Mitigating the Kinetic Hindrance of Single‐Crystalline Ni‐Rich Cathode via Surface Gradient Penetration of Tantalum
Single‐crystalline Ni‐rich cathodes are promising candidates for the next‐generation high‐energy Li‐ion batteries. However, they still suffer from poor rate capability and low specific capacity due to the severe kinetic hindrance at the nondilute state during Li+ intercalation. Herein, combining exp...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 51; pp. 26535 - 26539 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
13.12.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single‐crystalline Ni‐rich cathodes are promising candidates for the next‐generation high‐energy Li‐ion batteries. However, they still suffer from poor rate capability and low specific capacity due to the severe kinetic hindrance at the nondilute state during Li+ intercalation. Herein, combining experiments with density functional theory (DFT) calculations, we demonstrate that this obstacle can be tackled by regulating the oxidation state of nickel via injecting high‐valence foreign Ta5+. The as‐obtained single‐crystalline LiNi0.8Co0.1Mn0.1O2 delivers a high specific capacity (211.2 mAh g−1 at 0.1 C), high initial Coulombic efficiency (93.8 %), excellent rate capability (157 mAh g−1 at 4 C), and good durability (90.4 % after 100 cycles under 0.5 C). This work provides a strategy to mitigate the Li+ kinetic hindrance of the appealing single‐crystalline Ni‐rich cathodes and will inspire peers to conduct an intensive study.
The Ta doping created some low‐valence Ni, decreasing the electrostatic repulsion between transition metal and Li+, thus the Li+ diffusion energy barrier has been decreased and the kinetic hindrance was mitigated. |
---|---|
AbstractList | Single‐crystalline Ni‐rich cathodes are promising candidates for the next‐generation high‐energy Li‐ion batteries. However, they still suffer from poor rate capability and low specific capacity due to the severe kinetic hindrance at the nondilute state during Li+ intercalation. Herein, combining experiments with density functional theory (DFT) calculations, we demonstrate that this obstacle can be tackled by regulating the oxidation state of nickel via injecting high‐valence foreign Ta5+. The as‐obtained single‐crystalline LiNi0.8Co0.1Mn0.1O2 delivers a high specific capacity (211.2 mAh g−1 at 0.1 C), high initial Coulombic efficiency (93.8 %), excellent rate capability (157 mAh g−1 at 4 C), and good durability (90.4 % after 100 cycles under 0.5 C). This work provides a strategy to mitigate the Li+ kinetic hindrance of the appealing single‐crystalline Ni‐rich cathodes and will inspire peers to conduct an intensive study. Single‐crystalline Ni‐rich cathodes are promising candidates for the next‐generation high‐energy Li‐ion batteries. However, they still suffer from poor rate capability and low specific capacity due to the severe kinetic hindrance at the nondilute state during Li+ intercalation. Herein, combining experiments with density functional theory (DFT) calculations, we demonstrate that this obstacle can be tackled by regulating the oxidation state of nickel via injecting high‐valence foreign Ta5+. The as‐obtained single‐crystalline LiNi0.8Co0.1Mn0.1O2 delivers a high specific capacity (211.2 mAh g−1 at 0.1 C), high initial Coulombic efficiency (93.8 %), excellent rate capability (157 mAh g−1 at 4 C), and good durability (90.4 % after 100 cycles under 0.5 C). This work provides a strategy to mitigate the Li+ kinetic hindrance of the appealing single‐crystalline Ni‐rich cathodes and will inspire peers to conduct an intensive study. The Ta doping created some low‐valence Ni, decreasing the electrostatic repulsion between transition metal and Li+, thus the Li+ diffusion energy barrier has been decreased and the kinetic hindrance was mitigated. Single-crystalline Ni-rich cathodes are promising candidates for the next-generation high-energy Li-ion batteries. However, they still suffer from poor rate capability and low specific capacity due to the severe kinetic hindrance at the nondilute state during Li+ intercalation. Herein, combining experiments with density functional theory (DFT) calculations, we demonstrate that this obstacle can be tackled by regulating the oxidation state of nickel via injecting high-valence foreign Ta5+ . The as-obtained single-crystalline LiNi0.8 Co0.1 Mn0.1 O2 delivers a high specific capacity (211.2 mAh g-1 at 0.1 C), high initial Coulombic efficiency (93.8 %), excellent rate capability (157 mAh g-1 at 4 C), and good durability (90.4 % after 100 cycles under 0.5 C). This work provides a strategy to mitigate the Li+ kinetic hindrance of the appealing single-crystalline Ni-rich cathodes and will inspire peers to conduct an intensive study.Single-crystalline Ni-rich cathodes are promising candidates for the next-generation high-energy Li-ion batteries. However, they still suffer from poor rate capability and low specific capacity due to the severe kinetic hindrance at the nondilute state during Li+ intercalation. Herein, combining experiments with density functional theory (DFT) calculations, we demonstrate that this obstacle can be tackled by regulating the oxidation state of nickel via injecting high-valence foreign Ta5+ . The as-obtained single-crystalline LiNi0.8 Co0.1 Mn0.1 O2 delivers a high specific capacity (211.2 mAh g-1 at 0.1 C), high initial Coulombic efficiency (93.8 %), excellent rate capability (157 mAh g-1 at 4 C), and good durability (90.4 % after 100 cycles under 0.5 C). This work provides a strategy to mitigate the Li+ kinetic hindrance of the appealing single-crystalline Ni-rich cathodes and will inspire peers to conduct an intensive study. Single‐crystalline Ni‐rich cathodes are promising candidates for the next‐generation high‐energy Li‐ion batteries. However, they still suffer from poor rate capability and low specific capacity due to the severe kinetic hindrance at the nondilute state during Li + intercalation. Herein, combining experiments with density functional theory (DFT) calculations, we demonstrate that this obstacle can be tackled by regulating the oxidation state of nickel via injecting high‐valence foreign Ta 5+ . The as‐obtained single‐crystalline LiNi 0.8 Co 0.1 Mn 0.1 O 2 delivers a high specific capacity (211.2 mAh g −1 at 0.1 C), high initial Coulombic efficiency (93.8 %), excellent rate capability (157 mAh g −1 at 4 C), and good durability (90.4 % after 100 cycles under 0.5 C). This work provides a strategy to mitigate the Li + kinetic hindrance of the appealing single‐crystalline Ni‐rich cathodes and will inspire peers to conduct an intensive study. |
Author | Mao, Huican Meng, Xin‐Hai Sheng, Hang Yu, Xiqian Zou, Yu‐Gang Guo, Yu‐Guo Shi, Ji‐Lei Du, Ya‐Hao |
Author_xml | – sequence: 1 givenname: Yu‐Gang surname: Zou fullname: Zou, Yu‐Gang organization: University of Chinese Academy of Sciences (UCAS) – sequence: 2 givenname: Huican surname: Mao fullname: Mao, Huican organization: Chinese Academy of Sciences – sequence: 3 givenname: Xin‐Hai surname: Meng fullname: Meng, Xin‐Hai organization: University of Chinese Academy of Sciences (UCAS) – sequence: 4 givenname: Ya‐Hao surname: Du fullname: Du, Ya‐Hao organization: Chinese Academy of Sciences – sequence: 5 givenname: Hang surname: Sheng fullname: Sheng, Hang organization: University of Chinese Academy of Sciences (UCAS) – sequence: 6 givenname: Xiqian surname: Yu fullname: Yu, Xiqian organization: Chinese Academy of Sciences – sequence: 7 givenname: Ji‐Lei surname: Shi fullname: Shi, Ji‐Lei email: jileishi@iccas.ac.cn organization: University of Chinese Academy of Sciences (UCAS) – sequence: 8 givenname: Yu‐Guo orcidid: 0000-0003-0322-8476 surname: Guo fullname: Guo, Yu‐Guo email: ygguo@iccas.ac.cn organization: University of Chinese Academy of Sciences (UCAS) |
BookMark | eNqFkctu3CAUhlGUSrm026yRuunGU8Bg42U0SpOouSmXNTrChwyRB6eAG82uj5BnzJOU6VSJFKnqCgTf98Ovs0e2wxiQkAPOZpwx8RWCx5lggnPeKblFdrkSvKrbtt4ue1nXVasV3yF7KT0UXmvW7JKnc5_9PWQf7mleIP3uA2Zv6YkPfYRgkY6O3pTbAV9-Pc_jKmUYhgLRC18Orr1d0Dnkxdgj_emB3kzRQbGOI_QeQ6ZXWAJjeWAM66hbCCVgWn4kHxwMCT_9XffJ3bej2_lJdXZ5fDo_PKtsrZisnNUKhNKgOfK-dACJvRWKcSu1BqwlE04jcN1aFMw2LXQNOACFvUTn6n3yZZP7GMcfE6Zslj5ZHAYIOE7JCNV2TLedlgX9_A59GKcYyu-MaFjT8U6ItlByQ9k4phTRGevzn3qlpR8MZ2Y9DbOehnmdRtFm77TH6JcQV_8Wuo3w5Adc_Yc2hxenR2_ubw5fonI |
CitedBy_id | crossref_primary_10_1016_j_jcis_2022_08_135 crossref_primary_10_1002_adma_202411426 crossref_primary_10_1016_j_jechem_2024_06_012 crossref_primary_10_1016_j_ensm_2024_103332 crossref_primary_10_1016_j_ensm_2023_103050 crossref_primary_10_1007_s12598_024_02951_y crossref_primary_10_1016_j_jechem_2024_06_015 crossref_primary_10_1021_acsaem_4c00590 crossref_primary_10_1021_acs_iecr_4c02822 crossref_primary_10_1002_anie_202407477 crossref_primary_10_1039_D3TA02538A crossref_primary_10_1039_D2TA06703J crossref_primary_10_1021_acsaem_2c01812 crossref_primary_10_1016_j_jechem_2024_07_062 crossref_primary_10_1016_j_jpowsour_2023_232633 crossref_primary_10_1021_acsami_2c22815 crossref_primary_10_1016_j_jechem_2025_02_001 crossref_primary_10_1039_D4SC08351B crossref_primary_10_1002_aenm_202303764 crossref_primary_10_1002_adma_202408543 crossref_primary_10_1016_j_est_2023_109936 crossref_primary_10_1039_D2TA08703K crossref_primary_10_1016_j_diamond_2023_110233 crossref_primary_10_1002_adma_202404982 crossref_primary_10_1016_j_cej_2022_139431 crossref_primary_10_1002_anie_202409764 crossref_primary_10_1016_j_jpowsour_2024_234770 crossref_primary_10_1016_j_cej_2023_142946 crossref_primary_10_1021_acsami_2c04821 crossref_primary_10_1021_acsami_2c04666 crossref_primary_10_1016_j_etran_2023_100233 crossref_primary_10_1016_j_jpowsour_2024_234522 crossref_primary_10_1016_j_cej_2024_152357 crossref_primary_10_1016_j_jallcom_2022_164727 crossref_primary_10_3866_PKU_WHXB202308051 crossref_primary_10_1007_s10008_022_05212_z crossref_primary_10_1002_adma_202412360 crossref_primary_10_1002_adma_202406175 crossref_primary_10_1002_anie_202116865 crossref_primary_10_1016_j_jechem_2023_04_029 crossref_primary_10_1002_anie_202216155 crossref_primary_10_1016_j_cej_2023_146733 crossref_primary_10_3389_fbael_2024_1338069 crossref_primary_10_1016_j_commatsci_2023_112657 crossref_primary_10_1021_acs_chemrev_3c00728 crossref_primary_10_1021_acsenergylett_2c01670 crossref_primary_10_1016_j_jechem_2024_10_015 crossref_primary_10_1021_acsnano_3c07655 crossref_primary_10_1002_ange_202407477 crossref_primary_10_1021_acsami_2c17534 crossref_primary_10_1002_adfm_202415035 crossref_primary_10_1002_adfm_202206428 crossref_primary_10_1002_anie_202302547 crossref_primary_10_1039_D3TA05060B crossref_primary_10_1016_j_cej_2023_142093 crossref_primary_10_1021_acsami_3c00937 crossref_primary_10_1002_sstr_202300247 crossref_primary_10_1016_j_cej_2024_151937 crossref_primary_10_1016_j_ensm_2024_103788 crossref_primary_10_1002_ange_202116865 crossref_primary_10_1002_smll_202310756 crossref_primary_10_1021_acsnano_4c06663 crossref_primary_10_1002_asia_202200213 crossref_primary_10_1021_acssuschemeng_1c07941 crossref_primary_10_1002_adfm_202423717 crossref_primary_10_1002_ange_202302547 crossref_primary_10_1016_j_est_2024_113037 crossref_primary_10_1016_j_est_2024_115213 crossref_primary_10_1016_j_cej_2024_153821 crossref_primary_10_1021_acsami_1c20568 crossref_primary_10_1021_acs_iecr_2c04021 crossref_primary_10_1002_smll_202402609 crossref_primary_10_1021_acsaem_4c02211 crossref_primary_10_1002_smll_202207569 crossref_primary_10_1016_j_cej_2024_149827 crossref_primary_10_1021_jacs_4c02198 crossref_primary_10_1002_ange_202409764 crossref_primary_10_1016_j_jallcom_2024_174608 crossref_primary_10_1039_D4TA04307C crossref_primary_10_1007_s12274_022_4889_0 crossref_primary_10_1021_acsenergylett_4c01230 crossref_primary_10_1002_bte2_20230033 crossref_primary_10_1016_j_cej_2024_154344 crossref_primary_10_1002_ange_202216155 crossref_primary_10_1002_celc_202300802 crossref_primary_10_1002_adma_202212308 crossref_primary_10_1039_D4TA04197F crossref_primary_10_1016_j_ensm_2022_08_026 crossref_primary_10_1002_adma_202405628 crossref_primary_10_1002_aenm_202403150 crossref_primary_10_2139_ssrn_3993235 crossref_primary_10_1002_aenm_202303207 crossref_primary_10_1016_j_jechem_2023_09_038 crossref_primary_10_1021_acsnano_4c09354 crossref_primary_10_1016_j_jechem_2024_12_033 crossref_primary_10_1021_acs_iecr_4c01424 crossref_primary_10_1002_anie_202420413 crossref_primary_10_1016_j_est_2022_105275 crossref_primary_10_1016_j_cej_2023_144405 crossref_primary_10_1016_j_jpowsour_2023_233141 crossref_primary_10_1016_j_jpowsour_2024_235267 crossref_primary_10_1021_acsaem_3c01428 crossref_primary_10_1002_smtd_202301162 crossref_primary_10_1016_j_ensm_2023_102969 crossref_primary_10_1016_j_jelechem_2023_117483 crossref_primary_10_1016_j_jpowsour_2023_233811 crossref_primary_10_1021_acs_iecr_3c04271 crossref_primary_10_1002_aenm_202202993 crossref_primary_10_1002_ange_202318186 crossref_primary_10_1016_j_esci_2022_02_006 crossref_primary_10_1021_acs_iecr_4c01827 crossref_primary_10_1016_j_nanoen_2022_106961 crossref_primary_10_1021_acs_energyfuels_3c01588 crossref_primary_10_1002_ange_202420413 crossref_primary_10_1039_D3CC01099F crossref_primary_10_1007_s10008_023_05504_y crossref_primary_10_1002_smll_202405853 crossref_primary_10_1007_s11771_024_5828_8 crossref_primary_10_1039_D4CP03911D crossref_primary_10_1016_j_cclet_2023_108655 crossref_primary_10_1016_j_jechem_2024_05_037 crossref_primary_10_1016_j_jpowsour_2024_234439 crossref_primary_10_1016_j_jechem_2024_02_064 crossref_primary_10_3390_en15239235 crossref_primary_10_1002_anie_202318186 crossref_primary_10_1016_j_cclet_2023_108813 crossref_primary_10_1016_j_seppur_2024_131298 crossref_primary_10_1016_j_pmatsci_2024_101247 crossref_primary_10_1016_j_partic_2022_12_003 crossref_primary_10_1016_j_apsusc_2022_156043 crossref_primary_10_1002_adfm_202211515 crossref_primary_10_1016_j_cej_2024_150644 crossref_primary_10_1021_acsami_2c22406 crossref_primary_10_1007_s12274_022_4768_6 crossref_primary_10_1021_acsaem_4c01160 crossref_primary_10_1126_sciadv_ado4472 crossref_primary_10_1093_nsr_nwae219 |
Cites_doi | 10.1016/j.jpowsour.2019.227693 10.1021/acs.chemmater.9b00227 10.1149/2.0401714jes 10.1016/j.electacta.2018.02.049 10.1038/s41586-019-1854-3 10.1038/ncomms6381 10.1126/science.1122152 10.1021/j100302a027 10.1021/acs.chemmater.5b02521 10.1016/j.jpowsour.2013.10.130 10.1021/acs.chemmater.7b00659 10.1021/acsami.7b01137 10.1016/j.nanoen.2021.106172 10.1016/j.mattod.2020.01.019 10.1149/2.0681910jes 10.1016/j.chempr.2020.07.017 10.1149/2.0491811jes 10.1002/aenm.202000495 10.1021/jacs.0c09961 10.1021/acsenergylett.0c00191 10.1103/PhysRevB.78.104306 10.1002/aenm.202100884 10.1021/cm2026703 10.1002/advs.201902538 10.1016/j.jpcs.2009.03.012 10.1021/cr020731c 10.1149/2.0951805jes 10.1149/2.0491813jes 10.1016/j.jpowsour.2020.228597 10.1038/s41467-020-19528-9 10.1002/adfm.202010291 10.1149/2.1011507jes 10.1021/acsami.9b22937 10.1016/j.electacta.2018.09.158 10.1002/adma.202000316 10.1016/j.jpowsour.2019.227242 10.1002/aenm.202002027 10.1038/s41598-019-45556-7 10.1038/s41563-020-00893-1 10.1002/aenm.202100185 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202111954 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 26539 |
ExternalDocumentID | 10_1002_anie_202111954 ANIE202111954 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51902314 – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences funderid: 2019033 – fundername: Basic Science Center Project of National Natural Science Foundation funderid: 51788104 – fundername: Beijing Natural Science Foundation funderid: L182051 – fundername: Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDA21070300 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3504-fc85a258a81e1d433a4edc2501c488ae3402f8ea187ce20c67a96afaa5ed4eff3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 22:13:18 EDT 2025 Fri Jul 25 10:24:21 EDT 2025 Thu Apr 24 23:04:46 EDT 2025 Tue Jul 01 01:18:09 EDT 2025 Wed Jan 22 16:28:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3504-fc85a258a81e1d433a4edc2501c488ae3402f8ea187ce20c67a96afaa5ed4eff3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0322-8476 |
PQID | 2606919227 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2579087984 proquest_journals_2606919227 crossref_citationtrail_10_1002_anie_202111954 crossref_primary_10_1002_anie_202111954 wiley_primary_10_1002_anie_202111954_ANIE202111954 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 13, 2021 |
PublicationDateYYYYMMDD | 2021-12-13 |
PublicationDate_xml | – month: 12 year: 2021 text: December 13, 2021 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 162 2019; 9 2018; 165 2021; 87 2004; 104 2021; 20 2019; 31 2020; 142 1987; 91 2018; 268 2008; 78 2020; 36 2020; 12 2017; 29 2020; 11 2020; 32 2020; 10 2014; 252 2017; 9 2019; 166 2019; 442 2006; 311 2020; 7 2020; 6 2020; 5 2014; 5 2018; 292 2015; 27 2021; 31 2021; 11 2009; 70 2020; 473 2020; 450 2020; 577 2011; 23 2017; 164 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_24_1 e_1_2_2_22_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_20_1 e_1_2_2_2_2 e_1_2_2_41_2 e_1_2_2_43_1 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_45_1 e_1_2_2_26_1 e_1_2_2_13_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_30_1 e_1_2_2_19_2 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_36_1 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_7_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_42_2 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_27_2 e_1_2_2_46_1 e_1_2_2_9_2 e_1_2_2_14_1 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_39_1 e_1_2_2_10_1 e_1_2_2_31_1 e_1_2_2_18_2 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_35_2 e_1_2_2_50_1 |
References_xml | – volume: 252 start-page: 292 year: 2014 end-page: 297 publication-title: J. Power Sources – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 5 start-page: 1136 year: 2020 end-page: 1146 publication-title: ACS Energy Lett. – volume: 12 start-page: 15145 year: 2020 end-page: 15154 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 5381 year: 2014 publication-title: Nat. Commun. – volume: 165 start-page: A2682 year: 2018 end-page: A2695 publication-title: J. Electrochem. Soc. – volume: 78 year: 2008 publication-title: Phys. Rev. B. – volume: 473 year: 2020 publication-title: J. Power Sources – volume: 87 year: 2021 publication-title: Nano Energy – volume: 27 start-page: 5491 year: 2015 end-page: 5494 publication-title: Chem. Mater. – volume: 292 start-page: 217 year: 2018 end-page: 226 publication-title: Electrochim. Acta – volume: 91 start-page: 4779 year: 1987 end-page: 4788 publication-title: J. Phys. Chem. – volume: 162 start-page: A1401 year: 2015 end-page: A1408 publication-title: J. Electrochem. Soc. – volume: 164 start-page: A3529 year: 2017 end-page: A3537 publication-title: J. Electrochem. Soc. – volume: 165 start-page: A1038 year: 2018 end-page: A1045 publication-title: J. Electrochem. Soc. – volume: 31 start-page: 3293 year: 2019 end-page: 3300 publication-title: Chem. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 442 year: 2019 publication-title: J. Power Sources – volume: 6 start-page: 2759 year: 2020 end-page: 2769 publication-title: Chem – volume: 166 start-page: A1956 year: 2019 end-page: A1963 publication-title: J. Electrochem. Soc. – volume: 20 start-page: 841 year: 2021 publication-title: Nat. Mater. – volume: 450 year: 2020 publication-title: J. Power Sources – volume: 9 start-page: 17835 year: 2017 end-page: 17845 publication-title: ACS Appl. Mater. Interfaces – volume: 142 start-page: 19745 year: 2020 end-page: 19753 publication-title: J. Am. Chem. Soc. – volume: 311 start-page: 977 year: 2006 end-page: 980 publication-title: Science – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 4330 year: 2017 end-page: 4340 publication-title: Chem. Mater. – volume: 9 start-page: 8952 year: 2019 publication-title: Sci. Rep. – volume: 577 start-page: 502 year: 2020 end-page: 508 publication-title: Nature – volume: 36 start-page: 73 year: 2020 end-page: 82 publication-title: Mater. Today – volume: 268 start-page: 358 year: 2018 end-page: 365 publication-title: Electrochim. Acta – volume: 23 start-page: 5415 year: 2011 end-page: 5424 publication-title: Chem. Mater. – volume: 11 start-page: 5700 year: 2020 publication-title: Nat. Commun. – volume: 104 start-page: 4271 year: 2004 end-page: 4301 publication-title: Chem. Rev. – volume: 70 start-page: 755 year: 2009 end-page: 764 publication-title: J. Phys. Chem. Solids – volume: 165 start-page: A3040 year: 2018 end-page: A3047 publication-title: J. Electrochem. Soc. – ident: e_1_2_2_46_1 – ident: e_1_2_2_18_2 doi: 10.1016/j.jpowsour.2019.227693 – ident: e_1_2_2_9_2 doi: 10.1021/acs.chemmater.9b00227 – ident: e_1_2_2_24_1 doi: 10.1149/2.0401714jes – ident: e_1_2_2_19_2 doi: 10.1016/j.electacta.2018.02.049 – ident: e_1_2_2_4_2 doi: 10.1038/s41586-019-1854-3 – ident: e_1_2_2_20_1 doi: 10.1038/ncomms6381 – ident: e_1_2_2_31_1 doi: 10.1126/science.1122152 – ident: e_1_2_2_45_1 doi: 10.1021/j100302a027 – ident: e_1_2_2_35_2 doi: 10.1021/acs.chemmater.5b02521 – ident: e_1_2_2_47_2 doi: 10.1016/j.jpowsour.2013.10.130 – ident: e_1_2_2_34_2 doi: 10.1021/acs.chemmater.7b00659 – ident: e_1_2_2_36_1 – ident: e_1_2_2_33_1 – ident: e_1_2_2_3_2 doi: 10.1021/acsami.7b01137 – ident: e_1_2_2_6_2 doi: 10.1016/j.nanoen.2021.106172 – ident: e_1_2_2_14_1 – ident: e_1_2_2_15_2 doi: 10.1016/j.mattod.2020.01.019 – ident: e_1_2_2_27_2 doi: 10.1149/2.0681910jes – ident: e_1_2_2_39_1 – ident: e_1_2_2_11_2 doi: 10.1016/j.chempr.2020.07.017 – ident: e_1_2_2_29_1 doi: 10.1149/2.0491811jes – ident: e_1_2_2_7_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_8_2 doi: 10.1002/aenm.202000495 – ident: e_1_2_2_30_1 doi: 10.1021/jacs.0c09961 – ident: e_1_2_2_16_2 doi: 10.1021/acsenergylett.0c00191 – ident: e_1_2_2_32_1 doi: 10.1103/PhysRevB.78.104306 – ident: e_1_2_2_44_1 doi: 10.1002/aenm.202100884 – ident: e_1_2_2_49_2 doi: 10.1021/cm2026703 – ident: e_1_2_2_37_2 doi: 10.1002/advs.201902538 – ident: e_1_2_2_38_2 doi: 10.1016/j.jpcs.2009.03.012 – ident: e_1_2_2_5_2 doi: 10.1021/cr020731c – ident: e_1_2_2_28_2 doi: 10.1149/2.0951805jes – ident: e_1_2_2_23_2 doi: 10.1149/2.0491813jes – ident: e_1_2_2_43_1 doi: 10.1016/j.jpowsour.2020.228597 – ident: e_1_2_2_25_1 doi: 10.1038/s41467-020-19528-9 – ident: e_1_2_2_41_2 doi: 10.1002/adfm.202010291 – ident: e_1_2_2_22_2 doi: 10.1149/2.1011507jes – ident: e_1_2_2_13_2 doi: 10.1021/acsami.9b22937 – ident: e_1_2_2_26_1 – ident: e_1_2_2_42_2 doi: 10.1016/j.electacta.2018.09.158 – ident: e_1_2_2_2_2 doi: 10.1002/adma.202000316 – ident: e_1_2_2_40_2 doi: 10.1016/j.jpowsour.2019.227242 – ident: e_1_2_2_50_1 doi: 10.1002/aenm.202002027 – ident: e_1_2_2_17_2 doi: 10.1038/s41598-019-45556-7 – ident: e_1_2_2_12_2 doi: 10.1038/s41563-020-00893-1 – ident: e_1_2_2_48_2 doi: 10.1002/aenm.202100185 – ident: e_1_2_2_21_1 – ident: e_1_2_2_10_1 |
SSID | ssj0028806 |
Score | 2.659284 |
Snippet | Single‐crystalline Ni‐rich cathodes are promising candidates for the next‐generation high‐energy Li‐ion batteries. However, they still suffer from poor rate... Single-crystalline Ni-rich cathodes are promising candidates for the next-generation high-energy Li-ion batteries. However, they still suffer from poor rate... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 26535 |
SubjectTerms | Cathodes Crystal structure Crystallinity Density functional theory kinetic hindrance Li-ion batteries Lithium-ion batteries Ni-rich cathode Nickel Oxidation Specific capacity surface doping Tantalum Valence |
Title | Mitigating the Kinetic Hindrance of Single‐Crystalline Ni‐Rich Cathode via Surface Gradient Penetration of Tantalum |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202111954 https://www.proquest.com/docview/2606919227 https://www.proquest.com/docview/2579087984 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLuVSSmnVpVAZqVJPhsRJNs4RraALiFXFQ-IWzdpjtAKyaNm0ghM_gd_YX9KZvHhIVaX2lsTjR_z8Jpn5RogvJgWXoY1UaCNUsYFUZYBOYRBYTeeH8Ql7Ix-O-sPTeP8sOXvixV_zQ3Qf3HhlVPs1L3AY32w9koayBzbpd6TAMGkZbcJssMWo6Kjjj9I0OWv3oihSHIW-ZW0M9Nbz7M9PpUeo-RSwVifO7pKAtq21ocnFZjkfb9q7FzSO__Myb8WbBo7K7Xr-LItXWLwTrwdtFLgV8fNwUrNwFOeSsKI8oKpIVg5Jl-eYHCinXh5T6iX-un8YzG4JbTLNN8rRhB6w375kL8OpQ_ljAvK4nHmgXN9mla3ZXH6nzbah7uWiToDdM8ur9-J0d-dkMFRNsAZloySIlbcmAZ0YMCGGjjocYnSWAFZoaY8AjEhR9QYhNKlFHdh-ClkfPECCLkbvow9ioZgW-FHI0GWxD4IxM7XGLnUZkBaaZgZoEmnwYU-odrBy2zCZc0CNy7zmYNY5d2fedWdPfO3kr2sOjz9KrrVjnzdr-SYnja-fERDWaU9sdMk0DPxrBQqcliSTpFlgqI1UhK4G-i815dujvZ3ubvVfMn0Si3zNtjVhtCYW5rMS1wkhzcefq1XwG0veC2M |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKOZQL_6gLBYwE4uQ2sZONc-BQbVt22e4K0a3UW_DaY7SiZNF2Q1VOPAKvwqvwCDwJM_krRUJISD1wjDN2_DNjzzgz3zD2VCfGpWCVCK0CEWmTiNSAExAEVuL5oX1M0cijcbd_GL06io9W2LcmFqbCh2gv3Egyyv2aBJwupLfOUUMpBBsNPLRgCLWs9qscwtkpWm0nLwY7uMTPpNzbnfT6ok4sIKyKg0h4q2MjY210CKGLlDIROIvKQGiRnw0oNKq8BhPqxIIMbDcxadd4Y2JwEXivsN0r7CqlESe4_p03LWKVRHGoApqUEpT3vsGJDOTWxf5ePAfPldtfVeTyjNu7wb43s1O5trzfLJbTTfv5N-DI_2r6brLrtcbNtysRucVWIL_N1npNors77HQ0q4BG8ncc1WE-xLEhLe_PckdpR4DPPT_At8fw48vX3uIMFWpCMgc-nmEBQRNwCqScO-CfZoYfFAtvsNbLRelOt-Sv8Typ0YmpqYmhCNTiw112eCnjvsdW83kO64yHLo18EEwJjDZyiUsNGtpJqg3KiTQ-7DDRcEdma7B2yhlynFUw0zKj5cva5euw5y39xwqm5I-UGw2zZfV2dZKhUdtNUdeXSYc9aV_jMtDfI5PDvECaOEkDjX3EJmTJWX_5UrY9Huy2T_f_pdJjttafjPaz_cF4-IBdo3JyJQrVBltdLgp4iArhcvqoFEHO3l420_4EB-NrTA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEXyq-6UMBIIE5pEzs_zoFDtdtll6WrirZSb8Frj6sVJVttN1TlxCP0UXgVXoEnYZy_UiSEhNQDx9hjxz8z9kwy8w3AC5kok6IWXqAFeqFUiZcqNB76vuZ0f0gbuWjk7XE82A_fHkQHS_CtiYWp8CHaD25OMsrz2gn4sbEbF6ChLgKb7DsyYBxoWe1WOcKzUzLaTl4Pe7TDLznvb-11B16dV8DTIvJDz2oZKR5JJQMMTCiECtFo0gUCTeysUJBNZSWqQCYaua_jRKWxskpFaEK0VlC_1-B6GPupSxbRe98CVnGShiqeSQjPpb1vYCJ9vnF5vJevwQvd9lcNubzi-ivwvVmcyrPl43qxmKzrL7_hRv5Pq3cHbtf6NtusBOQuLGF-D252mzR39-F0e1rBjOSHjJRhNqKpES0bTHPjko4gm1m2S7VH-OPreXd-Ruq0wzFHNp5SgQMmYC6McmaQfZ4qtlvMraJWb-alM92C7dBtUmMTu672lIs_LT49gP0rmfdDWM5nOa4CC0waWt-fOCja0CQmVWRmJ6lUJCVc2aADXsMcma6h2l3GkKOsApnmmdu-rN2-Drxq6Y8rkJI_Uq41vJbVh9VJRiZtnJKmz5MOPG-raRvcvyOV46wgmihJfUljpC54yVh_eVO2OR5utU-P_qXRM7ix0-tn74bj0WO45YqdH1Eg1mB5MS_wCWmDi8nTUgAZfLhqnv0JSX9p-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigating+the+Kinetic+Hindrance+of+Single%E2%80%90Crystalline+Ni%E2%80%90Rich+Cathode+via+Surface+Gradient+Penetration+of+Tantalum&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zou%2C+Yu%E2%80%90Gang&rft.au=Mao%2C+Huican&rft.au=Meng%2C+Xin%E2%80%90Hai&rft.au=Du%2C+Ya%E2%80%90Hao&rft.date=2021-12-13&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=51&rft.spage=26535&rft.epage=26539&rft_id=info:doi/10.1002%2Fanie.202111954&rft.externalDBID=10.1002%252Fanie.202111954&rft.externalDocID=ANIE202111954 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |