Lithium Fluoride in Electrolyte for Stable and Safe Lithium‐Metal Batteries

Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high‐energy Li‐metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li‐metal ba...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 42; pp. e2102134 - n/a
Main Authors Tan, Yi‐Hong, Lu, Gong‐Xun, Zheng, Jian‐Hui, Zhou, Fei, Chen, Mei, Ma, Tao, Lu, Lei‐Lei, Song, Yong‐Hui, Guan, Yong, Wang, Junxiong, Liang, Zheng, Xu, Wen‐Shan, Zhang, Yuegang, Tao, Xinyong, Yao, Hong‐Bin
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high‐energy Li‐metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li‐metal batteries. Unlike traditionally engineered electrolytes, the prepared electrolyte in the porous LiF nanobox exhibits nonflammability and high electrochemical performance owing to strong interactions between the electrolyte solvent molecules and numerous exposed active LiF (111) crystal planes. Via cryogenic transmission electron microscopy and X‐ray photoelectron spectroscopy depth analysis, it is revealed that the electrolyte in active porous LiF nanobox involves the formation of a high‐fluorine‐content (>30%) solid electrolyte interphase layer, which enables very stable Li‐metal anode cycling over one thousand cycles under high current density (4 mA cm−2). More importantly, employing the porous LiF nanobox engineered electrolyte, a Li || LiNi0.8Co0.1Mn0.1O2 pouch cell is achieved with a specific energy of 380 Wh kg−1 for stable cycling over 80 cycles, representing the excellent performance of the Li‐metal pouch cell using practical carbonate electrolyte. This study provides a new electrolyte engineering strategy for stable and safe Li‐metal batteries. Electrolyte engineering via fluorinated additives is promising to improve the cycling stability and safety of high‐energy Li‐metal batteries. The electrolyte in an active porous LiF nanobox involves the formation of a high‐fluorine‐content (>30%) solid electrolyte interphase layer to achieve a ≈3.5 Ah Li || LiNi0.8Co0.1Mn0.1O2 pouch cell with a specific energy of 380 Wh kg−1 under a practical carbonate electrolyte.
AbstractList Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high-energy Li-metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li-metal batteries. Unlike traditionally engineered electrolytes, the prepared electrolyte in the porous LiF nanobox exhibits nonflammability and high electrochemical performance owing to strong interactions between the electrolyte solvent molecules and numerous exposed active LiF (111) crystal planes. Via cryogenic transmission electron microscopy and X-ray photoelectron spectroscopy depth analysis, it is revealed that the electrolyte in active porous LiF nanobox involves the formation of a high-fluorine-content (>30%) solid electrolyte interphase layer, which enables very stable Li-metal anode cycling over one thousand cycles under high current density (4 mA cm-2 ). More importantly, employing the porous LiF nanobox engineered electrolyte, a Li || LiNi0.8 Co0.1 Mn0.1 O2 pouch cell is achieved with a specific energy of 380 Wh kg-1 for stable cycling over 80 cycles, representing the excellent performance of the Li-metal pouch cell using practical carbonate electrolyte. This study provides a new electrolyte engineering strategy for stable and safe Li-metal batteries.Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high-energy Li-metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li-metal batteries. Unlike traditionally engineered electrolytes, the prepared electrolyte in the porous LiF nanobox exhibits nonflammability and high electrochemical performance owing to strong interactions between the electrolyte solvent molecules and numerous exposed active LiF (111) crystal planes. Via cryogenic transmission electron microscopy and X-ray photoelectron spectroscopy depth analysis, it is revealed that the electrolyte in active porous LiF nanobox involves the formation of a high-fluorine-content (>30%) solid electrolyte interphase layer, which enables very stable Li-metal anode cycling over one thousand cycles under high current density (4 mA cm-2 ). More importantly, employing the porous LiF nanobox engineered electrolyte, a Li || LiNi0.8 Co0.1 Mn0.1 O2 pouch cell is achieved with a specific energy of 380 Wh kg-1 for stable cycling over 80 cycles, representing the excellent performance of the Li-metal pouch cell using practical carbonate electrolyte. This study provides a new electrolyte engineering strategy for stable and safe Li-metal batteries.
Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high‐energy Li‐metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li‐metal batteries. Unlike traditionally engineered electrolytes, the prepared electrolyte in the porous LiF nanobox exhibits nonflammability and high electrochemical performance owing to strong interactions between the electrolyte solvent molecules and numerous exposed active LiF (111) crystal planes. Via cryogenic transmission electron microscopy and X‐ray photoelectron spectroscopy depth analysis, it is revealed that the electrolyte in active porous LiF nanobox involves the formation of a high‐fluorine‐content (>30%) solid electrolyte interphase layer, which enables very stable Li‐metal anode cycling over one thousand cycles under high current density (4 mA cm−2). More importantly, employing the porous LiF nanobox engineered electrolyte, a Li || LiNi0.8Co0.1Mn0.1O2 pouch cell is achieved with a specific energy of 380 Wh kg−1 for stable cycling over 80 cycles, representing the excellent performance of the Li‐metal pouch cell using practical carbonate electrolyte. This study provides a new electrolyte engineering strategy for stable and safe Li‐metal batteries.
Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high‐energy Li‐metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li‐metal batteries. Unlike traditionally engineered electrolytes, the prepared electrolyte in the porous LiF nanobox exhibits nonflammability and high electrochemical performance owing to strong interactions between the electrolyte solvent molecules and numerous exposed active LiF (111) crystal planes. Via cryogenic transmission electron microscopy and X‐ray photoelectron spectroscopy depth analysis, it is revealed that the electrolyte in active porous LiF nanobox involves the formation of a high‐fluorine‐content (>30%) solid electrolyte interphase layer, which enables very stable Li‐metal anode cycling over one thousand cycles under high current density (4 mA cm−2). More importantly, employing the porous LiF nanobox engineered electrolyte, a Li || LiNi0.8Co0.1Mn0.1O2 pouch cell is achieved with a specific energy of 380 Wh kg−1 for stable cycling over 80 cycles, representing the excellent performance of the Li‐metal pouch cell using practical carbonate electrolyte. This study provides a new electrolyte engineering strategy for stable and safe Li‐metal batteries. Electrolyte engineering via fluorinated additives is promising to improve the cycling stability and safety of high‐energy Li‐metal batteries. The electrolyte in an active porous LiF nanobox involves the formation of a high‐fluorine‐content (>30%) solid electrolyte interphase layer to achieve a ≈3.5 Ah Li || LiNi0.8Co0.1Mn0.1O2 pouch cell with a specific energy of 380 Wh kg−1 under a practical carbonate electrolyte.
Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high‐energy Li‐metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li‐metal batteries. Unlike traditionally engineered electrolytes, the prepared electrolyte in the porous LiF nanobox exhibits nonflammability and high electrochemical performance owing to strong interactions between the electrolyte solvent molecules and numerous exposed active LiF (111) crystal planes. Via cryogenic transmission electron microscopy and X‐ray photoelectron spectroscopy depth analysis, it is revealed that the electrolyte in active porous LiF nanobox involves the formation of a high‐fluorine‐content (>30%) solid electrolyte interphase layer, which enables very stable Li‐metal anode cycling over one thousand cycles under high current density (4 mA cm −2 ). More importantly, employing the porous LiF nanobox engineered electrolyte, a Li || LiNi 0.8 Co 0.1 Mn 0.1 O 2 pouch cell is achieved with a specific energy of 380 Wh kg −1 for stable cycling over 80 cycles, representing the excellent performance of the Li‐metal pouch cell using practical carbonate electrolyte. This study provides a new electrolyte engineering strategy for stable and safe Li‐metal batteries.
Author Yao, Hong‐Bin
Chen, Mei
Song, Yong‐Hui
Liang, Zheng
Xu, Wen‐Shan
Zhang, Yuegang
Lu, Gong‐Xun
Wang, Junxiong
Guan, Yong
Ma, Tao
Tao, Xinyong
Zhou, Fei
Zheng, Jian‐Hui
Lu, Lei‐Lei
Tan, Yi‐Hong
Author_xml – sequence: 1
  givenname: Yi‐Hong
  surname: Tan
  fullname: Tan, Yi‐Hong
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Gong‐Xun
  surname: Lu
  fullname: Lu, Gong‐Xun
  organization: Zhejiang University of Technology
– sequence: 3
  givenname: Jian‐Hui
  surname: Zheng
  fullname: Zheng, Jian‐Hui
  organization: Zhejiang University of Technology
– sequence: 4
  givenname: Fei
  surname: Zhou
  fullname: Zhou, Fei
  organization: Monta Vista Energy Technologies Corporation
– sequence: 5
  givenname: Mei
  surname: Chen
  fullname: Chen, Mei
  organization: Zhejiang University of Technology
– sequence: 6
  givenname: Tao
  surname: Ma
  fullname: Ma, Tao
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Lei‐Lei
  surname: Lu
  fullname: Lu, Lei‐Lei
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Yong‐Hui
  surname: Song
  fullname: Song, Yong‐Hui
  organization: University of Science and Technology of China
– sequence: 9
  givenname: Yong
  surname: Guan
  fullname: Guan, Yong
  organization: National Synchrotron Radiation Laboratory University of Science and Technology of China
– sequence: 10
  givenname: Junxiong
  surname: Wang
  fullname: Wang, Junxiong
  organization: Shanghai Jiao Tong University
– sequence: 11
  givenname: Zheng
  surname: Liang
  fullname: Liang, Zheng
  email: liangzheng06@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 12
  givenname: Wen‐Shan
  surname: Xu
  fullname: Xu, Wen‐Shan
  organization: Monta Vista Energy Technologies Corporation
– sequence: 13
  givenname: Yuegang
  surname: Zhang
  fullname: Zhang, Yuegang
  email: yuegang.zhang@tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 14
  givenname: Xinyong
  surname: Tao
  fullname: Tao, Xinyong
  email: tao@zjut.edu.cn
  organization: Zhejiang University of Technology
– sequence: 15
  givenname: Hong‐Bin
  orcidid: 0000-0002-2901-0160
  surname: Yao
  fullname: Yao, Hong‐Bin
  email: yhb@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNqFkMtqHDEQRUVwwOPH1mtBNtn0pPToh5bjZwIzeOF43VR3l4iMpmVLaszs8gn5Rn9J2oxJwBBSXKjNOUVxj9jBGEZi7EzAUgDILzhscSlBijlKf2ALUUpRaDDlAVuAUWVhKt0csqOUHgDAVFAt2Gbt8g83bfm1n0J0A3E38itPfY7B7zJxGyK_y9h54jgO_A4t8Tfn5eevDWX0_BxzpugonbCPFn2i07d9zO6vr75ffC3WtzffLlbrolcl6KKcB7SuRG-lRK2srUzTdTiAKjXSYLVCrLsGjaIarLBVJaGEGhqUnbSDOmaf93cfY3iaKOV261JP3uNIYUqtLCujam1EPaOf3qEPYYrj_N1MNQoapYyeKb2n-hhSimTb3mXMLow5ovOtgPa14_a14_ZPx7O2fKc9RrfFuPu3YPbCs_O0-w_dri43q7_ub5eokIc
CitedBy_id crossref_primary_10_1002_ange_202204776
crossref_primary_10_1007_s11581_022_04654_9
crossref_primary_10_1021_acsami_2c08117
crossref_primary_10_1016_j_apsusc_2022_153683
crossref_primary_10_1002_smll_202308344
crossref_primary_10_1002_ange_202402245
crossref_primary_10_1002_adma_202207310
crossref_primary_10_1002_adfm_202214432
crossref_primary_10_1038_s41467_021_27429_8
crossref_primary_10_1039_D4EE04617J
crossref_primary_10_1021_acsenergylett_4c01032
crossref_primary_10_1021_acsnano_3c07038
crossref_primary_10_1039_D4EE02903H
crossref_primary_10_1002_cey2_354
crossref_primary_10_1002_smll_202411527
crossref_primary_10_1002_aenm_202301462
crossref_primary_10_1016_j_cej_2023_143084
crossref_primary_10_1021_acsami_2c19417
crossref_primary_10_1016_j_cej_2024_153619
crossref_primary_10_1038_s41598_023_50978_5
crossref_primary_10_1002_eem2_12450
crossref_primary_10_1021_acsmaterialslett_2c00443
crossref_primary_10_1007_s40820_023_01234_y
crossref_primary_10_1002_adfm_202307180
crossref_primary_10_1016_j_ccr_2024_216104
crossref_primary_10_1002_adma_202314120
crossref_primary_10_1021_acsnano_4c08349
crossref_primary_10_1002_adfm_202310867
crossref_primary_10_1021_acsami_2c14770
crossref_primary_10_1002_cssc_202300186
crossref_primary_10_1016_j_mattod_2023_09_004
crossref_primary_10_1021_acsaem_4c01618
crossref_primary_10_1002_sstr_202200122
crossref_primary_10_1016_j_apsusc_2022_155205
crossref_primary_10_1002_smll_202203394
crossref_primary_10_1002_slct_202302517
crossref_primary_10_1002_anie_202218970
crossref_primary_10_1002_anie_202410982
crossref_primary_10_1002_smll_202401857
crossref_primary_10_1002_smll_202400365
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1002_smll_202400087
crossref_primary_10_1002_adma_202400115
crossref_primary_10_1002_adma_202311687
crossref_primary_10_1002_adma_202416377
crossref_primary_10_1021_acsami_4c21968
crossref_primary_10_1016_j_cej_2024_154927
crossref_primary_10_1016_j_cej_2022_140395
crossref_primary_10_1016_j_jcis_2023_05_196
crossref_primary_10_1002_adma_202209140
crossref_primary_10_1021_acsami_2c07917
crossref_primary_10_1039_D4QI00802B
crossref_primary_10_1016_j_mser_2025_100948
crossref_primary_10_1002_bkcs_12884
crossref_primary_10_1021_acsami_3c09641
crossref_primary_10_1002_adma_202419377
crossref_primary_10_1016_j_jcis_2022_12_081
crossref_primary_10_1021_acsnano_4c04517
crossref_primary_10_1039_D2SC06620C
crossref_primary_10_1002_cssc_202401183
crossref_primary_10_1016_j_ensm_2023_03_017
crossref_primary_10_1021_acsami_2c12011
crossref_primary_10_1002_adma_202308799
crossref_primary_10_1021_acsami_5c00245
crossref_primary_10_1021_acsnano_2c04025
crossref_primary_10_1002_adfm_202407012
crossref_primary_10_1002_aenm_202302620
crossref_primary_10_1016_j_cej_2022_135818
crossref_primary_10_1016_j_jechem_2022_11_017
crossref_primary_10_1002_adfm_202112711
crossref_primary_10_1016_j_jechem_2023_04_047
crossref_primary_10_1021_acsenergylett_2c02387
crossref_primary_10_1016_j_jcis_2022_06_167
crossref_primary_10_1002_adfm_202211364
crossref_primary_10_1002_smll_202312129
crossref_primary_10_1002_adma_202203783
crossref_primary_10_1002_smll_202302722
crossref_primary_10_1016_j_jechem_2023_03_009
crossref_primary_10_1021_acsami_4c10028
crossref_primary_10_3390_batteries10060210
crossref_primary_10_1002_ange_202218970
crossref_primary_10_1002_aenm_202204002
crossref_primary_10_1039_D4EE03862B
crossref_primary_10_1002_ange_202410982
crossref_primary_10_1039_D2EE01053D
crossref_primary_10_1002_adma_202404815
crossref_primary_10_1016_j_cej_2023_143036
crossref_primary_10_1002_ange_202317923
crossref_primary_10_1002_elt2_8
crossref_primary_10_1021_acsaelm_2c00939
crossref_primary_10_1016_j_cej_2022_135030
crossref_primary_10_1021_acsnano_3c04748
crossref_primary_10_1039_D2DT01088G
crossref_primary_10_1002_anie_202402245
crossref_primary_10_1002_adma_202401837
crossref_primary_10_1016_j_cej_2024_157203
crossref_primary_10_1039_D1CP04920H
crossref_primary_10_1038_s41467_023_44161_7
crossref_primary_10_1039_D2IM00051B
crossref_primary_10_3390_nano14171461
crossref_primary_10_1002_pol_20210811
crossref_primary_10_1016_j_nanoen_2023_108922
crossref_primary_10_1021_acs_nanolett_2c00338
crossref_primary_10_1039_D3MH00403A
crossref_primary_10_1016_j_scib_2022_11_026
crossref_primary_10_1002_eem2_12440
crossref_primary_10_1002_adfm_202423742
crossref_primary_10_1002_anie_202317923
crossref_primary_10_1002_ange_202401576
crossref_primary_10_1002_adma_202401482
crossref_primary_10_1021_acs_langmuir_4c00776
crossref_primary_10_1021_acsami_2c02952
crossref_primary_10_1002_aenm_202304153
crossref_primary_10_1002_aenm_202500566
crossref_primary_10_1002_cnma_202400043
crossref_primary_10_1039_D4TA03962A
crossref_primary_10_1002_advs_202300226
crossref_primary_10_1002_admi_202102283
crossref_primary_10_1002_adma_202211032
crossref_primary_10_1021_acsami_4c06826
crossref_primary_10_1002_smll_202306868
crossref_primary_10_1002_aenm_202304557
crossref_primary_10_1002_celc_202300621
crossref_primary_10_1002_adfm_202401462
crossref_primary_10_1002_anie_202204776
crossref_primary_10_1002_smll_202207290
crossref_primary_10_1002_smm2_1185
crossref_primary_10_1002_bte2_20230044
crossref_primary_10_1126_sciadv_ado7348
crossref_primary_10_1002_asia_202200816
crossref_primary_10_1016_j_xcrp_2021_100706
crossref_primary_10_1002_anie_202401576
crossref_primary_10_1016_j_cej_2022_135457
crossref_primary_10_1007_s40242_024_4062_0
crossref_primary_10_1038_s41467_024_48889_8
crossref_primary_10_1039_D1SC06181J
crossref_primary_10_1021_acs_jpcc_4c04828
crossref_primary_10_1021_acsami_2c11403
crossref_primary_10_1002_adfm_202111026
crossref_primary_10_1002_adma_202212111
crossref_primary_10_1039_D3SC06650A
Cites_doi 10.1038/s41560-018-0199-8
10.1002/anie.201712702
10.1038/nmat4041
10.1002/adma.201706102
10.1021/acs.nanolett.6b01581
10.1021/acsenergylett.7b00982
10.1038/s41560-019-0428-9
10.1038/s41565-018-0183-2
10.1002/aenm.201900161
10.1021/acs.jpclett.0c01937
10.1038/nature11475
10.1038/507026a
10.1016/j.joule.2019.02.004
10.1021/cr5003003
10.1038/s41560-017-0047-2
10.1039/C3EE40795K
10.1021/acsnano.5b02166
10.1021/acsami.8b04592
10.1002/anie.201911724
10.1038/ncomms10992
10.1038/s41560-019-0390-6
10.1002/advs.201500213
10.1021/acsenergylett.7b00300
10.1038/ncomms9058
10.1038/ncomms7362
10.1038/s41560-019-0336-z
10.1038/s41560-019-0338-x
10.1016/j.joule.2019.09.022
10.1073/pnas.1518188113
10.1038/ncomms2513
10.1038/nnano.2016.32
10.1038/s41467-018-06077-5
10.1093/nsr/nwy148
10.1038/nnano.2014.152
10.1002/adma.201504526
10.1016/j.joule.2018.08.004
10.1021/nl5046318
10.1002/adfm.201605989
10.1021/ja412807w
10.1021/ja312241y
10.1016/j.ensm.2018.11.003
10.1021/nl503125u
10.1038/nnano.2017.16
10.1073/pnas.1712895115
10.1039/C2EE02911A
10.1126/science.aam6014
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202102134
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202102134
ADMA202102134
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: WK2060190085
– fundername: Funds from Hefei National Synchrotron Radiation Laboratory
  funderid: KY2060000172
– fundername: National Natural Science Foundation of China
  funderid: 51571184; 21875236; 21905264; 22161142004; 21805268; 51972285
– fundername: China Postdoctoral Science Foundation
  funderid: 2019M652206
– fundername: National Key Research and Development Program of China
  funderid: 2017YFA0402904
– fundername: National Postdoctoral Program for Innovative Talents
  funderid: BX20180283
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3504-555504461cf22a43ff698bbad0354aedf43aa7b8a93e70f1f662050708a2b2fd3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 06:02:40 EDT 2025
Fri Jul 25 05:21:20 EDT 2025
Tue Jul 01 02:33:06 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Wed Jan 22 16:27:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3504-555504461cf22a43ff698bbad0354aedf43aa7b8a93e70f1f662050708a2b2fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2901-0160
PQID 2583083394
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_2569374917
proquest_journals_2583083394
crossref_citationtrail_10_1002_adma_202102134
crossref_primary_10_1002_adma_202102134
wiley_primary_10_1002_adma_202102134_ADMA202102134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 4
2015; 6
2019; 3
2018 2019 2018; 10 17 13
2019; 6
2013 2015; 4 6
2020; 59
2018 2019; 3 9
2020; 11
2015; 9
2016; 16
2019 2014; 4 136
2017; 358
2016; 11
2018; 9
2018; 3
2018; 2
2014 2012; 7 5
2016; 3
2017; 12
2016; 113
2014; 14
2013; 135
2014; 13
2017 2017; 27 2
2014; 9
2018 2018 2019; 115 30 4
2016; 28
2016 2015; 7 15
2014 2014 2012; 114 507 488
2018; 57
e_1_2_9_30_1
e_1_2_9_30_2
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_17_2
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_23_2
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_7_2
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_1_3
e_1_2_9_2_2
e_1_2_9_3_1
e_1_2_9_1_2
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_2
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_26_3
e_1_2_9_27_2
e_1_2_9_28_1
e_1_2_9_26_2
e_1_2_9_27_1
e_1_2_9_27_3
e_1_2_9_29_1
References_xml – volume: 3
  start-page: 2647
  year: 2019
  publication-title: Joule
– volume: 4 6
  start-page: 1481 6362
  year: 2013 2015
  publication-title: Nat. Commun. Nat. Commun.
– volume: 7 5
  start-page: 513 5701
  year: 2014 2012
  publication-title: Energy Environ. Sci. Energy Environ. Sci.
– volume: 2
  start-page: 2167
  year: 2018
  publication-title: Joule
– volume: 3
  start-page: 1094
  year: 2019
  publication-title: Joule
– volume: 9
  start-page: 5884
  year: 2015
  publication-title: ACS Nano
– volume: 7 15
  start-page: 2910
  year: 2016 2015
  publication-title: Nat. Commun. Nano Lett.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 3
  start-page: 14
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 115 30 4
  start-page: 1156 683
  year: 2018 2018 2019
  publication-title: Proc. Natl. Acad. Sci. USA Adv. Mater. Nat. Energy
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 618
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 113
  start-page: 2862
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 8058
  year: 2015
  publication-title: Nat. Commun.
– volume: 3 9
  start-page: 16
  year: 2018 2019
  publication-title: Nat. Energy Adv. Energy Mater.
– volume: 27 2
  start-page: 1321
  year: 2017 2017
  publication-title: Adv. Funct. Mater. ACS Energy Lett.
– volume: 16
  start-page: 4431
  year: 2016
  publication-title: Nano Lett.
– volume: 14
  start-page: 6016
  year: 2014
  publication-title: Nano Lett.
– volume: 11
  start-page: 626
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 358
  start-page: 506
  year: 2017
  publication-title: Science
– volume: 13
  start-page: 961
  year: 2014
  publication-title: Nat. Mater.
– volume: 6
  start-page: 247
  year: 2019
  publication-title: Natl. Sci. Rev.
– volume: 114 507 488
  start-page: 26 294
  year: 2014 2014 2012
  publication-title: Chem. Rev. Nature Nature
– volume: 28
  start-page: 1853
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 739
  year: 2018
  publication-title: Nat. Energy
– volume: 4 136
  start-page: 269 5039
  year: 2019 2014
  publication-title: Nat. Energy J. Am. Chem. Soc.
– volume: 11
  start-page: 6970
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 180
  year: 2019
  publication-title: Nat. Energy
– volume: 59
  start-page: 3252
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 551
  year: 2019
  publication-title: Nat. Energy
– volume: 135
  start-page: 4450
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 3656
  year: 2018
  publication-title: Nat. Commun.
– volume: 10 17 13
  start-page: 284 715
  year: 2018 2019 2018
  publication-title: ACS Appl. Mater. Interfaces Energy Storage Mater. Nat. Nanotechnol.
– ident: e_1_2_9_24_1
  doi: 10.1038/s41560-018-0199-8
– ident: e_1_2_9_19_1
  doi: 10.1002/anie.201712702
– ident: e_1_2_9_29_1
  doi: 10.1038/nmat4041
– ident: e_1_2_9_27_2
  doi: 10.1002/adma.201706102
– ident: e_1_2_9_12_1
  doi: 10.1021/acs.nanolett.6b01581
– ident: e_1_2_9_21_1
  doi: 10.1021/acsenergylett.7b00982
– ident: e_1_2_9_27_3
  doi: 10.1038/s41560-019-0428-9
– ident: e_1_2_9_26_3
  doi: 10.1038/s41565-018-0183-2
– ident: e_1_2_9_17_2
  doi: 10.1002/aenm.201900161
– ident: e_1_2_9_31_1
  doi: 10.1021/acs.jpclett.0c01937
– ident: e_1_2_9_1_3
  doi: 10.1038/nature11475
– ident: e_1_2_9_1_2
  doi: 10.1038/507026a
– ident: e_1_2_9_5_1
  doi: 10.1016/j.joule.2019.02.004
– ident: e_1_2_9_1_1
  doi: 10.1021/cr5003003
– ident: e_1_2_9_17_1
  doi: 10.1038/s41560-017-0047-2
– ident: e_1_2_9_2_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_9_15_1
  doi: 10.1021/acsnano.5b02166
– ident: e_1_2_9_26_1
  doi: 10.1021/acsami.8b04592
– ident: e_1_2_9_16_1
  doi: 10.1002/anie.201911724
– ident: e_1_2_9_7_1
  doi: 10.1038/ncomms10992
– ident: e_1_2_9_34_1
  doi: 10.1038/s41560-019-0390-6
– ident: e_1_2_9_18_1
  doi: 10.1002/advs.201500213
– ident: e_1_2_9_25_2
  doi: 10.1021/acsenergylett.7b00300
– ident: e_1_2_9_9_1
  doi: 10.1038/ncomms9058
– ident: e_1_2_9_23_2
  doi: 10.1038/ncomms7362
– ident: e_1_2_9_30_1
  doi: 10.1038/s41560-019-0336-z
– ident: e_1_2_9_4_1
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_9_28_1
  doi: 10.1016/j.joule.2019.09.022
– ident: e_1_2_9_8_1
  doi: 10.1073/pnas.1518188113
– ident: e_1_2_9_23_1
  doi: 10.1038/ncomms2513
– ident: e_1_2_9_6_1
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_9_22_1
  doi: 10.1038/s41467-018-06077-5
– ident: e_1_2_9_13_1
  doi: 10.1093/nsr/nwy148
– ident: e_1_2_9_10_1
  doi: 10.1038/nnano.2014.152
– ident: e_1_2_9_14_1
  doi: 10.1002/adma.201504526
– ident: e_1_2_9_33_1
  doi: 10.1016/j.joule.2018.08.004
– ident: e_1_2_9_7_2
  doi: 10.1021/nl5046318
– ident: e_1_2_9_25_1
  doi: 10.1002/adfm.201605989
– ident: e_1_2_9_30_2
  doi: 10.1021/ja412807w
– ident: e_1_2_9_20_1
  doi: 10.1021/ja312241y
– ident: e_1_2_9_26_2
  doi: 10.1016/j.ensm.2018.11.003
– ident: e_1_2_9_11_1
  doi: 10.1021/nl503125u
– ident: e_1_2_9_3_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_9_27_1
  doi: 10.1073/pnas.1712895115
– ident: e_1_2_9_2_2
  doi: 10.1039/C2EE02911A
– ident: e_1_2_9_32_1
  doi: 10.1126/science.aam6014
SSID ssj0009606
Score 2.6811914
Snippet Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high‐energy Li‐metal batteries. Here, an electrolyte...
Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high-energy Li-metal batteries. Here, an electrolyte...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2102134
SubjectTerms Additives
Cycles
Electrochemical analysis
electrolyte engineering
Electrolytes
Electrons
Fluorides
fluorinated solid electrolyte interphase
Fluorine
high current density
high energy density
Lithium
Lithium batteries
Lithium fluoride
Materials science
Photoelectrons
porous LiF nanoboxes
Solid electrolytes
Title Lithium Fluoride in Electrolyte for Stable and Safe Lithium‐Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202102134
https://www.proquest.com/docview/2583083394
https://www.proquest.com/docview/2569374917
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsQwFIaDuNKFd3G8EUFwFW2TNO0sB3UQcVx4AXflpE1wcOzI2C505SP4jD6JJ22nMwoiaFcpSWib5CRfmuQ_hOwbXxiDAz2zofKYtNJjEArNOCijRJgiBbvzzr1LdXYrz--Cu6lT_JU-RPPDzVlG2V87Awf9fDQRDYW01A1yUxZfOEFQt2HLUdHVRD_K4XkpticC1lYyGqs2evzoa_avo9IENaeBtRxxuosExu9abTR5OCxyfZi8fpNx_M_HLJGFGkdpp2o_y2TGZCtkfkqkcJX0Lvr5fb94pN1BMRz1U0P7GT2tvOcMXnJDEXspMqseGApZSq_BGlrn-Xh77xnEe1rJeOKsfI3cdk9vjs9Y7YSBJSLwJAvwcou-fmI5BymsVe1Ia0g9EUgwqZUCINQRtIUJPetbpbiHkOlFwDW3qVgns9kwMxuEhn4qdRIF1udGYghU6UMPWwXHbhdEi7BxJcRJrVDuHGUM4kpbmceumOKmmFrkoEn_VGlz_Jhye1yncW2jzzEPIoEAKtoYvddEo3W5JRPIzLBwaRTym8Q5bYvwsgJ_eVLcOel1mrvNv2TaInMuXO0Y3Caz-agwO0g-ud4tW_cn8TH5AA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_KMuFDASiJPbxHac7IHDiu1qSzc9QCv1FuzEFlGXLOomQuXEI_AqfZU-Ak_COH_bIiEkpB7IKYnt_HjGnm_88w3AS-NzY9DQUxtKjworPKpCrilT0kgeZoiC3X7neF9OD8W7o-BoDc66vTANP0Q_4OZaRt1fuwbuBqS3V6yhKquJg5zP4nPRrqvcM6df0Wtbvtkdo4hfMTbZOXg7pW1gAZrywBM0wMNNZPqpZUwJbq0cRlqrzOOBUCazgisV6kgNuQk961spmYfAyYsU08xmHJ97Da67MOKOrn_8fsVY5RyCmt6PB3QoRdTxRHps-_L3XraDK3B7ESLXNm5yB8672mmWthxvVaXeSr_9Rhz5X1XfXbjdIm4yaprIPVgzxX24dYGH8QHEs7z8lFefyWReLU7yzJC8IDtNgKD5aWkIInuCsFzPDVFFRj4oa0hb5uf3H7FBD4Y0TKW5WT6Ewyv5n0ewXiwKswEk9DOh0yiwPjMCz5SswwSi4jO0LIoPgHZST9KWhN3FApknDX00S5xYkl4sA3jd5__S0I_8Medmp0RJ2w0tExZEHDE2H2Lyiz4ZOxA3K6QKs6hcHokQVaDbPgBWa8xf3pSMxvGov3r8L4Wew43pQTxLZrv7e0_gprvfLJDchPXypDJPEeiV-lndtAh8vGpl_AU1tFYK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF6KL8VCwWMBOLkNrEdJzn0sGK7amm3QkCl3oKd2CLqkq26iapy4hF4lL4Kr8CTMM7ftkgICakHckpi588z4_kmtr8BeGl8bgw6empD6VFhhUdVyDVlShrJwwxRsFvvPDmQO4fi7VFwtAQX3VqYhh-i_-HmLKPur52Bn2R2c0EaqrKaN8iFLD4X7bTKPXN-hkHbfGt3hBJ-xdh4--ObHdrmFaApDzxBA9zcOKafWsaU4NbKONJaZR4PhDKZFVypUEcq5ib0rG-lZB7iJi9STDObcbzvDbgppBe7ZBGj9wvCKhcP1Ox-PKCxFFFHE-mxzavve9UNLrDtZYRcu7jxHfjRNU4zs-V4oyr1Rvr1N97I_6n17sJqi7fJsDGQe7BkivuwcomF8QFM9vPyc159IeNpNTvNM0Pygmw36YGm56UhiOsJgnI9NUQVGfmgrCHtNT-_fZ8YjF9Iw1Oam_lDOLyW71mD5WJWmEdAQj8TOo0C6zMjcE_JOkkgqj1Dv6L4AGgn9CRtKdhdJpBp0pBHs8SJJenFMoDXff2ThnzkjzXXOx1K2k5onrAg4oiweYzFL_pi7D7cmJAqzKxydSQCVIFB-wBYrTB_eVIyHE2G_dHjf7noOdx6Nxon-7sHe0_gtjvdzI5ch-XytDJPEeWV-lltWAQ-Xbcu_gK0HlS5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+Fluoride+in+Electrolyte+for+Stable+and+Safe+Lithium%E2%80%90Metal+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tan%2C+Yi%E2%80%90Hong&rft.au=Lu%2C+Gong%E2%80%90Xun&rft.au=Zheng%2C+Jian%E2%80%90Hui&rft.au=Zhou%2C+Fei&rft.date=2021-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=42&rft_id=info:doi/10.1002%2Fadma.202102134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202102134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon