Chemoselective Quinoline and Isoquinoline Reduction by Energy Transfer Catalysis Enabled Hydrogen Atom Transfer

(Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encounter...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 48; pp. e202312203 - n/a
Main Authors Liu, De‐Hai, Nagashima, Kyogo, Liang, Hui, Yue, Xue‐Lin, Chu, Yun‐Peng, Chen, Shuming, Ma, Jiajia
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 27.11.2023
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract (Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene‐rich drug space to escape from flatland. An alkene and a (hetero)arene, to be reduced or retained? In contrast to conventional processes, in the reported hydrogen atom transfer (HAT) protocol enabled by energy transfer (EnT) catalysis, the benzenoid ring of a quinoline is more easily reduced than an electron‐deficient alkene. Furthermore, many reducing labile moieties, such as aryl iodides, electron‐deficient alkynes, benzsulfamides, and benzyl ethers, are compatible with this method.
AbstractList (Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene‐rich drug space to escape from flatland.
(Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene-rich drug space to escape from flatland.(Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene-rich drug space to escape from flatland.
(Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene‐rich drug space to escape from flatland. An alkene and a (hetero)arene, to be reduced or retained? In contrast to conventional processes, in the reported hydrogen atom transfer (HAT) protocol enabled by energy transfer (EnT) catalysis, the benzenoid ring of a quinoline is more easily reduced than an electron‐deficient alkene. Furthermore, many reducing labile moieties, such as aryl iodides, electron‐deficient alkynes, benzsulfamides, and benzyl ethers, are compatible with this method.
Author Ma, Jiajia
Yue, Xue‐Lin
Liang, Hui
Chu, Yun‐Peng
Chen, Shuming
Nagashima, Kyogo
Liu, De‐Hai
Author_xml – sequence: 1
  givenname: De‐Hai
  surname: Liu
  fullname: Liu, De‐Hai
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Kyogo
  surname: Nagashima
  fullname: Nagashima, Kyogo
  organization: Oberlin College
– sequence: 3
  givenname: Hui
  surname: Liang
  fullname: Liang, Hui
  organization: Shanghai Jiao Tong University
– sequence: 4
  givenname: Xue‐Lin
  surname: Yue
  fullname: Yue, Xue‐Lin
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Yun‐Peng
  surname: Chu
  fullname: Chu, Yun‐Peng
  organization: Shanghai Jiao Tong University
– sequence: 6
  givenname: Shuming
  orcidid: 0000-0003-1897-2249
  surname: Chen
  fullname: Chen, Shuming
  email: shuming.chen@oberlin.edu
  organization: Oberlin College
– sequence: 7
  givenname: Jiajia
  orcidid: 0000-0002-4339-0462
  surname: Ma
  fullname: Ma, Jiajia
  email: majj@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
BookMark eNqNkVtrFDEUgINUbLv66vOAL4LMmsvk9rgMa7tQFKU-h0zmTE2ZTWoyW5l_b5bdrlAQzUtu33fOSc4lOgsxAEJvCV4SjOlHGzwsKaaMUIrZC3RBOCU1k5KdlXXDWC0VJ-foMuf7wiuFxSt0zqTCrOHyAsX2B2xjhhHc5B-h-rrzIY4-QGVDX21y_Hk6-Ab9rkAxVN1crQOku7m6TTbkAVLV2smOc_a53NhuhL66nvsU7yBUqyluT-Br9HKwY4Y3x3mBvn9a37bX9c2Xq027uqkd45jVA1OEawqNBCKxBtJpzljZyQaE6AloDr1SzkkpRWcl02LQoJWzwtFBAFug94e4D6k8AfJktj47GEcbIO6yoUo2VDS4UQV99wy9j7sUSnWF0kRzLkryBVIH6hd0ccjOQ3BgHpLf2jQbjAlWAnOG94O0frL7n2rjLkxF_fD_aqGbA-1SzDnBYNwx2pSsHw3BZt95s--8OXW-aMtn2lOCvwr6WJUfYf4HbVafN-s_7m_ddL9m
CitedBy_id crossref_primary_10_1016_j_chempr_2024_09_016
crossref_primary_10_1016_j_chempr_2024_10_026
crossref_primary_10_1021_jacs_4c00807
crossref_primary_10_1002_adsc_202401387
crossref_primary_10_1039_D4QI01105H
crossref_primary_10_1021_acscatal_4c00265
crossref_primary_10_1039_D4SC07681H
crossref_primary_10_1021_acs_orglett_3c04096
crossref_primary_10_1016_j_chempr_2024_11_007
crossref_primary_10_1016_j_chempr_2024_10_009
crossref_primary_10_1002_anie_202402819
crossref_primary_10_1002_ange_202402819
Cites_doi 10.1126/science.abq8663
10.1126/science.aat9750
10.1002/anie.202210312
10.1021/acs.chemrev.6b00018
10.1038/s41467-023-37882-2
10.1021/jacs.2c02102
10.1021/jo0257593
10.1002/anie.201612140
10.1126/science.abk3099
10.1038/s41557-023-01258-2
10.1016/S0040-4039(00)96711-X
10.1002/jhet.4394
10.1021/jo00801a009
10.1002/anie.202309764
10.1021/acs.accounts.2c00412
10.1002/adsc.200900763
10.1039/C8CS00054A
10.1021/jo00317a028
10.1039/C5CS00628G
10.1016/S1872-2067(19)63336-X
10.1126/science.aav5606
10.1016/S0040-4039(01)81308-3
10.1126/science.aao0270
10.1021/jacs.1c05994
10.1039/D1OB02331D
10.1002/anie.201814471
10.1139/v85-443
10.1038/s41467-020-17085-9
10.1002/chem.201804600
10.1021/jacsau.1c00460
10.1021/jacs.0c05899
10.1021/jm901241e
10.26434/chemrxiv-2022-6qpb8-v2
10.1038/s41929-022-00886-0
10.1021/jacs.2c11664
10.1021/jacs.9b09038
10.1021/acs.jpca.6b07291
10.1016/j.chempr.2020.11.013
10.1038/s41929-021-00594-1
10.1002/anie.202218961
10.1021/jacs.8b12965
10.1039/D0QO01322F
10.1021/jacs.2c07726
10.1351/pac199668030553
10.1126/science.1258232
10.1021/jacs.2c03235
10.1038/s41586-020-2131-1
10.1039/C8CS00389K
10.1021/jacs.2c02007
10.1021/jacs.1c05988
10.1021/jacs.5b05868
10.1021/ja00405a035
10.1039/C7SC03768F
10.2174/1385272819666150608220335
10.1021/cr200328h
10.1016/j.ccr.2004.03.013
10.1002/anie.201915762
10.1002/anie.201802891
10.1039/c39750000839
10.1021/jacs.7b05118
10.1038/s41557-021-00732-z
10.1021/ja00779a028
10.1016/j.ejmech.2014.07.044
10.1016/S0040-4039(00)72150-2
10.1158/1535-7163.MCT-20-0251
10.1039/C9SC04822G
10.1038/s41586-020-2268-y
10.1002/anie.201804022
10.1002/anie.202001200
10.1126/science.abg0720
10.1021/acs.chemrev.7b00480
10.1016/j.tetlet.2008.03.123
10.1016/j.bmc.2020.115973
10.1038/s41929-019-0369-5
10.1002/anie.201803102
10.1016/S0010-8545(99)00249-0
10.1351/pac197333020179
10.1038/s41467-021-25878-9
10.1002/anie.201705333
10.1002/anie.201905485
10.1021/jo9904112
10.1002/anie.201303207
10.1039/d1ob02331d
10.1039/c5cs00628g
10.1039/c8cs00389k
10.1039/c9sc04822g
10.1039/d0qo01322f
10.1039/c8cs00054a
10.1016/j.chempr.2021.02.005
10.1039/c7sc03768f
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
1KN
BLEPL
BNZSX
DTL
EGQ
7TM
K9.
7X8
DOI 10.1002/anie.202312203
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Current Chemical Reactions
Web of Science Core Collection
Web of Science - Science Citation Index Expanded - 2023
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE - Academic
Web of Science

Database_xml – sequence: 1
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 001086053000001
10_1002_anie_202312203
ANIE202312203
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 22X010201631
– fundername: Natural Science Foundation of Shanghai
  funderid: 23ZR1432000
– fundername: National Natural Science Foundation of China
  funderid: 22201174
– fundername: J.M. thanks the great support and helpful discussion with Prof. Frank Glorius. The National Nature Science Foundation of China (22201174), Natural Science Foundation of Shanghai (23ZR1432000), Fundamental Research Funds for the Central Universities (23X010
  grantid: 22201174
– fundername: National Nature Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 23ZR1432000
– fundername: Fundamental Research Funds for the Central Universities
– fundername: Natural Science Foundation of Shanghai
  grantid: 23X010301599
– fundername: Oberlin College
  grantid: NSF MRI 1427949
– fundername: Oberlin College HPC cluster
– fundername: SJTU
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
17B
1KM
1KN
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
7TM
K9.
7X8
ID FETCH-LOGICAL-c3503-f381592e47e1709e1b953347e74e66d1e95ed88cc7776ba7396f9e98ca6c2f6e3
IEDL.DBID DR2
ISICitedReferencesCount 18
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=001086053000001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 06:53:07 EDT 2025
Fri Jul 25 11:47:14 EDT 2025
Fri Aug 29 16:10:28 EDT 2025
Wed Jul 09 18:04:53 EDT 2025
Tue Jul 01 01:47:21 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Sun Jul 06 04:45:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 48
Keywords ELECTROREDUCTION
Chemoselectivity
ARENES
PHOTO-BIRCH REDUCTION
AROMATIC-COMPOUNDS
SODIUM-BOROHYDRIDE
Reduction
Visible Light
PHOTOREDUCTION
Dearomatization
Energy Transfer
LITHIUM
ELECTRON-TRANSFER REACTIONS
ACCESS
Language English
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3503-f381592e47e1709e1b953347e74e66d1e95ed88cc7776ba7396f9e98ca6c2f6e3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1897-2249
0000-0002-4339-0462
PMID 37803457
PQID 2891955695
PQPubID 946352
PageCount 10
ParticipantIDs webofscience_primary_001086053000001CitationCount
proquest_journals_2891955695
webofscience_primary_001086053000001
crossref_citationtrail_10_1002_anie_202312203
crossref_primary_10_1002_anie_202312203
wiley_primary_10_1002_anie_202312203_ANIE202312203
proquest_miscellaneous_2874264048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 27, 2023
PublicationDateYYYYMMDD 2023-11-27
PublicationDate_xml – month: 11
  year: 2023
  text: November 27, 2023
  day: 27
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationYear 2023
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2018; 361
2017; 8
2004; 248
2021; 20
1984; 25
1981; 103
1975; 16
2023; 145
2019; 58
1975
1981; 46
2020; 59
1985; 63
2022; 20
2020; 11
2017; 357
2018; 47
2017; 117
2022; 377
2019; 363
2023; 62
2021; 32
2009; 52
2020; 3
2015; 137
2013; 52
2010; 352
1972; 94
2016; 116
1996; 68
2016; 45
2021; 8
2021; 7
2023; 14
2021; 4
2015; 19
2020; 581
1973; 33
2020; 580
2023; 15
2020; 142
2015; 97
1999; 64
2021; 143
2019; 141
2016; 120
2017; 139
2018; 24
2022; 144
2021; 13
2012; 112
2019; 40
2021; 12
2022; 61
2022; 5
2002; 67
2008; 49
1971; 36
2017; 56
2021; 371
2022; 59
2021; 374
2022; 55
2022; 2
1987; 28
2000; 206–207
2014; 346
2018; 57
e_1_2_7_3_2
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_83_1
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_41_2
e_1_2_7_87_2
e_1_2_7_64_2
e_1_2_7_11_1
e_1_2_7_45_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_90_2
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_98_2
e_1_2_7_23_2
e_1_2_7_33_2
e_1_2_7_79_2
e_1_2_7_56_1
e_1_2_7_37_2
e_1_2_7_4_1
e_1_2_7_8_2
e_1_2_7_82_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_2
e_1_2_7_12_2
e_1_2_7_86_1
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_48_2
e_1_2_7_29_1
e_1_2_7_93_1
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_97_2
e_1_2_7_74_1
e_1_2_7_32_2
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_59_1
e_1_2_7_36_2
e_1_2_7_78_2
e_1_2_7_5_2
e_1_2_7_9_2
e_1_2_7_17_1
e_1_2_7_81_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_62_2
e_1_2_7_43_2
e_1_2_7_85_2
e_1_2_7_66_2
e_1_2_7_47_1
e_1_2_7_89_2
e_1_2_7_28_1
e_1_2_7_50_2
e_1_2_7_92_1
e_1_2_7_25_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
e_1_2_7_39_2
e_1_2_7_2_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_61_2
e_1_2_7_80_2
e_1_2_7_14_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_84_2
e_1_2_7_10_2
e_1_2_7_46_1
e_1_2_7_69_2
e_1_2_7_88_2
e_1_2_7_27_2
e_1_2_7_95_1
e_1_2_7_72_2
e_1_2_7_91_2
e_1_2_7_30_1
e_1_2_7_99_1
e_1_2_7_76_2
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_34_2
e_1_2_7_57_2
e_1_2_7_38_2
Giedyk, M (WOS:000509197600008) 2020; 3
Münster, N (WOS:000406385200040) 2017; 56
Balog, A (WOS:000626064300002) 2021; 20
Hu, NF (WOS:000432710100046) 2018; 57
Gunasekar, R (WOS:000754026500001) 2022; 20
Yu, H (WOS:000453829200033) 2018; 24
Ghosh, I (WOS:000344690100034) 2014; 346
Park, Y (WOS:000764197700014) 2022; 2
GEDYE, RN (WOS:A1985ATM4400015) 1985; 63
Park, Y (WOS:000672263000001) 2021; 13
Ma, JJ (WOS:000522525100001) 2020; 59
Ju, T (WOS:000640445900002) 2021; 4
Qiu, JY (WOS:000947009200001) 2023; 62
Hu, C (WOS:000905005800001) 2022
Yuan, T (WOS:000898466000002) 2022; 5
Lovering, F (WOS:000271427900027) 2009; 52
Zhou, QQ (WOS:000458826800006) 2019; 58
YASUDA, M (WOS:A1981LB70600028) 1981; 46
Ma, JJ (WOS:000636043400034) 2021; 371
Zhu, M (WOS:000459222100058) 2019; 141
Zhuang, WH (WOS:000611795900017) 2021; 8
Park, S (WOS:000403839000004) 2017; 56
Sherbrook, EM (WOS:000508917000027) 2020; 11
Lawson, GE (WOS:000081997500027) 1999; 64
MacKenzie, IA (WOS:000543789300003) 2020; 580
Chmiel, AF (WOS:000679913600013) 2021; 143
Barltrop, J. (001086053000001.47) 1973; 33
Glaser, F (WOS:000524308600001) 2020; 59
Smith, JA (WOS:000534818200012) 2020; 581
Constantin, T (WOS:000887933500041) 2022; 377
Wiesenfeldt, MP (WOS:000408734900040) 2017; 357
Widness, JK (WOS:000823599700001) 2022; 144
Wei, Y (WOS:000358896600014) 2015; 137
HOUSE, HO (WOS:A1972O099400028) 1972; 94
El-Shahat, M (WOS:000731426700001) 2022; 59
Zhu, M (WOS:000842892100001) 2022; 55
Burrows, J (WOS:000714952000034) 2021; 374
Afzal, O (WOS:000356734600058) 2015; 97
Wiesenfeldt, MP (WOS:000476919100009) 2019; 58
Wertjes, WC (WOS:000448662800009) 2018; 47
Zhou, WJ (WOS:000546312300001) 2020; 11
Cole, JP (WOS:000558793400042) 2020; 142
Sherbrook, EM (WOS:000702528800018) 2021; 12
Wei, ZZ (WOS:000475547300003) 2019; 40
Heitbaum, M (WOS:000275235800016) 2010; 352
KROPP, M (WOS:A1987K818300018) 1987; 28
Wang, MY (WOS:000848555600001) 2022; 61
Brooks, BC (WOS:000089839800002) 2000; 206
Yoshimi, Y (WOS:000256042500010) 2008; 49
Donohoe, TJ (WOS:000176600400060) 2002; 67
YANG, NCC (WOS:A1984SY14300008) 1984; 25
Chatterjee, A (WOS:000483706100001) 2019; 58
Lee, W (WOS:001020380800002) 2023; 15
Birch, AJ (WOS:A1996UM99400010) 1996; 68
McCallum, T (WOS:000413532800013) 2017; 8
Groenenboom, MC (WOS:000382596800025) 2016; 120
Wang, YJ (WOS:000493866300040) 2019; 141
Wilson, KB (WOS:000408519600019) 2017; 139
Heravi, MM (WOS:000357607200003) 2015; 19
Viereck, P (WOS:000819291400001) 2022; 144
Liebov, BK (WOS:000416500700005) 2017; 117
REMERS, WA (WOS:A1971I376100009) 1971; 36
Matada, BS (WOS:000616056900012) 2021; 32
Wang, DS (WOS:000303283900020) 2012; 112
Hayashi, K (WOS:000789021900015) 2022; 144
MIZUNO, K (WOS:A1975AT94200022) 1975
Xu, JH (WOS:000691789500045) 2021; 143
Qiao, YS (WOS:000442863700036) 2018; 57
Hu, AH (WOS:000442818200036) 2018; 361
Harman, WD (WOS:000223413000004) 2004; 248
Wang, YY (WOS:000652330400015) 2021; 7
MAJIMA, T (WOS:A1981LZ20400035) 1981; 103
Li, K (WOS:001002039000005) 2023; 14
Guo, RY (WOS:000855659900001) 2022
Skubi, KL (WOS:000383410100010) 2016; 116
Peters, BK (WOS:000459387100037) 2019; 363
Strieth-Kalthoff, F (WOS:000446095700001) 2018; 47
Cernak, T (WOS:000369532200007) 2016; 45
Schönherr, H (WOS:000326807900011) 2013; 52
KANO, K (WOS:A1975W171900021) 1975
References_xml – volume: 13
  start-page: 969
  year: 2021
  end-page: 976
  publication-title: Nat. Chem.
– volume: 144
  start-page: 11203
  year: 2022
  end-page: 11214
  publication-title: J. Am. Chem. Soc.
– volume: 580
  start-page: 76
  year: 2020
  end-page: 80
  publication-title: Nature
– volume: 40
  start-page: 980
  year: 2019
  end-page: 1002
  publication-title: Chin. J. Catal.
– volume: 371
  start-page: 1338
  year: 2021
  end-page: 1345
  publication-title: Science
– volume: 52
  start-page: 6752
  year: 2009
  end-page: 6756
  publication-title: J. Med. Chem.
– volume: 68
  start-page: 553
  year: 1996
  end-page: 556
  publication-title: Pure Appl. Chem.
– volume: 137
  start-page: 9250
  year: 2015
  end-page: 9253
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 40
  year: 2020
  end-page: 47
  publication-title: Nat. Catal.
– volume: 94
  start-page: 8471
  year: 1972
  end-page: 8475
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 788
  year: 1981
  end-page: 792
  publication-title: J. Org. Chem.
– volume: 112
  start-page: 2557
  year: 2012
  end-page: 2590
  publication-title: Chem. Rev.
– volume: 12
  start-page: 5735
  year: 2021
  publication-title: Nat. Commun.
– volume: 374
  start-page: 741
  year: 2021
  end-page: 746
  publication-title: Science
– volume: 103
  start-page: 4499
  year: 1981
  end-page: 4508
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2021
  publication-title: Bioorg. Med. Chem.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 59
  start-page: 9639
  year: 2020
  end-page: 9645
  publication-title: Angew. Chem. Int. Ed.
– volume: 63
  start-page: 2669
  year: 1985
  end-page: 2672
  publication-title: Can. J. Chem.
– volume: 59
  start-page: 399
  year: 2022
  end-page: 421
  publication-title: J. Heterocycl. Chem.
– volume: 143
  start-page: 13266
  year: 2021
  end-page: 13273
  publication-title: J. Am. Chem. Soc.
– volume: 248
  start-page: 853
  year: 2004
  end-page: 866
  publication-title: Coord. Chem. Rev.
– volume: 45
  start-page: 546
  year: 2016
  end-page: 576
  publication-title: Chem. Soc. Rev.
– volume: 59
  start-page: 10266
  year: 2020
  end-page: 10284
  publication-title: Angew. Chem. Int. Ed.
– volume: 64
  start-page: 5913
  year: 1999
  end-page: 5920
  publication-title: J. Org. Chem.
– volume: 25
  start-page: 2855
  year: 1984
  end-page: 2858
  publication-title: Tetrahedron Lett.
– volume: 361
  start-page: 668
  year: 2018
  end-page: 672
  publication-title: Science
– volume: 55
  start-page: 2510
  year: 2022
  end-page: 2525
  publication-title: Acc. Chem. Res.
– volume: 19
  start-page: 1491
  year: 2015
  end-page: 1525
  publication-title: Curr. Org. Chem.
– volume: 8
  start-page: 7412
  year: 2017
  end-page: 7418
  publication-title: Chem. Sci.
– volume: 145
  start-page: 25
  year: 2023
  end-page: 31
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 2170
  year: 2023
  publication-title: Nat. Commun.
– volume: 142
  start-page: 13573
  year: 2020
  end-page: 13581
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 179
  year: 1973
  end-page: 196
  publication-title: Pure Appl. Chem.
– volume: 20
  start-page: 1794
  year: 2022
  end-page: 1827
  publication-title: Org. Biomol. Chem.
– volume: 352
  start-page: 357
  year: 2010
  end-page: 362
  publication-title: Adv. Synth. Catal.
– volume: 57
  start-page: 6242
  year: 2018
  end-page: 6246
  publication-title: Angew. Chem. Int. Ed.
– volume: 58
  start-page: 1586
  year: 2019
  end-page: 1604
  publication-title: Angew. Chem. Int. Ed.
– volume: 581
  start-page: 288
  year: 2020
  end-page: 293
  publication-title: Nature
– volume: 363
  start-page: 838
  year: 2019
  end-page: 845
  publication-title: Science
– volume: 346
  start-page: 725
  year: 2014
  end-page: 728
  publication-title: Science
– start-page: 839
  year: 1975
  end-page: 840
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 56
  start-page: 7720
  year: 2017
  end-page: 7738
  publication-title: Angew. Chem. Int. Ed.
– volume: 47
  start-page: 7996
  year: 2018
  end-page: 8017
  publication-title: Chem. Soc. Rev.
– volume: 377
  start-page: 1323
  year: 2022
  end-page: 1328
  publication-title: Science
– volume: 7
  start-page: 1180
  year: 2021
  end-page: 1223
  publication-title: Chem
– volume: 57
  start-page: 10999
  year: 2018
  end-page: 11003
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 407
  year: 2022
  end-page: 418
  publication-title: JACS Au
– volume: 49
  start-page: 3400
  year: 2008
  end-page: 3404
  publication-title: Tetrahedron Lett.
– volume: 58
  start-page: 14289
  year: 2019
  end-page: 14294
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 12256
  year: 2013
  end-page: 12267
  publication-title: Angew. Chem. Int. Ed.
– volume: 120
  start-page: 6888
  year: 2016
  end-page: 6894
  publication-title: J. Phys. Chem. A
– volume: 47
  start-page: 7190
  year: 2018
  end-page: 7202
  publication-title: Chem. Soc. Rev.
– volume: 36
  start-page: 279
  year: 1971
  end-page: 284
  publication-title: J. Org. Chem.
– volume: 144
  start-page: 17680
  year: 2022
  end-page: 17691
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 467
  year: 2021
  end-page: 476
  publication-title: Mol. Cancer Ther.
– volume: 117
  start-page: 13721
  year: 2017
  end-page: 13755
  publication-title: Chem. Rev.
– volume: 28
  start-page: 5295
  year: 1987
  end-page: 5298
  publication-title: Tetrahedron Lett.
– volume: 5
  start-page: 1157
  year: 2022
  end-page: 1168
  publication-title: Nat. Catal.
– volume: 144
  start-page: 5762
  year: 2022
  end-page: 5768
  publication-title: J. Am. Chem. Soc.
– volume: 206–207
  start-page: 3
  year: 2000
  end-page: 61
  publication-title: Coord. Chem. Rev.
– volume: 139
  start-page: 11401
  year: 2017
  end-page: 11412
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 1091
  year: 2023
  end-page: 1099
  publication-title: Nat. Chem.
– volume: 8
  start-page: 319
  year: 2021
  end-page: 325
  publication-title: Org. Chem. Front.
– volume: 11
  start-page: 3263
  year: 2020
  publication-title: Nat. Commun.
– volume: 56
  start-page: 9468
  year: 2017
  end-page: 9472
  publication-title: Angew. Chem. Int. Ed.
– volume: 67
  start-page: 5015
  year: 2002
  end-page: 5018
  publication-title: J. Org. Chem.
– volume: 143
  start-page: 10882
  year: 2021
  end-page: 10889
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 17337
  year: 2019
  end-page: 17349
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 2636
  year: 2019
  end-page: 2644
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 19361
  year: 2018
  end-page: 19367
  publication-title: Chem. Eur. J.
– volume: 97
  start-page: 871
  year: 2015
  end-page: 910
  publication-title: Eur. J. Med. Chem.
– volume: 58
  start-page: 10460
  year: 2019
  end-page: 10476
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 304
  year: 2021
  end-page: 311
  publication-title: Nat. Catal.
– volume: 144
  start-page: 12229
  year: 2022
  end-page: 12246
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 1389
  year: 1975
  end-page: 1392
  publication-title: Tetrahedron Lett.
– volume: 11
  start-page: 856
  year: 2020
  end-page: 861
  publication-title: Chem. Sci.
– volume: 357
  start-page: 908
  year: 2017
  end-page: 912
  publication-title: Science
– volume: 116
  start-page: 10035
  year: 2016
  end-page: 10074
  publication-title: Chem. Rev.
– ident: e_1_2_7_99_1
  doi: 10.1126/science.abq8663
– ident: e_1_2_7_88_2
  doi: 10.1126/science.aat9750
– ident: e_1_2_7_26_2
  doi: 10.1002/anie.202210312
– ident: e_1_2_7_91_2
  doi: 10.1021/acs.chemrev.6b00018
– ident: e_1_2_7_56_1
– ident: e_1_2_7_11_1
– ident: e_1_2_7_27_2
  doi: 10.1038/s41467-023-37882-2
– ident: e_1_2_7_14_2
  doi: 10.1021/jacs.2c02102
– ident: e_1_2_7_92_1
  doi: 10.1021/jo0257593
– ident: e_1_2_7_74_1
– ident: e_1_2_7_77_2
  doi: 10.1002/anie.201612140
– ident: e_1_2_7_15_2
  doi: 10.1126/science.abk3099
– ident: e_1_2_7_39_2
  doi: 10.1038/s41557-023-01258-2
– ident: e_1_2_7_68_2
  doi: 10.1016/S0040-4039(00)96711-X
– ident: e_1_2_7_75_2
  doi: 10.1002/jhet.4394
– ident: e_1_2_7_12_2
  doi: 10.1021/jo00801a009
– ident: e_1_2_7_45_2
  doi: 10.1002/anie.202309764
– ident: e_1_2_7_38_2
  doi: 10.1021/acs.accounts.2c00412
– ident: e_1_2_7_9_2
  doi: 10.1002/adsc.200900763
– ident: e_1_2_7_32_2
  doi: 10.1039/C8CS00054A
– ident: e_1_2_7_30_1
– ident: e_1_2_7_62_2
  doi: 10.1021/jo00317a028
– ident: e_1_2_7_85_2
  doi: 10.1039/C5CS00628G
– ident: e_1_2_7_79_2
  doi: 10.1016/S1872-2067(19)63336-X
– ident: e_1_2_7_13_2
  doi: 10.1126/science.aav5606
– ident: e_1_2_7_66_2
  doi: 10.1016/S0040-4039(01)81308-3
– ident: e_1_2_7_10_2
  doi: 10.1126/science.aao0270
– ident: e_1_2_7_54_2
  doi: 10.1021/jacs.1c05994
– ident: e_1_2_7_80_2
  doi: 10.1039/D1OB02331D
– ident: e_1_2_7_3_2
  doi: 10.1002/anie.201814471
– ident: e_1_2_7_93_1
– ident: e_1_2_7_19_2
  doi: 10.1139/v85-443
– ident: e_1_2_7_50_2
  doi: 10.1038/s41467-020-17085-9
– ident: e_1_2_7_89_2
  doi: 10.1002/chem.201804600
– ident: e_1_2_7_71_1
– ident: e_1_2_7_58_2
  doi: 10.1021/jacsau.1c00460
– ident: e_1_2_7_43_2
  doi: 10.1021/jacs.0c05899
– ident: e_1_2_7_95_1
  doi: 10.1021/jm901241e
– ident: e_1_2_7_46_1
  doi: 10.26434/chemrxiv-2022-6qpb8-v2
– ident: e_1_2_7_42_2
  doi: 10.1038/s41929-022-00886-0
– ident: e_1_2_7_83_1
– ident: e_1_2_7_86_1
– ident: e_1_2_7_70_2
  doi: 10.1021/jacs.2c11664
– ident: e_1_2_7_81_2
  doi: 10.1021/jacs.9b09038
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.jpca.6b07291
– ident: e_1_2_7_78_2
  doi: 10.1016/j.chempr.2020.11.013
– ident: e_1_2_7_48_2
  doi: 10.1038/s41929-021-00594-1
– ident: e_1_2_7_29_1
  doi: 10.1002/anie.202218961
– ident: e_1_2_7_35_2
  doi: 10.1021/jacs.8b12965
– ident: e_1_2_7_44_2
  doi: 10.1039/D0QO01322F
– ident: e_1_2_7_37_2
  doi: 10.1021/jacs.2c07726
– ident: e_1_2_7_5_2
  doi: 10.1351/pac199668030553
– ident: e_1_2_7_49_2
  doi: 10.1126/science.1258232
– ident: e_1_2_7_53_2
  doi: 10.1021/jacs.2c03235
– ident: e_1_2_7_18_2
  doi: 10.1038/s41586-020-2131-1
– ident: e_1_2_7_96_1
– ident: e_1_2_7_2_2
  doi: 10.1039/C8CS00389K
– ident: e_1_2_7_82_2
  doi: 10.1021/jacs.2c02007
– ident: e_1_2_7_55_2
  doi: 10.1021/jacs.1c05988
– ident: e_1_2_7_8_2
  doi: 10.1021/jacs.5b05868
– ident: e_1_2_7_17_1
– ident: e_1_2_7_4_1
– ident: e_1_2_7_47_1
– ident: e_1_2_7_65_2
  doi: 10.1021/ja00405a035
– ident: e_1_2_7_64_2
  doi: 10.1039/C7SC03768F
– ident: e_1_2_7_6_2
  doi: 10.2174/1385272819666150608220335
– ident: e_1_2_7_76_2
  doi: 10.1021/cr200328h
– ident: e_1_2_7_21_1
– ident: e_1_2_7_23_2
  doi: 10.1016/j.ccr.2004.03.013
– ident: e_1_2_7_52_2
  doi: 10.1002/anie.201915762
– ident: e_1_2_7_33_2
  doi: 10.1002/anie.201802891
– ident: e_1_2_7_61_2
  doi: 10.1039/c39750000839
– ident: e_1_2_7_25_2
  doi: 10.1021/jacs.7b05118
– ident: e_1_2_7_57_2
  doi: 10.1038/s41557-021-00732-z
– ident: e_1_2_7_20_2
  doi: 10.1021/ja00779a028
– ident: e_1_2_7_73_2
  doi: 10.1016/j.ejmech.2014.07.044
– ident: e_1_2_7_69_2
  doi: 10.1016/S0040-4039(00)72150-2
– ident: e_1_2_7_94_1
  doi: 10.1158/1535-7163.MCT-20-0251
– ident: e_1_2_7_59_1
– ident: e_1_2_7_40_1
– ident: e_1_2_7_98_2
  doi: 10.1039/C9SC04822G
– ident: e_1_2_7_28_1
  doi: 10.1038/s41586-020-2268-y
– ident: e_1_2_7_87_2
  doi: 10.1002/anie.201804022
– ident: e_1_2_7_90_2
  doi: 10.1002/anie.202001200
– ident: e_1_2_7_36_2
  doi: 10.1126/science.abg0720
– ident: e_1_2_7_1_1
– ident: e_1_2_7_24_2
  doi: 10.1021/acs.chemrev.7b00480
– ident: e_1_2_7_63_2
  doi: 10.1016/j.tetlet.2008.03.123
– ident: e_1_2_7_72_2
  doi: 10.1016/j.bmc.2020.115973
– ident: e_1_2_7_7_1
– ident: e_1_2_7_51_2
  doi: 10.1038/s41929-019-0369-5
– ident: e_1_2_7_34_2
  doi: 10.1002/anie.201803102
– ident: e_1_2_7_22_2
  doi: 10.1016/S0010-8545(99)00249-0
– ident: e_1_2_7_60_2
  doi: 10.1351/pac197333020179
– ident: e_1_2_7_97_2
  doi: 10.1038/s41467-021-25878-9
– ident: e_1_2_7_31_2
  doi: 10.1002/anie.201705333
– ident: e_1_2_7_41_2
  doi: 10.1002/anie.201905485
– ident: e_1_2_7_67_2
  doi: 10.1021/jo9904112
– ident: e_1_2_7_84_2
  doi: 10.1002/anie.201303207
– volume: 61
  start-page: ARTN e202210312
  year: 2022
  ident: WOS:000848555600001
  article-title: Dearomative Aminocarbonylation of Arenes via Bifunctional Coordination to Chromium
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202210312
– volume: 139
  start-page: 11401
  year: 2017
  ident: WOS:000408519600019
  article-title: Sequential Tandem Addition to a Tungsten-Trifluorotoluene Complex: A Versatile Method for the Preparation of Highly Functionalized Trifluoromethylated Cyclohexenes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b05118
– volume: 103
  start-page: 4499
  year: 1981
  ident: WOS:A1981LZ20400035
  article-title: REDOX-PHOTOSENSITIZED REACTIONS .7. AROMATIC HYDROCARBON-PHOTOSENSITIZED ELECTRON-TRANSFER REACTIONS OF FURAN, METHYLATED FURANS, 1,1-DIPHENYLETHYLENE, AND INDENE WITH P-DICYANOBENZENE
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 144
  start-page: 12229
  year: 2022
  ident: WOS:000823599700001
  article-title: CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c03235
– volume: 14
  start-page: ARTN 2170
  year: 2023
  ident: WOS:001002039000005
  article-title: Asymmetric hydrogenation of 1,1-diarylethylenes and benzophenones through a relay strategy
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-023-37882-2
– volume: 581
  start-page: 288
  year: 2020
  ident: WOS:000534818200012
  article-title: Preparation of cyclohexene isotopologues and stereoisotopomers from benzene
  publication-title: NATURE
  doi: 10.1038/s41586-020-2268-y
– volume: 58
  start-page: 1586
  year: 2019
  ident: WOS:000458826800006
  article-title: Visible-Light-Induced Organic Photochemical Reactions through Energy-Transfer Pathways
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201803102
– volume: 580
  start-page: 76
  year: 2020
  ident: WOS:000543789300003
  article-title: Discovery and characterization of an acridine radical photoreductant
  publication-title: NATURE
  doi: 10.1038/s41586-020-2131-1
– volume: 20
  start-page: 467
  year: 2021
  ident: WOS:000626064300002
  article-title: Preclinical Characterization of Linrodostat Mesylate, a Novel, Potent, and Selective Oral Indoleamine 2,3-Dioxygenase 1 Inhibitor
  publication-title: MOLECULAR CANCER THERAPEUTICS
  doi: 10.1158/1535-7163.MCT-20-0251
– volume: 55
  start-page: 2510
  year: 2022
  ident: WOS:000842892100001
  article-title: Energy-Transfer-Enabled Dearomative Cycloaddition Reactions of Indoles/Pyrroles via Excited-State Aromatics
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.2c00412
– volume: 59
  start-page: 399
  year: 2022
  ident: WOS:000731426700001
  article-title: Advances in the reduction of quinolines to 1,2,3,4-tetrahydroquinolines
  publication-title: JOURNAL OF HETEROCYCLIC CHEMISTRY
  doi: 10.1002/jhet.4394
– volume: 377
  start-page: 1323
  year: 2022
  ident: WOS:000887933500041
  article-title: Halogen-atom and group transfer reactivity enabled by hydrogen tunneling
  publication-title: SCIENCE
  doi: 10.1126/science.abq8663
– volume: 32
  start-page: ARTN 115973
  year: 2021
  ident: WOS:000616056900012
  article-title: A comprehensive review on the biological interest of quinoline and its derivatives
  publication-title: BIOORGANIC & MEDICINAL CHEMISTRY
  doi: 10.1016/j.bmc.2020.115973
– volume: 143
  start-page: 13266
  year: 2021
  ident: WOS:000691789500045
  article-title: Unveiling Extreme Photoreduction Potentials of Donor-Acceptor Cyanoarenes to Access Aryl Radicals from Aryl Chlorides
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c05994
– volume: 24
  start-page: 19361
  year: 2018
  ident: WOS:000453829200033
  article-title: Enantioselective [2+2] Photocycloaddition Reactions of Enones and Olefins with Visible Light Mediated by N,N′-Dioxide-Metal Complexes
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201804600
– volume: 116
  start-page: 10035
  year: 2016
  ident: WOS:000383410100010
  article-title: Dual Catalysis Strategies in Photochemical Synthesis
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.6b00018
– volume: 20
  start-page: 1794
  year: 2022
  ident: WOS:000754026500001
  article-title: Recent developments in enantio- and diastereoselective hydrogenation of N-heteroaromatic compounds
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/d1ob02331d
– volume: 64
  start-page: 5913
  year: 1999
  ident: WOS:000081997500027
  article-title: Photoinduced electron-transfer reactions of [60]fullerene with triethylamine
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
– volume: 346
  start-page: 725
  year: 2014
  ident: WOS:000344690100034
  article-title: Reduction of aryl halides by consecutive visible light-induced electron transfer processes
  publication-title: SCIENCE
  doi: 10.1126/science.1258232
– volume: 67
  start-page: 5015
  year: 2002
  ident: WOS:000176600400060
  article-title: Ammonia free partial reduction of aromatic compounds using lithium di-tert-butylbiphenyl (LiDBB)
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/jo0257593
– volume: 141
  start-page: 17337
  year: 2019
  ident: WOS:000493866300040
  article-title: Unmasking the Ligand Effect in Manganese-Catalyzed Hydrogenation: Mechanistic Insight and Catalytic Application
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b09038
– volume: 15
  start-page: 1091
  year: 2023
  ident: WOS:001020380800002
  article-title: Energy-transfer-induced [3+2] cycloadditions of N-N pyridinium ylides
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-023-01258-2
– volume: 13
  start-page: 969
  year: 2021
  ident: WOS:000672263000001
  article-title: Visible light enables catalytic formation of weak chemical bonds with molecular hydrogen
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-021-00732-z
– volume: 144
  start-page: 11203
  year: 2022
  ident: WOS:000819291400001
  article-title: Molybdenum-Catalyzed Asymmetric Hydrogenation of Fused Arenes and Heteroarenes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c02007
– volume: 59
  start-page: 10266
  year: 2020
  ident: WOS:000524308600001
  article-title: Multi-Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201915762
– year: 2022
  ident: WOS:000855659900001
  article-title: Photochemical Dearomative Cycloadditions of Quinolines and Alkenes: Scope and Mechanism Studies
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c07726
– volume: 206
  start-page: 3
  year: 2000
  ident: WOS:000089839800002
  article-title: Dihapto binding of aromatic molecules by π-basic transition metal complexes:: development of alternatives to the {Os(NH3)5}2+ fragment
  publication-title: COORDINATION CHEMISTRY REVIEWS
– volume: 45
  start-page: 546
  year: 2016
  ident: WOS:000369532200007
  article-title: The medicinal chemist's toolbox for late stage functionalization of drug-like molecules
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c5cs00628g
– volume: 33
  start-page: 179
  year: 1973
  ident: 001086053000001.47
  publication-title: Pure Appl. Chem
– volume: 68
  start-page: 553
  year: 1996
  ident: WOS:A1996UM99400010
  article-title: The Birch reduction in organic synthesis
  publication-title: PURE AND APPLIED CHEMISTRY
– volume: 97
  start-page: 871
  year: 2015
  ident: WOS:000356734600058
  article-title: A review on anticancer potential of bioactive heterocycle quinoline
  publication-title: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1016/j.ejmech.2014.07.044
– volume: 94
  start-page: 8471
  year: 1972
  ident: WOS:A1972O099400028
  article-title: EMPIRICAL RULES FOR ESTIMATING REDUCTION POTENTIAL OF ALPHA, BETA-UNSATURATED CARBONYL-COMPOUNDS
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 62
  year: 2023
  ident: WOS:000947009200001
  article-title: Chemoselective 1,2-Reduction and Regiodivergent Deuteration of Chromium-Bound Arenes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202218961
– volume: 49
  start-page: 3400
  year: 2008
  ident: WOS:000256042500010
  article-title: Hydroxide ion as electron source for photochemical Birch-type reduction and photodehalogenation
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2008.03.123
– start-page: 839
  year: 1975
  ident: WOS:A1975AT94200022
  article-title: PHOTO-BIRCH REDUCTION OF AROMATIC-HYDROCARBONS USING SODIUM-BOROHYDRIDE AND 1,4-DICYANOBENZENE
  publication-title: JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS
– volume: 141
  start-page: 2636
  year: 2019
  ident: WOS:000459222100058
  article-title: Synthesis of Cyclobutane-Fused Angular Tetracyclic Spiroindolines via Visible-Light-Promoted Intramolecular Dearomatization of Indole Derivatives
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b12965
– volume: 4
  start-page: 304
  year: 2021
  ident: WOS:000640445900002
  article-title: Dicarboxylation of alkenes, allenes and (hetero)arenes with CO2 via visible-light photoredox catalysis
  publication-title: NATURE CATALYSIS
  doi: 10.1038/s41929-021-00594-1
– volume: 363
  start-page: 838
  year: 2019
  ident: WOS:000459387100037
  article-title: Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry
  publication-title: SCIENCE
  doi: 10.1126/science.aav5606
– volume: 47
  start-page: 7996
  year: 2018
  ident: WOS:000448662800009
  article-title: Recent advances in chemical dearomatization of nonactivated arenes
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c8cs00389k
– volume: 52
  start-page: 12256
  year: 2013
  ident: WOS:000326807900011
  article-title: Profound Methyl Effects in Drug Discovery and a Call for New C-H Methylation Reactions
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201303207
– volume: 117
  start-page: 13721
  year: 2017
  ident: WOS:000416500700005
  article-title: Group 6 Dihapto-Coordinate Dearomatization Agents for Organic Synthesis
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.7b00480
– volume: 11
  start-page: 856
  year: 2020
  ident: WOS:000508917000027
  article-title: Bronsted acid catalysis of photosensitized cycloadditions
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c9sc04822g
– volume: 58
  start-page: 14289
  year: 2019
  ident: WOS:000483706100001
  article-title: Birch-Type Photoreduction of Arenes and Heteroarenes by Sensitized Electron Transfer
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201905485
– volume: 374
  start-page: 741
  year: 2021
  ident: WOS:000714952000034
  article-title: Scalable Birch reduction with lithium and ethylenediamine in tetrahydrofuran
  publication-title: SCIENCE
  doi: 10.1126/science.abk3099
– volume: 40
  start-page: 980
  year: 2019
  ident: WOS:000475547300003
  article-title: Recent advances in heterogeneous catalytic hydrogenation and dehydrogenation of N-heterocycles
  publication-title: CHINESE JOURNAL OF CATALYSIS
  doi: 10.1016/S1872-2067(19)63336-X
– volume: 8
  start-page: 319
  year: 2021
  ident: WOS:000611795900017
  article-title: Visible-light induced divergent dearomatization of indole derivatives: controlled access to cyclobutane-fused polycycles and 2-substituted indolines
  publication-title: ORGANIC CHEMISTRY FRONTIERS
  doi: 10.1039/d0qo01322f
– volume: 19
  start-page: 1491
  year: 2015
  ident: WOS:000357607200003
  article-title: Recent Applications of Birch Reduction in Total Synthesis of Natural Products
  publication-title: CURRENT ORGANIC CHEMISTRY
– volume: 57
  start-page: 10999
  year: 2018
  ident: WOS:000442863700036
  article-title: Photoinduced Miyaura Borylation by a Rare-Earth-Metal Photoreductant: The Hexachlorocerate(III) Anion
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201804022
– volume: 36
  start-page: 279
  year: 1971
  ident: WOS:A1971I376100009
  article-title: REDUCTION OF NITROGEN HETEROCYCLES BY LITHIUM IN LIQUID AMMONIA .3. INDOLES AND QUINOLINES
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
– volume: 47
  start-page: 7190
  year: 2018
  ident: WOS:000446095700001
  article-title: Energy transfer catalysis mediated by visible light: principles, applications, directions
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c8cs00054a
– volume: 361
  start-page: 668
  year: 2018
  ident: WOS:000442818200036
  article-title: Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis
  publication-title: SCIENCE
  doi: 10.1126/science.aat9750
– volume: 248
  start-page: 853
  year: 2004
  ident: WOS:000223413000004
  article-title: Conformational and linkage isomerizations for dihapto-coordinated arenes and aromatic heterocycles: controlling the stereochemistry of ligand transformations
  publication-title: COORDINATION CHEMISTRY REVIEWS
  doi: 10.1016/j.ccr.2004.03.013
– volume: 58
  start-page: 10460
  year: 2019
  ident: WOS:000476919100009
  article-title: Selective Arene Hydrogenation for Direct Access to Saturated Carbo- and Heterocycles
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201814471
– volume: 56
  start-page: 9468
  year: 2017
  ident: WOS:000406385200040
  article-title: Visible Light Photocatalysis of 6π Heterocyclization
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201705333
– volume: 7
  year: 2021
  ident: WOS:000652330400015
  article-title: A see-through electrochromic display via dynamic metal-ligand interactions
  publication-title: CHEM
  doi: 10.1016/j.chempr.2021.02.005
– volume: 46
  start-page: 788
  year: 1981
  ident: WOS:A1981LB70600028
  article-title: PHOTOCHEMICAL-REACTIONS OF AROMATIC-COMPOUNDS .35. PHOTO-BIRCH REDUCTION OF ARENES WITH SODIUM-BOROHYDRIDE IN THE PRESENCE OF DICYANOBENZENE
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
– volume: 11
  year: 2020
  ident: WOS:000546312300001
  article-title: Reductive dearomative arylcarboxylation of indoles with CO2 via visible-light photoredox catalysis
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-020-17085-9
– volume: 12
  start-page: ARTN 5735
  year: 2021
  ident: WOS:000702528800018
  article-title: Chiral Bronsted acid-controlled intermolecular asymmetric [2+2] photocycloadditions
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-021-25878-9
– volume: 8
  start-page: 7412
  year: 2017
  ident: WOS:000413532800013
  article-title: The photochemical alkylation and reduction of heteroarenes
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c7sc03768f
– volume: 120
  start-page: 6888
  year: 2016
  ident: WOS:000382596800025
  article-title: Structural and Substituent Group Effects on Multielectron Standard Reduction Potentials of Aromatic N-Heterocycles
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY A
  doi: 10.1021/acs.jpca.6b07291
– volume: 352
  start-page: 357
  year: 2010
  ident: WOS:000275235800016
  article-title: Diastereoselective Hydrogenation of Substituted Quinolines to Enantiomerically Pure Decahydroquinolines
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.200900763
– volume: 142
  start-page: 13573
  year: 2020
  ident: WOS:000558793400042
  article-title: Organocatalyzed Birch Reduction Driven by Visible Light
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c05899
– volume: 2
  start-page: 407
  year: 2022
  ident: WOS:000764197700014
  article-title: Visible-Light-Driven, Iridium-Catalyzed Hydrogen Atom Transfer: Mechanistic Studies, Identification of Intermediates, and Catalyst Improvements
  publication-title: JACS AU
  doi: 10.1021/jacsau.1c00460
– volume: 357
  start-page: 908
  year: 2017
  ident: WOS:000408734900040
  article-title: Hydrogenation of fluoroarenes: Direct access to all-cis-(multi)fluorinated cycloalkanes
  publication-title: SCIENCE
  doi: 10.1126/science.aao0270
– volume: 3
  start-page: 40
  year: 2020
  ident: WOS:000509197600008
  article-title: Photocatalytic activation of alkyl chlorides by assembly-promoted single electron transfer in microheterogeneous solutions
  publication-title: NATURE CATALYSIS
  doi: 10.1038/s41929-019-0369-5
– start-page: 1389
  year: 1975
  ident: WOS:A1975W171900021
  article-title: PHOTOCHEMICAL REDUCTION OF PYRIDINIUM AND PYRIDINE COMPOUNDS IN PRESENCE OF DIETHYLAMINE
  publication-title: TETRAHEDRON LETTERS
– volume: 56
  start-page: 7720
  year: 2017
  ident: WOS:000403839000004
  article-title: Catalytic Dearomatization of N-Heteroarenes with Silicon and Boron Compounds
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201612140
– volume: 137
  start-page: 9250
  year: 2015
  ident: WOS:000358896600014
  article-title: Highly Selective Hydrogenation of Aromatic Ketones and Phenols Enabled by Cyclic (Amino)(alkyl)carbene Rhodium Complexes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.5b05868
– volume: 59
  start-page: 9639
  year: 2020
  ident: WOS:000522525100001
  article-title: Gadolinium Photocatalysis: Dearomative [2+2] Cycloaddition/Ring-Expansion Sequence with Indoles
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202001200
– volume: 63
  start-page: 2669
  year: 1985
  ident: WOS:A1985ATM4400015
  article-title: THE ELECTROREDUCTION OF HALOGENATED THIOPHENES
  publication-title: CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE
– volume: 112
  start-page: 2557
  year: 2012
  ident: WOS:000303283900020
  article-title: Asymmetric Hydrogenation of Heteroarenes and Arenes
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr200328h
– volume: 144
  start-page: 5762
  year: 2022
  ident: WOS:000789021900015
  article-title: Chemoselective (Hetero)Arene Electroreduction Enabled by RapidAlternating Polarity
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c02102
– volume: 57
  start-page: 6242
  year: 2018
  ident: WOS:000432710100046
  article-title: Catalytic Asymmetric Dearomatization by Visible-Light-Activated [2+2] Photocycloaddition
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201802891
– volume: 25
  start-page: 2855
  year: 1984
  ident: WOS:A1984SY14300008
  article-title: PHOTOREDUCTION OF AROMATIC-COMPOUNDS VIA AMINE EXCIPLEXES
  publication-title: TETRAHEDRON LETTERS
– volume: 371
  start-page: 1338
  year: 2021
  ident: WOS:000636043400034
  article-title: Photochemical intermolecular dearomative cycloaddition of bicyclic azaarenes with alkenes
  publication-title: SCIENCE
  doi: 10.1126/science.abg0720
– volume: 143
  start-page: 10882
  year: 2021
  ident: WOS:000679913600013
  article-title: Non-innocent Radical Ion Intermediates in Photoredox Catalysis: Parallel Reduction Modes Enable Coupling of Diverse Aryl Chlorides
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c05988
– volume: 28
  start-page: 5295
  year: 1987
  ident: WOS:A1987K818300018
  article-title: PHOTOREDUCTION OF SUBSTITUTED ARENES WITH BORATES AND BOROHYDRIDE - AN ELECTRON-TRANSFER MECHANISM
  publication-title: TETRAHEDRON LETTERS
– volume: 5
  start-page: 1157
  year: 2022
  ident: WOS:000898466000002
  article-title: Mild and metal-free Birch-type hydrogenation of (hetero)arenes with boron carbonitride in water
  publication-title: NATURE CATALYSIS
  doi: 10.1038/s41929-022-00886-0
– year: 2022
  ident: WOS:000905005800001
  article-title: Uncanonical Semireduction of Quinolines and Isoquinolines via Regioselective HAT-Promoted Hydrosilylation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c11664
– volume: 52
  start-page: 6752
  year: 2009
  ident: WOS:000271427900027
  article-title: Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm901241e
SSID ssj0028806
Score 2.5197897
Snippet (Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are...
Source Web of Science
SourceID proquest
webofscience
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202312203
SubjectTerms Alkanes
Alkenes
Catalysis
Chemical reduction
Chemistry
Chemistry, Multidisciplinary
Chemoselectivity
Dearomatization
Energy Transfer
Functional groups
Hydrogen
Hydrogen atoms
Physical Sciences
Quinoline
Reduction
Science & Technology
Visible Light
Title Chemoselective Quinoline and Isoquinoline Reduction by Energy Transfer Catalysis Enabled Hydrogen Atom Transfer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202312203
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=001086053000001
https://www.proquest.com/docview/2891955695
https://www.proquest.com/docview/2874264048
Volume 62
WOS 001086053000001
WOSCitedRecordID wos001086053000001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KLu2l71K3SVEh0JM2a9mSrOOybNgUGmhoIDcjS2Mobe2w6z2kvz4a-ZFsobS0N8kaYUuakT7Jmm8Ajm2hbREsiTsnKp4blXMrc8edqS16b63zdN7x6VytL_OPV_Lqnhd_zw8xHbiRZcT5mgzcVtuTO9JQ8sCeUfDvVIhI90kXtggVXUz8USIoZ-9elGWcotCPrI1zcbJffX9VuoOae4vRPn6NC9DpE7Djp_f3Tr7Ndl01cz9_YXX8n7Y9hccDOmWLXp2ewQNsnsPD5RgU7gW0lG63MXhOmCfZ593XhsL-ILONZ2fb0KLxwQWRwtKws-qGraKLIYsrY40btqRTIyJDCSXkvOXZ-sZv2qDNbNG1PybBl3B5uvqyXPMhZgN3mZxnvA4IQBqBucZUzw2mFd1fDTmdo1I-RSPRF4VzWmtVWZ0ZVRs0hbPKiVph9goOmrbB18BQz1HmKU1JPsBKVQlr8qBN3gfQ59AkwMcxK91AaE5xNb6XPRWzKKkby6kbE_gwyV_3VB6_lTwcVaAcTHpbhp1paqRURibwfioO3U9_WGyD7Y5kNCHMMCsmcHxfdaYX0h68CFvILO7O0gTSvxFbDs0jnoIuARF15w-NKBfnZ6sp9-ZfKr2FR5Qm10uhD-Gg2-zwKGCwrnoX7ewW13goBA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-h8TBe-EYEBhhpEk_uGie248eqdGphq8S0SbxFjn2REJCgNn0Yfz2-fI0iIRC8xfZZydl357Pj-x3Asc20zYImcedEwVOjUm5l6rgzpUXvrXWezjvO12p5lb77KIfbhBQL0-FDjAdupBmtvSYFpwPpkxvUUArBnlD271gIwvu8TWm9CT7_7cWIICWCeHYBRknCKQ_9gNs4FSf7_ffXpRtnc2852vdg2yXo9B4Uw8d3N08-T3ZNMXHff8F1_C_u7sPd3kFls06iHsAtrB7C4XzIC_cIanqut23-nGAq2Yfdp4oy_yCzlWerbWBpqLggXFiaeVZcs0UbZcjaxbHEDZvTwRHhoYQWit_ybHntN3UQaDZr6q8j4WO4Ol1czpe8T9vAXSKnCS-DEyCNwFRjrKcG44KusIaSTlEpH6OR6LPMOa21KqxOjCoNmsxZ5USpMHkCB1Vd4VNgqKco05iskg-epSqENWkQKO-D3-fQRMCHSctdj2lOqTW-5B0as8hpGPNxGCN4M9J_69A8fkt5NMhA3mv1Ng-b09hIqYyM4PXYHIaffrLYCusd0WhyMoNhjOD4Z9kZX0jb8CzsIpN2gxZHEP8N2bxnj6AKmghEKzx_YCKfrVeLsfTsXzq9gsPl5flZfrZav38Od6ieIjGFPoKDZrPDF8Ela4qXrdL9AE_TLCA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD7ICuqLd7G6aoQFnzLbprk0j8PsDDNeBl1c2LeSJimI2i4znYf115vT2-4Iouhbk5zQJjm3pDnfATgymTJZkCRqLSso15JTI7ilVpfGO2eMdXje8WEtl2f87bk4vxbF3-FDjAduKBmtvkYBv3Dl8RVoKEZgTzD5d8IYwn3e5DLWmLzh5HQEkGKBO7v4ojSlmIZ-gG2M2fF-_32zdOVr7lmjfQe2tUCLe2CGb-8unnyd7JpiYn_8Auv4P4O7D3d795RMO356ADd89RBuz4ascI-gxud622bPCYqSfNp9qTDvjyemcmS1DSMaKk4RFRbXnRSXZN7GGJLWNJZ-Q2Z4bIRoKKEFo7ccWV66TR3YmUyb-vtI-BjOFvPPsyXtkzZQm4o4pWVwAYRmniufqFj7pMALrKGkuJfSJV4L77LMWqWULIxKtSy115k10rJS-vQJHFR15Z8C8Sr2gieok1zwK2XBjOaBnZwLXp_1OgI6rFlue0RzTKzxLe-wmFmO05iP0xjBm5H-osPy-C3l4cACeS_T2zxsTRMthNQigtdjc5h-_MViKl_vkEahixnUYgRH11lnfCFuwrOwh0zb7VkSQfI3ZLN-eAhU0ETAWt75wyDy6Xo1H0vP_qXTK7j18WSRv1-t3z2HO1iNYZhMHcJBs9n5F8Efa4qXrcj9BJ37Ks8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemoselective+Quinoline+and+Isoquinoline+Reduction+by+Energy+Transfer+Catalysis+Enabled+Hydrogen+Atom+Transfer&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+De%E2%80%90Hai&rft.au=Nagashima%2C+Kyogo&rft.au=Liang%2C+Hui&rft.au=Yue%2C+Xue%E2%80%90Lin&rft.date=2023-11-27&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=48&rft_id=info:doi/10.1002%2Fanie.202312203&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202312203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon