The influence of maturation on exercise‐induced cardiac remodelling and haematological adaptation

Cardiovascular and haematological adaptations to endurance training facilitate greater maximal oxygen consumption (V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$), and such adaptations may be augmented following puberty. Therefore, we compared left ventricular (LV) morphology (echocardiography),...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 600; no. 3; pp. 583 - 601
Main Authors Perkins, Dean R., Talbot, Jack S., Lord, Rachel N., Dawkins, Tony G., Baggish, Aaron L., Zaidi, Abbas, Uzun, Orhan, Mackintosh, Kelly A., McNarry, Melitta A., Cooper, Stephen‐Mark, Lloyd, Rhodri S., Oliver, Jon L., Shave, Rob E., Stembridge, Mike
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cardiovascular and haematological adaptations to endurance training facilitate greater maximal oxygen consumption (V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$), and such adaptations may be augmented following puberty. Therefore, we compared left ventricular (LV) morphology (echocardiography), blood volume, haemoglobin (Hb) mass (CO rebreathing) and V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ in endurance‐trained and untrained boys (n = 42, age = 9.0–17.1 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 61.6 ± 7.2 ml/kg/min, and n = 31, age = 8.0–17.7 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 46.5 ± 6.1 ml/kg/min, respectively) and girls (n = 45, age = 8.2–17.0 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 51.4 ± 5.7 ml/kg/min, and n = 36, age = 8.0–17.6 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 39.8 ± 5.7 ml/kg/min, respectively). Pubertal stage was estimated via maturity offset, with participants classified as pre‐ or post‐peak height velocity (PHV). Pre‐PHV, only a larger LV end‐diastolic volume/lean body mass (EDV/LBM) for trained boys (+0.28 ml/kg LBM, P = 0.007) and a higher Hb mass/LBM for trained girls (+1.65 g/kg LBM, P = 0.007) were evident compared to untrained controls. Post‐PHV, LV mass/LBM (boys: +0.50 g/kg LBM, P = 0.0003; girls: +0.35 g/kg LBM, P = 0.003), EDV/LBM (boys: +0.35 ml/kg LBM, P < 0.0001; girls: +0.31 ml/kg LBM, P = 0.0004), blood volume/LBM (boys: +12.47 ml/kg LBM, P = 0.004; girls: +13.48 ml/kg LBM, P = 0.0002.) and Hb mass/LBM (boys: +1.29 g/kg LBM, P = 0.015; girls: +1.47 g/kg LBM, P = 0.002) were all greater in trained versus untrained groups. Pre‐PHV, EDV (R2adj = 0.224, P = 0.001) in boys, and Hb mass and interventricular septal thickness (R2adj = 0.317, P = 0.002) in girls partially accounted for the variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$. Post‐PHV, stronger predictive models were evident via the inclusion of LV wall thickness and EDV in boys (R2adj = 0.608, P < 0.0001), and posterior wall thickness and Hb mass in girls (R2adj = 0.490, P < 0.0001). In conclusion, cardiovascular adaptation to exercise training is more pronounced post‐PHV, with evidence for a greater role of central components for oxygen delivery. Key points It has long been hypothesised that cardiovascular adaptation to endurance training is augmented following puberty. We investigated whether differences in cardiac and haematological variables exist, and to what extent, between endurance‐trained versus untrained, pre‐ and post‐peak height velocity (PHV) children, and how these central factors relate to maximal oxygen consumption. Using echocardiography to quantify left ventricular (LV) morphology and carbon monoxide rebreathing to determine blood volume and haemoglobin mass, we identified that training‐related differences in LV morphology are evident in pre‐PHV children, with haematological differences also observed between pre‐PHV girls. However, the breadth and magnitude of cardiovascular remodelling was more pronounced post‐PHV. Cardiac and haematological measures provide significant predictive models for maximal oxygen consumption (V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$) in children that are much stronger post‐PHV, suggesting that other important determinants within the oxygen transport chain could account for the majority of variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ before puberty. figure legend Schematic diagram depicting cardiac structural and haematological differences between trained and untrained boys and girls, pre‐peak height velocity (PHV) and post‐PHV alongside cardiac and haematological variables contributions to the variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$. Cardiac and haematological variables are greater in trained versus untrained pre‐pubertal children, and a greater number and magnitude of differences are observed post‐PHV. These variables provide significant predictive models for maximal oxygen consumption in children and are much stronger post‐PHV, suggesting that other important determinants within the oxygen transport chain could account for the majority of variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ before puberty.
AbstractList Cardiovascular and haematological adaptations to endurance training facilitate greater maximal oxygen consumption ( V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ ), and such adaptations may be augmented following puberty. Therefore, we compared left ventricular (LV) morphology (echocardiography), blood volume, haemoglobin (Hb) mass (CO rebreathing) and V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ in endurance-trained and untrained boys (n = 42, age = 9.0-17.1 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 61.6 ± 7.2 ml/kg/min, and n = 31, age = 8.0-17.7 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 46.5 ± 6.1 ml/kg/min, respectively) and girls (n = 45, age = 8.2-17.0 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 51.4 ± 5.7 ml/kg/min, and n = 36, age = 8.0-17.6 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 39.8 ± 5.7 ml/kg/min, respectively). Pubertal stage was estimated via maturity offset, with participants classified as pre- or post-peak height velocity (PHV). Pre-PHV, only a larger LV end-diastolic volume/lean body mass (EDV/LBM) for trained boys (+0.28 ml/kg LBM, P = 0.007) and a higher Hb mass/LBM for trained girls (+1.65 g/kg LBM, P = 0.007) were evident compared to untrained controls. Post-PHV, LV mass/LBM (boys: +0.50 g/kg LBM, P = 0.0003; girls: +0.35 g/kg LBM, P = 0.003), EDV/LBM (boys: +0.35 ml/kg LBM, P < 0.0001; girls: +0.31 ml/kg LBM, P = 0.0004), blood volume/LBM (boys: +12.47 ml/kg LBM, P = 0.004; girls: +13.48 ml/kg LBM, P = 0.0002.) and Hb mass/LBM (boys: +1.29 g/kg LBM, P = 0.015; girls: +1.47 g/kg LBM, P = 0.002) were all greater in trained versus untrained groups. Pre-PHV, EDV (R2adj = 0.224, P = 0.001) in boys, and Hb mass and interventricular septal thickness (R2adj = 0.317, P = 0.002) in girls partially accounted for the variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ . Post-PHV, stronger predictive models were evident via the inclusion of LV wall thickness and EDV in boys (R2adj = 0.608, P < 0.0001), and posterior wall thickness and Hb mass in girls (R2adj = 0.490, P < 0.0001). In conclusion, cardiovascular adaptation to exercise training is more pronounced post-PHV, with evidence for a greater role of central components for oxygen delivery. KEY POINTS: It has long been hypothesised that cardiovascular adaptation to endurance training is augmented following puberty. We investigated whether differences in cardiac and haematological variables exist, and to what extent, between endurance-trained versus untrained, pre- and post-peak height velocity (PHV) children, and how these central factors relate to maximal oxygen consumption. Using echocardiography to quantify left ventricular (LV) morphology and carbon monoxide rebreathing to determine blood volume and haemoglobin mass, we identified that training-related differences in LV morphology are evident in pre-PHV children, with haematological differences also observed between pre-PHV girls. However, the breadth and magnitude of cardiovascular remodelling was more pronounced post-PHV. Cardiac and haematological measures provide significant predictive models for maximal oxygen consumption ( V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ ) in children that are much stronger post-PHV, suggesting that other important determinants within the oxygen transport chain could account for the majority of variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ before puberty.Cardiovascular and haematological adaptations to endurance training facilitate greater maximal oxygen consumption ( V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ ), and such adaptations may be augmented following puberty. Therefore, we compared left ventricular (LV) morphology (echocardiography), blood volume, haemoglobin (Hb) mass (CO rebreathing) and V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ in endurance-trained and untrained boys (n = 42, age = 9.0-17.1 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 61.6 ± 7.2 ml/kg/min, and n = 31, age = 8.0-17.7 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 46.5 ± 6.1 ml/kg/min, respectively) and girls (n = 45, age = 8.2-17.0 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 51.4 ± 5.7 ml/kg/min, and n = 36, age = 8.0-17.6 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 39.8 ± 5.7 ml/kg/min, respectively). Pubertal stage was estimated via maturity offset, with participants classified as pre- or post-peak height velocity (PHV). Pre-PHV, only a larger LV end-diastolic volume/lean body mass (EDV/LBM) for trained boys (+0.28 ml/kg LBM, P = 0.007) and a higher Hb mass/LBM for trained girls (+1.65 g/kg LBM, P = 0.007) were evident compared to untrained controls. Post-PHV, LV mass/LBM (boys: +0.50 g/kg LBM, P = 0.0003; girls: +0.35 g/kg LBM, P = 0.003), EDV/LBM (boys: +0.35 ml/kg LBM, P < 0.0001; girls: +0.31 ml/kg LBM, P = 0.0004), blood volume/LBM (boys: +12.47 ml/kg LBM, P = 0.004; girls: +13.48 ml/kg LBM, P = 0.0002.) and Hb mass/LBM (boys: +1.29 g/kg LBM, P = 0.015; girls: +1.47 g/kg LBM, P = 0.002) were all greater in trained versus untrained groups. Pre-PHV, EDV (R2adj = 0.224, P = 0.001) in boys, and Hb mass and interventricular septal thickness (R2adj = 0.317, P = 0.002) in girls partially accounted for the variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ . Post-PHV, stronger predictive models were evident via the inclusion of LV wall thickness and EDV in boys (R2adj = 0.608, P < 0.0001), and posterior wall thickness and Hb mass in girls (R2adj = 0.490, P < 0.0001). In conclusion, cardiovascular adaptation to exercise training is more pronounced post-PHV, with evidence for a greater role of central components for oxygen delivery. KEY POINTS: It has long been hypothesised that cardiovascular adaptation to endurance training is augmented following puberty. We investigated whether differences in cardiac and haematological variables exist, and to what extent, between endurance-trained versus untrained, pre- and post-peak height velocity (PHV) children, and how these central factors relate to maximal oxygen consumption. Using echocardiography to quantify left ventricular (LV) morphology and carbon monoxide rebreathing to determine blood volume and haemoglobin mass, we identified that training-related differences in LV morphology are evident in pre-PHV children, with haematological differences also observed between pre-PHV girls. However, the breadth and magnitude of cardiovascular remodelling was more pronounced post-PHV. Cardiac and haematological measures provide significant predictive models for maximal oxygen consumption ( V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ ) in children that are much stronger post-PHV, suggesting that other important determinants within the oxygen transport chain could account for the majority of variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ before puberty.
Cardiovascular and haematological adaptations to endurance training facilitate greater maximal oxygen consumption ( ), and such adaptations may be augmented following puberty. Therefore, we compared left ventricular (LV) morphology (echocardiography), blood volume, haemoglobin (Hb) mass (CO rebreathing) and in endurance-trained and untrained boys (n = 42, age = 9.0-17.1 years,  = 61.6 ± 7.2 ml/kg/min, and n = 31, age = 8.0-17.7 years,  = 46.5 ± 6.1 ml/kg/min, respectively) and girls (n = 45, age = 8.2-17.0 years,  = 51.4 ± 5.7 ml/kg/min, and n = 36, age = 8.0-17.6 years,  = 39.8 ± 5.7 ml/kg/min, respectively). Pubertal stage was estimated via maturity offset, with participants classified as pre- or post-peak height velocity (PHV). Pre-PHV, only a larger LV end-diastolic volume/lean body mass (EDV/LBM) for trained boys (+0.28 ml/kg LBM, P = 0.007) and a higher Hb mass/LBM for trained girls (+1.65 g/kg LBM, P = 0.007) were evident compared to untrained controls. Post-PHV, LV mass/LBM (boys: +0.50 g/kg LBM, P = 0.0003; girls: +0.35 g/kg LBM, P = 0.003), EDV/LBM (boys: +0.35 ml/kg LBM, P < 0.0001; girls: +0.31 ml/kg LBM, P = 0.0004), blood volume/LBM (boys: +12.47 ml/kg LBM, P = 0.004; girls: +13.48 ml/kg LBM, P = 0.0002.) and Hb mass/LBM (boys: +1.29 g/kg LBM, P = 0.015; girls: +1.47 g/kg LBM, P = 0.002) were all greater in trained versus untrained groups. Pre-PHV, EDV (R  = 0.224, P = 0.001) in boys, and Hb mass and interventricular septal thickness (R  = 0.317, P = 0.002) in girls partially accounted for the variance in . Post-PHV, stronger predictive models were evident via the inclusion of LV wall thickness and EDV in boys (R  = 0.608, P < 0.0001), and posterior wall thickness and Hb mass in girls (R  = 0.490, P < 0.0001). In conclusion, cardiovascular adaptation to exercise training is more pronounced post-PHV, with evidence for a greater role of central components for oxygen delivery. KEY POINTS: It has long been hypothesised that cardiovascular adaptation to endurance training is augmented following puberty. We investigated whether differences in cardiac and haematological variables exist, and to what extent, between endurance-trained versus untrained, pre- and post-peak height velocity (PHV) children, and how these central factors relate to maximal oxygen consumption. Using echocardiography to quantify left ventricular (LV) morphology and carbon monoxide rebreathing to determine blood volume and haemoglobin mass, we identified that training-related differences in LV morphology are evident in pre-PHV children, with haematological differences also observed between pre-PHV girls. However, the breadth and magnitude of cardiovascular remodelling was more pronounced post-PHV. Cardiac and haematological measures provide significant predictive models for maximal oxygen consumption ( ) in children that are much stronger post-PHV, suggesting that other important determinants within the oxygen transport chain could account for the majority of variance in before puberty.
Cardiovascular and haematological adaptations to endurance training facilitate greater maximal oxygen consumption (V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$), and such adaptations may be augmented following puberty. Therefore, we compared left ventricular (LV) morphology (echocardiography), blood volume, haemoglobin (Hb) mass (CO rebreathing) and V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ in endurance‐trained and untrained boys (n = 42, age = 9.0–17.1 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 61.6 ± 7.2 ml/kg/min, and n = 31, age = 8.0–17.7 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 46.5 ± 6.1 ml/kg/min, respectively) and girls (n = 45, age = 8.2–17.0 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 51.4 ± 5.7 ml/kg/min, and n = 36, age = 8.0–17.6 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 39.8 ± 5.7 ml/kg/min, respectively). Pubertal stage was estimated via maturity offset, with participants classified as pre‐ or post‐peak height velocity (PHV). Pre‐PHV, only a larger LV end‐diastolic volume/lean body mass (EDV/LBM) for trained boys (+0.28 ml/kg LBM, P = 0.007) and a higher Hb mass/LBM for trained girls (+1.65 g/kg LBM, P = 0.007) were evident compared to untrained controls. Post‐PHV, LV mass/LBM (boys: +0.50 g/kg LBM, P = 0.0003; girls: +0.35 g/kg LBM, P = 0.003), EDV/LBM (boys: +0.35 ml/kg LBM, P < 0.0001; girls: +0.31 ml/kg LBM, P = 0.0004), blood volume/LBM (boys: +12.47 ml/kg LBM, P = 0.004; girls: +13.48 ml/kg LBM, P = 0.0002.) and Hb mass/LBM (boys: +1.29 g/kg LBM, P = 0.015; girls: +1.47 g/kg LBM, P = 0.002) were all greater in trained versus untrained groups. Pre‐PHV, EDV (R2adj = 0.224, P = 0.001) in boys, and Hb mass and interventricular septal thickness (R2adj = 0.317, P = 0.002) in girls partially accounted for the variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$. Post‐PHV, stronger predictive models were evident via the inclusion of LV wall thickness and EDV in boys (R2adj = 0.608, P < 0.0001), and posterior wall thickness and Hb mass in girls (R2adj = 0.490, P < 0.0001). In conclusion, cardiovascular adaptation to exercise training is more pronounced post‐PHV, with evidence for a greater role of central components for oxygen delivery.Key pointsIt has long been hypothesised that cardiovascular adaptation to endurance training is augmented following puberty.We investigated whether differences in cardiac and haematological variables exist, and to what extent, between endurance‐trained versus untrained, pre‐ and post‐peak height velocity (PHV) children, and how these central factors relate to maximal oxygen consumption.Using echocardiography to quantify left ventricular (LV) morphology and carbon monoxide rebreathing to determine blood volume and haemoglobin mass, we identified that training‐related differences in LV morphology are evident in pre‐PHV children, with haematological differences also observed between pre‐PHV girls. However, the breadth and magnitude of cardiovascular remodelling was more pronounced post‐PHV.Cardiac and haematological measures provide significant predictive models for maximal oxygen consumption (V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$) in children that are much stronger post‐PHV, suggesting that other important determinants within the oxygen transport chain could account for the majority of variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ before puberty.
Cardiovascular and haematological adaptations to endurance training facilitate greater maximal oxygen consumption (V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$), and such adaptations may be augmented following puberty. Therefore, we compared left ventricular (LV) morphology (echocardiography), blood volume, haemoglobin (Hb) mass (CO rebreathing) and V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ in endurance‐trained and untrained boys (n = 42, age = 9.0–17.1 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 61.6 ± 7.2 ml/kg/min, and n = 31, age = 8.0–17.7 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 46.5 ± 6.1 ml/kg/min, respectively) and girls (n = 45, age = 8.2–17.0 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 51.4 ± 5.7 ml/kg/min, and n = 36, age = 8.0–17.6 years, V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ = 39.8 ± 5.7 ml/kg/min, respectively). Pubertal stage was estimated via maturity offset, with participants classified as pre‐ or post‐peak height velocity (PHV). Pre‐PHV, only a larger LV end‐diastolic volume/lean body mass (EDV/LBM) for trained boys (+0.28 ml/kg LBM, P = 0.007) and a higher Hb mass/LBM for trained girls (+1.65 g/kg LBM, P = 0.007) were evident compared to untrained controls. Post‐PHV, LV mass/LBM (boys: +0.50 g/kg LBM, P = 0.0003; girls: +0.35 g/kg LBM, P = 0.003), EDV/LBM (boys: +0.35 ml/kg LBM, P < 0.0001; girls: +0.31 ml/kg LBM, P = 0.0004), blood volume/LBM (boys: +12.47 ml/kg LBM, P = 0.004; girls: +13.48 ml/kg LBM, P = 0.0002.) and Hb mass/LBM (boys: +1.29 g/kg LBM, P = 0.015; girls: +1.47 g/kg LBM, P = 0.002) were all greater in trained versus untrained groups. Pre‐PHV, EDV (R2adj = 0.224, P = 0.001) in boys, and Hb mass and interventricular septal thickness (R2adj = 0.317, P = 0.002) in girls partially accounted for the variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$. Post‐PHV, stronger predictive models were evident via the inclusion of LV wall thickness and EDV in boys (R2adj = 0.608, P < 0.0001), and posterior wall thickness and Hb mass in girls (R2adj = 0.490, P < 0.0001). In conclusion, cardiovascular adaptation to exercise training is more pronounced post‐PHV, with evidence for a greater role of central components for oxygen delivery. Key points It has long been hypothesised that cardiovascular adaptation to endurance training is augmented following puberty. We investigated whether differences in cardiac and haematological variables exist, and to what extent, between endurance‐trained versus untrained, pre‐ and post‐peak height velocity (PHV) children, and how these central factors relate to maximal oxygen consumption. Using echocardiography to quantify left ventricular (LV) morphology and carbon monoxide rebreathing to determine blood volume and haemoglobin mass, we identified that training‐related differences in LV morphology are evident in pre‐PHV children, with haematological differences also observed between pre‐PHV girls. However, the breadth and magnitude of cardiovascular remodelling was more pronounced post‐PHV. Cardiac and haematological measures provide significant predictive models for maximal oxygen consumption (V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$) in children that are much stronger post‐PHV, suggesting that other important determinants within the oxygen transport chain could account for the majority of variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ before puberty. figure legend Schematic diagram depicting cardiac structural and haematological differences between trained and untrained boys and girls, pre‐peak height velocity (PHV) and post‐PHV alongside cardiac and haematological variables contributions to the variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$. Cardiac and haematological variables are greater in trained versus untrained pre‐pubertal children, and a greater number and magnitude of differences are observed post‐PHV. These variables provide significant predictive models for maximal oxygen consumption in children and are much stronger post‐PHV, suggesting that other important determinants within the oxygen transport chain could account for the majority of variance in V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}$ before puberty.
Author Talbot, Jack S.
Mackintosh, Kelly A.
Lloyd, Rhodri S.
Oliver, Jon L.
Shave, Rob E.
Cooper, Stephen‐Mark
Dawkins, Tony G.
Baggish, Aaron L.
Uzun, Orhan
Zaidi, Abbas
Perkins, Dean R.
Lord, Rachel N.
Stembridge, Mike
McNarry, Melitta A.
Author_xml – sequence: 1
  givenname: Dean R.
  orcidid: 0000-0002-9044-8508
  surname: Perkins
  fullname: Perkins, Dean R.
  organization: Cardiff Metropolitan University
– sequence: 2
  givenname: Jack S.
  orcidid: 0000-0003-0234-1426
  surname: Talbot
  fullname: Talbot, Jack S.
  organization: Cardiff Metropolitan University
– sequence: 3
  givenname: Rachel N.
  orcidid: 0000-0002-5385-7548
  surname: Lord
  fullname: Lord, Rachel N.
  organization: Cardiff Metropolitan University
– sequence: 4
  givenname: Tony G.
  orcidid: 0000-0001-5203-135X
  surname: Dawkins
  fullname: Dawkins, Tony G.
  organization: University of British Columbia Okanagan
– sequence: 5
  givenname: Aaron L.
  orcidid: 0000-0003-2042-1489
  surname: Baggish
  fullname: Baggish, Aaron L.
  organization: Massachusetts General Hospital
– sequence: 6
  givenname: Abbas
  surname: Zaidi
  fullname: Zaidi, Abbas
  organization: University Hospital of Wales
– sequence: 7
  givenname: Orhan
  surname: Uzun
  fullname: Uzun, Orhan
  organization: University Hospital of Wales
– sequence: 8
  givenname: Kelly A.
  surname: Mackintosh
  fullname: Mackintosh, Kelly A.
  organization: Swansea University
– sequence: 9
  givenname: Melitta A.
  surname: McNarry
  fullname: McNarry, Melitta A.
  organization: Swansea University
– sequence: 10
  givenname: Stephen‐Mark
  surname: Cooper
  fullname: Cooper, Stephen‐Mark
  organization: Cardiff Metropolitan University
– sequence: 11
  givenname: Rhodri S.
  surname: Lloyd
  fullname: Lloyd, Rhodri S.
  organization: Waikato Institute of Technology
– sequence: 12
  givenname: Jon L.
  surname: Oliver
  fullname: Oliver, Jon L.
  organization: AUT University
– sequence: 13
  givenname: Rob E.
  surname: Shave
  fullname: Shave, Rob E.
  organization: University of British Columbia Okanagan
– sequence: 14
  givenname: Mike
  orcidid: 0000-0003-0818-6420
  surname: Stembridge
  fullname: Stembridge, Mike
  email: mstembridge@cardiffmet.ac.uk
  organization: Cardiff Metropolitan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34935156$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1qVTEQx4NU7G0VfAIJuHFzapI5H8lSil-lYBfXdchNJm3KOck1OQftzkfoM_ZJjN57FURhYDa_-fGfmRNyFFNEQp5zdsY5h9cXV0KKWo_Iire9aoZBwRFZMSZEA0PHj8lJKbeMcWBKPSHH0CroeNeviF3fIA3RjwtGizR5Opl5yWYOKdJa-A2zDQUfvt-H6BaLjlqTXTCWZpySw3EM8Zqa6OiNwTqbxnQdrBmpcWY7__I8JY-9GQs-2_dT8vnd2_X5h-by0_uP528uGwsdaxtr-IBDt1GebWwPUvrOqq7vBwDWS3AgQfYoUHrDBB-U9y0oJxS23sDAPJySVzvvNqcvC5ZZT6HYmtBETEvRoueiyqSEir78C71NS441XaUESC7aVlbqxZ5aNhM6vc1hMvlOH85XgbMdYHMqJaPXNux2nrMJo-ZM__yPPvznT8TfAwfnP9C9-2sY8e6_nF5fXPGap4UfU_Cc0A
CitedBy_id crossref_primary_10_1111_sms_14594
crossref_primary_10_1111_sms_14681
crossref_primary_10_3390_cells12020230
crossref_primary_10_1016_j_biosystems_2023_104844
crossref_primary_10_1152_ajpheart_00302_2023
crossref_primary_10_1113_EP091279
crossref_primary_10_1113_EP091674
crossref_primary_10_1113_JP283081
crossref_primary_10_1152_ajpheart_00287_2024
crossref_primary_10_1007_s00421_024_05667_0
crossref_primary_10_1113_JP283031
crossref_primary_10_1113_JP283131
crossref_primary_10_1152_japplphysiol_00478_2023
crossref_primary_10_1016_j_echo_2023_11_024
crossref_primary_10_1136_openhrt_2022_002155
crossref_primary_10_1111_sms_70016
Cites_doi 10.1210/jc.2007-1692
10.1136/heartjnl-2011-301329
10.1046/j.1365-201X.2002.00975.x
10.1055/s-2007-971897
10.1016/j.jpeds.2004.09.002
10.1016/j.echo.2010.03.019
10.1002/1520-6300(200101/02)13:1<1::AID-AJHB1000>3.0.CO;2-S
10.1519/JSC.0000000000000391
10.1161/CIRCIMAGING.115.003651
10.1210/er.2018-00020
10.1249/00005768-198021000-00007
10.1093/cvr/cvab028
10.1136/bmj.320.7244.1240
10.1016/j.echo.2014.10.003
10.1161/01.CIR.101.3.336
10.1055/s-2001-11343
10.1007/s00421-020-04336-2
10.1111/apha.12827
10.1161/CIRCULATIONAHA.114.010775
10.1152/jappl.1991.70.4.1810
10.1111/sms.13253
10.1007/s00421-007-0439-2
10.1016/S0197-0070(83)80245-9
10.1017/S1047951105002106
10.1016/S0022-3476(05)80382-8
10.1016/j.beem.2019.03.001
10.1007/s40279-017-0750-y
10.1007/s00421-011-2184-9
10.22237/jmasm/1257035100
10.1152/japplphysiol.00092.2015
10.1007/BF00636604
10.1113/JP270250
10.1152/ajpregu.00012.2017
10.1016/0002-9149(82)90220-X
10.1080/07420520701649471
10.1016/S0733-8651(05)70345-3
10.3109/00365517909106114
10.1152/ajpheart.00034.2017
10.1139/H08-039
10.1111/j.1651-2227.1978.tb17818.x
10.1249/MSS.0000000000001170
10.1177/00912700022009486
10.1080/02640414.2019.1644890
10.3389/fphys.2018.00251
10.1161/hh2301.100982
10.1001/jama.1996.03540030045030
10.1177/2047487319869691
10.1136/bjsports-2016-097052
10.1161/01.CIR.98.3.256
10.1007/s40279-016-0671-1
10.2165/00007256-200333150-00004
10.1097/00005768-200204000-00020
10.2165/00007256-200232110-00003
10.7326/0003-4819-82-4-521
10.1046/j.1365-2362.2003.01118.x
10.7326/0003-4819-116-3-203
10.1161/CIRCULATIONAHA.107.736785
10.1016/S0002-9149(02)02381-0
10.1136/heart.89.12.1455
10.1007/s00421-005-0050-3
ContentType Journal Article
Copyright 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society
2021 The Authors. The Journal of Physiology © 2021 The Physiological Society.
Journal compilation © 2022 The Physiological Society
Copyright_xml – notice: 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society
– notice: 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society.
– notice: Journal compilation © 2022 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
DOI 10.1113/JP282282
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 601
ExternalDocumentID 34935156
10_1113_JP282282
TJP14934
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
123
18M
1OC
24P
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
.55
.GJ
.Y3
0YM
31~
3EH
3O-
AASGY
AAYJJ
AAYXX
ADXHL
AEYWJ
AFFNX
AGHNM
AGYGG
C1A
CAG
CHEAL
CITATION
COF
EJD
FA8
H13
HF~
H~9
LW6
MVM
NEJ
OHT
RIG
UKR
WHG
X7M
XOL
YXB
YYP
ZGI
ZXP
1OB
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PKN
SAMSI
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c3504-ca17e75b9f0bc6388f5c95667330683d38386e2e8fa02179ff439d29e4fa370f3
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Fri Jul 11 16:40:40 EDT 2025
Fri Jul 25 12:06:25 EDT 2025
Wed Feb 19 02:26:49 EST 2025
Tue Jul 01 04:29:35 EDT 2025
Thu Apr 24 22:51:42 EDT 2025
Wed Jan 22 16:26:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords haematology
puberty
echocardiography
endurance training
paediatric
Language English
License 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3504-ca17e75b9f0bc6388f5c95667330683d38386e2e8fa02179ff439d29e4fa370f3
Notes https://doi.org/10.1113/JP282282#support‐information‐section
The peer review history is available in the Supporting Information section of this article
Edited by: Scott Powers & Bruno Grassi
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2042-1489
0000-0003-0234-1426
0000-0003-0818-6420
0000-0002-5385-7548
0000-0001-5203-135X
0000-0002-9044-8508
PMID 34935156
PQID 2623812448
PQPubID 1086388
PageCount 19
ParticipantIDs proquest_miscellaneous_2612733883
proquest_journals_2623812448
pubmed_primary_34935156
crossref_citationtrail_10_1113_JP282282
crossref_primary_10_1113_JP282282
wiley_primary_10_1113_JP282282_TJP14934
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 February 2022
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 1 February 2022
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1979; 39
1982; 18
1983; 3
2017; 47
2020; 120
2017; 49
2007; 100
2008; 33
2014; 28
2001; 89
2014; 130
2017; 312
2012; 98
2018; 48
1993; 123
2010; 23
2018; 9
2018; 39
1998; 19
1978; 67
2005; 146
1997; 15
2021; 118
1992; 116
2008; 117
2000; 320
2002; 90
1975; 82
2001; 13
1998; 98
2007; 24
1988
2003; 89
2018; 28
2002; 175
2019; 33
2006; 16
2002; 34
1988; 58
2019; 37
2002; 32
2001; 22
1979; 11
2015; 8
2008; 93
2003; 33
1982; 49
2015; 28
2012; 112
1980; 12
2015; 593
1991; 70
2005; 95
2020; 27
2019
2000; 40
2009; 8
2015; 119
2018; 52
1996; 276
2017; 220
2000; 101
1988; 60
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_65_1
e_1_2_5_29_1
e_1_2_5_61_1
e_1_2_5_63_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
Cohen J (e_1_2_5_8_1) 1988
e_1_2_5_3_1
e_1_2_5_19_1
Mayers N (e_1_2_5_38_1) 1979; 11
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_43_1
e_1_2_5_66_1
Haralambie G (e_1_2_5_22_1) 1982; 18
e_1_2_5_60_1
Slaughter MH (e_1_2_5_62_1) 1988; 60
e_1_2_5_64_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 33
  start-page: 1127
  year: 2003
  end-page: 1143
  article-title: Endurance training and aerobic fitness in young people
  publication-title: Sports Med
– volume: 52
  start-page: 230
  year: 2018
  article-title: Electrical and structural adaptations of the paediatric athlete's heart: a systematic review with meta‐analysis
  publication-title: Br J Sports Med
– volume: 39
  start-page: 803
  year: 2018
  end-page: 829
  article-title: Circulating testosterone as the hormonal basis of sex differences in athletic performance
  publication-title: Endocr Rev
– volume: 60
  start-page: 709
  year: 1988
  end-page: 723
  article-title: Skinfold equations for estimation of body fatness in children and youth
  publication-title: Hum Biol
– volume: 98
  start-page: 256
  year: 1998
  end-page: 261
  article-title: Androgen receptors mediate hypertrophy in cardiac myocytes
  publication-title: Circulation
– volume: 47
  start-page: 1477
  year: 2017
  end-page: 1485
  article-title: Are prepubertal children metabolically comparable to well‐trained adult endurance athletes?
  publication-title: Sports Med
– volume: 8
  year: 2015
  article-title: Exercise‐induced left ventricular remodeling among competitive athletes: a phasic phenomenon
  publication-title: Circ Cardiovasc Imaging
– volume: 27
  start-page: 2148
  year: 2020
  end-page: 2150
  article-title: Exercise‐induced cardiac remodeling during adolescence
  publication-title: Eur J Prev Cardiol
– volume: 13
  start-page: 1
  year: 2001
  end-page: 8
  article-title: Timing and magnitude of peak height velocity and peak tissue velocities for early, average, and late maturing boys and girls
  publication-title: Am J Hum Biol
– volume: 276
  start-page: 211
  year: 1996
  end-page: 215
  article-title: Athlete's heart in women. Echocardiographic characterization of highly trained elite female athletes
  publication-title: JAMA
– volume: 28
  start-page: 1454
  year: 2014
  end-page: 1464
  article-title: Chronological age vs. biological maturation: implications for exercise programming in youth
  publication-title: J Strength Cond Res
– volume: 593
  start-page: 4677
  year: 2015
  end-page: 4688
  article-title: Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training
  publication-title: J Physiol
– volume: 118
  start-page: 334
  year: 2021
  end-page: 343
  article-title: Sex differences in cardiorespiratory fitness are explained by blood volume and oxygen carrying capacity
  publication-title: Cardiovasc Res
– volume: 175
  start-page: 85
  year: 2002
  end-page: 92
  article-title: Central and peripheral cardiovascular adaptations to exercise in endurance‐trained children
  publication-title: Acta Physiol Scand
– volume: 312
  start-page: H1195
  year: 2017
  end-page: H1202
  article-title: Anterior cerebral blood velocity and end‐tidal CO responses to exercise differ in children and adults
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 130
  start-page: 2152
  year: 2014
  end-page: 2161
  article-title: Cardiac remodeling in response to 1 year of intensive endurance training
  publication-title: Circulation
– volume: 16
  start-page: 61
  year: 2006
  end-page: 66
  article-title: Athlete's heart in prepubertal male swimmers
  publication-title: Cardiol Young
– volume: 49
  start-page: 702
  year: 2017
  end-page: 710
  article-title: Verification of maximal oxygen uptake in obese and nonobese children
  publication-title: Med Sci Sports Exerc
– volume: 40
  start-page: 731
  year: 2000
  end-page: 738
  article-title: Modeling of circadian testosterone in healthy men and hypogonadal men
  publication-title: J Clin Pharmacol
– volume: 116
  start-page: 203
  year: 1992
  end-page: 210
  article-title: Is there a relationship between exercise systolic blood pressure response and left ventricular mass? The Framingham Heart Study
  publication-title: Ann Intern Med
– volume: 28
  start-page: 1
  year: 2015
  end-page: 39
  article-title: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging
  publication-title: J Am Soc Echocardiogr
– volume: 28
  start-page: 33
  year: 2018
  end-page: 41
  article-title: Cardiovascular adaptations after 10 months of intense school‐based physical training for 8‐ to 10‐year‐old children
  publication-title: Scand J Med Sci Sports
– volume: 18
  start-page: 65
  year: 1982
  end-page: 74
  article-title: Enzyme activities in skeletal muscle of 13–15 years old adolescents
  publication-title: Bull Eur Physiopathol Respir
– volume: 120
  start-page: 985
  year: 2020
  end-page: 999
  article-title: Blood volume expansion does not explain the increase in peak oxygen uptake induced by 10 weeks of endurance training
  publication-title: Eur J Appl Physiol
– volume: 90
  start-page: 29
  year: 2002
  end-page: 34
  article-title: Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two‐dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy
  publication-title: Am J Cardiol
– volume: 146
  start-page: 245
  year: 2005
  end-page: 252
  article-title: Pubertal upregulation of erythropoiesis in boys is determined primarily by androgen
  publication-title: J Pediatr
– volume: 58
  start-page: 62
  year: 1988
  end-page: 67
  article-title: Blood pressure during exercise in healthy children
  publication-title: Eur J Appl Physiol Occup Physiol
– volume: 220
  start-page: 218
  year: 2017
  end-page: 228
  article-title: Biology of VO max: looking under the physiology lamp
  publication-title: Acta Physiol
– volume: 37
  start-page: 2492
  year: 2019
  end-page: 2498
  article-title: The effect of constant‐intensity endurance training and high‐intensity interval training on aerobic and anaerobic parameters in youth
  publication-title: J Sports Sci
– volume: 22
  start-page: 90
  year: 2001
  end-page: 96
  article-title: Effect of aerobic training and detraining on left ventricular dimensions and diastolic function in prepubertal boys and girls
  publication-title: Int J Sports Med
– volume: 49
  start-page: 1990
  year: 1982
  end-page: 1995
  article-title: Echocardiographic measures in 6 to 7 year old children after an 8 month exercise program
  publication-title: Am J Cardiol
– volume: 123
  start-page: 871
  year: 1993
  end-page: 886
  article-title: Blood pressure nomograms for children and adolescents, by height, sex, and age, in the United States
  publication-title: J Pediatr
– volume: 98
  start-page: 947
  year: 2012
  end-page: 955
  article-title: The athlete's heart
  publication-title: Heart
– year: 2019
– volume: 23
  start-page: 465
  year: 2010
  end-page: 495
  article-title: Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council
  publication-title: J Am Soc Echocardiogr
– volume: 312
  start-page: R894
  year: 2017
  end-page: R902
  article-title: Erythropoiesis with endurance training: dynamics and mechanisms
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 33
  year: 2019
  article-title: Puberty: Normal physiology (brief overview)
  publication-title: Best Pract Res Clin Endocrinol Metab
– volume: 12
  start-page: 28
  year: 1980
  end-page: 31
  article-title: Muscle fiber types and morphometric analysis of skeletal msucle in six‐year‐old children
  publication-title: Med Sci Sports Exerc
– volume: 82
  start-page: 521
  year: 1975
  end-page: 524
  article-title: Comparative left ventricular dimensions in trained athletes
  publication-title: Ann Intern Med
– volume: 101
  start-page: 336
  year: 2000
  end-page: 344
  article-title: The athlete's heart. A meta‐analysis of cardiac structure and function
  publication-title: Circulation
– volume: 39
  start-page: 311
  year: 1979
  end-page: 319
  article-title: Effect of long‐term physical training on total red cell volume
  publication-title: Scand J Clin Lab Invest
– volume: 33
  start-page: 720
  year: 2008
  end-page: 727
  article-title: Comparative analysis of skeletal muscle oxidative capacity in children and adults: a P‐MRS study
  publication-title: Appl Physiol Nutr Metab
– volume: 19
  start-page: 149
  year: 1998
  end-page: 154
  article-title: Effect of long‐term intensive endurance training on left ventricular structure and diastolic function in prepubertal children
  publication-title: Int J Sports Med
– volume: 112
  start-page: 2139
  year: 2012
  end-page: 2147
  article-title: Maximal oxygen consumption is best predicted by measures of cardiac size rather than function in healthy adults
  publication-title: Eur J Appl Physiol
– volume: 89
  start-page: 977
  year: 2001
  end-page: 982
  article-title: Increased cardiac sympathetic activity and insulin‐like growth factor‐I formation are associated with physiological hypertrophy in athletes
  publication-title: Circ Res
– volume: 100
  start-page: 383
  year: 2007
  end-page: 391
  article-title: Loss of CO from the intravascular bed and its impact on the optimised CO‐rebreathing method
  publication-title: Eur J Appl Physiol
– volume: 320
  start-page: 1240
  year: 2000
  end-page: 1243
  article-title: Establishing a standard definition for child overweight and obesity worldwide: international survey
  publication-title: BMJ
– volume: 34
  start-page: 689
  year: 2002
  end-page: 694
  article-title: An assessment of maturity from anthropometric measurements
  publication-title: Med Sci Sports Exerc
– volume: 33
  start-page: 199
  year: 2003
  end-page: 208
  article-title: Cardiovascular responses to endurance training in children: effect of gender
  publication-title: Eur J Clin Invest
– volume: 67
  start-page: 655
  year: 1978
  end-page: 658
  article-title: Relationship between haemoglobin and serum testosterone in normal children and adolescents and in boys with delayed puberty
  publication-title: Acta Paediatr Scand
– volume: 32
  start-page: 701
  year: 2002
  end-page: 728
  article-title: Short‐term muscle power during growth and maturation
  publication-title: Sports Med
– volume: 15
  start-page: 355
  year: 1997
  end-page: 372
  article-title: Mechanics of left ventricular systolic and diastolic function in physiologic hypertrophy of the athlete's heart
  publication-title: Cardiol Clin
– volume: 93
  start-page: 914
  year: 2008
  end-page: 919
  article-title: Effects of graded doses of testosterone on erythropoiesis in healthy young and older men
  publication-title: J Clin Endocrinol Metab
– volume: 8
  start-page: 597
  year: 2009
  end-page: 599
  article-title: New effect size rules of thumb
  publication-title: J Mod Appl Stat Methods
– year: 1988
– volume: 48
  start-page: 221
  year: 2018
  end-page: 236
  article-title: Modified maturity offset prediction equations: validation in independent longitudinal samples of boys and girls
  publication-title: Sports Med
– volume: 24
  start-page: 969
  year: 2007
  end-page: 990
  article-title: Diurnal and seasonal cortisol, testosterone, and DHEA rhythms in boys and girls during puberty
  publication-title: Chronobiol Int
– volume: 11
  start-page: 172
  year: 1979
  end-page: 176
  article-title: Physiological characteristics of elite prepubertal cross‐country runners
  publication-title: Med Sci Sports
– volume: 117
  start-page: 2279
  year: 2008
  end-page: 2287
  article-title: Does size matter? Clinical applications of scaling cardiac size and function for body size
  publication-title: Circulation
– volume: 3
  start-page: 241
  year: 1983
  end-page: 246
  article-title: Physical conditioning of children
  publication-title: J Adolesc Health Care
– volume: 119
  start-page: 37
  year: 2015
  end-page: 46
  article-title: Females have a blunted cardiovascular response to one year of intensive supervised endurance training
  publication-title: J Appl Physiol
– volume: 9
  start-page: 251
  year: 2018
  article-title: Influence of endurance training during childhood on total hemoglobin mass
  publication-title: Front Physiol
– volume: 70
  start-page: 1810
  year: 1991
  end-page: 1815
  article-title: Response of red cell and plasma volume to prolonged training in humans
  publication-title: J Appl Physiol
– volume: 95
  start-page: 486
  year: 2005
  end-page: 495
  article-title: The optimised CO‐rebreathing method: a new tool to determine total haemoglobin mass routinely
  publication-title: Eur J Appl Physiol
– volume: 89
  start-page: 1455
  year: 2003
  end-page: 1461
  article-title: Athlete's heart
  publication-title: Heart
– ident: e_1_2_5_11_1
  doi: 10.1210/jc.2007-1692
– ident: e_1_2_5_51_1
  doi: 10.1136/heartjnl-2011-301329
– ident: e_1_2_5_45_1
  doi: 10.1046/j.1365-201X.2002.00975.x
– ident: e_1_2_5_12_1
– ident: e_1_2_5_48_1
  doi: 10.1055/s-2007-971897
– ident: e_1_2_5_23_1
  doi: 10.1016/j.jpeds.2004.09.002
– volume: 11
  start-page: 172
  year: 1979
  ident: e_1_2_5_38_1
  article-title: Physiological characteristics of elite prepubertal cross‐country runners
  publication-title: Med Sci Sports
– ident: e_1_2_5_34_1
  doi: 10.1016/j.echo.2010.03.019
– ident: e_1_2_5_25_1
  doi: 10.1002/1520-6300(200101/02)13:1<1::AID-AJHB1000>3.0.CO;2-S
– ident: e_1_2_5_33_1
  doi: 10.1519/JSC.0000000000000391
– ident: e_1_2_5_65_1
  doi: 10.1161/CIRCIMAGING.115.003651
– ident: e_1_2_5_21_1
  doi: 10.1210/er.2018-00020
– ident: e_1_2_5_5_1
  doi: 10.1249/00005768-198021000-00007
– ident: e_1_2_5_14_1
  doi: 10.1093/cvr/cvab028
– ident: e_1_2_5_10_1
  doi: 10.1136/bmj.320.7244.1240
– ident: e_1_2_5_30_1
  doi: 10.1016/j.echo.2014.10.003
– ident: e_1_2_5_50_1
  doi: 10.1161/01.CIR.101.3.336
– ident: e_1_2_5_47_1
  doi: 10.1055/s-2001-11343
– volume: 18
  start-page: 65
  year: 1982
  ident: e_1_2_5_22_1
  article-title: Enzyme activities in skeletal muscle of 13–15 years old adolescents
  publication-title: Bull Eur Physiopathol Respir
– ident: e_1_2_5_61_1
  doi: 10.1007/s00421-020-04336-2
– ident: e_1_2_5_35_1
  doi: 10.1111/apha.12827
– ident: e_1_2_5_2_1
  doi: 10.1161/CIRCULATIONAHA.114.010775
– ident: e_1_2_5_18_1
  doi: 10.1152/jappl.1991.70.4.1810
– ident: e_1_2_5_31_1
  doi: 10.1111/sms.13253
– ident: e_1_2_5_52_1
  doi: 10.1007/s00421-007-0439-2
– ident: e_1_2_5_26_1
  doi: 10.1016/S0197-0070(83)80245-9
– ident: e_1_2_5_3_1
  doi: 10.1017/S1047951105002106
– ident: e_1_2_5_57_1
  doi: 10.1016/S0022-3476(05)80382-8
– ident: e_1_2_5_66_1
  doi: 10.1016/j.beem.2019.03.001
– ident: e_1_2_5_27_1
  doi: 10.1007/s40279-017-0750-y
– ident: e_1_2_5_29_1
  doi: 10.1007/s00421-011-2184-9
– ident: e_1_2_5_59_1
  doi: 10.22237/jmasm/1257035100
– ident: e_1_2_5_24_1
  doi: 10.1152/japplphysiol.00092.2015
– ident: e_1_2_5_64_1
  doi: 10.1007/BF00636604
– ident: e_1_2_5_42_1
  doi: 10.1113/JP270250
– ident: e_1_2_5_41_1
  doi: 10.1152/ajpregu.00012.2017
– ident: e_1_2_5_17_1
  doi: 10.1016/0002-9149(82)90220-X
– ident: e_1_2_5_37_1
  doi: 10.1080/07420520701649471
– ident: e_1_2_5_9_1
  doi: 10.1016/S0733-8651(05)70345-3
– ident: e_1_2_5_56_1
  doi: 10.3109/00365517909106114
– ident: e_1_2_5_15_1
  doi: 10.1152/ajpheart.00034.2017
– volume: 60
  start-page: 709
  year: 1988
  ident: e_1_2_5_62_1
  article-title: Skinfold equations for estimation of body fatness in children and youth
  publication-title: Hum Biol
– ident: e_1_2_5_55_1
  doi: 10.1139/H08-039
– volume-title: Statistical Power Analysis for the Behavioral Sciences
  year: 1988
  ident: e_1_2_5_8_1
– ident: e_1_2_5_28_1
  doi: 10.1111/j.1651-2227.1978.tb17818.x
– ident: e_1_2_5_6_1
  doi: 10.1249/MSS.0000000000001170
– ident: e_1_2_5_20_1
  doi: 10.1177/00912700022009486
– ident: e_1_2_5_58_1
  doi: 10.1080/02640414.2019.1644890
– ident: e_1_2_5_53_1
  doi: 10.3389/fphys.2018.00251
– ident: e_1_2_5_44_1
  doi: 10.1161/hh2301.100982
– ident: e_1_2_5_49_1
  doi: 10.1001/jama.1996.03540030045030
– ident: e_1_2_5_7_1
  doi: 10.1177/2047487319869691
– ident: e_1_2_5_39_1
  doi: 10.1136/bjsports-2016-097052
– ident: e_1_2_5_36_1
  doi: 10.1161/01.CIR.98.3.256
– ident: e_1_2_5_54_1
  doi: 10.1007/s40279-016-0671-1
– ident: e_1_2_5_4_1
  doi: 10.2165/00007256-200333150-00004
– ident: e_1_2_5_40_1
  doi: 10.1097/00005768-200204000-00020
– ident: e_1_2_5_63_1
  doi: 10.2165/00007256-200232110-00003
– ident: e_1_2_5_43_1
  doi: 10.7326/0003-4819-82-4-521
– ident: e_1_2_5_46_1
  doi: 10.1046/j.1365-2362.2003.01118.x
– ident: e_1_2_5_32_1
  doi: 10.7326/0003-4819-116-3-203
– ident: e_1_2_5_13_1
  doi: 10.1161/CIRCULATIONAHA.107.736785
– ident: e_1_2_5_19_1
  doi: 10.1016/S0002-9149(02)02381-0
– ident: e_1_2_5_16_1
  doi: 10.1136/heart.89.12.1455
– ident: e_1_2_5_60_1
  doi: 10.1007/s00421-005-0050-3
SSID ssj0013099
Score 2.4757638
Snippet Cardiovascular and haematological adaptations to endurance training facilitate greater maximal oxygen consumption...
Cardiovascular and haematological adaptations to endurance training facilitate greater maximal oxygen consumption ( ), and such adaptations may be augmented...
Cardiovascular and haematological adaptations to endurance training facilitate greater maximal oxygen consumption (...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 583
SubjectTerms Adaptation
Adaptation, Physiological
Adolescent
Age
Blood
Body height
Body mass
Carbon monoxide
Child
Children
Children & youth
Echocardiography
endurance training
Exercise
Female
haematology
Heart
Hematology
Hemoglobin
Humans
Lean body mass
Male
Maturation
Morphology
Oxygen Consumption
paediatric
Physical training
Prediction models
Puberty
Velocity
Ventricle
Ventricular Remodeling
Title The influence of maturation on exercise‐induced cardiac remodelling and haematological adaptation
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP282282
https://www.ncbi.nlm.nih.gov/pubmed/34935156
https://www.proquest.com/docview/2623812448
https://www.proquest.com/docview/2612733883
Volume 600
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iyYuv9bE-lgiip2rbtGl6FFGWBWURBcFDSfNA0e0u6-5BT_4Ef6O_xJn0Ib5AhN6aNElnJvkmmXxDyK4yHBY5br2EKe1F1vqesEx5PBSB4oHW1t16Pzvn3auodx1fV1GVeBem5IdoNtzQMtx8jQYu8yoLSYBkA70-RkAKnH4xVAvx0EX4cYDgp2lDFJ7EQcU7C1UP64qfV6Jv8PIzWnXLzekCuak7WkaZ3B9MJ_mBev7C4fi_kSyS-QqF0qNSbZbIjCmWSeuoAA988ET3qIsLdRvuLaJAk-hdncuEDi0dIBmokyiFp07a9PbyCv49aIqmyqmdomPjEu3gjXcqC01vJTLE1tMtlVqOykiAFXJ1enJ53PWq1AyeYrEfeUoGiUniPLV-rsCEhY0VeFo8YeCCCKbB7xXchEZYiU5Pai0AHx2mJrKSJb5lq2S2GBZmnVBfMsB8gkWpZJFmKuVRLi2G3oa5yG3QJvu1mDJV8ZZj-oyHrPRfWFb_vzbZaUqOSq6OH8ps1ZLOKmt9zEKOwAWAjoBPNK_BzvDwRBZmOMUyASA9GClrk7VSQ5pGoO8McCGHrjo5_9p6dtnrg0vKoo0_l9wkcyEqsQsU3yKzk_HUbAMOmuQdp_Edt0H1DgiiAqw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFL1CsCgboOU1MLRGQrAKJHHiOGKFqqLp8BBCg8QCKXL8EKglg6Yzi7LiE_hGvoRrJ05FC1KFlF3s2Invtc9xrs8F2JKa4SLHTJBRqYLEmDDghsqAxTySLFLKuFPvJ6esd5H0L9PLKdj3Z2FqfYh2w816hpuvrYPbDenGy63aQP_MhkBynH9nbEJvx6fO4z-_EMI8b6XCszRqlGex7p6v-XIt-gdgvsSrbsE5nIcr39U6zuTH7mRc7sr7v1Qc3_kuCzDXAFFyUFvOR5jS1SdYPKiQhN_-JtvEhYa6PfdFkGhM5ManMyFDQ26tHqgbVIKXz9v09PCIFB-NRRHpLE-SkXa5duyhdyIqRa6FFYn1My4RStzVwQBLcHH4bfC1FzTZGQJJ0zAJpIgynaVlbsJSohdzk0okWyyjyEI4VUh9OdOx5kZY3pMbg9hHxblOjKBZaOgyTFfDSq8CCQVF2MdpkguaKCpzlpTC2OjbuOSliTqw48epkI10uc2g8bOoKQwt_PfrwGZb8q6W63ilTNcPddE47K8iZha7INbh-Ij2Nrqa_X8iKj2c2DIRgj18U9qBldpE2kaw7xShIcOuuoF-s_Vi0D9DVkqTtf8u-QU-9AYnx8Xx99OjdZiNrUW7uPEuTI9HE72BsGhcfnbm_wwRQAW3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6iIF7cl3GNIHqqtk2apkdRBx0XBlEQPJQ0C4pOZ9CZg578Cf5Gf4kv6SJuIEJvTZqk773ke8nL9xDakJrBIseMFxOpPGqM73FDpMdCHkgWKGXcrffTM3Z4SVtX0VUZVWnvwhT8EPWGm7UMN19bA-8pUxq5JRtotW0EJIfpd4Qyn1uN3j8PP04Q_CSpmcLjKCiJZ6HuTlXz81L0DV9-hqtuvWlOoOuqp0WYyd32oJ9ty-cvJI7_G8okGi9hKN4t9GYKDel8Gs3s5uCCd57wJnaBoW7HfQZJUCV8WyUzwV2DO5YN1IkUw1NlbXp7eQUHH1RFYen0TuIH7TLt2CvvWOQK3whLEVvNt1go0StCAWbRZfPgYu_QK3MzeJJEPvWkCGIdR1li_EyCDXMTSXC1WEzAB-FEgePLmQ41N8J6PYkxgHxUmGhqBIl9Q-bQcN7N9QLCviAA-jihiSBUEZkwmgljY2_DjGcmaKCtSkypLInLbf6M-7RwYEha_b8GWq9L9gqyjh_KLFeSTktzfUxDZpELIB0On6hfg6HZ0xOR6-7AlgkA6sFISQPNFxpSNwJ9JwAMGXTVyfnX1tOLVht8UkIX_1xyDY2295vpydHZ8RIaC60-u6DxZTTcfxjoFcBE_WzVKf87Fl8Ebw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+maturation+on+exercise%E2%80%90induced+cardiac+remodelling+and+haematological+adaptation&rft.jtitle=The+Journal+of+physiology&rft.au=Perkins%2C+Dean+R&rft.au=Talbot%2C+Jack+S&rft.au=Lord%2C+Rachel+N&rft.au=Dawkins%2C+Tony+G&rft.date=2022-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=600&rft.issue=3&rft.spage=583&rft.epage=601&rft_id=info:doi/10.1113%2FJP282282&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon