Toward Practical High‐Energy‐Density Lithium–Sulfur Pouch Cells: A Review

Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy‐storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg−1. Evaluation and analysis on practical Li–S pouch cells are essential for achieving actual high energy density under working conditio...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 35; pp. e2201555 - n/a
Main Authors Chen, Zi‐Xian, Zhao, Meng, Hou, Li‐Peng, Zhang, Xue‐Qiang, Li, Bo‐Quan, Huang, Jia‐Qi
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy‐storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg−1. Evaluation and analysis on practical Li–S pouch cells are essential for achieving actual high energy density under working conditions and affording developing directions for practical applications. This review aims to afford a comprehensive overview of high‐energy‐density Li–S pouch cells regarding 7 years of development and to point out further research directions. Key design parameters to achieve actual high energy density are addressed first, to define the research boundaries distinguished from coin‐cell‐level evaluation. Systematic analysis of the published literature and cutting‐edge performances is then conducted to demonstrate the achieved progress and the gap toward practical applications. Following that, failure analysis as well as promotion strategies at the pouch cell level are, respectively, discussed to reveal the unique working and failure mechanism that shall be accordingly addressed. Finally, perspectives toward high‐performance Li–S pouch cells are presented regarding the challenges and opportunities of this field. High‐energy‐density lithium–sulfur pouch cells are cpomprehensively reviewed regarding the key design parameters, the current performances, and recent advances on failure analysis and promotion strategies on cathode, electrolyte, and anode.
AbstractList Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy‐storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg−1. Evaluation and analysis on practical Li–S pouch cells are essential for achieving actual high energy density under working conditions and affording developing directions for practical applications. This review aims to afford a comprehensive overview of high‐energy‐density Li–S pouch cells regarding 7 years of development and to point out further research directions. Key design parameters to achieve actual high energy density are addressed first, to define the research boundaries distinguished from coin‐cell‐level evaluation. Systematic analysis of the published literature and cutting‐edge performances is then conducted to demonstrate the achieved progress and the gap toward practical applications. Following that, failure analysis as well as promotion strategies at the pouch cell level are, respectively, discussed to reveal the unique working and failure mechanism that shall be accordingly addressed. Finally, perspectives toward high‐performance Li–S pouch cells are presented regarding the challenges and opportunities of this field.
Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy‐storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg −1 . Evaluation and analysis on practical Li–S pouch cells are essential for achieving actual high energy density under working conditions and affording developing directions for practical applications. This review aims to afford a comprehensive overview of high‐energy‐density Li–S pouch cells regarding 7 years of development and to point out further research directions. Key design parameters to achieve actual high energy density are addressed first, to define the research boundaries distinguished from coin‐cell‐level evaluation. Systematic analysis of the published literature and cutting‐edge performances is then conducted to demonstrate the achieved progress and the gap toward practical applications. Following that, failure analysis as well as promotion strategies at the pouch cell level are, respectively, discussed to reveal the unique working and failure mechanism that shall be accordingly addressed. Finally, perspectives toward high‐performance Li–S pouch cells are presented regarding the challenges and opportunities of this field.
Lithium-sulfur (Li-S) batteries promise great potential as high-energy-density energy-storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg-1 . Evaluation and analysis on practical Li-S pouch cells are essential for achieving actual high energy density under working conditions and affording developing directions for practical applications. This review aims to afford a comprehensive overview of high-energy-density Li-S pouch cells regarding 7 years of development and to point out further research directions. Key design parameters to achieve actual high energy density are addressed first, to define the research boundaries distinguished from coin-cell-level evaluation. Systematic analysis of the published literature and cutting-edge performances is then conducted to demonstrate the achieved progress and the gap toward practical applications. Following that, failure analysis as well as promotion strategies at the pouch cell level are, respectively, discussed to reveal the unique working and failure mechanism that shall be accordingly addressed. Finally, perspectives toward high-performance Li-S pouch cells are presented regarding the challenges and opportunities of this field.Lithium-sulfur (Li-S) batteries promise great potential as high-energy-density energy-storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg-1 . Evaluation and analysis on practical Li-S pouch cells are essential for achieving actual high energy density under working conditions and affording developing directions for practical applications. This review aims to afford a comprehensive overview of high-energy-density Li-S pouch cells regarding 7 years of development and to point out further research directions. Key design parameters to achieve actual high energy density are addressed first, to define the research boundaries distinguished from coin-cell-level evaluation. Systematic analysis of the published literature and cutting-edge performances is then conducted to demonstrate the achieved progress and the gap toward practical applications. Following that, failure analysis as well as promotion strategies at the pouch cell level are, respectively, discussed to reveal the unique working and failure mechanism that shall be accordingly addressed. Finally, perspectives toward high-performance Li-S pouch cells are presented regarding the challenges and opportunities of this field.
Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy‐storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg−1. Evaluation and analysis on practical Li–S pouch cells are essential for achieving actual high energy density under working conditions and affording developing directions for practical applications. This review aims to afford a comprehensive overview of high‐energy‐density Li–S pouch cells regarding 7 years of development and to point out further research directions. Key design parameters to achieve actual high energy density are addressed first, to define the research boundaries distinguished from coin‐cell‐level evaluation. Systematic analysis of the published literature and cutting‐edge performances is then conducted to demonstrate the achieved progress and the gap toward practical applications. Following that, failure analysis as well as promotion strategies at the pouch cell level are, respectively, discussed to reveal the unique working and failure mechanism that shall be accordingly addressed. Finally, perspectives toward high‐performance Li–S pouch cells are presented regarding the challenges and opportunities of this field. High‐energy‐density lithium–sulfur pouch cells are cpomprehensively reviewed regarding the key design parameters, the current performances, and recent advances on failure analysis and promotion strategies on cathode, electrolyte, and anode.
Author Zhao, Meng
Huang, Jia‐Qi
Hou, Li‐Peng
Li, Bo‐Quan
Chen, Zi‐Xian
Zhang, Xue‐Qiang
Author_xml – sequence: 1
  givenname: Zi‐Xian
  surname: Chen
  fullname: Chen, Zi‐Xian
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Meng
  surname: Zhao
  fullname: Zhao, Meng
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Li‐Peng
  surname: Hou
  fullname: Hou, Li‐Peng
  organization: Tsinghua University
– sequence: 4
  givenname: Xue‐Qiang
  surname: Zhang
  fullname: Zhang, Xue‐Qiang
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Bo‐Quan
  surname: Li
  fullname: Li, Bo‐Quan
  email: libq@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
BookMark eNqFkM1Kw0AUhQdRsK1uXQfcuEm9M8lkEnehVStUKlrXw2R6a0fyozOJpTsfQfAN-ySmVBQK4urexfcdDqdL9suqREJOKPQpADtXs0L1GTAGlHO-RzqUM-qHkPB90oEk4H4ShfEh6Tr3DABJBFGHTKbVUtmZd2eVro1WuTcyT4v1-8dlifZp1T5DLJ2pV97Y1AvTFOv3z4cmnzfWu6savfAGmOfuwku9e3wzuDwiB3OVOzz-vj3yeHU5HYz88eT6ZpCOfR1w4D5XIaiIMTpH1CyjQmQ0E4EIdKxUEKLWAaNhENNQaYxowhF5nGUcUFDGMwh65Gyb-2Kr1wZdLQvjdNtFlVg1TrKIt1rMEtGipzvoc9XYsm0nmYBYQJSIsKXCLaVt5ZzFudSmVrWpytoqk0sKcrOy3Kwsf1Zutf6O9mJNoezqbyHZCkuT4-ofWqbD2_TX_QLQz5MV
CitedBy_id crossref_primary_10_1007_s12274_022_5227_0
crossref_primary_10_1016_j_jpowsour_2025_236682
crossref_primary_10_1002_adma_202413325
crossref_primary_10_1002_advs_202304915
crossref_primary_10_1021_acs_energyfuels_3c02538
crossref_primary_10_1039_D4NR02220C
crossref_primary_10_1016_j_cej_2023_141862
crossref_primary_10_1016_j_jechem_2023_01_038
crossref_primary_10_1016_j_est_2024_110898
crossref_primary_10_1016_j_cej_2024_150574
crossref_primary_10_1002_advs_202404245
crossref_primary_10_1002_ange_202400343
crossref_primary_10_1021_acsami_4c18988
crossref_primary_10_1002_batt_202400544
crossref_primary_10_1021_acsami_4c09591
crossref_primary_10_1021_acsenergylett_4c03177
crossref_primary_10_1039_D4NJ04198D
crossref_primary_10_1007_s40820_023_01137_y
crossref_primary_10_1016_j_cej_2024_156845
crossref_primary_10_1002_ange_202307802
crossref_primary_10_1021_acsnano_3c09333
crossref_primary_10_1039_D3TA05632E
crossref_primary_10_1039_D3TA01569F
crossref_primary_10_1039_D3EE03185C
crossref_primary_10_1016_j_est_2023_107767
crossref_primary_10_1021_acs_jpcb_3c08374
crossref_primary_10_1002_ange_202305466
crossref_primary_10_1016_j_cej_2024_151938
crossref_primary_10_1016_j_jechem_2023_02_009
crossref_primary_10_1002_smll_202309422
crossref_primary_10_1016_j_cej_2023_142386
crossref_primary_10_1021_acsami_2c12507
crossref_primary_10_1016_j_est_2023_107917
crossref_primary_10_1021_acsami_3c16184
crossref_primary_10_1007_s40843_022_2462_x
crossref_primary_10_3390_molecules29245881
crossref_primary_10_1016_j_partic_2023_11_006
crossref_primary_10_1016_j_jechem_2023_08_015
crossref_primary_10_1021_jacs_4c02603
crossref_primary_10_1016_j_est_2024_113412
crossref_primary_10_1021_acsami_3c14048
crossref_primary_10_1021_acsami_2c18976
crossref_primary_10_1016_j_jechem_2022_08_027
crossref_primary_10_1002_adsu_202300101
crossref_primary_10_1002_eem2_12688
crossref_primary_10_1039_D3EE01599H
crossref_primary_10_3390_nano14120990
crossref_primary_10_1002_eem2_12844
crossref_primary_10_1021_acsami_2c11667
crossref_primary_10_1039_D4TA04671D
crossref_primary_10_1038_s44286_024_00115_4
crossref_primary_10_1039_D4TA05849F
crossref_primary_10_1002_smll_202311850
crossref_primary_10_3390_polym14204359
crossref_primary_10_1039_D3EE04358D
crossref_primary_10_1002_anie_202307802
crossref_primary_10_1021_acsnano_3c02634
crossref_primary_10_1002_aenm_202400035
crossref_primary_10_1016_j_cej_2023_141723
crossref_primary_10_1002_eom2_12416
crossref_primary_10_1021_acs_accounts_3c00400
crossref_primary_10_1002_adma_202500079
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1021_acsaem_4c02712
crossref_primary_10_1002_smll_202409740
crossref_primary_10_1002_smll_202206616
crossref_primary_10_1016_j_molstruc_2023_135828
crossref_primary_10_1002_inf2_12359
crossref_primary_10_1021_acssuschemeng_4c04531
crossref_primary_10_1016_j_matlet_2022_133537
crossref_primary_10_1021_acsami_4c05252
crossref_primary_10_1039_D4CC02263G
crossref_primary_10_1016_j_cej_2022_138115
crossref_primary_10_1007_s11581_023_04996_y
crossref_primary_10_1002_adfm_202405122
crossref_primary_10_3390_nano13172492
crossref_primary_10_1002_aenm_202300611
crossref_primary_10_1016_j_jcis_2024_05_140
crossref_primary_10_1016_j_jechem_2022_09_011
crossref_primary_10_1016_j_matt_2022_11_019
crossref_primary_10_1002_anie_202416176
crossref_primary_10_1007_s41918_023_00188_4
crossref_primary_10_1002_smll_202308550
crossref_primary_10_1016_j_jechem_2022_12_050
crossref_primary_10_1002_advs_202407304
crossref_primary_10_1021_acsnano_4c09892
crossref_primary_10_1021_acsnano_3c06826
crossref_primary_10_1016_j_jcis_2023_01_135
crossref_primary_10_1002_sus2_191
crossref_primary_10_1002_smll_202202917
crossref_primary_10_1002_smll_202205470
crossref_primary_10_1002_smll_202303781
crossref_primary_10_1002_adma_202212039
crossref_primary_10_1002_aenm_202301770
crossref_primary_10_1002_cssc_202202009
crossref_primary_10_1007_s12274_023_5683_1
crossref_primary_10_1007_s40820_023_01120_7
crossref_primary_10_1039_D2NR07194K
crossref_primary_10_1007_s12598_024_02704_x
crossref_primary_10_1016_j_cej_2023_145862
crossref_primary_10_1002_advs_202404328
crossref_primary_10_1002_ange_202416176
crossref_primary_10_1021_acsami_3c01574
crossref_primary_10_1002_smll_202303490
crossref_primary_10_1016_j_jechem_2022_09_029
crossref_primary_10_1021_jacs_3c02786
crossref_primary_10_1016_j_jcis_2024_05_123
crossref_primary_10_1002_smll_202402725
crossref_primary_10_1016_j_nxener_2023_100012
crossref_primary_10_1039_D4CC03177F
crossref_primary_10_1360_SSC_2023_0248
crossref_primary_10_1002_adfm_202405814
crossref_primary_10_1038_s44286_024_00038_0
crossref_primary_10_1002_aenm_202402506
crossref_primary_10_1016_j_jechem_2023_03_008
crossref_primary_10_1039_D3EE01774E
crossref_primary_10_1002_aenm_202304412
crossref_primary_10_1002_aic_17940
crossref_primary_10_1039_D4EE00391H
crossref_primary_10_1016_j_cej_2023_144402
crossref_primary_10_1039_D3YA00423F
crossref_primary_10_1039_D3EE02675B
crossref_primary_10_1002_adfm_202418043
crossref_primary_10_1002_adsu_202400555
crossref_primary_10_1002_adfm_202304541
crossref_primary_10_1002_anie_202400343
crossref_primary_10_34133_energymatadv_0010
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1016_j_cej_2024_155028
crossref_primary_10_1016_j_partic_2023_04_010
crossref_primary_10_1002_aenm_202202474
crossref_primary_10_1002_adma_202411197
crossref_primary_10_1002_cssc_202401401
crossref_primary_10_1016_j_apsusc_2022_154556
crossref_primary_10_1002_batt_202200467
crossref_primary_10_1002_sstr_202300179
crossref_primary_10_1002_adma_202400508
crossref_primary_10_1063_5_0110449
crossref_primary_10_1016_j_mattod_2025_01_002
crossref_primary_10_1002_anie_202305466
crossref_primary_10_1002_advs_202207442
crossref_primary_10_1016_j_jechem_2022_10_012
crossref_primary_10_1002_adfm_202400262
crossref_primary_10_3390_electronics12173662
crossref_primary_10_1021_acs_chemmater_4c02120
crossref_primary_10_1021_acsnano_2c11300
crossref_primary_10_1039_D4TA01997K
crossref_primary_10_1021_jacsau_3c00710
crossref_primary_10_3390_batteries11030089
crossref_primary_10_3390_nano14040384
crossref_primary_10_1016_j_jcis_2024_06_230
crossref_primary_10_1021_acssuschemeng_4c02312
crossref_primary_10_1002_adma_202205678
crossref_primary_10_1016_j_mtener_2024_101640
crossref_primary_10_1021_acsnano_3c05676
crossref_primary_10_1002_adfm_202417776
crossref_primary_10_1002_cssc_202402006
crossref_primary_10_1016_j_jechem_2023_07_003
crossref_primary_10_1002_smll_202206375
crossref_primary_10_1021_acsami_4c05577
crossref_primary_10_1002_adfm_202312550
crossref_primary_10_1002_adma_202307651
crossref_primary_10_1016_j_est_2023_108559
crossref_primary_10_1134_S1070363223110221
crossref_primary_10_1039_D3TA06057H
crossref_primary_10_1021_acsenergylett_3c00826
crossref_primary_10_1021_acs_inorgchem_2c02897
crossref_primary_10_1016_j_ccr_2023_215055
crossref_primary_10_1016_j_apmate_2025_100280
crossref_primary_10_1038_s44172_024_00321_1
crossref_primary_10_1021_acs_energyfuels_4c02385
crossref_primary_10_1002_cey2_585
crossref_primary_10_1016_j_jechem_2023_03_015
crossref_primary_10_1039_D2QI02324E
crossref_primary_10_1002_adma_202414047
Cites_doi 10.1039/D0EE02797A
10.1002/anie.202003136
10.1002/aenm.201900161
10.1149/2.0551701jes
10.1039/D1EE00508A
10.1021/jacs.1c09107
10.1007/s11581-021-04122-w
10.1002/aenm.202000082
10.1016/j.joule.2020.05.012
10.1002/anie.202104053
10.1002/ente.201900111
10.1021/jp500382s
10.1016/j.cej.2020.126823
10.1038/nmat4778
10.1002/adma.201806532
10.1038/nmat2460
10.1109/JPROC.2012.2190170
10.1021/cr500062v
10.1016/j.isci.2020.101576
10.1038/srep08763
10.1016/j.ensm.2018.08.010
10.1002/adfm.201704865
10.1149/2.046304jes
10.1021/acs.nanolett.0c01778
10.1016/j.chempr.2021.12.023
10.1002/anie.202007159
10.1016/j.carbon.2020.01.037
10.1016/j.electacta.2017.05.034
10.1016/j.nanoen.2018.07.015
10.1021/acsami.1c04194
10.1016/j.nanoen.2017.07.002
10.1038/nchem.2085
10.1021/acs.nanolett.5b04189
10.1016/j.jpowsour.2014.04.018
10.1021/acs.chemrev.8b00422
10.1149/2.0131801jes
10.1002/aenm.201401801
10.1002/adfm.202100586
10.1007/s12274-020-3181-2
10.1039/D1EE01113H
10.1002/admt.201600052
10.1016/j.chempr.2020.09.015
10.1002/aenm.201401986
10.3389/fenrg.2019.00123
10.1002/adma.202003012
10.1126/science.1212741
10.1016/j.ensm.2017.09.001
10.1002/anie.202101958
10.20517/energymater.2021.17
10.1038/ncomms2163
10.1039/c002639e
10.1021/acs.jpcc.8b06077
10.1002/smtd.201900344
10.1016/j.joule.2022.02.015
10.1002/adma.202007298
10.1021/acsnano.5b07347
10.1021/acs.nanolett.5b04166
10.1002/advs.202101182
10.1021/acsami.0c08027
10.1002/anie.201810132
10.1039/C9CS00635D
10.1002/advs.201903168
10.1021/cm500575q
10.1016/j.electacta.2017.06.164
10.1002/anie.201605676
10.1016/j.ensm.2021.05.038
10.1016/j.joule.2020.03.020
10.1021/acsenergylett.6b00194
10.1038/nnano.2017.16
10.1002/adma.201604685
10.1149/2.0981714jes
10.1002/adma.201705590
10.1016/j.jpowsour.2021.229503
10.1021/acsenergylett.0c00292
10.1038/srep14949
10.1002/anie.202103303
10.1126/science.aas9343
10.1002/aenm.201802207
10.1038/s41565-020-00797-w
10.1016/j.jechem.2021.07.010
10.1002/batt.202100359
10.1021/acscentsci.0c00449
10.1039/C8CS00826D
10.1021/jacs.6b12358
10.1038/s41560-019-0338-x
10.1002/anie.202007740
10.1002/anie.202103470
10.1016/j.esci.2021.08.001
10.1038/s41467-020-19070-8
10.1038/ncomms8436
10.1038/s41560-019-0351-0
10.1021/jacs.7b05371
10.1002/adma.201700007
10.1016/j.cej.2019.122353
10.1021/ac2032244
10.1149/2.0081514jes
10.1021/acsenergylett.0c02527
10.1038/nenergy.2016.132
10.1007/s10008-020-04648-5
10.1038/451652a
10.1002/adma.201700598
10.1016/j.ensm.2016.09.003
10.1002/anie.202016240
10.1039/D0EE02088E
10.1038/s41560-018-0107-2
10.1002/aenm.201700260
10.1016/j.joule.2020.02.006
10.1021/acsami.5b02160
10.1002/adma.201303166
10.1021/acsami.0c10453
10.1016/j.matt.2019.07.002
10.1021/acsami.7b08317
10.1002/smsc.202100058
10.1002/adma.202004741
10.1016/j.ensm.2020.04.035
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202201555
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202201555
ADMA202201555
Genre reviewArticle
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2021YFB2400300
– fundername: ShanXi Science and Technology Department
  funderid: 20191102003
– fundername: National Natural Science Foundation of China
  funderid: 22109007
– fundername: Beijing Natural Science Foundation
  funderid: JQ20004
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3505-5a40a6221feec2b177b1b7373c8aa34ecc32143814ace6195ee58bb50e7125b03
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 18:47:45 EDT 2025
Fri Jul 25 03:37:57 EDT 2025
Tue Jul 01 02:33:16 EDT 2025
Thu Apr 24 22:53:05 EDT 2025
Wed Jan 22 16:24:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3505-5a40a6221feec2b177b1b7373c8aa34ecc32143814ace6195ee58bb50e7125b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7394-9186
PQID 2708706974
PQPubID 2045203
PageCount 17
ParticipantIDs proquest_miscellaneous_2656198297
proquest_journals_2708706974
crossref_citationtrail_10_1002_adma_202201555
crossref_primary_10_1002_adma_202201555
wiley_primary_10_1002_adma_202201555_ADMA202201555
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 1, 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 1, 2022
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2021; 27
2018; 165
2008 2011 2019; 451 334 4
2020; 20
2020; 59
2019; 18
2020; 13
2021 2020 2020 2021 2020 2020 2020 2020 2021 2021 2021 2021 2021 2022 2022; 60 23 379 406 5 59 161 32 14 13 60 143 1 8 5
2020; 12
2020; 11
2022; 66
2012 2015 2016; 100 7 16
2015 2015 2021; 5 7 6
2020; 6
2020 2018; 7 57
2020; 4
2017; 39
2017 2017; 12 29
2016 2012; 55 3
2020; 49
2018 2019 2018; 118 9 3
2014 2014; 264 26
2017; 164
2010; 3
2017; 243
2015 2018 2020 2021 2021; 6 11 32 1 1
2021; 40
2017 2013 2017; 247 160 164
2017 2014; 7 114
2014; 118
2019; 7
2021; 8
2020 2019; 4 7
2019; 9
2021 2021; 60 31
2018; 28
2015 2020; 162 4
2019; 4
2015; 5
2019; 31
2019; 1
2017; 29
2020 2015; 10 5
2017; 139
2013 2016 2017; 25 10 139
2021; 14
2016 2020 2021; 16 59 33
2021; 16
2021 2020; 489 30
2016; 1
2016 2018 2017; 1 361 29
2022; 6
2009; 8
2020; 24
2018; 51
2019 2018; 48 30
2021; 60
2019 2016; 4 16
2017 2018; 9 122
2012; 84
e_1_2_8_22_3
e_1_2_8_68_3
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_26_2
e_1_2_8_68_2
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_5_3
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_30_7
e_1_2_8_30_6
e_1_2_8_15_1
e_1_2_8_30_9
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_30_8
e_1_2_8_19_3
e_1_2_8_30_3
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_30_5
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_30_4
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_3
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_28_1
e_1_2_8_20_5
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_3_3
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_20_2
e_1_2_8_66_2
e_1_2_8_20_3
e_1_2_8_20_4
e_1_2_8_62_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_51_1
e_1_2_8_27_2
e_1_2_8_23_2
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_8_3
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_61_1
e_1_2_8_16_2
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_30_10
e_1_2_8_30_12
e_1_2_8_30_11
e_1_2_8_30_14
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_30_13
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_30_15
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – volume: 10 5
  year: 2020 2015
  publication-title: Adv. Energy Mater. Adv. Energy Mater.
– volume: 25 10 139
  start-page: 6547 4111
  year: 2013 2016 2017
  publication-title: Adv. Mater. ACS Nano J. Am. Chem. Soc.
– volume: 247 160 164
  start-page: 569 A610
  year: 2017 2013 2017
  publication-title: Electrochim. Acta J. Electrochem. Soc. J. Electrochem. Soc.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 5215
  year: 2020
  publication-title: Nat. Commun.
– volume: 4 16
  start-page: 549
  year: 2019 2016
  publication-title: Small Methods Nano Lett.
– volume: 6
  start-page: 3297
  year: 2020
  publication-title: Chem
– volume: 1 361 29
  start-page: 777
  year: 2016 2018 2017
  publication-title: Nat. Energy Science Adv. Mater.
– volume: 13
  start-page: 4808
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 4 7
  start-page: 539 123
  year: 2020 2019
  publication-title: Joule Front. Energy Res.
– volume: 6
  start-page: 1095
  year: 2020
  publication-title: ACS Cent. Sci.
– volume: 24
  start-page: 1397
  year: 2020
  publication-title: J. Solid State Electrochem.
– volume: 27
  start-page: 3347
  year: 2021
  publication-title: Ionics
– volume: 165
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 7 114
  year: 2017 2014
  publication-title: Adv. Energy Mater. Chem. Rev.
– volume: 60 31
  year: 2021 2021
  publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater.
– volume: 162 4
  start-page: 1445
  year: 2015 2020
  publication-title: J. Electrochem. Soc. Joule
– volume: 1
  start-page: 503
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 49
  start-page: 2140
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 5 7 6
  start-page: 537
  year: 2015 2015 2021
  publication-title: Adv. Energy Mater. ACS Appl. Mater. Interfaces ACS Energy Lett.
– volume: 12 29
  start-page: 194
  year: 2017 2017
  publication-title: Nat. Nanotechnol. Adv. Mater.
– volume: 51
  start-page: 668
  year: 2018
  publication-title: Nano Energy
– volume: 48 30
  start-page: 3279
  year: 2019 2018
  publication-title: Chem. Soc. Rev. Adv. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 5391
  year: 2020
  publication-title: Nano Lett.
– volume: 9 122
  year: 2017 2018
  publication-title: ACS Appl. Mater. Interfaces J. Phys. Chem. C
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 4
  start-page: 1121
  year: 2020
  publication-title: Joule
– volume: 39
  start-page: 262
  year: 2017
  publication-title: Nano Energy
– volume: 16
  start-page: 166
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 18
  start-page: 414
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 100 7 16
  start-page: 1518 19 70
  year: 2012 2015 2016
  publication-title: Proc. IEEE Nat. Chem. Nat. Mater.
– volume: 489 30
  start-page: 87
  year: 2021 2020
  publication-title: J. Power Sources Energy Storage Mater.
– volume: 8
  start-page: 500
  year: 2009
  publication-title: Nat. Mater.
– volume: 13
  start-page: 3620
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 139
  start-page: 8458
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 8763
  year: 2015
  publication-title: Sci. Rep.
– volume: 60 23 379 406 5 59 161 32 14 13 60 143 1 8 5
  start-page: 1177 190 4115 44 1083
  year: 2021 2020 2020 2021 2020 2020 2020 2020 2021 2021 2021 2021 2021 2022 2022
  publication-title: Angew. Chem., Int. Ed. iScience Chem. Eng. J. Chem. Eng. J. ACS Energy Lett. Angew. Chem., Int. Ed. Carbon Adv. Mater. Energy Environ. Sci. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. J. Am. Chem. Soc. eScience Chem Batteries Supercaps
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 55 3
  start-page: 1166
  year: 2016 2012
  publication-title: Angew. Chem., Int. Ed. Nat. Commun.
– volume: 264 26
  start-page: 30 3403
  year: 2014 2014
  publication-title: J. Power Sources Chem. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 6 11 32 1 1
  start-page: 7436 24
  year: 2015 2018 2020 2021 2021
  publication-title: Nat. Commun. Energy Storage Mater. Adv. Mater. Energy Mater. Small Sci.
– volume: 4
  start-page: 374
  year: 2019
  publication-title: Nat. Energy
– volume: 16 59 33
  start-page: 519 9011
  year: 2016 2020 2021
  publication-title: Nano Lett. Angew. Chem., Int. Ed. Adv. Mater.
– volume: 6
  start-page: 906
  year: 2022
  publication-title: Joule
– volume: 84
  start-page: 3973
  year: 2012
  publication-title: Anal. Chem.
– volume: 3
  start-page: 1531
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 1047
  year: 2019
  publication-title: Matter
– volume: 6
  start-page: 18
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 451 334 4
  start-page: 652 928 180
  year: 2008 2011 2019
  publication-title: Nature Science Nat. Energy
– volume: 118 9 3
  start-page: 267
  year: 2018 2019 2018
  publication-title: Chem. Rev. Adv. Energy Mater. Nat. Energy
– volume: 118
  start-page: 5733
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: 5423
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 66
  start-page: 24
  year: 2022
  publication-title: J. Energy Chem.
– volume: 1
  year: 2016
  publication-title: Adv. Mater. Technol.
– volume: 243
  start-page: 26
  year: 2017
  publication-title: Electrochim. Acta
– volume: 7 57
  year: 2020 2018
  publication-title: Adv. Sci. Angew. Chem., Int. Ed.
– volume: 40
  start-page: 415
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 7
  year: 2019
  publication-title: Energy Technol.
– volume: 14
  start-page: 1355
  year: 2021
  publication-title: Nano Res.
– ident: e_1_2_8_13_1
  doi: 10.1039/D0EE02797A
– ident: e_1_2_8_19_2
  doi: 10.1002/anie.202003136
– ident: e_1_2_8_3_2
  doi: 10.1002/aenm.201900161
– ident: e_1_2_8_68_3
  doi: 10.1149/2.0551701jes
– ident: e_1_2_8_30_9
  doi: 10.1039/D1EE00508A
– ident: e_1_2_8_30_12
  doi: 10.1021/jacs.1c09107
– ident: e_1_2_8_42_1
  doi: 10.1007/s11581-021-04122-w
– ident: e_1_2_8_7_1
  doi: 10.1002/aenm.202000082
– ident: e_1_2_8_29_2
  doi: 10.1016/j.joule.2020.05.012
– ident: e_1_2_8_27_1
  doi: 10.1002/anie.202104053
– ident: e_1_2_8_37_1
  doi: 10.1002/ente.201900111
– ident: e_1_2_8_10_1
  doi: 10.1021/jp500382s
– ident: e_1_2_8_30_4
  doi: 10.1016/j.cej.2020.126823
– ident: e_1_2_8_1_3
  doi: 10.1038/nmat4778
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.201806532
– ident: e_1_2_8_14_1
  doi: 10.1038/nmat2460
– ident: e_1_2_8_1_1
  doi: 10.1109/JPROC.2012.2190170
– ident: e_1_2_8_6_2
  doi: 10.1021/cr500062v
– ident: e_1_2_8_30_2
  doi: 10.1016/j.isci.2020.101576
– ident: e_1_2_8_52_1
  doi: 10.1038/srep08763
– ident: e_1_2_8_33_1
  doi: 10.1016/j.ensm.2018.08.010
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.201704865
– ident: e_1_2_8_68_2
  doi: 10.1149/2.046304jes
– ident: e_1_2_8_58_1
  doi: 10.1021/acs.nanolett.0c01778
– ident: e_1_2_8_30_14
  doi: 10.1016/j.chempr.2021.12.023
– ident: e_1_2_8_30_6
  doi: 10.1002/anie.202007159
– ident: e_1_2_8_30_7
  doi: 10.1016/j.carbon.2020.01.037
– ident: e_1_2_8_39_1
  doi: 10.1016/j.electacta.2017.05.034
– ident: e_1_2_8_48_1
  doi: 10.1016/j.nanoen.2018.07.015
– ident: e_1_2_8_30_10
  doi: 10.1021/acsami.1c04194
– ident: e_1_2_8_64_1
  doi: 10.1016/j.nanoen.2017.07.002
– ident: e_1_2_8_1_2
  doi: 10.1038/nchem.2085
– ident: e_1_2_8_54_2
  doi: 10.1021/acs.nanolett.5b04189
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jpowsour.2014.04.018
– ident: e_1_2_8_3_1
  doi: 10.1021/acs.chemrev.8b00422
– ident: e_1_2_8_59_1
  doi: 10.1149/2.0131801jes
– ident: e_1_2_8_8_1
  doi: 10.1002/aenm.201401801
– ident: e_1_2_8_27_2
  doi: 10.1002/adfm.202100586
– ident: e_1_2_8_46_1
  doi: 10.1007/s12274-020-3181-2
– ident: e_1_2_8_57_1
  doi: 10.1039/D1EE01113H
– ident: e_1_2_8_35_1
  doi: 10.1002/admt.201600052
– ident: e_1_2_8_45_1
  doi: 10.1016/j.chempr.2020.09.015
– ident: e_1_2_8_7_2
  doi: 10.1002/aenm.201401986
– ident: e_1_2_8_23_2
  doi: 10.3389/fenrg.2019.00123
– ident: e_1_2_8_20_3
  doi: 10.1002/adma.202003012
– ident: e_1_2_8_2_2
  doi: 10.1126/science.1212741
– ident: e_1_2_8_20_2
  doi: 10.1016/j.ensm.2017.09.001
– ident: e_1_2_8_65_1
  doi: 10.1002/anie.202101958
– ident: e_1_2_8_20_4
  doi: 10.20517/energymater.2021.17
– ident: e_1_2_8_18_2
  doi: 10.1038/ncomms2163
– ident: e_1_2_8_15_1
  doi: 10.1039/c002639e
– ident: e_1_2_8_16_2
  doi: 10.1021/acs.jpcc.8b06077
– ident: e_1_2_8_54_1
  doi: 10.1002/smtd.201900344
– ident: e_1_2_8_67_1
  doi: 10.1016/j.joule.2022.02.015
– ident: e_1_2_8_19_3
  doi: 10.1002/adma.202007298
– ident: e_1_2_8_22_2
  doi: 10.1021/acsnano.5b07347
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.nanolett.5b04166
– ident: e_1_2_8_40_1
  doi: 10.1002/advs.202101182
– ident: e_1_2_8_32_1
  doi: 10.1021/acsami.0c08027
– ident: e_1_2_8_31_2
  doi: 10.1002/anie.201810132
– ident: e_1_2_8_21_1
  doi: 10.1039/C9CS00635D
– ident: e_1_2_8_31_1
  doi: 10.1002/advs.201903168
– ident: e_1_2_8_26_2
  doi: 10.1021/cm500575q
– ident: e_1_2_8_68_1
  doi: 10.1016/j.electacta.2017.06.164
– ident: e_1_2_8_18_1
  doi: 10.1002/anie.201605676
– ident: e_1_2_8_47_1
  doi: 10.1016/j.ensm.2021.05.038
– ident: e_1_2_8_62_1
  doi: 10.1016/j.joule.2020.03.020
– ident: e_1_2_8_63_1
  doi: 10.1021/acsenergylett.6b00194
– ident: e_1_2_8_4_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_8_5_3
  doi: 10.1002/adma.201604685
– ident: e_1_2_8_60_1
  doi: 10.1149/2.0981714jes
– ident: e_1_2_8_9_2
  doi: 10.1002/adma.201705590
– ident: e_1_2_8_66_1
  doi: 10.1016/j.jpowsour.2021.229503
– ident: e_1_2_8_30_5
  doi: 10.1021/acsenergylett.0c00292
– ident: e_1_2_8_24_1
  doi: 10.1038/srep14949
– ident: e_1_2_8_30_11
  doi: 10.1002/anie.202103303
– ident: e_1_2_8_5_2
  doi: 10.1126/science.aas9343
– ident: e_1_2_8_12_1
  doi: 10.1002/aenm.201802207
– ident: e_1_2_8_51_1
  doi: 10.1038/s41565-020-00797-w
– ident: e_1_2_8_41_1
  doi: 10.1016/j.jechem.2021.07.010
– ident: e_1_2_8_30_15
  doi: 10.1002/batt.202100359
– ident: e_1_2_8_25_1
  doi: 10.1021/acscentsci.0c00449
– ident: e_1_2_8_9_1
  doi: 10.1039/C8CS00826D
– ident: e_1_2_8_55_1
  doi: 10.1021/jacs.6b12358
– ident: e_1_2_8_2_3
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_8_56_1
  doi: 10.1002/anie.202007740
– ident: e_1_2_8_61_1
  doi: 10.1002/anie.202103470
– ident: e_1_2_8_30_13
  doi: 10.1016/j.esci.2021.08.001
– ident: e_1_2_8_50_1
  doi: 10.1038/s41467-020-19070-8
– ident: e_1_2_8_20_1
  doi: 10.1038/ncomms8436
– ident: e_1_2_8_44_1
  doi: 10.1038/s41560-019-0351-0
– ident: e_1_2_8_22_3
  doi: 10.1021/jacs.7b05371
– ident: e_1_2_8_4_2
  doi: 10.1002/adma.201700007
– ident: e_1_2_8_30_3
  doi: 10.1016/j.cej.2019.122353
– ident: e_1_2_8_11_1
  doi: 10.1021/ac2032244
– ident: e_1_2_8_29_1
  doi: 10.1149/2.0081514jes
– ident: e_1_2_8_8_3
  doi: 10.1021/acsenergylett.0c02527
– ident: e_1_2_8_5_1
  doi: 10.1038/nenergy.2016.132
– ident: e_1_2_8_53_1
  doi: 10.1007/s10008-020-04648-5
– ident: e_1_2_8_2_1
  doi: 10.1038/451652a
– ident: e_1_2_8_43_1
  doi: 10.1002/adma.201700598
– ident: e_1_2_8_36_1
  doi: 10.1016/j.ensm.2016.09.003
– ident: e_1_2_8_30_1
  doi: 10.1002/anie.202016240
– ident: e_1_2_8_38_1
  doi: 10.1039/D0EE02088E
– ident: e_1_2_8_3_3
  doi: 10.1038/s41560-018-0107-2
– ident: e_1_2_8_6_1
  doi: 10.1002/aenm.201700260
– ident: e_1_2_8_23_1
  doi: 10.1016/j.joule.2020.02.006
– ident: e_1_2_8_8_2
  doi: 10.1021/acsami.5b02160
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.201303166
– ident: e_1_2_8_34_1
  doi: 10.1021/acsami.0c10453
– ident: e_1_2_8_49_1
  doi: 10.1016/j.matt.2019.07.002
– ident: e_1_2_8_16_1
  doi: 10.1021/acsami.7b08317
– ident: e_1_2_8_20_5
  doi: 10.1002/smsc.202100058
– ident: e_1_2_8_30_8
  doi: 10.1002/adma.202004741
– ident: e_1_2_8_66_2
  doi: 10.1016/j.ensm.2020.04.035
SSID ssj0009606
Score 2.703299
SecondaryResourceType review_article
Snippet Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy‐storage devices due to their ultrahigh theoretical energy density of...
Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy‐storage devices due to their ultrahigh theoretical energy density of 2600...
Lithium-sulfur (Li-S) batteries promise great potential as high-energy-density energy-storage devices due to their ultrahigh theoretical energy density of 2600...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2201555
SubjectTerms Design parameters
Energy
Energy storage
Failure analysis
Failure mechanisms
high energy density
high sulfur loading
Lithium sulfur batteries
low electrolyte/sulfur ratio (E/S ratio)
Materials science
pouch cells
Storage batteries
Title Toward Practical High‐Energy‐Density Lithium–Sulfur Pouch Cells: A Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201555
https://www.proquest.com/docview/2708706974
https://www.proquest.com/docview/2656198297
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FqtVVhA8pU03m2zirfRBEV9oC72F3WSLxdpKmxz01J8g-A_7S9zJJmkriKC3DZnNY2cn80125luEzkNOQ9vrhypM5Z5BJfEMj4jQ6LuhZC6lnqPZPm-ddpde9ezeUhW_5ofIf7iBZSTfazBwLqaVBWkoDxPeIELA60OVOSRsASp6WPBHATxPyPYs2_Ac6masjSaprHZf9UoLqLkMWBOP09pCPHtWnWjyXI4jUQ7ev9E4_udlttFmCkdxTc-fHbQmR7toY4mkcA_ddZLMWqyZjZRKMeSGzGcfzaRsUDUakAQfveHrQfQ0iF_ms8_HeNiPJ_h-HAdPuC6Hw-klrmG9DrGPuq1mp9420m0YjMBS-MiwOTW5Q0i1L2VAgK5KVAWzmBW4nFtUzQHY7Eh5fsoDqeIxW0rbFcI2JVPoSZjWASqMxiN5iLDgIWPA4ceZUEiIC8bVla2qCJRYaNlFZGRq8IOUoxy2yhj6ml2Z-DBQfj5QRXSRy79qdo4fJUuZVv3USqc-YSYs86qQqojO8tPKvmDRhI_kOFYyCvBWPShALiKSqPCXO_m1xk0tPzr6S6djtA5tncpWQoVoEssThX0icZrM7y8osvxO
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB7xcyg9FGhBTcvPIrXqycRZr7M2EoeIgEIJtCpB4mZ27Y1ATZOK2EJw4hEq9Ul4FR6BJ2HGGztQqapUiQM3_4x_dmdmZ2Z39huAD4kSiR92EwxTVegIw0Mn5DpxukFiZCBEWLdonwf11pH4fOwfT8BNsRfG4kOUE26kGfl4TQpOE9LVMWqoSnLgIM7J7Bd5lXvm8gKjtuHmbhNZ_JHzne3OVssZFRZwYg8tvuMr4ao657WuMTEnACZd09KTXhwo5QlsFZXvQVsmVGwwwvCN8QOtfddI9Ae06-F7J2GayogTXH_z2xixigKCHN7P852wLoICJ9Ll1cf_-9gOjp3bhy5ybuN2ZuG26B2b2vJ9PUv1enz1B3Dks-q-OXg18rhZw6rIPEyY_mt4-QCH8Q186eTJw8yCN6HUMkp_ubv-tZ3vjMSDJuX5p5esfZaenmU_7q5_H2a9bnbOvg6y-JRtmV5vuMEazC61LMDRk7RoEab6g755C0yrREqCKVRSo7OntFT4Zq-mYyRLPL8CTsH3KB7BsFM1kF5kAaR5RIyJSsZU4FNJ_9MCkPyVcqkQo2g0EA0jLl1aycaosQJr5W0cQmhdSPXNIEMa9OlrIe2xrgDPZeYfX4oazf1Gefbufx5ahRetzn47au8e7L2HGbpuM_eWYCo9z8wyunqpXsmVi8HJU4vjPWk7WSg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BlRA99AeoupS2rkTFKWzWceKkEocVYcV_ET8St2DHjkBddhGbqKInHgGJF-FV-go8ScfxJguVKiQkDr3lZ-LEnhnPTDz-BmBBCab8KFMYporIYZpGTkSlcrJQaR4yFgUW7XMnWDtkG0f-0RjcVnthLD5E_cPNaEY5XxsFP1dZcwQaKlSJG0SpsfpVWuWmvvyJQdtgeT1GDn-ltLN6sLLmDOsKOKmHBt_xBXNFQGkr0zqlBn9JtiT3uJeGQngMO2Wq96ApYyLVGGD4WvuhlL6rOboD0vWw3XF4wQI3MsUi4r0RYJWJB0p0P893ooCFFUykS5sPv_ehGRz5tvc95NLEdV7D72pwbGbLj6Uil0vpr79wI_-n0XsDr4b-NmlbBXkLY7o3DS_voTDOwPeDMnWYWOgmlFlikl_urq5Xy32ReBCbLP_8kmyd5ienxdnd1c1-0c2KC7LbL9ITsqK73cE30iZ2oWUWDp-lR-9gotfv6fdApFCcG5BCwSW6ekJygS17LZkimfL8BjgV25N0CMJuaoF0EwsfTRPDmKRmTAMWa_pzCz_yT8r5SoqS4TQ0SCh3zTo2xowN-FLfxgnErAqJnu4XSIMefSsyO6wbQEuReeRNSTvebtdnc0956DNM7sadZGt9Z_MDTJnLNm1vHibyi0J_RD8vl59K1SJw_NzS-Afh_FfX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Practical+High%E2%80%90Energy%E2%80%90Density+Lithium%E2%80%93Sulfur+Pouch+Cells%3A+A+Review&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Zi%E2%80%90Xian&rft.au=Zhao%2C+Meng&rft.au=Hou%2C+Li%E2%80%90Peng&rft.au=Zhang%2C+Xue%E2%80%90Qiang&rft.date=2022-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202201555&rft.externalDBID=10.1002%252Fadma.202201555&rft.externalDocID=ADMA202201555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon