Heterogeneous 2D/3D Tin‐Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14

As the most promising lead‐free one, tin‐halides based perovskite solar cells still suffer from the severe bulk‐defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin‐perovski...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 36; pp. e2102055 - n/a
Main Authors Yu, Bin‐Bin, Chen, Zhenhua, Zhu, Yudong, Wang, Yiyu, Han, Bing, Chen, Guocong, Zhang, Xusheng, Du, Zheng, He, Zhubing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the most promising lead‐free one, tin‐halides based perovskite solar cells still suffer from the severe bulk‐defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin‐perovskite absorber films by substituting FAI with FPEABr in FASnI3. The introduction of 2D phase can induce highly oriented growth of 3D FASnI3 and it is revealed in the optimal 2D/3D film that 2D phase embraces 3D grains and locates at the surfaces and grain boundaries. The FPEA+ based 2D tin‐perovskite capping layer can offer a reducing atmosphere for vulnerable 3D FASnI3 grains. The unique microstructure effectively suppresses the well‐known oxidation from Sn2+ to Sn4+, as well as decreasing defect density, which leads to a remarkable enhanced device performance from 9.38% to 14.81% in conversion efficiency. The certified conversion efficiency of 14.03% announces a new record and moves a remarkable step from the last one (12.4%). Besides of this breakthrough, this work definitely paves a new way to fabricate high‐quality tin‐perovskite absorber film by constructing effective 2D/3D microstructures. A general and effective strategy is delivered to modulate the 2D/3D microstructure of tin‐perovskite films by introduction of a 2D phase with the function of FPEABr, which induces high‐orientation growth of 3D FASnI3 by embracing the 3D grains at their surfaces and boundaries. That leads to a breakthrough of device performance of 14.81% in power conversion efficiency, along with 14.03% certified.
AbstractList As the most promising lead-free one, tin-halides based perovskite solar cells still suffer from the severe bulk-defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin-perovskite absorber films by substituting FAI with FPEABr in FASnI3 . The introduction of 2D phase can induce highly oriented growth of 3D FASnI3 and it is revealed in the optimal 2D/3D film that 2D phase embraces 3D grains and locates at the surfaces and grain boundaries. The FPEA+ based 2D tin-perovskite capping layer can offer a reducing atmosphere for vulnerable 3D FASnI3 grains. The unique microstructure effectively suppresses the well-known oxidation from Sn2+ to Sn4+ , as well as decreasing defect density, which leads to a remarkable enhanced device performance from 9.38% to 14.81% in conversion efficiency. The certified conversion efficiency of 14.03% announces a new record and moves a remarkable step from the last one (12.4%). Besides of this breakthrough, this work definitely paves a new way to fabricate high-quality tin-perovskite absorber film by constructing effective 2D/3D microstructures.As the most promising lead-free one, tin-halides based perovskite solar cells still suffer from the severe bulk-defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin-perovskite absorber films by substituting FAI with FPEABr in FASnI3 . The introduction of 2D phase can induce highly oriented growth of 3D FASnI3 and it is revealed in the optimal 2D/3D film that 2D phase embraces 3D grains and locates at the surfaces and grain boundaries. The FPEA+ based 2D tin-perovskite capping layer can offer a reducing atmosphere for vulnerable 3D FASnI3 grains. The unique microstructure effectively suppresses the well-known oxidation from Sn2+ to Sn4+ , as well as decreasing defect density, which leads to a remarkable enhanced device performance from 9.38% to 14.81% in conversion efficiency. The certified conversion efficiency of 14.03% announces a new record and moves a remarkable step from the last one (12.4%). Besides of this breakthrough, this work definitely paves a new way to fabricate high-quality tin-perovskite absorber film by constructing effective 2D/3D microstructures.
As the most promising lead‐free one, tin‐halides based perovskite solar cells still suffer from the severe bulk‐defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin‐perovskite absorber films by substituting FAI with FPEABr in FASnI3. The introduction of 2D phase can induce highly oriented growth of 3D FASnI3 and it is revealed in the optimal 2D/3D film that 2D phase embraces 3D grains and locates at the surfaces and grain boundaries. The FPEA+ based 2D tin‐perovskite capping layer can offer a reducing atmosphere for vulnerable 3D FASnI3 grains. The unique microstructure effectively suppresses the well‐known oxidation from Sn2+ to Sn4+, as well as decreasing defect density, which leads to a remarkable enhanced device performance from 9.38% to 14.81% in conversion efficiency. The certified conversion efficiency of 14.03% announces a new record and moves a remarkable step from the last one (12.4%). Besides of this breakthrough, this work definitely paves a new way to fabricate high‐quality tin‐perovskite absorber film by constructing effective 2D/3D microstructures. A general and effective strategy is delivered to modulate the 2D/3D microstructure of tin‐perovskite films by introduction of a 2D phase with the function of FPEABr, which induces high‐orientation growth of 3D FASnI3 by embracing the 3D grains at their surfaces and boundaries. That leads to a breakthrough of device performance of 14.81% in power conversion efficiency, along with 14.03% certified.
As the most promising lead‐free one, tin‐halides based perovskite solar cells still suffer from the severe bulk‐defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin‐perovskite absorber films by substituting FAI with FPEABr in FASnI 3 . The introduction of 2D phase can induce highly oriented growth of 3D FASnI 3 and it is revealed in the optimal 2D/3D film that 2D phase embraces 3D grains and locates at the surfaces and grain boundaries. The FPEA + based 2D tin‐perovskite capping layer can offer a reducing atmosphere for vulnerable 3D FASnI 3 grains. The unique microstructure effectively suppresses the well‐known oxidation from Sn 2+ to Sn 4+ , as well as decreasing defect density, which leads to a remarkable enhanced device performance from 9.38% to 14.81% in conversion efficiency. The certified conversion efficiency of 14.03% announces a new record and moves a remarkable step from the last one (12.4%). Besides of this breakthrough, this work definitely paves a new way to fabricate high‐quality tin‐perovskite absorber film by constructing effective 2D/3D microstructures.
As the most promising lead‐free one, tin‐halides based perovskite solar cells still suffer from the severe bulk‐defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin‐perovskite absorber films by substituting FAI with FPEABr in FASnI3. The introduction of 2D phase can induce highly oriented growth of 3D FASnI3 and it is revealed in the optimal 2D/3D film that 2D phase embraces 3D grains and locates at the surfaces and grain boundaries. The FPEA+ based 2D tin‐perovskite capping layer can offer a reducing atmosphere for vulnerable 3D FASnI3 grains. The unique microstructure effectively suppresses the well‐known oxidation from Sn2+ to Sn4+, as well as decreasing defect density, which leads to a remarkable enhanced device performance from 9.38% to 14.81% in conversion efficiency. The certified conversion efficiency of 14.03% announces a new record and moves a remarkable step from the last one (12.4%). Besides of this breakthrough, this work definitely paves a new way to fabricate high‐quality tin‐perovskite absorber film by constructing effective 2D/3D microstructures.
Author Chen, Guocong
Zhang, Xusheng
Du, Zheng
Zhu, Yudong
Chen, Zhenhua
He, Zhubing
Yu, Bin‐Bin
Wang, Yiyu
Han, Bing
Author_xml – sequence: 1
  givenname: Bin‐Bin
  surname: Yu
  fullname: Yu, Bin‐Bin
  organization: Southern University of Science and Technology
– sequence: 2
  givenname: Zhenhua
  surname: Chen
  fullname: Chen, Zhenhua
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Yudong
  surname: Zhu
  fullname: Zhu, Yudong
  organization: Southern University of Science and Technology
– sequence: 4
  givenname: Yiyu
  surname: Wang
  fullname: Wang, Yiyu
  organization: Southern University of Science and Technology
– sequence: 5
  givenname: Bing
  surname: Han
  fullname: Han, Bing
  organization: Southern University of Science and Technology
– sequence: 6
  givenname: Guocong
  surname: Chen
  fullname: Chen, Guocong
  organization: Southern University of Science and Technology
– sequence: 7
  givenname: Xusheng
  surname: Zhang
  fullname: Zhang, Xusheng
  organization: Southern University of Science and Technology
– sequence: 8
  givenname: Zheng
  surname: Du
  fullname: Du, Zheng
  organization: Southern University of Science and Technology
– sequence: 9
  givenname: Zhubing
  orcidid: 0000-0002-2775-0894
  surname: He
  fullname: He, Zhubing
  email: hezb@sustech.edu.cn
  organization: Southern University of Science and Technology
BookMark eNqFkM9uEzEQhy1UJNLCtWdLXLhs6n9jx8eQtASpiEqU88rZHRe3G7vYm1a58Qg8I0-CS1CRKqGeZiR_33jmd0gOYopIyDFnU86YOHH9xk0FE5wJBvCCTDgI3ihm4YBMmJXQWK1mr8hhKdeMMauZnpCwwhFzusKIaVuoWJ7IJb0M8dePnys3hB4Lvajvd-UmjEi_pMFlusBhKPQ-jN9qm8fgA_Z0keId5hJSpKfehy5g7Hb0fUZ3E-IV5eo1eendUPDN33pEvp6dXi5WzfnnDx8X8_Omk8CgASO8VehnoGtVYq3dutccrAGw0nLnPBqm0GgmDfi1Rg_GQ48oleYzkEfk3X7ubU7ft1jGdhNKV1d2f05sBQBwZkDbir59gl6nbY51u0oZJq1QRlZquqe6nErJ6NvbHDYu71rO2ofk24fk28fkq6CeCF0Y3VijGbMLw_81u9fuw4C7Zz5p58tP83_ub24TmcI
CitedBy_id crossref_primary_10_1002_smll_202307373
crossref_primary_10_1088_1402_4896_acf535
crossref_primary_10_1016_j_tsf_2023_140066
crossref_primary_10_1002_adfm_202501020
crossref_primary_10_1002_adts_202200856
crossref_primary_10_1039_D4SC07031C
crossref_primary_10_1016_j_jechem_2021_12_002
crossref_primary_10_1039_D3MH00221G
crossref_primary_10_1016_j_jhazmat_2021_127848
crossref_primary_10_1039_D4TA00608A
crossref_primary_10_1039_D3EE03359G
crossref_primary_10_1039_D3QM00236E
crossref_primary_10_1002_eom2_12319
crossref_primary_10_1002_solr_202200953
crossref_primary_10_1021_acsenergylett_4c03172
crossref_primary_10_1002_smtd_202300029
crossref_primary_10_1002_smll_202402896
crossref_primary_10_3390_nano13030585
crossref_primary_10_1021_acsenergylett_1c02124
crossref_primary_10_1016_j_vacuum_2024_113954
crossref_primary_10_1021_acs_jpcc_3c04066
crossref_primary_10_3390_coatings12070952
crossref_primary_10_1039_D3CC02270F
crossref_primary_10_1021_acs_jpclett_4c02032
crossref_primary_10_1007_s11426_022_1445_2
crossref_primary_10_1038_s41467_022_32932_7
crossref_primary_10_1016_j_joule_2023_08_002
crossref_primary_10_1021_acs_jpclett_3c00400
crossref_primary_10_1002_aenm_202300188
crossref_primary_10_1021_acsenergylett_3c01448
crossref_primary_10_1002_sstr_202100102
crossref_primary_10_1039_D3RA01692G
crossref_primary_10_3390_su142416603
crossref_primary_10_3390_nano13091524
crossref_primary_10_1002_anie_202209464
crossref_primary_10_1063_5_0150873
crossref_primary_10_1016_j_pmatsci_2025_101446
crossref_primary_10_1021_prechem_3c00018
crossref_primary_10_1039_D4CP02655A
crossref_primary_10_1002_solr_202200859
crossref_primary_10_1021_acsami_2c12129
crossref_primary_10_1021_acsami_3c06538
crossref_primary_10_1021_acsenergylett_3c02409
crossref_primary_10_1039_D4TC05215C
crossref_primary_10_1016_j_matt_2024_04_016
crossref_primary_10_1021_acsmaterialslett_3c01145
crossref_primary_10_1016_j_mtadv_2022_100232
crossref_primary_10_3390_molecules29092104
crossref_primary_10_1039_D4EL00034J
crossref_primary_10_1038_s41586_023_06514_6
crossref_primary_10_1021_acsenergylett_3c00583
crossref_primary_10_1016_j_cej_2022_138926
crossref_primary_10_1002_anie_202213966
crossref_primary_10_1021_acsami_2c01481
crossref_primary_10_1002_eom2_12352
crossref_primary_10_1021_acsami_2c12539
crossref_primary_10_1021_acsenergylett_2c00644
crossref_primary_10_1016_j_rser_2023_114002
crossref_primary_10_1016_j_mtsust_2023_100603
crossref_primary_10_1016_j_cej_2023_142635
crossref_primary_10_1002_solr_202300770
crossref_primary_10_1002_solr_202300410
crossref_primary_10_1007_s40820_022_00964_9
crossref_primary_10_1021_acs_jpclett_4c01097
crossref_primary_10_1002_adfm_202306458
crossref_primary_10_1021_acsaelm_3c01166
crossref_primary_10_1021_acsami_2c12785
crossref_primary_10_3390_mi14040806
crossref_primary_10_1021_acsenergylett_2c00776
crossref_primary_10_1021_acsenergylett_2c01624
crossref_primary_10_1039_D3NR00177F
crossref_primary_10_1016_j_mser_2023_100727
crossref_primary_10_1126_sciadv_ads4038
crossref_primary_10_1002_solr_202300535
crossref_primary_10_1016_j_jallcom_2023_169801
crossref_primary_10_1002_solr_202200889
crossref_primary_10_1002_adfm_202307896
crossref_primary_10_1016_j_cej_2022_136769
crossref_primary_10_1002_adma_202205603
crossref_primary_10_1021_acsenergylett_3c01410
crossref_primary_10_1021_acsenergylett_2c01749
crossref_primary_10_1039_D4SU00100A
crossref_primary_10_1002_adfm_202420593
crossref_primary_10_1016_j_apsusc_2022_154393
crossref_primary_10_1021_acsenergylett_3c02616
crossref_primary_10_1007_s12613_023_2738_y
crossref_primary_10_1021_acs_jpcc_1c06086
crossref_primary_10_1007_s40820_022_00842_4
crossref_primary_10_1002_adfm_202411671
crossref_primary_10_1002_cptc_202400328
crossref_primary_10_1016_j_jssc_2025_125293
crossref_primary_10_1039_D1NJ05178D
crossref_primary_10_1021_acsaem_3c03086
crossref_primary_10_1016_j_commatsci_2025_113699
crossref_primary_10_1016_j_nanoen_2024_110401
crossref_primary_10_1002_smtd_202300207
crossref_primary_10_1007_s11426_022_1227_6
crossref_primary_10_1002_smll_202307025
crossref_primary_10_1016_j_esci_2023_100113
crossref_primary_10_1002_solr_202200672
crossref_primary_10_1016_j_ccr_2025_216500
crossref_primary_10_1002_solr_202300754
crossref_primary_10_1002_aenm_202202209
crossref_primary_10_1002_aenm_202404386
crossref_primary_10_1002_solr_202200789
crossref_primary_10_1149_2162_8777_acd660
crossref_primary_10_1007_s40820_023_01085_7
crossref_primary_10_1021_acsenergylett_4c01188
crossref_primary_10_1002_adfm_202215041
crossref_primary_10_1002_aenm_202201242
crossref_primary_10_1002_adma_202403038
crossref_primary_10_1007_s12274_022_4722_7
crossref_primary_10_1021_acsaem_2c02677
crossref_primary_10_1021_acsenergylett_4c00094
crossref_primary_10_1021_acsenergylett_1c02651
crossref_primary_10_1007_s12274_023_6291_9
crossref_primary_10_1002_zaac_202300045
crossref_primary_10_1002_adfm_202405611
crossref_primary_10_1063_5_0162009
crossref_primary_10_1039_D2EE00663D
crossref_primary_10_1021_acs_chemmater_4c02261
crossref_primary_10_1038_s43246_022_00327_2
crossref_primary_10_1002_anie_202317794
crossref_primary_10_3390_nano12030532
crossref_primary_10_1002_anie_202212002
crossref_primary_10_1002_ange_202306712
crossref_primary_10_1021_acs_chemmater_1c03195
crossref_primary_10_1021_acsenergylett_2c01659
crossref_primary_10_1016_j_matdes_2023_111850
crossref_primary_10_3390_nano14070626
crossref_primary_10_1021_acs_energyfuels_4c04092
crossref_primary_10_1016_j_mtelec_2024_100095
crossref_primary_10_1021_acsami_3c00299
crossref_primary_10_1021_jacs_3c10515
crossref_primary_10_1002_aenm_202201977
crossref_primary_10_1002_adfm_202414437
crossref_primary_10_1021_acsaem_3c01909
crossref_primary_10_1021_acsenergylett_4c03228
crossref_primary_10_1016_j_mtener_2022_101038
crossref_primary_10_1016_j_cej_2023_141292
crossref_primary_10_1016_j_optmat_2021_111891
crossref_primary_10_1021_acsami_5c01338
crossref_primary_10_1002_smll_202401179
crossref_primary_10_1002_smll_202402028
crossref_primary_10_1002_adfm_202404792
crossref_primary_10_1016_j_device_2024_100294
crossref_primary_10_1016_j_nxmate_2023_100098
crossref_primary_10_1039_D3QM01354E
crossref_primary_10_1007_s12613_023_2604_y
crossref_primary_10_1002_sstr_202300524
crossref_primary_10_1016_j_jechem_2022_05_030
crossref_primary_10_1021_acsami_3c07903
crossref_primary_10_1021_acs_chemmater_2c03141
crossref_primary_10_1002_anie_202413584
crossref_primary_10_1021_acsenergylett_2c02776
crossref_primary_10_1021_acsmaterialslett_2c00229
crossref_primary_10_1039_D4TA07975B
crossref_primary_10_1002_admt_202302029
crossref_primary_10_1002_adma_202309768
crossref_primary_10_1007_s12598_024_02775_w
crossref_primary_10_3390_cryst12060815
crossref_primary_10_1002_adma_202204661
crossref_primary_10_1002_solr_202300165
crossref_primary_10_1021_acsmaterialslett_3c00340
crossref_primary_10_1002_solr_202300045
crossref_primary_10_1021_acsaelm_3c00266
crossref_primary_10_1039_D2TA01429G
crossref_primary_10_1007_s40243_024_00255_w
crossref_primary_10_1038_s43586_024_00373_9
crossref_primary_10_1007_s11426_022_1489_8
crossref_primary_10_1016_j_jallcom_2025_179460
crossref_primary_10_1039_D3TA01197F
crossref_primary_10_1016_j_xcrp_2021_100690
crossref_primary_10_3390_en16165868
crossref_primary_10_1021_acsaem_3c02928
crossref_primary_10_1002_ente_202400723
crossref_primary_10_3390_molecules28093787
crossref_primary_10_1002_anie_202402775
crossref_primary_10_1002_ange_202213966
crossref_primary_10_1016_j_solener_2023_111825
crossref_primary_10_1002_adfm_202205870
crossref_primary_10_1002_adfm_202424340
crossref_primary_10_1039_D2TA07687J
crossref_primary_10_1002_aenm_202406024
crossref_primary_10_1021_acsenergylett_2c02435
crossref_primary_10_1016_j_solener_2024_113150
crossref_primary_10_1016_j_mssp_2024_108408
crossref_primary_10_1021_acsmaterialslett_3c00111
crossref_primary_10_1016_j_chempr_2022_07_027
crossref_primary_10_3390_coatings15020132
crossref_primary_10_1021_acsenergylett_4c00155
crossref_primary_10_1016_j_nanoen_2022_107818
crossref_primary_10_1002_ange_202407228
crossref_primary_10_1002_anie_202213386
crossref_primary_10_1002_solr_202300268
crossref_primary_10_1002_ange_202209464
crossref_primary_10_1016_j_mssp_2024_108979
crossref_primary_10_1039_D2CC05310A
crossref_primary_10_1002_adma_202300503
crossref_primary_10_1557_s43577_024_00784_9
crossref_primary_10_1039_D3TA06303H
crossref_primary_10_1002_smtd_202300394
crossref_primary_10_1039_D2TA02088B
crossref_primary_10_1088_1402_4896_ac4719
crossref_primary_10_1002_adfm_202308457
crossref_primary_10_1063_5_0153306
crossref_primary_10_1002_admi_202400201
crossref_primary_10_1016_j_esci_2024_100243
crossref_primary_10_1002_adfm_202207713
crossref_primary_10_1016_j_mtener_2023_101400
crossref_primary_10_1016_j_cej_2023_142561
crossref_primary_10_1039_D2EE02510H
crossref_primary_10_1039_D2TC00427E
crossref_primary_10_1016_j_matlet_2023_135485
crossref_primary_10_1016_j_cej_2024_151574
crossref_primary_10_1063_5_0083642
crossref_primary_10_1021_acsmaterialslett_3c01343
crossref_primary_10_1002_aenm_202200305
crossref_primary_10_1039_D2TC01637K
crossref_primary_10_1039_D3TC04596J
crossref_primary_10_1002_er_7761
crossref_primary_10_1002_smll_202302418
crossref_primary_10_1021_acsenergylett_4c00497
crossref_primary_10_1002_advs_202304811
crossref_primary_10_1021_acsmaterialslett_2c00275
crossref_primary_10_1021_acsaem_2c00651
crossref_primary_10_1002_solr_202100675
crossref_primary_10_1002_anie_202307228
crossref_primary_10_1002_adfm_202109631
crossref_primary_10_1016_j_cplett_2024_141556
crossref_primary_10_1002_smll_202404026
crossref_primary_10_1002_aenm_202102131
crossref_primary_10_1002_smll_202405598
crossref_primary_10_1002_adfm_202300282
crossref_primary_10_1016_j_jpowsour_2022_232595
crossref_primary_10_1021_acsaem_1c03622
crossref_primary_10_1007_s12648_024_03350_w
crossref_primary_10_1088_1361_648X_ad5ad0
crossref_primary_10_1364_OL_506477
crossref_primary_10_1038_s41566_021_00950_4
crossref_primary_10_1002_adfm_202109649
crossref_primary_10_1016_j_cej_2022_135196
crossref_primary_10_1038_s41598_022_19552_3
crossref_primary_10_1002_anie_202318133
crossref_primary_10_1039_D4MH00033A
crossref_primary_10_1002_solr_202201138
crossref_primary_10_1039_D4TA03291H
crossref_primary_10_1021_acs_chemrev_4c00073
crossref_primary_10_1016_j_cej_2021_133832
crossref_primary_10_1002_adma_202403413
crossref_primary_10_1021_accountsmr_2c00081
crossref_primary_10_1002_aesr_202200160
crossref_primary_10_1021_acsaem_3c01651
crossref_primary_10_3389_fchem_2022_842924
crossref_primary_10_1039_D2TA05789A
crossref_primary_10_1002_pssa_202100823
crossref_primary_10_1021_acs_nanolett_4c00474
crossref_primary_10_1016_j_cej_2022_137388
crossref_primary_10_1039_D3EE02822D
crossref_primary_10_1039_D4TA02405B
crossref_primary_10_1002_adma_202206684
crossref_primary_10_1016_j_nxmate_2024_100425
crossref_primary_10_1002_anie_202420150
crossref_primary_10_1039_D2CP04183A
crossref_primary_10_1002_aenm_202204144
crossref_primary_10_1016_j_cej_2021_133745
crossref_primary_10_1021_acs_jpcc_2c07118
crossref_primary_10_1039_D1TA10822K
crossref_primary_10_1002_lpor_202401590
crossref_primary_10_1021_acs_chemrev_3c00214
crossref_primary_10_1021_acsaem_4c02047
crossref_primary_10_1021_acs_jpclett_4c00505
crossref_primary_10_1039_D3EE00202K
crossref_primary_10_1038_s41467_023_39445_x
crossref_primary_10_1002_anie_202422217
crossref_primary_10_1016_j_jechem_2022_02_003
crossref_primary_10_1088_1361_6641_acb16a
crossref_primary_10_1039_D2SC01914K
crossref_primary_10_1039_D3QM00726J
crossref_primary_10_1002_ange_202212002
crossref_primary_10_1039_D2QM01315K
crossref_primary_10_1002_adfm_202304848
crossref_primary_10_1007_s40820_023_01143_0
crossref_primary_10_1002_smll_202208062
crossref_primary_10_1002_ange_202422217
crossref_primary_10_1039_D3CC05843C
crossref_primary_10_1021_acsenergylett_2c02148
crossref_primary_10_1002_adfm_202413281
crossref_primary_10_1109_JPHOTOV_2024_3497135
crossref_primary_10_1002_ange_202420150
crossref_primary_10_1021_acs_jpclett_4c00797
crossref_primary_10_1038_s43246_022_00325_4
crossref_primary_10_1039_D4TA01882F
crossref_primary_10_1103_PhysRevMaterials_8_093401
crossref_primary_10_1002_cnma_202400260
crossref_primary_10_1016_j_solener_2024_112359
crossref_primary_10_1021_acsami_3c09294
crossref_primary_10_1021_acsenergylett_4c01875
crossref_primary_10_1016_j_energy_2023_127917
crossref_primary_10_1002_adma_202300681
crossref_primary_10_1016_j_mtener_2025_101866
crossref_primary_10_1002_adma_202105844
crossref_primary_10_1016_j_cej_2025_161041
crossref_primary_10_1021_acs_chemmater_3c00243
crossref_primary_10_1002_adfm_202212106
crossref_primary_10_1016_j_jechem_2022_10_043
crossref_primary_10_1002_aesr_202200175
crossref_primary_10_1021_acsami_3c11009
crossref_primary_10_1002_smll_202408302
crossref_primary_10_1063_5_0190400
crossref_primary_10_1039_D3TA04742C
crossref_primary_10_1021_acsenergylett_3c02066
crossref_primary_10_1016_j_nanoen_2022_107416
crossref_primary_10_1002_aenm_202102213
crossref_primary_10_1021_acsenergylett_4c00796
crossref_primary_10_1002_ange_202305551
crossref_primary_10_1021_acs_jpcc_2c08278
crossref_primary_10_1088_2515_7639_acc893
crossref_primary_10_1039_D3SE00571B
crossref_primary_10_1002_ange_202317794
crossref_primary_10_1016_j_cej_2022_138037
crossref_primary_10_1002_adfm_202300693
crossref_primary_10_1088_2053_1591_acdec8
crossref_primary_10_1016_j_matt_2022_02_012
crossref_primary_10_1039_D3TA06953B
crossref_primary_10_1039_D4TA01783H
crossref_primary_10_1021_acsenergylett_4c00529
crossref_primary_10_1016_j_heliyon_2024_e32843
crossref_primary_10_1021_acsaem_1c03767
crossref_primary_10_1002_aenm_202400346
crossref_primary_10_1021_acsenergylett_4c02700
crossref_primary_10_1002_adfm_202407860
crossref_primary_10_1049_ote2_12104
crossref_primary_10_1038_s44359_024_00013_1
crossref_primary_10_1039_D2TA09175E
crossref_primary_10_1155_2023_7184080
crossref_primary_10_1002_adma_202410248
crossref_primary_10_1002_adpr_202200079
crossref_primary_10_1021_acs_chemmater_3c00345
crossref_primary_10_1002_adma_202414841
crossref_primary_10_1021_acsenergylett_4c01628
crossref_primary_10_1016_j_jallcom_2023_171573
crossref_primary_10_1021_acsami_1c22262
crossref_primary_10_1021_acsami_3c10268
crossref_primary_10_1021_acsami_3c10146
crossref_primary_10_1021_acssuschemeng_4c02143
crossref_primary_10_1039_D3TC04411D
crossref_primary_10_15541_jim20230049
crossref_primary_10_3390_nano12224055
crossref_primary_10_1039_D4YA00204K
crossref_primary_10_1007_s40820_024_01417_1
crossref_primary_10_1016_j_nanoen_2022_107181
crossref_primary_10_1002_eem2_12465
crossref_primary_10_1016_j_cap_2025_01_010
crossref_primary_10_3390_mi14081562
crossref_primary_10_1021_acs_jpclett_5c00200
crossref_primary_10_1088_1674_4926_43_3_030203
crossref_primary_10_1002_aenm_202401188
crossref_primary_10_1021_acs_jpclett_1c03107
crossref_primary_10_1039_D2TA09793A
crossref_primary_10_1002_solr_202200799
crossref_primary_10_1002_anie_202407228
crossref_primary_10_1002_sstr_202200012
crossref_primary_10_1021_acsami_4c09637
crossref_primary_10_1016_j_optmat_2023_113815
crossref_primary_10_1002_anie_202305551
crossref_primary_10_1016_j_jssc_2024_124999
crossref_primary_10_1016_j_surfin_2023_103478
crossref_primary_10_1016_j_solener_2022_07_009
crossref_primary_10_1021_acsami_2c06046
crossref_primary_10_1021_acs_jpclett_4c01695
crossref_primary_10_1002_ange_202402775
crossref_primary_10_1021_acsphotonics_3c00471
crossref_primary_10_1021_acsenergylett_4c01725
crossref_primary_10_1002_adfm_202108832
crossref_primary_10_1021_acsaem_4c00488
crossref_primary_10_1002_ente_202300916
crossref_primary_10_1021_acsnano_3c07942
crossref_primary_10_1021_acsenergylett_3c01610
crossref_primary_10_1002_slct_202402044
crossref_primary_10_1038_s41598_023_42447_w
crossref_primary_10_3390_polym16213053
crossref_primary_10_1021_acsaem_4c01461
crossref_primary_10_1039_D4TA06046F
crossref_primary_10_1021_jacsau_3c00519
crossref_primary_10_1002_adma_202313461
crossref_primary_10_1021_acsami_4c04280
crossref_primary_10_1016_j_nanoen_2021_106910
crossref_primary_10_1007_s10853_024_10051_6
crossref_primary_10_1016_j_orgel_2022_106707
crossref_primary_10_1002_adfm_202411750
crossref_primary_10_1002_solr_202200699
crossref_primary_10_1038_s41566_024_01381_7
crossref_primary_10_1039_D2GC04022K
crossref_primary_10_1002_aenm_202300696
crossref_primary_10_1007_s12200_022_00048_x
crossref_primary_10_1016_j_matt_2021_12_013
crossref_primary_10_1021_acsenergylett_4c00615
crossref_primary_10_1021_acs_nanolett_4c00646
crossref_primary_10_1002_jccs_202400060
crossref_primary_10_1002_adma_202402947
crossref_primary_10_1007_s12648_024_03365_3
crossref_primary_10_1021_acsami_1c20045
crossref_primary_10_1016_j_cej_2022_139975
crossref_primary_10_1021_acsenergylett_3c00742
crossref_primary_10_54227_mlab_20220047
crossref_primary_10_1039_D4CS00838C
crossref_primary_10_1002_solr_202100633
crossref_primary_10_1016_j_nxener_2023_100011
crossref_primary_10_1021_acsami_3c11658
crossref_primary_10_1016_j_ensm_2025_104184
crossref_primary_10_1002_aesr_202300110
crossref_primary_10_1021_acs_jpclett_1c03427
crossref_primary_10_1039_D3QI00872J
crossref_primary_10_1002_cey2_710
crossref_primary_10_1016_j_jechem_2021_09_019
crossref_primary_10_1016_j_mtener_2021_100891
crossref_primary_10_1039_D3TA07499D
crossref_primary_10_1002_solr_202400121
crossref_primary_10_1039_D3CS00728F
crossref_primary_10_1002_eem2_12529
crossref_primary_10_1002_adpr_202400095
crossref_primary_10_1016_j_cej_2022_140862
crossref_primary_10_1021_acsami_3c06070
crossref_primary_10_1002_smll_202306115
crossref_primary_10_1016_j_jpowsour_2022_232428
crossref_primary_10_1016_j_orgel_2022_106712
crossref_primary_10_1002_anie_202306712
crossref_primary_10_1002_ange_202413584
crossref_primary_10_1002_adfm_202312287
crossref_primary_10_1016_j_nanoen_2024_109952
crossref_primary_10_1088_1361_648X_ad604e
crossref_primary_10_1002_aenm_202302926
crossref_primary_10_1021_acs_jpclett_3c03557
crossref_primary_10_1007_s12209_022_00316_z
crossref_primary_10_1002_ange_202213386
crossref_primary_10_1002_ange_202318133
crossref_primary_10_1002_ange_202307228
crossref_primary_10_1039_D2TA09363D
crossref_primary_10_1016_j_mtphys_2021_100513
crossref_primary_10_1021_acs_inorgchem_2c00354
crossref_primary_10_1002_advs_202200242
crossref_primary_10_1002_advs_202203749
crossref_primary_10_1002_aenm_202204233
crossref_primary_10_1002_smll_202308877
crossref_primary_10_1002_adfm_202213939
crossref_primary_10_1039_D3TA03539E
crossref_primary_10_1016_j_cinorg_2023_100029
crossref_primary_10_1021_acsami_3c19237
crossref_primary_10_1021_acsaem_3c00085
Cites_doi 10.1039/D0EE04007J
10.1126/science.aal4211
10.1021/acsenergylett.6b00499
10.1039/D0EE01845G
10.1016/j.joule.2018.09.012
10.1021/acsenergylett.0c00960
10.1016/j.nanoen.2018.05.006
10.1002/adfm.201808059
10.1038/s41467-020-15078-2
10.1021/jacs.7b01815
10.1021/acsenergylett.7b00976
10.1021/acsenergylett.9b00892
10.1021/jacs.5b13294
10.1021/acsenergylett.0c00888
10.1002/adma.201800258
10.1002/adma.201804835
10.1016/j.joule.2019.08.023
10.1021/acsenergylett.0c00782
10.1021/acsami.0c01311
10.1016/j.nanoen.2020.104858
10.1002/anie.201902418
10.1002/cssc.201902000
10.1002/adma.201907392
10.1021/jacs.7b02120
10.1021/acsenergylett.0c00526
10.1016/j.matt.2020.11.012
10.1016/j.joule.2020.03.007
10.1039/C9TA01978B
10.1002/adfm.202002230
10.1007/s11426-019-9653-8
10.1021/acsaem.8b00372
10.1002/adma.201907623
10.1039/C7TA00929A
10.1002/aenm.201702019
10.1038/s41467-018-07951-y
10.1002/solr.201900310
10.1016/j.joule.2017.09.007
10.1021/acsenergylett.8b00047
10.1002/adfm.201807696
10.1002/aenm.201902584
10.1002/adfm.202000794
10.1016/j.nanoen.2019.104362
10.1038/s41467-020-16561-6
10.1038/s41467-019-13856-1
10.1002/adma.201501978
10.1021/acs.jpclett.9b02024
10.1002/adma.201803230
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202102055
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202102055
ADMA202102055
Genre article
GrantInformation_xml – fundername: Shenzhen Key Laboratory Project
  funderid: ZDSYS201602261933302
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2019A1515111134
– fundername: National Natural Science Foundation of China
  funderid: 61775091
– fundername: Shenzhen Science and Technology Innovation Committee
  funderid: JCYJ20200109141412308
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3505-572f94ef856f9442b6abd61597559391aafe704e760375fb6ef57f5dee3461853
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 11:48:41 EDT 2025
Fri Jul 25 03:25:22 EDT 2025
Thu Apr 24 22:53:05 EDT 2025
Tue Jul 01 02:33:05 EDT 2025
Wed Jan 22 16:27:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3505-572f94ef856f9442b6abd61597559391aafe704e760375fb6ef57f5dee3461853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2775-0894
PQID 2570392473
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2555107569
proquest_journals_2570392473
crossref_primary_10_1002_adma_202102055
crossref_citationtrail_10_1002_adma_202102055
wiley_primary_10_1002_adma_202102055_ADMA202102055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2017; 1
2019; 4
2019; 3
2021; 4
2019; 31
2020; 63
2019; 10
2019; 12
2019; 58
2020; 13
2020; 12
2020; 11
2020; 32
2017; 355
2018; 49
2017; 139
2021; 14
2018; 8
2020; 5
2020; 4
2018; 3
2015; 27
2016; 1
2018; 2
2020; 74
2020; 30
2021
2018; 1
2019; 29
2020; 68
2018; 30
2016; 138
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 2
  start-page: 2732
  year: 2018
  publication-title: Joule
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 27
  start-page: 6806
  year: 2015
  publication-title: Adv. Mater.
– volume: 1
  start-page: 659
  year: 2017
  publication-title: Joule
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 49
  start-page: 411
  year: 2018
  publication-title: Nano Energy
– volume: 3
  start-page: 684
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 582
  year: 2020
  publication-title: Nat. Commun.
– volume: 5
  start-page: 2327
  year: 2020
  publication-title: ACS Energy Lett.
– year: 2021
– volume: 4
  start-page: 902
  year: 2020
  publication-title: Joule
– volume: 5
  start-page: 1923
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 1
  start-page: 1233
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 63
  start-page: 107
  year: 2020
  publication-title: Sci. China: Chem.
– volume: 4
  start-page: 709
  year: 2021
  publication-title: Matter
– volume: 7
  start-page: 8818
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 58
  start-page: 6688
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 1741
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 4
  year: 2020
  publication-title: Sol. RRL
– volume: 11
  start-page: 2678
  year: 2020
  publication-title: Nat. Commun.
– volume: 12
  start-page: 5007
  year: 2019
  publication-title: ChemSusChem
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1245
  year: 2020
  publication-title: Nat. Commun.
– volume: 138
  start-page: 2138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1286
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 1521
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 3072
  year: 2019
  publication-title: Joule
– volume: 10
  start-page: 16
  year: 2019
  publication-title: Nat. Commun.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 13
  start-page: 2896
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 6693
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 10
  start-page: 5277
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 355
  start-page: 1288
  year: 2017
  publication-title: Science
– volume: 139
  start-page: 6718
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 46
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 1
  start-page: 2709
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 5
  start-page: 2223
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 10
  year: 2019
  publication-title: Adv. Energy Mater.
– ident: e_1_2_7_36_1
  doi: 10.1039/D0EE04007J
– ident: e_1_2_7_45_1
  doi: 10.1126/science.aal4211
– ident: e_1_2_7_7_1
  doi: 10.1021/acsenergylett.6b00499
– ident: e_1_2_7_33_1
  doi: 10.1039/D0EE01845G
– ident: e_1_2_7_41_1
  doi: 10.1016/j.joule.2018.09.012
– ident: e_1_2_7_44_1
  doi: 10.1021/acsenergylett.0c00960
– ident: e_1_2_7_30_1
  doi: 10.1016/j.nanoen.2018.05.006
– ident: e_1_2_7_17_1
  doi: 10.1002/adfm.201808059
– ident: e_1_2_7_19_1
  doi: 10.1038/s41467-020-15078-2
– ident: e_1_2_7_43_1
  doi: 10.1021/jacs.7b01815
– ident: e_1_2_7_31_1
  doi: 10.1021/acsenergylett.7b00976
– ident: e_1_2_7_49_1
  doi: 10.1021/acsenergylett.9b00892
– ident: e_1_2_7_6_1
  doi: 10.1021/jacs.5b13294
– ident: e_1_2_7_37_1
  doi: 10.1021/acsenergylett.0c00888
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201800258
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201804835
– ident: e_1_2_7_38_1
  doi: 10.1016/j.joule.2019.08.023
– ident: e_1_2_7_29_1
  doi: 10.1021/acsenergylett.0c00782
– ident: e_1_2_7_34_1
  doi: 10.1021/acsami.0c01311
– ident: e_1_2_7_21_1
  doi: 10.1016/j.nanoen.2020.104858
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.201902418
– ident: e_1_2_7_46_1
  doi: 10.1002/cssc.201902000
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201907392
– ident: e_1_2_7_13_1
  doi: 10.1021/jacs.7b02120
– ident: e_1_2_7_28_1
  doi: 10.1021/acsenergylett.0c00526
– ident: e_1_2_7_22_1
  doi: 10.1016/j.matt.2020.11.012
– ident: e_1_2_7_20_1
  doi: 10.1016/j.joule.2020.03.007
– ident: e_1_2_7_4_1
  doi: 10.1039/C9TA01978B
– ident: e_1_2_7_42_1
  doi: 10.1002/adfm.202002230
– ident: e_1_2_7_12_1
  doi: 10.1007/s11426-019-9653-8
– ident: e_1_2_7_14_1
  doi: 10.1021/acsaem.8b00372
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.201907623
– ident: e_1_2_7_8_1
  doi: 10.1039/C7TA00929A
– ident: e_1_2_7_23_1
  doi: 10.1002/aenm.201702019
– ident: e_1_2_7_16_1
  doi: 10.1038/s41467-018-07951-y
– ident: e_1_2_7_32_1
  doi: 10.1002/solr.201900310
– ident: e_1_2_7_39_1
  doi: 10.1016/j.joule.2017.09.007
– ident: e_1_2_7_1_1
– ident: e_1_2_7_48_1
  doi: 10.1021/acsenergylett.8b00047
– ident: e_1_2_7_40_1
  doi: 10.1002/adfm.201807696
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.201902584
– ident: e_1_2_7_35_1
  doi: 10.1002/adfm.202000794
– ident: e_1_2_7_3_1
  doi: 10.1016/j.nanoen.2019.104362
– ident: e_1_2_7_24_1
  doi: 10.1038/s41467-020-16561-6
– ident: e_1_2_7_47_1
  doi: 10.1038/s41467-019-13856-1
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201501978
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.jpclett.9b02024
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.201803230
– ident: e_1_2_7_15_1
  doi: 10.1016/j.joule.2019.08.023
SSID ssj0009606
Score 2.7208319
Snippet As the most promising lead‐free one, tin‐halides based perovskite solar cells still suffer from the severe bulk‐defect due to the easy oxidation of tin from...
As the most promising lead-free one, tin-halides based perovskite solar cells still suffer from the severe bulk-defect due to the easy oxidation of tin from...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2102055
SubjectTerms 2D/3D heterogeneous tin‐perovskite absorbers
Absorbers
conversion efficiency
Efficiency
Energy conversion efficiency
Grain boundaries
Halides
lead‐free perovskite solar cells
Microstructure
Oxidation
oxidation of tin
Perovskites
Photovoltaic cells
Solar cells
Tin
tin‐halide perovskites
Titanium nitride
Title Heterogeneous 2D/3D Tin‐Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202102055
https://www.proquest.com/docview/2570392473
https://www.proquest.com/docview/2555107569
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBclT9tD120dTdsVDQp9cv7Ikmw_ZklLGKSUNoG8GSk6QVhISp30oU_7CPuM-yS7kxMnKYzB9mQZSdjW6ezfne9-x9ilcplMfSKJfNBGMvM6MimkkTPOtyGTYCXlDg9udX8kv43VeCeLv-SHqBxupBnhfU0KbmzR3JKGGhd4g8hkaSnKMqeALUJF91v-KILngWwvVlGmZbphbWyJ5v70_a_SFmruAtbwxbl5x8zmXstAk--N1dI2Ji-vaBz_52GO2OEajvJOuX_eswOYf2Bvd0gKP7JpnyJmFrjRYLEquOg14x4fTue_fvzsI4h3UPA77H8uyA_MH8hU5l2YzQpOPl5sPlE4EjjepQD34J3j14G4grI--VdEreSu5215zEY318NuP1oXaIgmMSKnSCXCozh9qjQepbDaWIcQKUvQTomztjEekpaERFOlXW81eJV45QBiqQkofGK1-WIOJ4xrjRYxeJFpk0hHNZAVOCtib9vCQJrWWbQRUD5Zs5dTEY1ZXvIui5yWMK-WsM6uqvGPJW_HH0eeb-Sdr_W3yKm2HyJHmcR19qXqRs2j3ykmrDeOQbSJiEtndSaCcP9ypbzTG3Sqs9N_mXTG3lC7DHI7Z7Xl0wo-Iypa2ouw838DdhYDIQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcgAO5V-kFFgkECc3yXq9tg8cQtzKpU2FIJV6c9fZWakiSqo6KYJTH6GvwqvwCDwJM3bstEgICakHTv5b_-3u7HwzO_sNwKvAxipyoWLywdxTsdOeiTDyrLGui7HCXPHa4cG-Tg_U-8PgcAW-12thKn6IxuHGklGO1yzg7JBuL1lDjS2Jg9hm6QR1XOUufv1CVlvxdiehJn4t5fbWsJ96i8QC3sgnje8FoXT0GS4KNG2VzLXJLan2OCR87cddYxyGHYWh5gyxLtfogtAFFtFXmhUcPfcG3OQ04kzXn3xcMlaxQVDS-_mBF2sV1TyRHdm--r1X9eAS3F6GyKWO274LP-raqUJbPm_OZ_nm6NtvxJH_VfXdg7UF4ha9SkTuwwpOHsCdSzyMD-E45aCgKckSTueFkEnbT8TwePLz_CIlO8ViIT7Q9bOCXd3iE3sDRB_H40KwG5t2TzniCq3ocwx_6YAUWyU3By9sFe8ImPOMhOiqR3BwLf_6GFYn0wk-AaE1Gf3oZKxNqCyneQ7Q5tJ3eVcajKIWeHWPyEYLgnbOEzLOKmppmXGTZU2TteBNU_6koib5Y8mNuoNliyGqyDh9IYFjFfoteNlcpsGFZ4xMWd9UhgA1gUodt0CWvekvb8p6yaDXHK3_y00v4FY6HOxlezv7u0_hNp-vYvo2YHV2OsdnBAJn-fNS7AQcXXdH_QW9cl81
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VIiE48I8IFDASiNM2idfr3T30ELKNUkqrClqpt8WOx1JFlFTdBASnPkIfpa_CK_AkzOxmNy0SQkLqgdP-ef9sj-eb8fgbgFeRS1XiY8XkgzZQqdeBSTAJnHG-i6lCq3jt8M6uHh6od4fR4Qqc12thKn6IxuHGklGO1yzgx863l6ShxpW8QWyydKI6rHIbv30lo63Y2MqohV9LOdjc7w-DRV6BYBSSwg-iWHr6Cp9EmrZKWm2sI82exgSvw7RrjMe4ozDWnCDWW40-in3kEEOlWb_Rc6_BdaU7KSeLyD4sCavYHijZ_cIoSLVKaprIjmxf_t7LanCJbS8i5FLFDe7Aj7pyqsiWz-vzmV0fff-NN_J_qr27cHuBt0WvEpB7sIKT-3DrAgvjAzgackjQlCQJp_NCyKwdZmL_aPLz9GxIVorDQuzR9S8FO7rFR_YFiD6Ox4VgJzbtnnC8FTrR5wj-0v0oNktmDl7WKt4SLOf5CNFVD-HgSv71EaxOphN8DEJrMvnRy1SbWDlO8hyhszL0tisNJkkLgrpD5KMFPTtnCRnnFbG0zLnJ8qbJWvCmKX9cEZP8seRa3b_yxQBV5Jy8kKCxisMWvGwu09DC80WmrG8qQ3CaIKVOWyDLzvSXN-W9bKfXHD35l5tewI29bJC_39rdfgo3-XQV0LcGq7OTOT4jBDizz0uhE_DpqvvpLxaYXeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+2D%2F3D+Tin%E2%80%90Halides+Perovskite+Solar+Cells+with+Certified+Conversion+Efficiency+Breaking+14&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yu%2C+Bin%E2%80%90Bin&rft.au=Chen%2C+Zhenhua&rft.au=Zhu%2C+Yudong&rft.au=Wang%2C+Yiyu&rft.date=2021-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=36&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202102055&rft.externalDBID=10.1002%252Fadma.202102055&rft.externalDocID=ADMA202102055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon