Lithium Fluoride in Electrolyte for Stable and Safe Lithium‐Metal Batteries
Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high‐energy Li‐metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li‐metal ba...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 42; pp. e2102134 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high‐energy Li‐metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li‐metal batteries. Unlike traditionally engineered electrolytes, the prepared electrolyte in the porous LiF nanobox exhibits nonflammability and high electrochemical performance owing to strong interactions between the electrolyte solvent molecules and numerous exposed active LiF (111) crystal planes. Via cryogenic transmission electron microscopy and X‐ray photoelectron spectroscopy depth analysis, it is revealed that the electrolyte in active porous LiF nanobox involves the formation of a high‐fluorine‐content (>30%) solid electrolyte interphase layer, which enables very stable Li‐metal anode cycling over one thousand cycles under high current density (4 mA cm−2). More importantly, employing the porous LiF nanobox engineered electrolyte, a Li || LiNi0.8Co0.1Mn0.1O2 pouch cell is achieved with a specific energy of 380 Wh kg−1 for stable cycling over 80 cycles, representing the excellent performance of the Li‐metal pouch cell using practical carbonate electrolyte. This study provides a new electrolyte engineering strategy for stable and safe Li‐metal batteries.
Electrolyte engineering via fluorinated additives is promising to improve the cycling stability and safety of high‐energy Li‐metal batteries. The electrolyte in an active porous LiF nanobox involves the formation of a high‐fluorine‐content (>30%) solid electrolyte interphase layer to achieve a ≈3.5 Ah Li || LiNi0.8Co0.1Mn0.1O2 pouch cell with a specific energy of 380 Wh kg−1 under a practical carbonate electrolyte. |
---|---|
AbstractList | Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high-energy Li-metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li-metal batteries. Unlike traditionally engineered electrolytes, the prepared electrolyte in the porous LiF nanobox exhibits nonflammability and high electrochemical performance owing to strong interactions between the electrolyte solvent molecules and numerous exposed active LiF (111) crystal planes. Via cryogenic transmission electron microscopy and X-ray photoelectron spectroscopy depth analysis, it is revealed that the electrolyte in active porous LiF nanobox involves the formation of a high-fluorine-content (>30%) solid electrolyte interphase layer, which enables very stable Li-metal anode cycling over one thousand cycles under high current density (4 mA cm-2 ). More importantly, employing the porous LiF nanobox engineered electrolyte, a Li || LiNi0.8 Co0.1 Mn0.1 O2 pouch cell is achieved with a specific energy of 380 Wh kg-1 for stable cycling over 80 cycles, representing the excellent performance of the Li-metal pouch cell using practical carbonate electrolyte. This study provides a new electrolyte engineering strategy for stable and safe Li-metal batteries.Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high-energy Li-metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li-metal batteries. Unlike traditionally engineered electrolytes, the prepared electrolyte in the porous LiF nanobox exhibits nonflammability and high electrochemical performance owing to strong interactions between the electrolyte solvent molecules and numerous exposed active LiF (111) crystal planes. Via cryogenic transmission electron microscopy and X-ray photoelectron spectroscopy depth analysis, it is revealed that the electrolyte in active porous LiF nanobox involves the formation of a high-fluorine-content (>30%) solid electrolyte interphase layer, which enables very stable Li-metal anode cycling over one thousand cycles under high current density (4 mA cm-2 ). More importantly, employing the porous LiF nanobox engineered electrolyte, a Li || LiNi0.8 Co0.1 Mn0.1 O2 pouch cell is achieved with a specific energy of 380 Wh kg-1 for stable cycling over 80 cycles, representing the excellent performance of the Li-metal pouch cell using practical carbonate electrolyte. This study provides a new electrolyte engineering strategy for stable and safe Li-metal batteries. Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high‐energy Li‐metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li‐metal batteries. Unlike traditionally engineered electrolytes, the prepared electrolyte in the porous LiF nanobox exhibits nonflammability and high electrochemical performance owing to strong interactions between the electrolyte solvent molecules and numerous exposed active LiF (111) crystal planes. Via cryogenic transmission electron microscopy and X‐ray photoelectron spectroscopy depth analysis, it is revealed that the electrolyte in active porous LiF nanobox involves the formation of a high‐fluorine‐content (>30%) solid electrolyte interphase layer, which enables very stable Li‐metal anode cycling over one thousand cycles under high current density (4 mA cm−2). More importantly, employing the porous LiF nanobox engineered electrolyte, a Li || LiNi0.8Co0.1Mn0.1O2 pouch cell is achieved with a specific energy of 380 Wh kg−1 for stable cycling over 80 cycles, representing the excellent performance of the Li‐metal pouch cell using practical carbonate electrolyte. This study provides a new electrolyte engineering strategy for stable and safe Li‐metal batteries. Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high‐energy Li‐metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li‐metal batteries. Unlike traditionally engineered electrolytes, the prepared electrolyte in the porous LiF nanobox exhibits nonflammability and high electrochemical performance owing to strong interactions between the electrolyte solvent molecules and numerous exposed active LiF (111) crystal planes. Via cryogenic transmission electron microscopy and X‐ray photoelectron spectroscopy depth analysis, it is revealed that the electrolyte in active porous LiF nanobox involves the formation of a high‐fluorine‐content (>30%) solid electrolyte interphase layer, which enables very stable Li‐metal anode cycling over one thousand cycles under high current density (4 mA cm−2). More importantly, employing the porous LiF nanobox engineered electrolyte, a Li || LiNi0.8Co0.1Mn0.1O2 pouch cell is achieved with a specific energy of 380 Wh kg−1 for stable cycling over 80 cycles, representing the excellent performance of the Li‐metal pouch cell using practical carbonate electrolyte. This study provides a new electrolyte engineering strategy for stable and safe Li‐metal batteries. Electrolyte engineering via fluorinated additives is promising to improve the cycling stability and safety of high‐energy Li‐metal batteries. The electrolyte in an active porous LiF nanobox involves the formation of a high‐fluorine‐content (>30%) solid electrolyte interphase layer to achieve a ≈3.5 Ah Li || LiNi0.8Co0.1Mn0.1O2 pouch cell with a specific energy of 380 Wh kg−1 under a practical carbonate electrolyte. Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high‐energy Li‐metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li‐metal batteries. Unlike traditionally engineered electrolytes, the prepared electrolyte in the porous LiF nanobox exhibits nonflammability and high electrochemical performance owing to strong interactions between the electrolyte solvent molecules and numerous exposed active LiF (111) crystal planes. Via cryogenic transmission electron microscopy and X‐ray photoelectron spectroscopy depth analysis, it is revealed that the electrolyte in active porous LiF nanobox involves the formation of a high‐fluorine‐content (>30%) solid electrolyte interphase layer, which enables very stable Li‐metal anode cycling over one thousand cycles under high current density (4 mA cm −2 ). More importantly, employing the porous LiF nanobox engineered electrolyte, a Li || LiNi 0.8 Co 0.1 Mn 0.1 O 2 pouch cell is achieved with a specific energy of 380 Wh kg −1 for stable cycling over 80 cycles, representing the excellent performance of the Li‐metal pouch cell using practical carbonate electrolyte. This study provides a new electrolyte engineering strategy for stable and safe Li‐metal batteries. |
Author | Yao, Hong‐Bin Chen, Mei Song, Yong‐Hui Liang, Zheng Xu, Wen‐Shan Zhang, Yuegang Lu, Gong‐Xun Wang, Junxiong Guan, Yong Ma, Tao Tao, Xinyong Zhou, Fei Zheng, Jian‐Hui Lu, Lei‐Lei Tan, Yi‐Hong |
Author_xml | – sequence: 1 givenname: Yi‐Hong surname: Tan fullname: Tan, Yi‐Hong organization: University of Science and Technology of China – sequence: 2 givenname: Gong‐Xun surname: Lu fullname: Lu, Gong‐Xun organization: Zhejiang University of Technology – sequence: 3 givenname: Jian‐Hui surname: Zheng fullname: Zheng, Jian‐Hui organization: Zhejiang University of Technology – sequence: 4 givenname: Fei surname: Zhou fullname: Zhou, Fei organization: Monta Vista Energy Technologies Corporation – sequence: 5 givenname: Mei surname: Chen fullname: Chen, Mei organization: Zhejiang University of Technology – sequence: 6 givenname: Tao surname: Ma fullname: Ma, Tao organization: University of Science and Technology of China – sequence: 7 givenname: Lei‐Lei surname: Lu fullname: Lu, Lei‐Lei organization: University of Science and Technology of China – sequence: 8 givenname: Yong‐Hui surname: Song fullname: Song, Yong‐Hui organization: University of Science and Technology of China – sequence: 9 givenname: Yong surname: Guan fullname: Guan, Yong organization: National Synchrotron Radiation Laboratory University of Science and Technology of China – sequence: 10 givenname: Junxiong surname: Wang fullname: Wang, Junxiong organization: Shanghai Jiao Tong University – sequence: 11 givenname: Zheng surname: Liang fullname: Liang, Zheng email: liangzheng06@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 12 givenname: Wen‐Shan surname: Xu fullname: Xu, Wen‐Shan organization: Monta Vista Energy Technologies Corporation – sequence: 13 givenname: Yuegang surname: Zhang fullname: Zhang, Yuegang email: yuegang.zhang@tsinghua.edu.cn organization: Tsinghua University – sequence: 14 givenname: Xinyong surname: Tao fullname: Tao, Xinyong email: tao@zjut.edu.cn organization: Zhejiang University of Technology – sequence: 15 givenname: Hong‐Bin orcidid: 0000-0002-2901-0160 surname: Yao fullname: Yao, Hong‐Bin email: yhb@ustc.edu.cn organization: University of Science and Technology of China |
BookMark | eNqFkMtqHDEQRUVwwOPH1mtBNtn0pPToh5bjZwIzeOF43VR3l4iMpmVLaszs8gn5Rn9J2oxJwBBSXKjNOUVxj9jBGEZi7EzAUgDILzhscSlBijlKf2ALUUpRaDDlAVuAUWVhKt0csqOUHgDAVFAt2Gbt8g83bfm1n0J0A3E38itPfY7B7zJxGyK_y9h54jgO_A4t8Tfn5eevDWX0_BxzpugonbCPFn2i07d9zO6vr75ffC3WtzffLlbrolcl6KKcB7SuRG-lRK2srUzTdTiAKjXSYLVCrLsGjaIarLBVJaGEGhqUnbSDOmaf93cfY3iaKOV261JP3uNIYUqtLCujam1EPaOf3qEPYYrj_N1MNQoapYyeKb2n-hhSimTb3mXMLow5ovOtgPa14_a14_ZPx7O2fKc9RrfFuPu3YPbCs_O0-w_dri43q7_ub5eokIc |
CitedBy_id | crossref_primary_10_1002_ange_202204776 crossref_primary_10_1007_s11581_022_04654_9 crossref_primary_10_1021_acsami_2c08117 crossref_primary_10_1016_j_apsusc_2022_153683 crossref_primary_10_1002_smll_202308344 crossref_primary_10_1002_ange_202402245 crossref_primary_10_1002_adma_202207310 crossref_primary_10_1002_adfm_202214432 crossref_primary_10_1038_s41467_021_27429_8 crossref_primary_10_1039_D4EE04617J crossref_primary_10_1021_acsenergylett_4c01032 crossref_primary_10_1021_acsnano_3c07038 crossref_primary_10_1039_D4EE02903H crossref_primary_10_1002_cey2_354 crossref_primary_10_1002_smll_202411527 crossref_primary_10_1002_aenm_202301462 crossref_primary_10_1016_j_cej_2023_143084 crossref_primary_10_1021_acsami_2c19417 crossref_primary_10_1016_j_cej_2024_153619 crossref_primary_10_1038_s41598_023_50978_5 crossref_primary_10_1002_eem2_12450 crossref_primary_10_1021_acsmaterialslett_2c00443 crossref_primary_10_1007_s40820_023_01234_y crossref_primary_10_1002_adfm_202307180 crossref_primary_10_1016_j_ccr_2024_216104 crossref_primary_10_1002_adma_202314120 crossref_primary_10_1021_acsnano_4c08349 crossref_primary_10_1002_adfm_202310867 crossref_primary_10_1021_acsami_2c14770 crossref_primary_10_1002_cssc_202300186 crossref_primary_10_1016_j_mattod_2023_09_004 crossref_primary_10_1021_acsaem_4c01618 crossref_primary_10_1002_sstr_202200122 crossref_primary_10_1016_j_apsusc_2022_155205 crossref_primary_10_1002_smll_202203394 crossref_primary_10_1002_slct_202302517 crossref_primary_10_1002_anie_202218970 crossref_primary_10_1002_anie_202410982 crossref_primary_10_1002_smll_202401857 crossref_primary_10_1002_smll_202400365 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1002_smll_202400087 crossref_primary_10_1002_adma_202400115 crossref_primary_10_1002_adma_202311687 crossref_primary_10_1002_adma_202416377 crossref_primary_10_1021_acsami_4c21968 crossref_primary_10_1016_j_cej_2024_154927 crossref_primary_10_1016_j_cej_2022_140395 crossref_primary_10_1016_j_jcis_2023_05_196 crossref_primary_10_1002_adma_202209140 crossref_primary_10_1021_acsami_2c07917 crossref_primary_10_1039_D4QI00802B crossref_primary_10_1016_j_mser_2025_100948 crossref_primary_10_1002_bkcs_12884 crossref_primary_10_1021_acsami_3c09641 crossref_primary_10_1002_adma_202419377 crossref_primary_10_1016_j_jcis_2022_12_081 crossref_primary_10_1021_acsnano_4c04517 crossref_primary_10_1039_D2SC06620C crossref_primary_10_1002_cssc_202401183 crossref_primary_10_1016_j_ensm_2023_03_017 crossref_primary_10_1021_acsami_2c12011 crossref_primary_10_1002_adma_202308799 crossref_primary_10_1021_acsami_5c00245 crossref_primary_10_1021_acsnano_2c04025 crossref_primary_10_1002_adfm_202407012 crossref_primary_10_1002_aenm_202302620 crossref_primary_10_1016_j_cej_2022_135818 crossref_primary_10_1016_j_jechem_2022_11_017 crossref_primary_10_1002_adfm_202112711 crossref_primary_10_1016_j_jechem_2023_04_047 crossref_primary_10_1021_acsenergylett_2c02387 crossref_primary_10_1016_j_jcis_2022_06_167 crossref_primary_10_1002_adfm_202211364 crossref_primary_10_1002_smll_202312129 crossref_primary_10_1002_adma_202203783 crossref_primary_10_1002_smll_202302722 crossref_primary_10_1016_j_jechem_2023_03_009 crossref_primary_10_1021_acsami_4c10028 crossref_primary_10_3390_batteries10060210 crossref_primary_10_1002_ange_202218970 crossref_primary_10_1002_aenm_202204002 crossref_primary_10_1039_D4EE03862B crossref_primary_10_1002_ange_202410982 crossref_primary_10_1039_D2EE01053D crossref_primary_10_1002_adma_202404815 crossref_primary_10_1016_j_cej_2023_143036 crossref_primary_10_1002_ange_202317923 crossref_primary_10_1002_elt2_8 crossref_primary_10_1021_acsaelm_2c00939 crossref_primary_10_1016_j_cej_2022_135030 crossref_primary_10_1021_acsnano_3c04748 crossref_primary_10_1039_D2DT01088G crossref_primary_10_1002_anie_202402245 crossref_primary_10_1002_adma_202401837 crossref_primary_10_1016_j_cej_2024_157203 crossref_primary_10_1039_D1CP04920H crossref_primary_10_1038_s41467_023_44161_7 crossref_primary_10_1039_D2IM00051B crossref_primary_10_3390_nano14171461 crossref_primary_10_1002_pol_20210811 crossref_primary_10_1016_j_nanoen_2023_108922 crossref_primary_10_1021_acs_nanolett_2c00338 crossref_primary_10_1039_D3MH00403A crossref_primary_10_1016_j_scib_2022_11_026 crossref_primary_10_1002_eem2_12440 crossref_primary_10_1002_adfm_202423742 crossref_primary_10_1002_anie_202317923 crossref_primary_10_1002_ange_202401576 crossref_primary_10_1002_adma_202401482 crossref_primary_10_1021_acs_langmuir_4c00776 crossref_primary_10_1021_acsami_2c02952 crossref_primary_10_1002_aenm_202304153 crossref_primary_10_1002_aenm_202500566 crossref_primary_10_1002_cnma_202400043 crossref_primary_10_1039_D4TA03962A crossref_primary_10_1002_advs_202300226 crossref_primary_10_1002_admi_202102283 crossref_primary_10_1002_adma_202211032 crossref_primary_10_1021_acsami_4c06826 crossref_primary_10_1002_smll_202306868 crossref_primary_10_1002_aenm_202304557 crossref_primary_10_1002_celc_202300621 crossref_primary_10_1002_adfm_202401462 crossref_primary_10_1002_anie_202204776 crossref_primary_10_1002_smll_202207290 crossref_primary_10_1002_smm2_1185 crossref_primary_10_1002_bte2_20230044 crossref_primary_10_1126_sciadv_ado7348 crossref_primary_10_1002_asia_202200816 crossref_primary_10_1016_j_xcrp_2021_100706 crossref_primary_10_1002_anie_202401576 crossref_primary_10_1016_j_cej_2022_135457 crossref_primary_10_1007_s40242_024_4062_0 crossref_primary_10_1038_s41467_024_48889_8 crossref_primary_10_1039_D1SC06181J crossref_primary_10_1021_acs_jpcc_4c04828 crossref_primary_10_1021_acsami_2c11403 crossref_primary_10_1002_adfm_202111026 crossref_primary_10_1002_adma_202212111 crossref_primary_10_1039_D3SC06650A |
Cites_doi | 10.1038/s41560-018-0199-8 10.1002/anie.201712702 10.1038/nmat4041 10.1002/adma.201706102 10.1021/acs.nanolett.6b01581 10.1021/acsenergylett.7b00982 10.1038/s41560-019-0428-9 10.1038/s41565-018-0183-2 10.1002/aenm.201900161 10.1021/acs.jpclett.0c01937 10.1038/nature11475 10.1038/507026a 10.1016/j.joule.2019.02.004 10.1021/cr5003003 10.1038/s41560-017-0047-2 10.1039/C3EE40795K 10.1021/acsnano.5b02166 10.1021/acsami.8b04592 10.1002/anie.201911724 10.1038/ncomms10992 10.1038/s41560-019-0390-6 10.1002/advs.201500213 10.1021/acsenergylett.7b00300 10.1038/ncomms9058 10.1038/ncomms7362 10.1038/s41560-019-0336-z 10.1038/s41560-019-0338-x 10.1016/j.joule.2019.09.022 10.1073/pnas.1518188113 10.1038/ncomms2513 10.1038/nnano.2016.32 10.1038/s41467-018-06077-5 10.1093/nsr/nwy148 10.1038/nnano.2014.152 10.1002/adma.201504526 10.1016/j.joule.2018.08.004 10.1021/nl5046318 10.1002/adfm.201605989 10.1021/ja412807w 10.1021/ja312241y 10.1016/j.ensm.2018.11.003 10.1021/nl503125u 10.1038/nnano.2017.16 10.1073/pnas.1712895115 10.1039/C2EE02911A 10.1126/science.aam6014 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202102134 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202102134 ADMA202102134 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: WK2060190085 – fundername: Funds from Hefei National Synchrotron Radiation Laboratory funderid: KY2060000172 – fundername: National Natural Science Foundation of China funderid: 51571184; 21875236; 21905264; 22161142004; 21805268; 51972285 – fundername: China Postdoctoral Science Foundation funderid: 2019M652206 – fundername: National Key Research and Development Program of China funderid: 2017YFA0402904 – fundername: National Postdoctoral Program for Innovative Talents funderid: BX20180283 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3504-555504461cf22a43ff698bbad0354aedf43aa7b8a93e70f1f662050708a2b2fd3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 06:02:40 EDT 2025 Fri Jul 25 05:21:20 EDT 2025 Tue Jul 01 02:33:06 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Wed Jan 22 16:27:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3504-555504461cf22a43ff698bbad0354aedf43aa7b8a93e70f1f662050708a2b2fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2901-0160 |
PQID | 2583083394 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2569374917 proquest_journals_2583083394 crossref_citationtrail_10_1002_adma_202102134 crossref_primary_10_1002_adma_202102134 wiley_primary_10_1002_adma_202102134_ADMA202102134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 4 2015; 6 2019; 3 2018 2019 2018; 10 17 13 2019; 6 2013 2015; 4 6 2020; 59 2018 2019; 3 9 2020; 11 2015; 9 2016; 16 2019 2014; 4 136 2017; 358 2016; 11 2018; 9 2018; 3 2018; 2 2014 2012; 7 5 2016; 3 2017; 12 2016; 113 2014; 14 2013; 135 2014; 13 2017 2017; 27 2 2014; 9 2018 2018 2019; 115 30 4 2016; 28 2016 2015; 7 15 2014 2014 2012; 114 507 488 2018; 57 e_1_2_9_30_1 e_1_2_9_30_2 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_17_2 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_23_2 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_7_2 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_1_3 e_1_2_9_2_2 e_1_2_9_3_1 e_1_2_9_1_2 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_2 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_26_3 e_1_2_9_27_2 e_1_2_9_28_1 e_1_2_9_26_2 e_1_2_9_27_1 e_1_2_9_27_3 e_1_2_9_29_1 |
References_xml | – volume: 3 start-page: 2647 year: 2019 publication-title: Joule – volume: 4 6 start-page: 1481 6362 year: 2013 2015 publication-title: Nat. Commun. Nat. Commun. – volume: 7 5 start-page: 513 5701 year: 2014 2012 publication-title: Energy Environ. Sci. Energy Environ. Sci. – volume: 2 start-page: 2167 year: 2018 publication-title: Joule – volume: 3 start-page: 1094 year: 2019 publication-title: Joule – volume: 9 start-page: 5884 year: 2015 publication-title: ACS Nano – volume: 7 15 start-page: 2910 year: 2016 2015 publication-title: Nat. Commun. Nano Lett. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 3 start-page: 14 year: 2018 publication-title: ACS Energy Lett. – volume: 115 30 4 start-page: 1156 683 year: 2018 2018 2019 publication-title: Proc. Natl. Acad. Sci. USA Adv. Mater. Nat. Energy – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 618 year: 2014 publication-title: Nat. Nanotechnol. – volume: 113 start-page: 2862 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 8058 year: 2015 publication-title: Nat. Commun. – volume: 3 9 start-page: 16 year: 2018 2019 publication-title: Nat. Energy Adv. Energy Mater. – volume: 27 2 start-page: 1321 year: 2017 2017 publication-title: Adv. Funct. Mater. ACS Energy Lett. – volume: 16 start-page: 4431 year: 2016 publication-title: Nano Lett. – volume: 14 start-page: 6016 year: 2014 publication-title: Nano Lett. – volume: 11 start-page: 626 year: 2016 publication-title: Nat. Nanotechnol. – volume: 358 start-page: 506 year: 2017 publication-title: Science – volume: 13 start-page: 961 year: 2014 publication-title: Nat. Mater. – volume: 6 start-page: 247 year: 2019 publication-title: Natl. Sci. Rev. – volume: 114 507 488 start-page: 26 294 year: 2014 2014 2012 publication-title: Chem. Rev. Nature Nature – volume: 28 start-page: 1853 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 739 year: 2018 publication-title: Nat. Energy – volume: 4 136 start-page: 269 5039 year: 2019 2014 publication-title: Nat. Energy J. Am. Chem. Soc. – volume: 11 start-page: 6970 year: 2020 publication-title: J. Phys. Chem. Lett. – volume: 4 start-page: 180 year: 2019 publication-title: Nat. Energy – volume: 59 start-page: 3252 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 551 year: 2019 publication-title: Nat. Energy – volume: 135 start-page: 4450 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 3656 year: 2018 publication-title: Nat. Commun. – volume: 10 17 13 start-page: 284 715 year: 2018 2019 2018 publication-title: ACS Appl. Mater. Interfaces Energy Storage Mater. Nat. Nanotechnol. – ident: e_1_2_9_24_1 doi: 10.1038/s41560-018-0199-8 – ident: e_1_2_9_19_1 doi: 10.1002/anie.201712702 – ident: e_1_2_9_29_1 doi: 10.1038/nmat4041 – ident: e_1_2_9_27_2 doi: 10.1002/adma.201706102 – ident: e_1_2_9_12_1 doi: 10.1021/acs.nanolett.6b01581 – ident: e_1_2_9_21_1 doi: 10.1021/acsenergylett.7b00982 – ident: e_1_2_9_27_3 doi: 10.1038/s41560-019-0428-9 – ident: e_1_2_9_26_3 doi: 10.1038/s41565-018-0183-2 – ident: e_1_2_9_17_2 doi: 10.1002/aenm.201900161 – ident: e_1_2_9_31_1 doi: 10.1021/acs.jpclett.0c01937 – ident: e_1_2_9_1_3 doi: 10.1038/nature11475 – ident: e_1_2_9_1_2 doi: 10.1038/507026a – ident: e_1_2_9_5_1 doi: 10.1016/j.joule.2019.02.004 – ident: e_1_2_9_1_1 doi: 10.1021/cr5003003 – ident: e_1_2_9_17_1 doi: 10.1038/s41560-017-0047-2 – ident: e_1_2_9_2_1 doi: 10.1039/C3EE40795K – ident: e_1_2_9_15_1 doi: 10.1021/acsnano.5b02166 – ident: e_1_2_9_26_1 doi: 10.1021/acsami.8b04592 – ident: e_1_2_9_16_1 doi: 10.1002/anie.201911724 – ident: e_1_2_9_7_1 doi: 10.1038/ncomms10992 – ident: e_1_2_9_34_1 doi: 10.1038/s41560-019-0390-6 – ident: e_1_2_9_18_1 doi: 10.1002/advs.201500213 – ident: e_1_2_9_25_2 doi: 10.1021/acsenergylett.7b00300 – ident: e_1_2_9_9_1 doi: 10.1038/ncomms9058 – ident: e_1_2_9_23_2 doi: 10.1038/ncomms7362 – ident: e_1_2_9_30_1 doi: 10.1038/s41560-019-0336-z – ident: e_1_2_9_4_1 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_9_28_1 doi: 10.1016/j.joule.2019.09.022 – ident: e_1_2_9_8_1 doi: 10.1073/pnas.1518188113 – ident: e_1_2_9_23_1 doi: 10.1038/ncomms2513 – ident: e_1_2_9_6_1 doi: 10.1038/nnano.2016.32 – ident: e_1_2_9_22_1 doi: 10.1038/s41467-018-06077-5 – ident: e_1_2_9_13_1 doi: 10.1093/nsr/nwy148 – ident: e_1_2_9_10_1 doi: 10.1038/nnano.2014.152 – ident: e_1_2_9_14_1 doi: 10.1002/adma.201504526 – ident: e_1_2_9_33_1 doi: 10.1016/j.joule.2018.08.004 – ident: e_1_2_9_7_2 doi: 10.1021/nl5046318 – ident: e_1_2_9_25_1 doi: 10.1002/adfm.201605989 – ident: e_1_2_9_30_2 doi: 10.1021/ja412807w – ident: e_1_2_9_20_1 doi: 10.1021/ja312241y – ident: e_1_2_9_26_2 doi: 10.1016/j.ensm.2018.11.003 – ident: e_1_2_9_11_1 doi: 10.1021/nl503125u – ident: e_1_2_9_3_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_9_27_1 doi: 10.1073/pnas.1712895115 – ident: e_1_2_9_2_2 doi: 10.1039/C2EE02911A – ident: e_1_2_9_32_1 doi: 10.1126/science.aam6014 |
SSID | ssj0009606 |
Score | 2.6811914 |
Snippet | Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high‐energy Li‐metal batteries. Here, an electrolyte... Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high-energy Li-metal batteries. Here, an electrolyte... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2102134 |
SubjectTerms | Additives Cycles Electrochemical analysis electrolyte engineering Electrolytes Electrons Fluorides fluorinated solid electrolyte interphase Fluorine high current density high energy density Lithium Lithium batteries Lithium fluoride Materials science Photoelectrons porous LiF nanoboxes Solid electrolytes |
Title | Lithium Fluoride in Electrolyte for Stable and Safe Lithium‐Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202102134 https://www.proquest.com/docview/2583083394 https://www.proquest.com/docview/2569374917 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsQwFIaDuNKFd3G8EUFwFW2TNO0sB3UQcVx4AXflpE1wcOzI2C505SP4jD6JJ22nMwoiaFcpSWib5CRfmuQ_hOwbXxiDAz2zofKYtNJjEArNOCijRJgiBbvzzr1LdXYrz--Cu6lT_JU-RPPDzVlG2V87Awf9fDQRDYW01A1yUxZfOEFQt2HLUdHVRD_K4XkpticC1lYyGqs2evzoa_avo9IENaeBtRxxuosExu9abTR5OCxyfZi8fpNx_M_HLJGFGkdpp2o_y2TGZCtkfkqkcJX0Lvr5fb94pN1BMRz1U0P7GT2tvOcMXnJDEXspMqseGApZSq_BGlrn-Xh77xnEe1rJeOKsfI3cdk9vjs9Y7YSBJSLwJAvwcou-fmI5BymsVe1Ia0g9EUgwqZUCINQRtIUJPetbpbiHkOlFwDW3qVgns9kwMxuEhn4qdRIF1udGYghU6UMPWwXHbhdEi7BxJcRJrVDuHGUM4kpbmceumOKmmFrkoEn_VGlz_Jhye1yncW2jzzEPIoEAKtoYvddEo3W5JRPIzLBwaRTym8Q5bYvwsgJ_eVLcOel1mrvNv2TaInMuXO0Y3Caz-agwO0g-ud4tW_cn8TH5AA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_KMuFDASiJPbxHac7IHDiu1qSzc9QCv1FuzEFlGXLOomQuXEI_AqfZU-Ak_COH_bIiEkpB7IKYnt_HjGnm_88w3AS-NzY9DQUxtKjworPKpCrilT0kgeZoiC3X7neF9OD8W7o-BoDc66vTANP0Q_4OZaRt1fuwbuBqS3V6yhKquJg5zP4nPRrqvcM6df0Wtbvtkdo4hfMTbZOXg7pW1gAZrywBM0wMNNZPqpZUwJbq0cRlqrzOOBUCazgisV6kgNuQk961spmYfAyYsU08xmHJ97Da67MOKOrn_8fsVY5RyCmt6PB3QoRdTxRHps-_L3XraDK3B7ESLXNm5yB8672mmWthxvVaXeSr_9Rhz5X1XfXbjdIm4yaprIPVgzxX24dYGH8QHEs7z8lFefyWReLU7yzJC8IDtNgKD5aWkIInuCsFzPDVFFRj4oa0hb5uf3H7FBD4Y0TKW5WT6Ewyv5n0ewXiwKswEk9DOh0yiwPjMCz5SswwSi4jO0LIoPgHZST9KWhN3FApknDX00S5xYkl4sA3jd5__S0I_8Medmp0RJ2w0tExZEHDE2H2Lyiz4ZOxA3K6QKs6hcHokQVaDbPgBWa8xf3pSMxvGov3r8L4Wew43pQTxLZrv7e0_gprvfLJDchPXypDJPEeiV-lndtAh8vGpl_AU1tFYK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF6KL8VCwWMBOLkNrEdJzn0sGK7amm3QkCl3oKd2CLqkq26iapy4hF4lL4Kr8CTMM7ftkgICakHckpi588z4_kmtr8BeGl8bgw6empD6VFhhUdVyDVlShrJwwxRsFvvPDmQO4fi7VFwtAQX3VqYhh-i_-HmLKPur52Bn2R2c0EaqrKaN8iFLD4X7bTKPXN-hkHbfGt3hBJ-xdh4--ObHdrmFaApDzxBA9zcOKafWsaU4NbKONJaZR4PhDKZFVypUEcq5ib0rG-lZB7iJi9STDObcbzvDbgppBe7ZBGj9wvCKhcP1Ox-PKCxFFFHE-mxzavve9UNLrDtZYRcu7jxHfjRNU4zs-V4oyr1Rvr1N97I_6n17sJqi7fJsDGQe7BkivuwcomF8QFM9vPyc159IeNpNTvNM0Pygmw36YGm56UhiOsJgnI9NUQVGfmgrCHtNT-_fZ8YjF9Iw1Oam_lDOLyW71mD5WJWmEdAQj8TOo0C6zMjcE_JOkkgqj1Dv6L4AGgn9CRtKdhdJpBp0pBHs8SJJenFMoDXff2ThnzkjzXXOx1K2k5onrAg4oiweYzFL_pi7D7cmJAqzKxydSQCVIFB-wBYrTB_eVIyHE2G_dHjf7noOdx6Nxon-7sHe0_gtjvdzI5ch-XytDJPEeWV-lltWAQ-Xbcu_gK0HlS5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+Fluoride+in+Electrolyte+for+Stable+and+Safe+Lithium%E2%80%90Metal+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tan%2C+Yi%E2%80%90Hong&rft.au=Lu%2C+Gong%E2%80%90Xun&rft.au=Zheng%2C+Jian%E2%80%90Hui&rft.au=Zhou%2C+Fei&rft.date=2021-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=42&rft_id=info:doi/10.1002%2Fadma.202102134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202102134 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |