Mitigating the Kinetic Hindrance of Single‐Crystalline Ni‐Rich Cathode via Surface Gradient Penetration of Tantalum

Single‐crystalline Ni‐rich cathodes are promising candidates for the next‐generation high‐energy Li‐ion batteries. However, they still suffer from poor rate capability and low specific capacity due to the severe kinetic hindrance at the nondilute state during Li+ intercalation. Herein, combining exp...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 51; pp. 26535 - 26539
Main Authors Zou, Yu‐Gang, Mao, Huican, Meng, Xin‐Hai, Du, Ya‐Hao, Sheng, Hang, Yu, Xiqian, Shi, Ji‐Lei, Guo, Yu‐Guo
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 13.12.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single‐crystalline Ni‐rich cathodes are promising candidates for the next‐generation high‐energy Li‐ion batteries. However, they still suffer from poor rate capability and low specific capacity due to the severe kinetic hindrance at the nondilute state during Li+ intercalation. Herein, combining experiments with density functional theory (DFT) calculations, we demonstrate that this obstacle can be tackled by regulating the oxidation state of nickel via injecting high‐valence foreign Ta5+. The as‐obtained single‐crystalline LiNi0.8Co0.1Mn0.1O2 delivers a high specific capacity (211.2 mAh g−1 at 0.1 C), high initial Coulombic efficiency (93.8 %), excellent rate capability (157 mAh g−1 at 4 C), and good durability (90.4 % after 100 cycles under 0.5 C). This work provides a strategy to mitigate the Li+ kinetic hindrance of the appealing single‐crystalline Ni‐rich cathodes and will inspire peers to conduct an intensive study. The Ta doping created some low‐valence Ni, decreasing the electrostatic repulsion between transition metal and Li+, thus the Li+ diffusion energy barrier has been decreased and the kinetic hindrance was mitigated.
AbstractList Single‐crystalline Ni‐rich cathodes are promising candidates for the next‐generation high‐energy Li‐ion batteries. However, they still suffer from poor rate capability and low specific capacity due to the severe kinetic hindrance at the nondilute state during Li+ intercalation. Herein, combining experiments with density functional theory (DFT) calculations, we demonstrate that this obstacle can be tackled by regulating the oxidation state of nickel via injecting high‐valence foreign Ta5+. The as‐obtained single‐crystalline LiNi0.8Co0.1Mn0.1O2 delivers a high specific capacity (211.2 mAh g−1 at 0.1 C), high initial Coulombic efficiency (93.8 %), excellent rate capability (157 mAh g−1 at 4 C), and good durability (90.4 % after 100 cycles under 0.5 C). This work provides a strategy to mitigate the Li+ kinetic hindrance of the appealing single‐crystalline Ni‐rich cathodes and will inspire peers to conduct an intensive study.
Single‐crystalline Ni‐rich cathodes are promising candidates for the next‐generation high‐energy Li‐ion batteries. However, they still suffer from poor rate capability and low specific capacity due to the severe kinetic hindrance at the nondilute state during Li+ intercalation. Herein, combining experiments with density functional theory (DFT) calculations, we demonstrate that this obstacle can be tackled by regulating the oxidation state of nickel via injecting high‐valence foreign Ta5+. The as‐obtained single‐crystalline LiNi0.8Co0.1Mn0.1O2 delivers a high specific capacity (211.2 mAh g−1 at 0.1 C), high initial Coulombic efficiency (93.8 %), excellent rate capability (157 mAh g−1 at 4 C), and good durability (90.4 % after 100 cycles under 0.5 C). This work provides a strategy to mitigate the Li+ kinetic hindrance of the appealing single‐crystalline Ni‐rich cathodes and will inspire peers to conduct an intensive study. The Ta doping created some low‐valence Ni, decreasing the electrostatic repulsion between transition metal and Li+, thus the Li+ diffusion energy barrier has been decreased and the kinetic hindrance was mitigated.
Single-crystalline Ni-rich cathodes are promising candidates for the next-generation high-energy Li-ion batteries. However, they still suffer from poor rate capability and low specific capacity due to the severe kinetic hindrance at the nondilute state during Li+ intercalation. Herein, combining experiments with density functional theory (DFT) calculations, we demonstrate that this obstacle can be tackled by regulating the oxidation state of nickel via injecting high-valence foreign Ta5+ . The as-obtained single-crystalline LiNi0.8 Co0.1 Mn0.1 O2 delivers a high specific capacity (211.2 mAh g-1 at 0.1 C), high initial Coulombic efficiency (93.8 %), excellent rate capability (157 mAh g-1 at 4 C), and good durability (90.4 % after 100 cycles under 0.5 C). This work provides a strategy to mitigate the Li+ kinetic hindrance of the appealing single-crystalline Ni-rich cathodes and will inspire peers to conduct an intensive study.Single-crystalline Ni-rich cathodes are promising candidates for the next-generation high-energy Li-ion batteries. However, they still suffer from poor rate capability and low specific capacity due to the severe kinetic hindrance at the nondilute state during Li+ intercalation. Herein, combining experiments with density functional theory (DFT) calculations, we demonstrate that this obstacle can be tackled by regulating the oxidation state of nickel via injecting high-valence foreign Ta5+ . The as-obtained single-crystalline LiNi0.8 Co0.1 Mn0.1 O2 delivers a high specific capacity (211.2 mAh g-1 at 0.1 C), high initial Coulombic efficiency (93.8 %), excellent rate capability (157 mAh g-1 at 4 C), and good durability (90.4 % after 100 cycles under 0.5 C). This work provides a strategy to mitigate the Li+ kinetic hindrance of the appealing single-crystalline Ni-rich cathodes and will inspire peers to conduct an intensive study.
Single‐crystalline Ni‐rich cathodes are promising candidates for the next‐generation high‐energy Li‐ion batteries. However, they still suffer from poor rate capability and low specific capacity due to the severe kinetic hindrance at the nondilute state during Li + intercalation. Herein, combining experiments with density functional theory (DFT) calculations, we demonstrate that this obstacle can be tackled by regulating the oxidation state of nickel via injecting high‐valence foreign Ta 5+ . The as‐obtained single‐crystalline LiNi 0.8 Co 0.1 Mn 0.1 O 2 delivers a high specific capacity (211.2 mAh g −1 at 0.1 C), high initial Coulombic efficiency (93.8 %), excellent rate capability (157 mAh g −1 at 4 C), and good durability (90.4 % after 100 cycles under 0.5 C). This work provides a strategy to mitigate the Li + kinetic hindrance of the appealing single‐crystalline Ni‐rich cathodes and will inspire peers to conduct an intensive study.
Author Mao, Huican
Meng, Xin‐Hai
Sheng, Hang
Yu, Xiqian
Zou, Yu‐Gang
Guo, Yu‐Guo
Shi, Ji‐Lei
Du, Ya‐Hao
Author_xml – sequence: 1
  givenname: Yu‐Gang
  surname: Zou
  fullname: Zou, Yu‐Gang
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 2
  givenname: Huican
  surname: Mao
  fullname: Mao, Huican
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Xin‐Hai
  surname: Meng
  fullname: Meng, Xin‐Hai
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 4
  givenname: Ya‐Hao
  surname: Du
  fullname: Du, Ya‐Hao
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Hang
  surname: Sheng
  fullname: Sheng, Hang
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 6
  givenname: Xiqian
  surname: Yu
  fullname: Yu, Xiqian
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Ji‐Lei
  surname: Shi
  fullname: Shi, Ji‐Lei
  email: jileishi@iccas.ac.cn
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 8
  givenname: Yu‐Guo
  orcidid: 0000-0003-0322-8476
  surname: Guo
  fullname: Guo, Yu‐Guo
  email: ygguo@iccas.ac.cn
  organization: University of Chinese Academy of Sciences (UCAS)
BookMark eNqFkctu3CAUhlGUSrm026yRuunGU8Bg42U0SpOouSmXNTrChwyRB6eAG82uj5BnzJOU6VSJFKnqCgTf98Ovs0e2wxiQkAPOZpwx8RWCx5lggnPeKblFdrkSvKrbtt4ue1nXVasV3yF7KT0UXmvW7JKnc5_9PWQf7mleIP3uA2Zv6YkPfYRgkY6O3pTbAV9-Pc_jKmUYhgLRC18Orr1d0Dnkxdgj_emB3kzRQbGOI_QeQ6ZXWAJjeWAM66hbCCVgWn4kHxwMCT_9XffJ3bej2_lJdXZ5fDo_PKtsrZisnNUKhNKgOfK-dACJvRWKcSu1BqwlE04jcN1aFMw2LXQNOACFvUTn6n3yZZP7GMcfE6Zslj5ZHAYIOE7JCNV2TLedlgX9_A59GKcYyu-MaFjT8U6ItlByQ9k4phTRGevzn3qlpR8MZ2Y9DbOehnmdRtFm77TH6JcQV_8Wuo3w5Adc_Yc2hxenR2_ubw5fonI
CitedBy_id crossref_primary_10_1016_j_jcis_2022_08_135
crossref_primary_10_1002_adma_202411426
crossref_primary_10_1016_j_jechem_2024_06_012
crossref_primary_10_1016_j_ensm_2024_103332
crossref_primary_10_1016_j_ensm_2023_103050
crossref_primary_10_1007_s12598_024_02951_y
crossref_primary_10_1016_j_jechem_2024_06_015
crossref_primary_10_1021_acsaem_4c00590
crossref_primary_10_1021_acs_iecr_4c02822
crossref_primary_10_1002_anie_202407477
crossref_primary_10_1039_D3TA02538A
crossref_primary_10_1039_D2TA06703J
crossref_primary_10_1021_acsaem_2c01812
crossref_primary_10_1016_j_jechem_2024_07_062
crossref_primary_10_1016_j_jpowsour_2023_232633
crossref_primary_10_1021_acsami_2c22815
crossref_primary_10_1016_j_jechem_2025_02_001
crossref_primary_10_1039_D4SC08351B
crossref_primary_10_1002_aenm_202303764
crossref_primary_10_1002_adma_202408543
crossref_primary_10_1016_j_est_2023_109936
crossref_primary_10_1039_D2TA08703K
crossref_primary_10_1016_j_diamond_2023_110233
crossref_primary_10_1002_adma_202404982
crossref_primary_10_1016_j_cej_2022_139431
crossref_primary_10_1002_anie_202409764
crossref_primary_10_1016_j_jpowsour_2024_234770
crossref_primary_10_1016_j_cej_2023_142946
crossref_primary_10_1021_acsami_2c04821
crossref_primary_10_1021_acsami_2c04666
crossref_primary_10_1016_j_etran_2023_100233
crossref_primary_10_1016_j_jpowsour_2024_234522
crossref_primary_10_1016_j_cej_2024_152357
crossref_primary_10_1016_j_jallcom_2022_164727
crossref_primary_10_3866_PKU_WHXB202308051
crossref_primary_10_1007_s10008_022_05212_z
crossref_primary_10_1002_adma_202412360
crossref_primary_10_1002_adma_202406175
crossref_primary_10_1002_anie_202116865
crossref_primary_10_1016_j_jechem_2023_04_029
crossref_primary_10_1002_anie_202216155
crossref_primary_10_1016_j_cej_2023_146733
crossref_primary_10_3389_fbael_2024_1338069
crossref_primary_10_1016_j_commatsci_2023_112657
crossref_primary_10_1021_acs_chemrev_3c00728
crossref_primary_10_1021_acsenergylett_2c01670
crossref_primary_10_1016_j_jechem_2024_10_015
crossref_primary_10_1021_acsnano_3c07655
crossref_primary_10_1002_ange_202407477
crossref_primary_10_1021_acsami_2c17534
crossref_primary_10_1002_adfm_202415035
crossref_primary_10_1002_adfm_202206428
crossref_primary_10_1002_anie_202302547
crossref_primary_10_1039_D3TA05060B
crossref_primary_10_1016_j_cej_2023_142093
crossref_primary_10_1021_acsami_3c00937
crossref_primary_10_1002_sstr_202300247
crossref_primary_10_1016_j_cej_2024_151937
crossref_primary_10_1016_j_ensm_2024_103788
crossref_primary_10_1002_ange_202116865
crossref_primary_10_1002_smll_202310756
crossref_primary_10_1021_acsnano_4c06663
crossref_primary_10_1002_asia_202200213
crossref_primary_10_1021_acssuschemeng_1c07941
crossref_primary_10_1002_adfm_202423717
crossref_primary_10_1002_ange_202302547
crossref_primary_10_1016_j_est_2024_113037
crossref_primary_10_1016_j_est_2024_115213
crossref_primary_10_1016_j_cej_2024_153821
crossref_primary_10_1021_acsami_1c20568
crossref_primary_10_1021_acs_iecr_2c04021
crossref_primary_10_1002_smll_202402609
crossref_primary_10_1021_acsaem_4c02211
crossref_primary_10_1002_smll_202207569
crossref_primary_10_1016_j_cej_2024_149827
crossref_primary_10_1021_jacs_4c02198
crossref_primary_10_1002_ange_202409764
crossref_primary_10_1016_j_jallcom_2024_174608
crossref_primary_10_1039_D4TA04307C
crossref_primary_10_1007_s12274_022_4889_0
crossref_primary_10_1021_acsenergylett_4c01230
crossref_primary_10_1002_bte2_20230033
crossref_primary_10_1016_j_cej_2024_154344
crossref_primary_10_1002_ange_202216155
crossref_primary_10_1002_celc_202300802
crossref_primary_10_1002_adma_202212308
crossref_primary_10_1039_D4TA04197F
crossref_primary_10_1016_j_ensm_2022_08_026
crossref_primary_10_1002_adma_202405628
crossref_primary_10_1002_aenm_202403150
crossref_primary_10_2139_ssrn_3993235
crossref_primary_10_1002_aenm_202303207
crossref_primary_10_1016_j_jechem_2023_09_038
crossref_primary_10_1021_acsnano_4c09354
crossref_primary_10_1016_j_jechem_2024_12_033
crossref_primary_10_1021_acs_iecr_4c01424
crossref_primary_10_1002_anie_202420413
crossref_primary_10_1016_j_est_2022_105275
crossref_primary_10_1016_j_cej_2023_144405
crossref_primary_10_1016_j_jpowsour_2023_233141
crossref_primary_10_1016_j_jpowsour_2024_235267
crossref_primary_10_1021_acsaem_3c01428
crossref_primary_10_1002_smtd_202301162
crossref_primary_10_1016_j_ensm_2023_102969
crossref_primary_10_1016_j_jelechem_2023_117483
crossref_primary_10_1016_j_jpowsour_2023_233811
crossref_primary_10_1021_acs_iecr_3c04271
crossref_primary_10_1002_aenm_202202993
crossref_primary_10_1002_ange_202318186
crossref_primary_10_1016_j_esci_2022_02_006
crossref_primary_10_1021_acs_iecr_4c01827
crossref_primary_10_1016_j_nanoen_2022_106961
crossref_primary_10_1021_acs_energyfuels_3c01588
crossref_primary_10_1002_ange_202420413
crossref_primary_10_1039_D3CC01099F
crossref_primary_10_1007_s10008_023_05504_y
crossref_primary_10_1002_smll_202405853
crossref_primary_10_1007_s11771_024_5828_8
crossref_primary_10_1039_D4CP03911D
crossref_primary_10_1016_j_cclet_2023_108655
crossref_primary_10_1016_j_jechem_2024_05_037
crossref_primary_10_1016_j_jpowsour_2024_234439
crossref_primary_10_1016_j_jechem_2024_02_064
crossref_primary_10_3390_en15239235
crossref_primary_10_1002_anie_202318186
crossref_primary_10_1016_j_cclet_2023_108813
crossref_primary_10_1016_j_seppur_2024_131298
crossref_primary_10_1016_j_pmatsci_2024_101247
crossref_primary_10_1016_j_partic_2022_12_003
crossref_primary_10_1016_j_apsusc_2022_156043
crossref_primary_10_1002_adfm_202211515
crossref_primary_10_1016_j_cej_2024_150644
crossref_primary_10_1021_acsami_2c22406
crossref_primary_10_1007_s12274_022_4768_6
crossref_primary_10_1021_acsaem_4c01160
crossref_primary_10_1126_sciadv_ado4472
crossref_primary_10_1093_nsr_nwae219
Cites_doi 10.1016/j.jpowsour.2019.227693
10.1021/acs.chemmater.9b00227
10.1149/2.0401714jes
10.1016/j.electacta.2018.02.049
10.1038/s41586-019-1854-3
10.1038/ncomms6381
10.1126/science.1122152
10.1021/j100302a027
10.1021/acs.chemmater.5b02521
10.1016/j.jpowsour.2013.10.130
10.1021/acs.chemmater.7b00659
10.1021/acsami.7b01137
10.1016/j.nanoen.2021.106172
10.1016/j.mattod.2020.01.019
10.1149/2.0681910jes
10.1016/j.chempr.2020.07.017
10.1149/2.0491811jes
10.1002/aenm.202000495
10.1021/jacs.0c09961
10.1021/acsenergylett.0c00191
10.1103/PhysRevB.78.104306
10.1002/aenm.202100884
10.1021/cm2026703
10.1002/advs.201902538
10.1016/j.jpcs.2009.03.012
10.1021/cr020731c
10.1149/2.0951805jes
10.1149/2.0491813jes
10.1016/j.jpowsour.2020.228597
10.1038/s41467-020-19528-9
10.1002/adfm.202010291
10.1149/2.1011507jes
10.1021/acsami.9b22937
10.1016/j.electacta.2018.09.158
10.1002/adma.202000316
10.1016/j.jpowsour.2019.227242
10.1002/aenm.202002027
10.1038/s41598-019-45556-7
10.1038/s41563-020-00893-1
10.1002/aenm.202100185
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202111954
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 26539
ExternalDocumentID 10_1002_anie_202111954
ANIE202111954
Genre shortCommunication
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51902314
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  funderid: 2019033
– fundername: Basic Science Center Project of National Natural Science Foundation
  funderid: 51788104
– fundername: Beijing Natural Science Foundation
  funderid: L182051
– fundername: Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDA21070300
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3504-fc85a258a81e1d433a4edc2501c488ae3402f8ea187ce20c67a96afaa5ed4eff3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 22:13:18 EDT 2025
Fri Jul 25 10:24:21 EDT 2025
Thu Apr 24 23:04:46 EDT 2025
Tue Jul 01 01:18:09 EDT 2025
Wed Jan 22 16:28:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3504-fc85a258a81e1d433a4edc2501c488ae3402f8ea187ce20c67a96afaa5ed4eff3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0322-8476
PQID 2606919227
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2579087984
proquest_journals_2606919227
crossref_citationtrail_10_1002_anie_202111954
crossref_primary_10_1002_anie_202111954
wiley_primary_10_1002_anie_202111954_ANIE202111954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 13, 2021
PublicationDateYYYYMMDD 2021-12-13
PublicationDate_xml – month: 12
  year: 2021
  text: December 13, 2021
  day: 13
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 162
2019; 9
2018; 165
2021; 87
2004; 104
2021; 20
2019; 31
2020; 142
1987; 91
2018; 268
2008; 78
2020; 36
2020; 12
2017; 29
2020; 11
2020; 32
2020; 10
2014; 252
2017; 9
2019; 166
2019; 442
2006; 311
2020; 7
2020; 6
2020; 5
2014; 5
2018; 292
2015; 27
2021; 31
2021; 11
2009; 70
2020; 473
2020; 450
2020; 577
2011; 23
2017; 164
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_24_1
e_1_2_2_22_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_20_1
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_43_1
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_45_1
e_1_2_2_26_1
e_1_2_2_13_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_30_1
e_1_2_2_19_2
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_36_1
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_42_2
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_27_2
e_1_2_2_46_1
e_1_2_2_9_2
e_1_2_2_14_1
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_39_1
e_1_2_2_10_1
e_1_2_2_31_1
e_1_2_2_18_2
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_35_2
e_1_2_2_50_1
References_xml – volume: 252
  start-page: 292
  year: 2014
  end-page: 297
  publication-title: J. Power Sources
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1136
  year: 2020
  end-page: 1146
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 15145
  year: 2020
  end-page: 15154
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 5381
  year: 2014
  publication-title: Nat. Commun.
– volume: 165
  start-page: A2682
  year: 2018
  end-page: A2695
  publication-title: J. Electrochem. Soc.
– volume: 78
  year: 2008
  publication-title: Phys. Rev. B.
– volume: 473
  year: 2020
  publication-title: J. Power Sources
– volume: 87
  year: 2021
  publication-title: Nano Energy
– volume: 27
  start-page: 5491
  year: 2015
  end-page: 5494
  publication-title: Chem. Mater.
– volume: 292
  start-page: 217
  year: 2018
  end-page: 226
  publication-title: Electrochim. Acta
– volume: 91
  start-page: 4779
  year: 1987
  end-page: 4788
  publication-title: J. Phys. Chem.
– volume: 162
  start-page: A1401
  year: 2015
  end-page: A1408
  publication-title: J. Electrochem. Soc.
– volume: 164
  start-page: A3529
  year: 2017
  end-page: A3537
  publication-title: J. Electrochem. Soc.
– volume: 165
  start-page: A1038
  year: 2018
  end-page: A1045
  publication-title: J. Electrochem. Soc.
– volume: 31
  start-page: 3293
  year: 2019
  end-page: 3300
  publication-title: Chem. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 442
  year: 2019
  publication-title: J. Power Sources
– volume: 6
  start-page: 2759
  year: 2020
  end-page: 2769
  publication-title: Chem
– volume: 166
  start-page: A1956
  year: 2019
  end-page: A1963
  publication-title: J. Electrochem. Soc.
– volume: 20
  start-page: 841
  year: 2021
  publication-title: Nat. Mater.
– volume: 450
  year: 2020
  publication-title: J. Power Sources
– volume: 9
  start-page: 17835
  year: 2017
  end-page: 17845
  publication-title: ACS Appl. Mater. Interfaces
– volume: 142
  start-page: 19745
  year: 2020
  end-page: 19753
  publication-title: J. Am. Chem. Soc.
– volume: 311
  start-page: 977
  year: 2006
  end-page: 980
  publication-title: Science
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 4330
  year: 2017
  end-page: 4340
  publication-title: Chem. Mater.
– volume: 9
  start-page: 8952
  year: 2019
  publication-title: Sci. Rep.
– volume: 577
  start-page: 502
  year: 2020
  end-page: 508
  publication-title: Nature
– volume: 36
  start-page: 73
  year: 2020
  end-page: 82
  publication-title: Mater. Today
– volume: 268
  start-page: 358
  year: 2018
  end-page: 365
  publication-title: Electrochim. Acta
– volume: 23
  start-page: 5415
  year: 2011
  end-page: 5424
  publication-title: Chem. Mater.
– volume: 11
  start-page: 5700
  year: 2020
  publication-title: Nat. Commun.
– volume: 104
  start-page: 4271
  year: 2004
  end-page: 4301
  publication-title: Chem. Rev.
– volume: 70
  start-page: 755
  year: 2009
  end-page: 764
  publication-title: J. Phys. Chem. Solids
– volume: 165
  start-page: A3040
  year: 2018
  end-page: A3047
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_2_46_1
– ident: e_1_2_2_18_2
  doi: 10.1016/j.jpowsour.2019.227693
– ident: e_1_2_2_9_2
  doi: 10.1021/acs.chemmater.9b00227
– ident: e_1_2_2_24_1
  doi: 10.1149/2.0401714jes
– ident: e_1_2_2_19_2
  doi: 10.1016/j.electacta.2018.02.049
– ident: e_1_2_2_4_2
  doi: 10.1038/s41586-019-1854-3
– ident: e_1_2_2_20_1
  doi: 10.1038/ncomms6381
– ident: e_1_2_2_31_1
  doi: 10.1126/science.1122152
– ident: e_1_2_2_45_1
  doi: 10.1021/j100302a027
– ident: e_1_2_2_35_2
  doi: 10.1021/acs.chemmater.5b02521
– ident: e_1_2_2_47_2
  doi: 10.1016/j.jpowsour.2013.10.130
– ident: e_1_2_2_34_2
  doi: 10.1021/acs.chemmater.7b00659
– ident: e_1_2_2_36_1
– ident: e_1_2_2_33_1
– ident: e_1_2_2_3_2
  doi: 10.1021/acsami.7b01137
– ident: e_1_2_2_6_2
  doi: 10.1016/j.nanoen.2021.106172
– ident: e_1_2_2_14_1
– ident: e_1_2_2_15_2
  doi: 10.1016/j.mattod.2020.01.019
– ident: e_1_2_2_27_2
  doi: 10.1149/2.0681910jes
– ident: e_1_2_2_39_1
– ident: e_1_2_2_11_2
  doi: 10.1016/j.chempr.2020.07.017
– ident: e_1_2_2_29_1
  doi: 10.1149/2.0491811jes
– ident: e_1_2_2_7_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_8_2
  doi: 10.1002/aenm.202000495
– ident: e_1_2_2_30_1
  doi: 10.1021/jacs.0c09961
– ident: e_1_2_2_16_2
  doi: 10.1021/acsenergylett.0c00191
– ident: e_1_2_2_32_1
  doi: 10.1103/PhysRevB.78.104306
– ident: e_1_2_2_44_1
  doi: 10.1002/aenm.202100884
– ident: e_1_2_2_49_2
  doi: 10.1021/cm2026703
– ident: e_1_2_2_37_2
  doi: 10.1002/advs.201902538
– ident: e_1_2_2_38_2
  doi: 10.1016/j.jpcs.2009.03.012
– ident: e_1_2_2_5_2
  doi: 10.1021/cr020731c
– ident: e_1_2_2_28_2
  doi: 10.1149/2.0951805jes
– ident: e_1_2_2_23_2
  doi: 10.1149/2.0491813jes
– ident: e_1_2_2_43_1
  doi: 10.1016/j.jpowsour.2020.228597
– ident: e_1_2_2_25_1
  doi: 10.1038/s41467-020-19528-9
– ident: e_1_2_2_41_2
  doi: 10.1002/adfm.202010291
– ident: e_1_2_2_22_2
  doi: 10.1149/2.1011507jes
– ident: e_1_2_2_13_2
  doi: 10.1021/acsami.9b22937
– ident: e_1_2_2_26_1
– ident: e_1_2_2_42_2
  doi: 10.1016/j.electacta.2018.09.158
– ident: e_1_2_2_2_2
  doi: 10.1002/adma.202000316
– ident: e_1_2_2_40_2
  doi: 10.1016/j.jpowsour.2019.227242
– ident: e_1_2_2_50_1
  doi: 10.1002/aenm.202002027
– ident: e_1_2_2_17_2
  doi: 10.1038/s41598-019-45556-7
– ident: e_1_2_2_12_2
  doi: 10.1038/s41563-020-00893-1
– ident: e_1_2_2_48_2
  doi: 10.1002/aenm.202100185
– ident: e_1_2_2_21_1
– ident: e_1_2_2_10_1
SSID ssj0028806
Score 2.659284
Snippet Single‐crystalline Ni‐rich cathodes are promising candidates for the next‐generation high‐energy Li‐ion batteries. However, they still suffer from poor rate...
Single-crystalline Ni-rich cathodes are promising candidates for the next-generation high-energy Li-ion batteries. However, they still suffer from poor rate...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26535
SubjectTerms Cathodes
Crystal structure
Crystallinity
Density functional theory
kinetic hindrance
Li-ion batteries
Lithium-ion batteries
Ni-rich cathode
Nickel
Oxidation
Specific capacity
surface doping
Tantalum
Valence
Title Mitigating the Kinetic Hindrance of Single‐Crystalline Ni‐Rich Cathode via Surface Gradient Penetration of Tantalum
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202111954
https://www.proquest.com/docview/2606919227
https://www.proquest.com/docview/2579087984
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLuVSSmnVpVAZqVJPhsRJNs4RraALiFXFQ-IWzdpjtAKyaNm0ghM_gd_YX9KZvHhIVaX2lsTjR_z8Jpn5RogvJgWXoY1UaCNUsYFUZYBOYRBYTeeH8Ql7Ix-O-sPTeP8sOXvixV_zQ3Qf3HhlVPs1L3AY32w9koayBzbpd6TAMGkZbcJssMWo6Kjjj9I0OWv3oihSHIW-ZW0M9Nbz7M9PpUeo-RSwVifO7pKAtq21ocnFZjkfb9q7FzSO__Myb8WbBo7K7Xr-LItXWLwTrwdtFLgV8fNwUrNwFOeSsKI8oKpIVg5Jl-eYHCinXh5T6iX-un8YzG4JbTLNN8rRhB6w375kL8OpQ_ljAvK4nHmgXN9mla3ZXH6nzbah7uWiToDdM8ur9-J0d-dkMFRNsAZloySIlbcmAZ0YMCGGjjocYnSWAFZoaY8AjEhR9QYhNKlFHdh-ClkfPECCLkbvow9ioZgW-FHI0GWxD4IxM7XGLnUZkBaaZgZoEmnwYU-odrBy2zCZc0CNy7zmYNY5d2fedWdPfO3kr2sOjz9KrrVjnzdr-SYnja-fERDWaU9sdMk0DPxrBQqcliSTpFlgqI1UhK4G-i815dujvZ3ubvVfMn0Si3zNtjVhtCYW5rMS1wkhzcefq1XwG0veC2M
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKOZQL_6gLBYwE4uQ2sZONc-BQbVt22e4K0a3UW_DaY7SiZNF2Q1VOPAKvwqvwCDwJM_krRUJISD1wjDN2_DNjzzgz3zD2VCfGpWCVCK0CEWmTiNSAExAEVuL5oX1M0cijcbd_GL06io9W2LcmFqbCh2gv3Egyyv2aBJwupLfOUUMpBBsNPLRgCLWs9qscwtkpWm0nLwY7uMTPpNzbnfT6ok4sIKyKg0h4q2MjY210CKGLlDIROIvKQGiRnw0oNKq8BhPqxIIMbDcxadd4Y2JwEXivsN0r7CqlESe4_p03LWKVRHGoApqUEpT3vsGJDOTWxf5ePAfPldtfVeTyjNu7wb43s1O5trzfLJbTTfv5N-DI_2r6brLrtcbNtysRucVWIL_N1npNors77HQ0q4BG8ncc1WE-xLEhLe_PckdpR4DPPT_At8fw48vX3uIMFWpCMgc-nmEBQRNwCqScO-CfZoYfFAtvsNbLRelOt-Sv8Typ0YmpqYmhCNTiw112eCnjvsdW83kO64yHLo18EEwJjDZyiUsNGtpJqg3KiTQ-7DDRcEdma7B2yhlynFUw0zKj5cva5euw5y39xwqm5I-UGw2zZfV2dZKhUdtNUdeXSYc9aV_jMtDfI5PDvECaOEkDjX3EJmTJWX_5UrY9Huy2T_f_pdJjttafjPaz_cF4-IBdo3JyJQrVBltdLgp4iArhcvqoFEHO3l420_4EB-NrTA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEXyq-6UMBIIE5pEzs_zoFDtdtll6WrirZSb8Frj6sVJVttN1TlxCP0UXgVXoEnYZy_UiSEhNQDx9hjxz8z9kwy8w3AC5kok6IWXqAFeqFUiZcqNB76vuZ0f0gbuWjk7XE82A_fHkQHS_CtiYWp8CHaD25OMsrz2gn4sbEbF6ChLgKb7DsyYBxoWe1WOcKzUzLaTl4Pe7TDLznvb-11B16dV8DTIvJDz2oZKR5JJQMMTCiECtFo0gUCTeysUJBNZSWqQCYaua_jRKWxskpFaEK0VlC_1-B6GPupSxbRe98CVnGShiqeSQjPpb1vYCJ9vnF5vJevwQvd9lcNubzi-ivwvVmcyrPl43qxmKzrL7_hRv5Pq3cHbtf6NtusBOQuLGF-D252mzR39-F0e1rBjOSHjJRhNqKpES0bTHPjko4gm1m2S7VH-OPreXd-Ruq0wzFHNp5SgQMmYC6McmaQfZ4qtlvMraJWb-alM92C7dBtUmMTu672lIs_LT49gP0rmfdDWM5nOa4CC0waWt-fOCja0CQmVWRmJ6lUJCVc2aADXsMcma6h2l3GkKOsApnmmdu-rN2-Drxq6Y8rkJI_Uq41vJbVh9VJRiZtnJKmz5MOPG-raRvcvyOV46wgmihJfUljpC54yVh_eVO2OR5utU-P_qXRM7ix0-tn74bj0WO45YqdH1Eg1mB5MS_wCWmDi8nTUgAZfLhqnv0JSX9p-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigating+the+Kinetic+Hindrance+of+Single%E2%80%90Crystalline+Ni%E2%80%90Rich+Cathode+via+Surface+Gradient+Penetration+of+Tantalum&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zou%2C+Yu%E2%80%90Gang&rft.au=Mao%2C+Huican&rft.au=Meng%2C+Xin%E2%80%90Hai&rft.au=Du%2C+Ya%E2%80%90Hao&rft.date=2021-12-13&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=51&rft.spage=26535&rft.epage=26539&rft_id=info:doi/10.1002%2Fanie.202111954&rft.externalDBID=10.1002%252Fanie.202111954&rft.externalDocID=ANIE202111954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon