tvuMr4ao657WuMTEnACZd09KTXhwo5QlsFZXvQVsmVGwwwvCN8QOtfddI9Ae06-F7J2GayogTXH_z2xixigKCHN7P852wLoICJ9Ll1cf_-9gOjp3bhy5ybuN2ZuG26B2b2vJ9PUv1enz1B3Dks-q-OXg18rhZw6rIPEyY_mt4-QCH8Q186eTJw8yCN6HUMkp_ubv-tZ3vjMSDJuX5p5esfZaenmU_7q5_H2a9bnbOvg6y-JRtmV5vuMEazC61LMDRk7RoEab6g755C0yrREqCKVRSo7OntFT4Zq-mYyRLPL8CTsH3KB7BsFM1kF5kAaR5RIyJSsZU4FNJ_9MCkPyVcqkQo2g0EA0jLl1aycaosQJr5W0cQmhdSPXNIEMa9OlrIe2xrgDPZeYfX4oazf1Gefbufx5ahRetzn47au8e7L2HGbpuM_eWYCo9z8wyunqpXsmVi8HJU4vjPWk7WSg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BlRA99AeoupS2rkTFKWzWceKkEocVYcV_ET8St2DHjkBddhGbqKInHgGJF-FV-go8ScfxJguVKiQkDr3lZ-LEnhnPTDz-BmBBCab8KFMYporIYZpGTkSlcrJQaR4yFgUW7XMnWDtkG0f-0RjcVnthLD5E_cPNaEY5XxsFP1dZcwQaKlSJG0SpsfpVWuWmvvyJQdtgeT1GDn-ltLN6sLLmDOsKOKmHBt_xBXNFQGkr0zqlBn9JtiT3uJeGQngMO2Wq96ApYyLVGGD4WvuhlL6rOboD0vWw3XF4wQI3MsUi4r0RYJWJB0p0P893ooCFFUykS5sPv_ehGRz5tvc95NLEdV7D72pwbGbLj6Uil0vpr79wI_-n0XsDr4b-NmlbBXkLY7o3DS_voTDOwPeDMnWYWOgmlFlikl_urq5Xy32ReBCbLP_8kmyd5ienxdnd1c1-0c2KC7LbL9ITsqK73cE30iZ2oWUWDp-lR-9gotfv6fdApFCcG5BCwSW6ekJygS17LZkimfL8BjgV25N0CMJuaoF0EwsfTRPDmKRmTAMWa_pzCz_yT8r5SoqS4TQ0SCh3zTo2xowN-FLfxgnErAqJnu4XSIMefSsyO6wbQEuReeRNSTvebtdnc0956DNM7sadZGt9Z_MDTJnLNm1vHibyi0J_RD8vl59K1SJw_NzS-Afh_FfX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Practical+High%E2%80%90Energy%E2%80%90Density+Lithium%E2%80%93Sulfur+Pouch+Cells%3A+A+Review&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Zi%E2%80%90Xian&rft.au=Zhao%2C+Meng&rft.au=Hou%2C+Li%E2%80%90Peng&rft.au=Zhang%2C+Xue%E2%80%90Qiang&rft.date=2022-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202201555&rft.externalDBID=10.1002%252Fadma.202201555&rft.externalDocID=ADMA202201555 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |