Heterogeneous 2D/3D Tin‐Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14
As the most promising lead‐free one, tin‐halides based perovskite solar cells still suffer from the severe bulk‐defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin‐perovski...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 36; pp. e2102055 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the most promising lead‐free one, tin‐halides based perovskite solar cells still suffer from the severe bulk‐defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin‐perovskite absorber films by substituting FAI with FPEABr in FASnI3. The introduction of 2D phase can induce highly oriented growth of 3D FASnI3 and it is revealed in the optimal 2D/3D film that 2D phase embraces 3D grains and locates at the surfaces and grain boundaries. The FPEA+ based 2D tin‐perovskite capping layer can offer a reducing atmosphere for vulnerable 3D FASnI3 grains. The unique microstructure effectively suppresses the well‐known oxidation from Sn2+ to Sn4+, as well as decreasing defect density, which leads to a remarkable enhanced device performance from 9.38% to 14.81% in conversion efficiency. The certified conversion efficiency of 14.03% announces a new record and moves a remarkable step from the last one (12.4%). Besides of this breakthrough, this work definitely paves a new way to fabricate high‐quality tin‐perovskite absorber film by constructing effective 2D/3D microstructures.
A general and effective strategy is delivered to modulate the 2D/3D microstructure of tin‐perovskite films by introduction of a 2D phase with the function of FPEABr, which induces high‐orientation growth of 3D FASnI3 by embracing the 3D grains at their surfaces and boundaries. That leads to a breakthrough of device performance of 14.81% in power conversion efficiency, along with 14.03% certified. |
---|---|
AbstractList | As the most promising lead-free one, tin-halides based perovskite solar cells still suffer from the severe bulk-defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin-perovskite absorber films by substituting FAI with FPEABr in FASnI3 . The introduction of 2D phase can induce highly oriented growth of 3D FASnI3 and it is revealed in the optimal 2D/3D film that 2D phase embraces 3D grains and locates at the surfaces and grain boundaries. The FPEA+ based 2D tin-perovskite capping layer can offer a reducing atmosphere for vulnerable 3D FASnI3 grains. The unique microstructure effectively suppresses the well-known oxidation from Sn2+ to Sn4+ , as well as decreasing defect density, which leads to a remarkable enhanced device performance from 9.38% to 14.81% in conversion efficiency. The certified conversion efficiency of 14.03% announces a new record and moves a remarkable step from the last one (12.4%). Besides of this breakthrough, this work definitely paves a new way to fabricate high-quality tin-perovskite absorber film by constructing effective 2D/3D microstructures.As the most promising lead-free one, tin-halides based perovskite solar cells still suffer from the severe bulk-defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin-perovskite absorber films by substituting FAI with FPEABr in FASnI3 . The introduction of 2D phase can induce highly oriented growth of 3D FASnI3 and it is revealed in the optimal 2D/3D film that 2D phase embraces 3D grains and locates at the surfaces and grain boundaries. The FPEA+ based 2D tin-perovskite capping layer can offer a reducing atmosphere for vulnerable 3D FASnI3 grains. The unique microstructure effectively suppresses the well-known oxidation from Sn2+ to Sn4+ , as well as decreasing defect density, which leads to a remarkable enhanced device performance from 9.38% to 14.81% in conversion efficiency. The certified conversion efficiency of 14.03% announces a new record and moves a remarkable step from the last one (12.4%). Besides of this breakthrough, this work definitely paves a new way to fabricate high-quality tin-perovskite absorber film by constructing effective 2D/3D microstructures. As the most promising lead‐free one, tin‐halides based perovskite solar cells still suffer from the severe bulk‐defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin‐perovskite absorber films by substituting FAI with FPEABr in FASnI3. The introduction of 2D phase can induce highly oriented growth of 3D FASnI3 and it is revealed in the optimal 2D/3D film that 2D phase embraces 3D grains and locates at the surfaces and grain boundaries. The FPEA+ based 2D tin‐perovskite capping layer can offer a reducing atmosphere for vulnerable 3D FASnI3 grains. The unique microstructure effectively suppresses the well‐known oxidation from Sn2+ to Sn4+, as well as decreasing defect density, which leads to a remarkable enhanced device performance from 9.38% to 14.81% in conversion efficiency. The certified conversion efficiency of 14.03% announces a new record and moves a remarkable step from the last one (12.4%). Besides of this breakthrough, this work definitely paves a new way to fabricate high‐quality tin‐perovskite absorber film by constructing effective 2D/3D microstructures. A general and effective strategy is delivered to modulate the 2D/3D microstructure of tin‐perovskite films by introduction of a 2D phase with the function of FPEABr, which induces high‐orientation growth of 3D FASnI3 by embracing the 3D grains at their surfaces and boundaries. That leads to a breakthrough of device performance of 14.81% in power conversion efficiency, along with 14.03% certified. As the most promising lead‐free one, tin‐halides based perovskite solar cells still suffer from the severe bulk‐defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin‐perovskite absorber films by substituting FAI with FPEABr in FASnI 3 . The introduction of 2D phase can induce highly oriented growth of 3D FASnI 3 and it is revealed in the optimal 2D/3D film that 2D phase embraces 3D grains and locates at the surfaces and grain boundaries. The FPEA + based 2D tin‐perovskite capping layer can offer a reducing atmosphere for vulnerable 3D FASnI 3 grains. The unique microstructure effectively suppresses the well‐known oxidation from Sn 2+ to Sn 4+ , as well as decreasing defect density, which leads to a remarkable enhanced device performance from 9.38% to 14.81% in conversion efficiency. The certified conversion efficiency of 14.03% announces a new record and moves a remarkable step from the last one (12.4%). Besides of this breakthrough, this work definitely paves a new way to fabricate high‐quality tin‐perovskite absorber film by constructing effective 2D/3D microstructures. As the most promising lead‐free one, tin‐halides based perovskite solar cells still suffer from the severe bulk‐defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin‐perovskite absorber films by substituting FAI with FPEABr in FASnI3. The introduction of 2D phase can induce highly oriented growth of 3D FASnI3 and it is revealed in the optimal 2D/3D film that 2D phase embraces 3D grains and locates at the surfaces and grain boundaries. The FPEA+ based 2D tin‐perovskite capping layer can offer a reducing atmosphere for vulnerable 3D FASnI3 grains. The unique microstructure effectively suppresses the well‐known oxidation from Sn2+ to Sn4+, as well as decreasing defect density, which leads to a remarkable enhanced device performance from 9.38% to 14.81% in conversion efficiency. The certified conversion efficiency of 14.03% announces a new record and moves a remarkable step from the last one (12.4%). Besides of this breakthrough, this work definitely paves a new way to fabricate high‐quality tin‐perovskite absorber film by constructing effective 2D/3D microstructures. |
Author | Chen, Guocong Zhang, Xusheng Du, Zheng Zhu, Yudong Chen, Zhenhua He, Zhubing Yu, Bin‐Bin Wang, Yiyu Han, Bing |
Author_xml | – sequence: 1 givenname: Bin‐Bin surname: Yu fullname: Yu, Bin‐Bin organization: Southern University of Science and Technology – sequence: 2 givenname: Zhenhua surname: Chen fullname: Chen, Zhenhua organization: Chinese Academy of Sciences – sequence: 3 givenname: Yudong surname: Zhu fullname: Zhu, Yudong organization: Southern University of Science and Technology – sequence: 4 givenname: Yiyu surname: Wang fullname: Wang, Yiyu organization: Southern University of Science and Technology – sequence: 5 givenname: Bing surname: Han fullname: Han, Bing organization: Southern University of Science and Technology – sequence: 6 givenname: Guocong surname: Chen fullname: Chen, Guocong organization: Southern University of Science and Technology – sequence: 7 givenname: Xusheng surname: Zhang fullname: Zhang, Xusheng organization: Southern University of Science and Technology – sequence: 8 givenname: Zheng surname: Du fullname: Du, Zheng organization: Southern University of Science and Technology – sequence: 9 givenname: Zhubing orcidid: 0000-0002-2775-0894 surname: He fullname: He, Zhubing email: hezb@sustech.edu.cn organization: Southern University of Science and Technology |
BookMark | eNqFkM9uEzEQhy1UJNLCtWdLXLhs6n9jx8eQtASpiEqU88rZHRe3G7vYm1a58Qg8I0-CS1CRKqGeZiR_33jmd0gOYopIyDFnU86YOHH9xk0FE5wJBvCCTDgI3ihm4YBMmJXQWK1mr8hhKdeMMauZnpCwwhFzusKIaVuoWJ7IJb0M8dePnys3hB4Lvajvd-UmjEi_pMFlusBhKPQ-jN9qm8fgA_Z0keId5hJSpKfehy5g7Hb0fUZ3E-IV5eo1eendUPDN33pEvp6dXi5WzfnnDx8X8_Omk8CgASO8VehnoGtVYq3dutccrAGw0nLnPBqm0GgmDfi1Rg_GQ48oleYzkEfk3X7ubU7ft1jGdhNKV1d2f05sBQBwZkDbir59gl6nbY51u0oZJq1QRlZquqe6nErJ6NvbHDYu71rO2ofk24fk28fkq6CeCF0Y3VijGbMLw_81u9fuw4C7Zz5p58tP83_ub24TmcI |
CitedBy_id | crossref_primary_10_1002_smll_202307373 crossref_primary_10_1088_1402_4896_acf535 crossref_primary_10_1016_j_tsf_2023_140066 crossref_primary_10_1002_adfm_202501020 crossref_primary_10_1002_adts_202200856 crossref_primary_10_1039_D4SC07031C crossref_primary_10_1016_j_jechem_2021_12_002 crossref_primary_10_1039_D3MH00221G crossref_primary_10_1016_j_jhazmat_2021_127848 crossref_primary_10_1039_D4TA00608A crossref_primary_10_1039_D3EE03359G crossref_primary_10_1039_D3QM00236E crossref_primary_10_1002_eom2_12319 crossref_primary_10_1002_solr_202200953 crossref_primary_10_1021_acsenergylett_4c03172 crossref_primary_10_1002_smtd_202300029 crossref_primary_10_1002_smll_202402896 crossref_primary_10_3390_nano13030585 crossref_primary_10_1021_acsenergylett_1c02124 crossref_primary_10_1016_j_vacuum_2024_113954 crossref_primary_10_1021_acs_jpcc_3c04066 crossref_primary_10_3390_coatings12070952 crossref_primary_10_1039_D3CC02270F crossref_primary_10_1021_acs_jpclett_4c02032 crossref_primary_10_1007_s11426_022_1445_2 crossref_primary_10_1038_s41467_022_32932_7 crossref_primary_10_1016_j_joule_2023_08_002 crossref_primary_10_1021_acs_jpclett_3c00400 crossref_primary_10_1002_aenm_202300188 crossref_primary_10_1021_acsenergylett_3c01448 crossref_primary_10_1002_sstr_202100102 crossref_primary_10_1039_D3RA01692G crossref_primary_10_3390_su142416603 crossref_primary_10_3390_nano13091524 crossref_primary_10_1002_anie_202209464 crossref_primary_10_1063_5_0150873 crossref_primary_10_1016_j_pmatsci_2025_101446 crossref_primary_10_1021_prechem_3c00018 crossref_primary_10_1039_D4CP02655A crossref_primary_10_1002_solr_202200859 crossref_primary_10_1021_acsami_2c12129 crossref_primary_10_1021_acsami_3c06538 crossref_primary_10_1021_acsenergylett_3c02409 crossref_primary_10_1039_D4TC05215C crossref_primary_10_1016_j_matt_2024_04_016 crossref_primary_10_1021_acsmaterialslett_3c01145 crossref_primary_10_1016_j_mtadv_2022_100232 crossref_primary_10_3390_molecules29092104 crossref_primary_10_1039_D4EL00034J crossref_primary_10_1038_s41586_023_06514_6 crossref_primary_10_1021_acsenergylett_3c00583 crossref_primary_10_1016_j_cej_2022_138926 crossref_primary_10_1002_anie_202213966 crossref_primary_10_1021_acsami_2c01481 crossref_primary_10_1002_eom2_12352 crossref_primary_10_1021_acsami_2c12539 crossref_primary_10_1021_acsenergylett_2c00644 crossref_primary_10_1016_j_rser_2023_114002 crossref_primary_10_1016_j_mtsust_2023_100603 crossref_primary_10_1016_j_cej_2023_142635 crossref_primary_10_1002_solr_202300770 crossref_primary_10_1002_solr_202300410 crossref_primary_10_1007_s40820_022_00964_9 crossref_primary_10_1021_acs_jpclett_4c01097 crossref_primary_10_1002_adfm_202306458 crossref_primary_10_1021_acsaelm_3c01166 crossref_primary_10_1021_acsami_2c12785 crossref_primary_10_3390_mi14040806 crossref_primary_10_1021_acsenergylett_2c00776 crossref_primary_10_1021_acsenergylett_2c01624 crossref_primary_10_1039_D3NR00177F crossref_primary_10_1016_j_mser_2023_100727 crossref_primary_10_1126_sciadv_ads4038 crossref_primary_10_1002_solr_202300535 crossref_primary_10_1016_j_jallcom_2023_169801 crossref_primary_10_1002_solr_202200889 crossref_primary_10_1002_adfm_202307896 crossref_primary_10_1016_j_cej_2022_136769 crossref_primary_10_1002_adma_202205603 crossref_primary_10_1021_acsenergylett_3c01410 crossref_primary_10_1021_acsenergylett_2c01749 crossref_primary_10_1039_D4SU00100A crossref_primary_10_1002_adfm_202420593 crossref_primary_10_1016_j_apsusc_2022_154393 crossref_primary_10_1021_acsenergylett_3c02616 crossref_primary_10_1007_s12613_023_2738_y crossref_primary_10_1021_acs_jpcc_1c06086 crossref_primary_10_1007_s40820_022_00842_4 crossref_primary_10_1002_adfm_202411671 crossref_primary_10_1002_cptc_202400328 crossref_primary_10_1016_j_jssc_2025_125293 crossref_primary_10_1039_D1NJ05178D crossref_primary_10_1021_acsaem_3c03086 crossref_primary_10_1016_j_commatsci_2025_113699 crossref_primary_10_1016_j_nanoen_2024_110401 crossref_primary_10_1002_smtd_202300207 crossref_primary_10_1007_s11426_022_1227_6 crossref_primary_10_1002_smll_202307025 crossref_primary_10_1016_j_esci_2023_100113 crossref_primary_10_1002_solr_202200672 crossref_primary_10_1016_j_ccr_2025_216500 crossref_primary_10_1002_solr_202300754 crossref_primary_10_1002_aenm_202202209 crossref_primary_10_1002_aenm_202404386 crossref_primary_10_1002_solr_202200789 crossref_primary_10_1149_2162_8777_acd660 crossref_primary_10_1007_s40820_023_01085_7 crossref_primary_10_1021_acsenergylett_4c01188 crossref_primary_10_1002_adfm_202215041 crossref_primary_10_1002_aenm_202201242 crossref_primary_10_1002_adma_202403038 crossref_primary_10_1007_s12274_022_4722_7 crossref_primary_10_1021_acsaem_2c02677 crossref_primary_10_1021_acsenergylett_4c00094 crossref_primary_10_1021_acsenergylett_1c02651 crossref_primary_10_1007_s12274_023_6291_9 crossref_primary_10_1002_zaac_202300045 crossref_primary_10_1002_adfm_202405611 crossref_primary_10_1063_5_0162009 crossref_primary_10_1039_D2EE00663D crossref_primary_10_1021_acs_chemmater_4c02261 crossref_primary_10_1038_s43246_022_00327_2 crossref_primary_10_1002_anie_202317794 crossref_primary_10_3390_nano12030532 crossref_primary_10_1002_anie_202212002 crossref_primary_10_1002_ange_202306712 crossref_primary_10_1021_acs_chemmater_1c03195 crossref_primary_10_1021_acsenergylett_2c01659 crossref_primary_10_1016_j_matdes_2023_111850 crossref_primary_10_3390_nano14070626 crossref_primary_10_1021_acs_energyfuels_4c04092 crossref_primary_10_1016_j_mtelec_2024_100095 crossref_primary_10_1021_acsami_3c00299 crossref_primary_10_1021_jacs_3c10515 crossref_primary_10_1002_aenm_202201977 crossref_primary_10_1002_adfm_202414437 crossref_primary_10_1021_acsaem_3c01909 crossref_primary_10_1021_acsenergylett_4c03228 crossref_primary_10_1016_j_mtener_2022_101038 crossref_primary_10_1016_j_cej_2023_141292 crossref_primary_10_1016_j_optmat_2021_111891 crossref_primary_10_1021_acsami_5c01338 crossref_primary_10_1002_smll_202401179 crossref_primary_10_1002_smll_202402028 crossref_primary_10_1002_adfm_202404792 crossref_primary_10_1016_j_device_2024_100294 crossref_primary_10_1016_j_nxmate_2023_100098 crossref_primary_10_1039_D3QM01354E crossref_primary_10_1007_s12613_023_2604_y crossref_primary_10_1002_sstr_202300524 crossref_primary_10_1016_j_jechem_2022_05_030 crossref_primary_10_1021_acsami_3c07903 crossref_primary_10_1021_acs_chemmater_2c03141 crossref_primary_10_1002_anie_202413584 crossref_primary_10_1021_acsenergylett_2c02776 crossref_primary_10_1021_acsmaterialslett_2c00229 crossref_primary_10_1039_D4TA07975B crossref_primary_10_1002_admt_202302029 crossref_primary_10_1002_adma_202309768 crossref_primary_10_1007_s12598_024_02775_w crossref_primary_10_3390_cryst12060815 crossref_primary_10_1002_adma_202204661 crossref_primary_10_1002_solr_202300165 crossref_primary_10_1021_acsmaterialslett_3c00340 crossref_primary_10_1002_solr_202300045 crossref_primary_10_1021_acsaelm_3c00266 crossref_primary_10_1039_D2TA01429G crossref_primary_10_1007_s40243_024_00255_w crossref_primary_10_1038_s43586_024_00373_9 crossref_primary_10_1007_s11426_022_1489_8 crossref_primary_10_1016_j_jallcom_2025_179460 crossref_primary_10_1039_D3TA01197F crossref_primary_10_1016_j_xcrp_2021_100690 crossref_primary_10_3390_en16165868 crossref_primary_10_1021_acsaem_3c02928 crossref_primary_10_1002_ente_202400723 crossref_primary_10_3390_molecules28093787 crossref_primary_10_1002_anie_202402775 crossref_primary_10_1002_ange_202213966 crossref_primary_10_1016_j_solener_2023_111825 crossref_primary_10_1002_adfm_202205870 crossref_primary_10_1002_adfm_202424340 crossref_primary_10_1039_D2TA07687J crossref_primary_10_1002_aenm_202406024 crossref_primary_10_1021_acsenergylett_2c02435 crossref_primary_10_1016_j_solener_2024_113150 crossref_primary_10_1016_j_mssp_2024_108408 crossref_primary_10_1021_acsmaterialslett_3c00111 crossref_primary_10_1016_j_chempr_2022_07_027 crossref_primary_10_3390_coatings15020132 crossref_primary_10_1021_acsenergylett_4c00155 crossref_primary_10_1016_j_nanoen_2022_107818 crossref_primary_10_1002_ange_202407228 crossref_primary_10_1002_anie_202213386 crossref_primary_10_1002_solr_202300268 crossref_primary_10_1002_ange_202209464 crossref_primary_10_1016_j_mssp_2024_108979 crossref_primary_10_1039_D2CC05310A crossref_primary_10_1002_adma_202300503 crossref_primary_10_1557_s43577_024_00784_9 crossref_primary_10_1039_D3TA06303H crossref_primary_10_1002_smtd_202300394 crossref_primary_10_1039_D2TA02088B crossref_primary_10_1088_1402_4896_ac4719 crossref_primary_10_1002_adfm_202308457 crossref_primary_10_1063_5_0153306 crossref_primary_10_1002_admi_202400201 crossref_primary_10_1016_j_esci_2024_100243 crossref_primary_10_1002_adfm_202207713 crossref_primary_10_1016_j_mtener_2023_101400 crossref_primary_10_1016_j_cej_2023_142561 crossref_primary_10_1039_D2EE02510H crossref_primary_10_1039_D2TC00427E crossref_primary_10_1016_j_matlet_2023_135485 crossref_primary_10_1016_j_cej_2024_151574 crossref_primary_10_1063_5_0083642 crossref_primary_10_1021_acsmaterialslett_3c01343 crossref_primary_10_1002_aenm_202200305 crossref_primary_10_1039_D2TC01637K crossref_primary_10_1039_D3TC04596J crossref_primary_10_1002_er_7761 crossref_primary_10_1002_smll_202302418 crossref_primary_10_1021_acsenergylett_4c00497 crossref_primary_10_1002_advs_202304811 crossref_primary_10_1021_acsmaterialslett_2c00275 crossref_primary_10_1021_acsaem_2c00651 crossref_primary_10_1002_solr_202100675 crossref_primary_10_1002_anie_202307228 crossref_primary_10_1002_adfm_202109631 crossref_primary_10_1016_j_cplett_2024_141556 crossref_primary_10_1002_smll_202404026 crossref_primary_10_1002_aenm_202102131 crossref_primary_10_1002_smll_202405598 crossref_primary_10_1002_adfm_202300282 crossref_primary_10_1016_j_jpowsour_2022_232595 crossref_primary_10_1021_acsaem_1c03622 crossref_primary_10_1007_s12648_024_03350_w crossref_primary_10_1088_1361_648X_ad5ad0 crossref_primary_10_1364_OL_506477 crossref_primary_10_1038_s41566_021_00950_4 crossref_primary_10_1002_adfm_202109649 crossref_primary_10_1016_j_cej_2022_135196 crossref_primary_10_1038_s41598_022_19552_3 crossref_primary_10_1002_anie_202318133 crossref_primary_10_1039_D4MH00033A crossref_primary_10_1002_solr_202201138 crossref_primary_10_1039_D4TA03291H crossref_primary_10_1021_acs_chemrev_4c00073 crossref_primary_10_1016_j_cej_2021_133832 crossref_primary_10_1002_adma_202403413 crossref_primary_10_1021_accountsmr_2c00081 crossref_primary_10_1002_aesr_202200160 crossref_primary_10_1021_acsaem_3c01651 crossref_primary_10_3389_fchem_2022_842924 crossref_primary_10_1039_D2TA05789A crossref_primary_10_1002_pssa_202100823 crossref_primary_10_1021_acs_nanolett_4c00474 crossref_primary_10_1016_j_cej_2022_137388 crossref_primary_10_1039_D3EE02822D crossref_primary_10_1039_D4TA02405B crossref_primary_10_1002_adma_202206684 crossref_primary_10_1016_j_nxmate_2024_100425 crossref_primary_10_1002_anie_202420150 crossref_primary_10_1039_D2CP04183A crossref_primary_10_1002_aenm_202204144 crossref_primary_10_1016_j_cej_2021_133745 crossref_primary_10_1021_acs_jpcc_2c07118 crossref_primary_10_1039_D1TA10822K crossref_primary_10_1002_lpor_202401590 crossref_primary_10_1021_acs_chemrev_3c00214 crossref_primary_10_1021_acsaem_4c02047 crossref_primary_10_1021_acs_jpclett_4c00505 crossref_primary_10_1039_D3EE00202K crossref_primary_10_1038_s41467_023_39445_x crossref_primary_10_1002_anie_202422217 crossref_primary_10_1016_j_jechem_2022_02_003 crossref_primary_10_1088_1361_6641_acb16a crossref_primary_10_1039_D2SC01914K crossref_primary_10_1039_D3QM00726J crossref_primary_10_1002_ange_202212002 crossref_primary_10_1039_D2QM01315K crossref_primary_10_1002_adfm_202304848 crossref_primary_10_1007_s40820_023_01143_0 crossref_primary_10_1002_smll_202208062 crossref_primary_10_1002_ange_202422217 crossref_primary_10_1039_D3CC05843C crossref_primary_10_1021_acsenergylett_2c02148 crossref_primary_10_1002_adfm_202413281 crossref_primary_10_1109_JPHOTOV_2024_3497135 crossref_primary_10_1002_ange_202420150 crossref_primary_10_1021_acs_jpclett_4c00797 crossref_primary_10_1038_s43246_022_00325_4 crossref_primary_10_1039_D4TA01882F crossref_primary_10_1103_PhysRevMaterials_8_093401 crossref_primary_10_1002_cnma_202400260 crossref_primary_10_1016_j_solener_2024_112359 crossref_primary_10_1021_acsami_3c09294 crossref_primary_10_1021_acsenergylett_4c01875 crossref_primary_10_1016_j_energy_2023_127917 crossref_primary_10_1002_adma_202300681 crossref_primary_10_1016_j_mtener_2025_101866 crossref_primary_10_1002_adma_202105844 crossref_primary_10_1016_j_cej_2025_161041 crossref_primary_10_1021_acs_chemmater_3c00243 crossref_primary_10_1002_adfm_202212106 crossref_primary_10_1016_j_jechem_2022_10_043 crossref_primary_10_1002_aesr_202200175 crossref_primary_10_1021_acsami_3c11009 crossref_primary_10_1002_smll_202408302 crossref_primary_10_1063_5_0190400 crossref_primary_10_1039_D3TA04742C crossref_primary_10_1021_acsenergylett_3c02066 crossref_primary_10_1016_j_nanoen_2022_107416 crossref_primary_10_1002_aenm_202102213 crossref_primary_10_1021_acsenergylett_4c00796 crossref_primary_10_1002_ange_202305551 crossref_primary_10_1021_acs_jpcc_2c08278 crossref_primary_10_1088_2515_7639_acc893 crossref_primary_10_1039_D3SE00571B crossref_primary_10_1002_ange_202317794 crossref_primary_10_1016_j_cej_2022_138037 crossref_primary_10_1002_adfm_202300693 crossref_primary_10_1088_2053_1591_acdec8 crossref_primary_10_1016_j_matt_2022_02_012 crossref_primary_10_1039_D3TA06953B crossref_primary_10_1039_D4TA01783H crossref_primary_10_1021_acsenergylett_4c00529 crossref_primary_10_1016_j_heliyon_2024_e32843 crossref_primary_10_1021_acsaem_1c03767 crossref_primary_10_1002_aenm_202400346 crossref_primary_10_1021_acsenergylett_4c02700 crossref_primary_10_1002_adfm_202407860 crossref_primary_10_1049_ote2_12104 crossref_primary_10_1038_s44359_024_00013_1 crossref_primary_10_1039_D2TA09175E crossref_primary_10_1155_2023_7184080 crossref_primary_10_1002_adma_202410248 crossref_primary_10_1002_adpr_202200079 crossref_primary_10_1021_acs_chemmater_3c00345 crossref_primary_10_1002_adma_202414841 crossref_primary_10_1021_acsenergylett_4c01628 crossref_primary_10_1016_j_jallcom_2023_171573 crossref_primary_10_1021_acsami_1c22262 crossref_primary_10_1021_acsami_3c10268 crossref_primary_10_1021_acsami_3c10146 crossref_primary_10_1021_acssuschemeng_4c02143 crossref_primary_10_1039_D3TC04411D crossref_primary_10_15541_jim20230049 crossref_primary_10_3390_nano12224055 crossref_primary_10_1039_D4YA00204K crossref_primary_10_1007_s40820_024_01417_1 crossref_primary_10_1016_j_nanoen_2022_107181 crossref_primary_10_1002_eem2_12465 crossref_primary_10_1016_j_cap_2025_01_010 crossref_primary_10_3390_mi14081562 crossref_primary_10_1021_acs_jpclett_5c00200 crossref_primary_10_1088_1674_4926_43_3_030203 crossref_primary_10_1002_aenm_202401188 crossref_primary_10_1021_acs_jpclett_1c03107 crossref_primary_10_1039_D2TA09793A crossref_primary_10_1002_solr_202200799 crossref_primary_10_1002_anie_202407228 crossref_primary_10_1002_sstr_202200012 crossref_primary_10_1021_acsami_4c09637 crossref_primary_10_1016_j_optmat_2023_113815 crossref_primary_10_1002_anie_202305551 crossref_primary_10_1016_j_jssc_2024_124999 crossref_primary_10_1016_j_surfin_2023_103478 crossref_primary_10_1016_j_solener_2022_07_009 crossref_primary_10_1021_acsami_2c06046 crossref_primary_10_1021_acs_jpclett_4c01695 crossref_primary_10_1002_ange_202402775 crossref_primary_10_1021_acsphotonics_3c00471 crossref_primary_10_1021_acsenergylett_4c01725 crossref_primary_10_1002_adfm_202108832 crossref_primary_10_1021_acsaem_4c00488 crossref_primary_10_1002_ente_202300916 crossref_primary_10_1021_acsnano_3c07942 crossref_primary_10_1021_acsenergylett_3c01610 crossref_primary_10_1002_slct_202402044 crossref_primary_10_1038_s41598_023_42447_w crossref_primary_10_3390_polym16213053 crossref_primary_10_1021_acsaem_4c01461 crossref_primary_10_1039_D4TA06046F crossref_primary_10_1021_jacsau_3c00519 crossref_primary_10_1002_adma_202313461 crossref_primary_10_1021_acsami_4c04280 crossref_primary_10_1016_j_nanoen_2021_106910 crossref_primary_10_1007_s10853_024_10051_6 crossref_primary_10_1016_j_orgel_2022_106707 crossref_primary_10_1002_adfm_202411750 crossref_primary_10_1002_solr_202200699 crossref_primary_10_1038_s41566_024_01381_7 crossref_primary_10_1039_D2GC04022K crossref_primary_10_1002_aenm_202300696 crossref_primary_10_1007_s12200_022_00048_x crossref_primary_10_1016_j_matt_2021_12_013 crossref_primary_10_1021_acsenergylett_4c00615 crossref_primary_10_1021_acs_nanolett_4c00646 crossref_primary_10_1002_jccs_202400060 crossref_primary_10_1002_adma_202402947 crossref_primary_10_1007_s12648_024_03365_3 crossref_primary_10_1021_acsami_1c20045 crossref_primary_10_1016_j_cej_2022_139975 crossref_primary_10_1021_acsenergylett_3c00742 crossref_primary_10_54227_mlab_20220047 crossref_primary_10_1039_D4CS00838C crossref_primary_10_1002_solr_202100633 crossref_primary_10_1016_j_nxener_2023_100011 crossref_primary_10_1021_acsami_3c11658 crossref_primary_10_1016_j_ensm_2025_104184 crossref_primary_10_1002_aesr_202300110 crossref_primary_10_1021_acs_jpclett_1c03427 crossref_primary_10_1039_D3QI00872J crossref_primary_10_1002_cey2_710 crossref_primary_10_1016_j_jechem_2021_09_019 crossref_primary_10_1016_j_mtener_2021_100891 crossref_primary_10_1039_D3TA07499D crossref_primary_10_1002_solr_202400121 crossref_primary_10_1039_D3CS00728F crossref_primary_10_1002_eem2_12529 crossref_primary_10_1002_adpr_202400095 crossref_primary_10_1016_j_cej_2022_140862 crossref_primary_10_1021_acsami_3c06070 crossref_primary_10_1002_smll_202306115 crossref_primary_10_1016_j_jpowsour_2022_232428 crossref_primary_10_1016_j_orgel_2022_106712 crossref_primary_10_1002_anie_202306712 crossref_primary_10_1002_ange_202413584 crossref_primary_10_1002_adfm_202312287 crossref_primary_10_1016_j_nanoen_2024_109952 crossref_primary_10_1088_1361_648X_ad604e crossref_primary_10_1002_aenm_202302926 crossref_primary_10_1021_acs_jpclett_3c03557 crossref_primary_10_1007_s12209_022_00316_z crossref_primary_10_1002_ange_202213386 crossref_primary_10_1002_ange_202318133 crossref_primary_10_1002_ange_202307228 crossref_primary_10_1039_D2TA09363D crossref_primary_10_1016_j_mtphys_2021_100513 crossref_primary_10_1021_acs_inorgchem_2c00354 crossref_primary_10_1002_advs_202200242 crossref_primary_10_1002_advs_202203749 crossref_primary_10_1002_aenm_202204233 crossref_primary_10_1002_smll_202308877 crossref_primary_10_1002_adfm_202213939 crossref_primary_10_1039_D3TA03539E crossref_primary_10_1016_j_cinorg_2023_100029 crossref_primary_10_1021_acsami_3c19237 crossref_primary_10_1021_acsaem_3c00085 |
Cites_doi | 10.1039/D0EE04007J 10.1126/science.aal4211 10.1021/acsenergylett.6b00499 10.1039/D0EE01845G 10.1016/j.joule.2018.09.012 10.1021/acsenergylett.0c00960 10.1016/j.nanoen.2018.05.006 10.1002/adfm.201808059 10.1038/s41467-020-15078-2 10.1021/jacs.7b01815 10.1021/acsenergylett.7b00976 10.1021/acsenergylett.9b00892 10.1021/jacs.5b13294 10.1021/acsenergylett.0c00888 10.1002/adma.201800258 10.1002/adma.201804835 10.1016/j.joule.2019.08.023 10.1021/acsenergylett.0c00782 10.1021/acsami.0c01311 10.1016/j.nanoen.2020.104858 10.1002/anie.201902418 10.1002/cssc.201902000 10.1002/adma.201907392 10.1021/jacs.7b02120 10.1021/acsenergylett.0c00526 10.1016/j.matt.2020.11.012 10.1016/j.joule.2020.03.007 10.1039/C9TA01978B 10.1002/adfm.202002230 10.1007/s11426-019-9653-8 10.1021/acsaem.8b00372 10.1002/adma.201907623 10.1039/C7TA00929A 10.1002/aenm.201702019 10.1038/s41467-018-07951-y 10.1002/solr.201900310 10.1016/j.joule.2017.09.007 10.1021/acsenergylett.8b00047 10.1002/adfm.201807696 10.1002/aenm.201902584 10.1002/adfm.202000794 10.1016/j.nanoen.2019.104362 10.1038/s41467-020-16561-6 10.1038/s41467-019-13856-1 10.1002/adma.201501978 10.1021/acs.jpclett.9b02024 10.1002/adma.201803230 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202102055 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202102055 ADMA202102055 |
Genre | article |
GrantInformation_xml | – fundername: Shenzhen Key Laboratory Project funderid: ZDSYS201602261933302 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2019A1515111134 – fundername: National Natural Science Foundation of China funderid: 61775091 – fundername: Shenzhen Science and Technology Innovation Committee funderid: JCYJ20200109141412308 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3505-572f94ef856f9442b6abd61597559391aafe704e760375fb6ef57f5dee3461853 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 11:48:41 EDT 2025 Fri Jul 25 03:25:22 EDT 2025 Thu Apr 24 22:53:05 EDT 2025 Tue Jul 01 02:33:05 EDT 2025 Wed Jan 22 16:27:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3505-572f94ef856f9442b6abd61597559391aafe704e760375fb6ef57f5dee3461853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2775-0894 |
PQID | 2570392473 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2555107569 proquest_journals_2570392473 crossref_primary_10_1002_adma_202102055 crossref_citationtrail_10_1002_adma_202102055 wiley_primary_10_1002_adma_202102055_ADMA202102055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2019; 7 2017; 1 2019; 4 2019; 3 2021; 4 2019; 31 2020; 63 2019; 10 2019; 12 2019; 58 2020; 13 2020; 12 2020; 11 2020; 32 2017; 355 2018; 49 2017; 139 2021; 14 2018; 8 2020; 5 2020; 4 2018; 3 2015; 27 2016; 1 2018; 2 2020; 74 2020; 30 2021 2018; 1 2019; 29 2020; 68 2018; 30 2016; 138 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 2 start-page: 2732 year: 2018 publication-title: Joule – volume: 74 year: 2020 publication-title: Nano Energy – volume: 27 start-page: 6806 year: 2015 publication-title: Adv. Mater. – volume: 1 start-page: 659 year: 2017 publication-title: Joule – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 49 start-page: 411 year: 2018 publication-title: Nano Energy – volume: 3 start-page: 684 year: 2018 publication-title: ACS Energy Lett. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 582 year: 2020 publication-title: Nat. Commun. – volume: 5 start-page: 2327 year: 2020 publication-title: ACS Energy Lett. – year: 2021 – volume: 4 start-page: 902 year: 2020 publication-title: Joule – volume: 5 start-page: 1923 year: 2020 publication-title: ACS Energy Lett. – volume: 1 start-page: 1233 year: 2016 publication-title: ACS Energy Lett. – volume: 63 start-page: 107 year: 2020 publication-title: Sci. China: Chem. – volume: 4 start-page: 709 year: 2021 publication-title: Matter – volume: 7 start-page: 8818 year: 2019 publication-title: J. Mater. Chem. A – volume: 58 start-page: 6688 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 1741 year: 2020 publication-title: ACS Energy Lett. – volume: 4 year: 2020 publication-title: Sol. RRL – volume: 11 start-page: 2678 year: 2020 publication-title: Nat. Commun. – volume: 12 start-page: 5007 year: 2019 publication-title: ChemSusChem – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 11 start-page: 1245 year: 2020 publication-title: Nat. Commun. – volume: 138 start-page: 2138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 1286 year: 2021 publication-title: Energy Environ. Sci. – volume: 4 start-page: 1521 year: 2019 publication-title: ACS Energy Lett. – volume: 3 start-page: 3072 year: 2019 publication-title: Joule – volume: 10 start-page: 16 year: 2019 publication-title: Nat. Commun. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 68 year: 2020 publication-title: Nano Energy – volume: 13 start-page: 2896 year: 2020 publication-title: Energy Environ. Sci. – volume: 139 start-page: 6693 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 10 start-page: 5277 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 355 start-page: 1288 year: 2017 publication-title: Science – volume: 139 start-page: 6718 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 46 year: 2018 publication-title: ACS Energy Lett. – volume: 1 start-page: 2709 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 5 start-page: 2223 year: 2020 publication-title: ACS Energy Lett. – volume: 10 year: 2019 publication-title: Adv. Energy Mater. – ident: e_1_2_7_36_1 doi: 10.1039/D0EE04007J – ident: e_1_2_7_45_1 doi: 10.1126/science.aal4211 – ident: e_1_2_7_7_1 doi: 10.1021/acsenergylett.6b00499 – ident: e_1_2_7_33_1 doi: 10.1039/D0EE01845G – ident: e_1_2_7_41_1 doi: 10.1016/j.joule.2018.09.012 – ident: e_1_2_7_44_1 doi: 10.1021/acsenergylett.0c00960 – ident: e_1_2_7_30_1 doi: 10.1016/j.nanoen.2018.05.006 – ident: e_1_2_7_17_1 doi: 10.1002/adfm.201808059 – ident: e_1_2_7_19_1 doi: 10.1038/s41467-020-15078-2 – ident: e_1_2_7_43_1 doi: 10.1021/jacs.7b01815 – ident: e_1_2_7_31_1 doi: 10.1021/acsenergylett.7b00976 – ident: e_1_2_7_49_1 doi: 10.1021/acsenergylett.9b00892 – ident: e_1_2_7_6_1 doi: 10.1021/jacs.5b13294 – ident: e_1_2_7_37_1 doi: 10.1021/acsenergylett.0c00888 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201800258 – ident: e_1_2_7_18_1 doi: 10.1002/adma.201804835 – ident: e_1_2_7_38_1 doi: 10.1016/j.joule.2019.08.023 – ident: e_1_2_7_29_1 doi: 10.1021/acsenergylett.0c00782 – ident: e_1_2_7_34_1 doi: 10.1021/acsami.0c01311 – ident: e_1_2_7_21_1 doi: 10.1016/j.nanoen.2020.104858 – ident: e_1_2_7_27_1 doi: 10.1002/anie.201902418 – ident: e_1_2_7_46_1 doi: 10.1002/cssc.201902000 – ident: e_1_2_7_5_1 doi: 10.1002/adma.201907392 – ident: e_1_2_7_13_1 doi: 10.1021/jacs.7b02120 – ident: e_1_2_7_28_1 doi: 10.1021/acsenergylett.0c00526 – ident: e_1_2_7_22_1 doi: 10.1016/j.matt.2020.11.012 – ident: e_1_2_7_20_1 doi: 10.1016/j.joule.2020.03.007 – ident: e_1_2_7_4_1 doi: 10.1039/C9TA01978B – ident: e_1_2_7_42_1 doi: 10.1002/adfm.202002230 – ident: e_1_2_7_12_1 doi: 10.1007/s11426-019-9653-8 – ident: e_1_2_7_14_1 doi: 10.1021/acsaem.8b00372 – ident: e_1_2_7_26_1 doi: 10.1002/adma.201907623 – ident: e_1_2_7_8_1 doi: 10.1039/C7TA00929A – ident: e_1_2_7_23_1 doi: 10.1002/aenm.201702019 – ident: e_1_2_7_16_1 doi: 10.1038/s41467-018-07951-y – ident: e_1_2_7_32_1 doi: 10.1002/solr.201900310 – ident: e_1_2_7_39_1 doi: 10.1016/j.joule.2017.09.007 – ident: e_1_2_7_1_1 – ident: e_1_2_7_48_1 doi: 10.1021/acsenergylett.8b00047 – ident: e_1_2_7_40_1 doi: 10.1002/adfm.201807696 – ident: e_1_2_7_9_1 doi: 10.1002/aenm.201902584 – ident: e_1_2_7_35_1 doi: 10.1002/adfm.202000794 – ident: e_1_2_7_3_1 doi: 10.1016/j.nanoen.2019.104362 – ident: e_1_2_7_24_1 doi: 10.1038/s41467-020-16561-6 – ident: e_1_2_7_47_1 doi: 10.1038/s41467-019-13856-1 – ident: e_1_2_7_2_1 doi: 10.1002/adma.201501978 – ident: e_1_2_7_10_1 doi: 10.1021/acs.jpclett.9b02024 – ident: e_1_2_7_25_1 doi: 10.1002/adma.201803230 – ident: e_1_2_7_15_1 doi: 10.1016/j.joule.2019.08.023 |
SSID | ssj0009606 |
Score | 2.7208319 |
Snippet | As the most promising lead‐free one, tin‐halides based perovskite solar cells still suffer from the severe bulk‐defect due to the easy oxidation of tin from... As the most promising lead-free one, tin-halides based perovskite solar cells still suffer from the severe bulk-defect due to the easy oxidation of tin from... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2102055 |
SubjectTerms | 2D/3D heterogeneous tin‐perovskite absorbers Absorbers conversion efficiency Efficiency Energy conversion efficiency Grain boundaries Halides lead‐free perovskite solar cells Microstructure Oxidation oxidation of tin Perovskites Photovoltaic cells Solar cells Tin tin‐halide perovskites Titanium nitride |
Title | Heterogeneous 2D/3D Tin‐Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202102055 https://www.proquest.com/docview/2570392473 https://www.proquest.com/docview/2555107569 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBclT9tD120dTdsVDQp9cv7Ikmw_ZklLGKSUNoG8GSk6QVhISp30oU_7CPuM-yS7kxMnKYzB9mQZSdjW6ezfne9-x9ilcplMfSKJfNBGMvM6MimkkTPOtyGTYCXlDg9udX8kv43VeCeLv-SHqBxupBnhfU0KbmzR3JKGGhd4g8hkaSnKMqeALUJF91v-KILngWwvVlGmZbphbWyJ5v70_a_SFmruAtbwxbl5x8zmXstAk--N1dI2Ji-vaBz_52GO2OEajvJOuX_eswOYf2Bvd0gKP7JpnyJmFrjRYLEquOg14x4fTue_fvzsI4h3UPA77H8uyA_MH8hU5l2YzQpOPl5sPlE4EjjepQD34J3j14G4grI--VdEreSu5215zEY318NuP1oXaIgmMSKnSCXCozh9qjQepbDaWIcQKUvQTomztjEekpaERFOlXW81eJV45QBiqQkofGK1-WIOJ4xrjRYxeJFpk0hHNZAVOCtib9vCQJrWWbQRUD5Zs5dTEY1ZXvIui5yWMK-WsM6uqvGPJW_HH0eeb-Sdr_W3yKm2HyJHmcR19qXqRs2j3ykmrDeOQbSJiEtndSaCcP9ypbzTG3Sqs9N_mXTG3lC7DHI7Z7Xl0wo-Iypa2ouw838DdhYDIQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcgAO5V-kFFgkECc3yXq9tg8cQtzKpU2FIJV6c9fZWakiSqo6KYJTH6GvwqvwCDwJM3bstEgICakHTv5b_-3u7HwzO_sNwKvAxipyoWLywdxTsdOeiTDyrLGui7HCXPHa4cG-Tg_U-8PgcAW-12thKn6IxuHGklGO1yzg7JBuL1lDjS2Jg9hm6QR1XOUufv1CVlvxdiehJn4t5fbWsJ96i8QC3sgnje8FoXT0GS4KNG2VzLXJLan2OCR87cddYxyGHYWh5gyxLtfogtAFFtFXmhUcPfcG3OQ04kzXn3xcMlaxQVDS-_mBF2sV1TyRHdm--r1X9eAS3F6GyKWO274LP-raqUJbPm_OZ_nm6NtvxJH_VfXdg7UF4ha9SkTuwwpOHsCdSzyMD-E45aCgKckSTueFkEnbT8TwePLz_CIlO8ViIT7Q9bOCXd3iE3sDRB_H40KwG5t2TzniCq3ocwx_6YAUWyU3By9sFe8ImPOMhOiqR3BwLf_6GFYn0wk-AaE1Gf3oZKxNqCyneQ7Q5tJ3eVcajKIWeHWPyEYLgnbOEzLOKmppmXGTZU2TteBNU_6koib5Y8mNuoNliyGqyDh9IYFjFfoteNlcpsGFZ4xMWd9UhgA1gUodt0CWvekvb8p6yaDXHK3_y00v4FY6HOxlezv7u0_hNp-vYvo2YHV2OsdnBAJn-fNS7AQcXXdH_QW9cl81 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VIiE48I8IFDASiNM2idfr3T30ELKNUkqrClqpt8WOx1JFlFTdBASnPkIfpa_CK_AkzOxmNy0SQkLqgdP-ef9sj-eb8fgbgFeRS1XiY8XkgzZQqdeBSTAJnHG-i6lCq3jt8M6uHh6od4fR4Qqc12thKn6IxuHGklGO1yzgx863l6ShxpW8QWyydKI6rHIbv30lo63Y2MqohV9LOdjc7w-DRV6BYBSSwg-iWHr6Cp9EmrZKWm2sI82exgSvw7RrjMe4ozDWnCDWW40-in3kEEOlWb_Rc6_BdaU7KSeLyD4sCavYHijZ_cIoSLVKaprIjmxf_t7LanCJbS8i5FLFDe7Aj7pyqsiWz-vzmV0fff-NN_J_qr27cHuBt0WvEpB7sIKT-3DrAgvjAzgackjQlCQJp_NCyKwdZmL_aPLz9GxIVorDQuzR9S8FO7rFR_YFiD6Ox4VgJzbtnnC8FTrR5wj-0v0oNktmDl7WKt4SLOf5CNFVD-HgSv71EaxOphN8DEJrMvnRy1SbWDlO8hyhszL0tisNJkkLgrpD5KMFPTtnCRnnFbG0zLnJ8qbJWvCmKX9cEZP8seRa3b_yxQBV5Jy8kKCxisMWvGwu09DC80WmrG8qQ3CaIKVOWyDLzvSXN-W9bKfXHD35l5tewI29bJC_39rdfgo3-XQV0LcGq7OTOT4jBDizz0uhE_DpqvvpLxaYXeQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+2D%2F3D+Tin%E2%80%90Halides+Perovskite+Solar+Cells+with+Certified+Conversion+Efficiency+Breaking+14&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yu%2C+Bin%E2%80%90Bin&rft.au=Chen%2C+Zhenhua&rft.au=Zhu%2C+Yudong&rft.au=Wang%2C+Yiyu&rft.date=2021-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=36&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202102055&rft.externalDBID=10.1002%252Fadma.202102055&rft.externalDocID=ADMA202102055 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |