Chemoselective Quinoline and Isoquinoline Reduction by Energy Transfer Catalysis Enabled Hydrogen Atom Transfer
(Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encounter...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 48; pp. e202312203 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
27.11.2023
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | (Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene‐rich drug space to escape from flatland.
An alkene and a (hetero)arene, to be reduced or retained? In contrast to conventional processes, in the reported hydrogen atom transfer (HAT) protocol enabled by energy transfer (EnT) catalysis, the benzenoid ring of a quinoline is more easily reduced than an electron‐deficient alkene. Furthermore, many reducing labile moieties, such as aryl iodides, electron‐deficient alkynes, benzsulfamides, and benzyl ethers, are compatible with this method. |
---|---|
AbstractList | (Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene‐rich drug space to escape from flatland. (Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene-rich drug space to escape from flatland.(Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene-rich drug space to escape from flatland. (Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene‐rich drug space to escape from flatland. An alkene and a (hetero)arene, to be reduced or retained? In contrast to conventional processes, in the reported hydrogen atom transfer (HAT) protocol enabled by energy transfer (EnT) catalysis, the benzenoid ring of a quinoline is more easily reduced than an electron‐deficient alkene. Furthermore, many reducing labile moieties, such as aryl iodides, electron‐deficient alkynes, benzsulfamides, and benzyl ethers, are compatible with this method. |
Author | Ma, Jiajia Yue, Xue‐Lin Liang, Hui Chu, Yun‐Peng Chen, Shuming Nagashima, Kyogo Liu, De‐Hai |
Author_xml | – sequence: 1 givenname: De‐Hai surname: Liu fullname: Liu, De‐Hai organization: Shanghai Jiao Tong University – sequence: 2 givenname: Kyogo surname: Nagashima fullname: Nagashima, Kyogo organization: Oberlin College – sequence: 3 givenname: Hui surname: Liang fullname: Liang, Hui organization: Shanghai Jiao Tong University – sequence: 4 givenname: Xue‐Lin surname: Yue fullname: Yue, Xue‐Lin organization: Shanghai Jiao Tong University – sequence: 5 givenname: Yun‐Peng surname: Chu fullname: Chu, Yun‐Peng organization: Shanghai Jiao Tong University – sequence: 6 givenname: Shuming orcidid: 0000-0003-1897-2249 surname: Chen fullname: Chen, Shuming email: shuming.chen@oberlin.edu organization: Oberlin College – sequence: 7 givenname: Jiajia orcidid: 0000-0002-4339-0462 surname: Ma fullname: Ma, Jiajia email: majj@sjtu.edu.cn organization: Shanghai Jiao Tong University |
BookMark | eNqNkVtrFDEUgINUbLv66vOAL4LMmsvk9rgMa7tQFKU-h0zmTE2ZTWoyW5l_b5bdrlAQzUtu33fOSc4lOgsxAEJvCV4SjOlHGzwsKaaMUIrZC3RBOCU1k5KdlXXDWC0VJ-foMuf7wiuFxSt0zqTCrOHyAsX2B2xjhhHc5B-h-rrzIY4-QGVDX21y_Hk6-Ab9rkAxVN1crQOku7m6TTbkAVLV2smOc_a53NhuhL66nvsU7yBUqyluT-Br9HKwY4Y3x3mBvn9a37bX9c2Xq027uqkd45jVA1OEawqNBCKxBtJpzljZyQaE6AloDr1SzkkpRWcl02LQoJWzwtFBAFug94e4D6k8AfJktj47GEcbIO6yoUo2VDS4UQV99wy9j7sUSnWF0kRzLkryBVIH6hd0ccjOQ3BgHpLf2jQbjAlWAnOG94O0frL7n2rjLkxF_fD_aqGbA-1SzDnBYNwx2pSsHw3BZt95s--8OXW-aMtn2lOCvwr6WJUfYf4HbVafN-s_7m_ddL9m |
CitedBy_id | crossref_primary_10_1016_j_chempr_2024_09_016 crossref_primary_10_1016_j_chempr_2024_10_026 crossref_primary_10_1021_jacs_4c00807 crossref_primary_10_1002_adsc_202401387 crossref_primary_10_1039_D4QI01105H crossref_primary_10_1021_acscatal_4c00265 crossref_primary_10_1039_D4SC07681H crossref_primary_10_1021_acs_orglett_3c04096 crossref_primary_10_1016_j_chempr_2024_11_007 crossref_primary_10_1016_j_chempr_2024_10_009 crossref_primary_10_1002_anie_202402819 crossref_primary_10_1002_ange_202402819 |
Cites_doi | 10.1126/science.abq8663 10.1126/science.aat9750 10.1002/anie.202210312 10.1021/acs.chemrev.6b00018 10.1038/s41467-023-37882-2 10.1021/jacs.2c02102 10.1021/jo0257593 10.1002/anie.201612140 10.1126/science.abk3099 10.1038/s41557-023-01258-2 10.1016/S0040-4039(00)96711-X 10.1002/jhet.4394 10.1021/jo00801a009 10.1002/anie.202309764 10.1021/acs.accounts.2c00412 10.1002/adsc.200900763 10.1039/C8CS00054A 10.1021/jo00317a028 10.1039/C5CS00628G 10.1016/S1872-2067(19)63336-X 10.1126/science.aav5606 10.1016/S0040-4039(01)81308-3 10.1126/science.aao0270 10.1021/jacs.1c05994 10.1039/D1OB02331D 10.1002/anie.201814471 10.1139/v85-443 10.1038/s41467-020-17085-9 10.1002/chem.201804600 10.1021/jacsau.1c00460 10.1021/jacs.0c05899 10.1021/jm901241e 10.26434/chemrxiv-2022-6qpb8-v2 10.1038/s41929-022-00886-0 10.1021/jacs.2c11664 10.1021/jacs.9b09038 10.1021/acs.jpca.6b07291 10.1016/j.chempr.2020.11.013 10.1038/s41929-021-00594-1 10.1002/anie.202218961 10.1021/jacs.8b12965 10.1039/D0QO01322F 10.1021/jacs.2c07726 10.1351/pac199668030553 10.1126/science.1258232 10.1021/jacs.2c03235 10.1038/s41586-020-2131-1 10.1039/C8CS00389K 10.1021/jacs.2c02007 10.1021/jacs.1c05988 10.1021/jacs.5b05868 10.1021/ja00405a035 10.1039/C7SC03768F 10.2174/1385272819666150608220335 10.1021/cr200328h 10.1016/j.ccr.2004.03.013 10.1002/anie.201915762 10.1002/anie.201802891 10.1039/c39750000839 10.1021/jacs.7b05118 10.1038/s41557-021-00732-z 10.1021/ja00779a028 10.1016/j.ejmech.2014.07.044 10.1016/S0040-4039(00)72150-2 10.1158/1535-7163.MCT-20-0251 10.1039/C9SC04822G 10.1038/s41586-020-2268-y 10.1002/anie.201804022 10.1002/anie.202001200 10.1126/science.abg0720 10.1021/acs.chemrev.7b00480 10.1016/j.tetlet.2008.03.123 10.1016/j.bmc.2020.115973 10.1038/s41929-019-0369-5 10.1002/anie.201803102 10.1016/S0010-8545(99)00249-0 10.1351/pac197333020179 10.1038/s41467-021-25878-9 10.1002/anie.201705333 10.1002/anie.201905485 10.1021/jo9904112 10.1002/anie.201303207 10.1039/d1ob02331d 10.1039/c5cs00628g 10.1039/c8cs00389k 10.1039/c9sc04822g 10.1039/d0qo01322f 10.1039/c8cs00054a 10.1016/j.chempr.2021.02.005 10.1039/c7sc03768f |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM 1KN BLEPL BNZSX DTL EGQ 7TM K9. 7X8 |
DOI | 10.1002/anie.202312203 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science Core Collection Web of Science - Science Citation Index Expanded - 2023 Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic Web of Science |
Database_xml | – sequence: 1 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 001086053000001 10_1002_anie_202312203 ANIE202312203 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 22X010201631 – fundername: Natural Science Foundation of Shanghai funderid: 23ZR1432000 – fundername: National Natural Science Foundation of China funderid: 22201174 – fundername: J.M. thanks the great support and helpful discussion with Prof. Frank Glorius. The National Nature Science Foundation of China (22201174), Natural Science Foundation of Shanghai (23ZR1432000), Fundamental Research Funds for the Central Universities (23X010 grantid: 22201174 – fundername: National Nature Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 23ZR1432000 – fundername: Fundamental Research Funds for the Central Universities – fundername: Natural Science Foundation of Shanghai grantid: 23X010301599 – fundername: Oberlin College grantid: NSF MRI 1427949 – fundername: Oberlin College HPC cluster – fundername: SJTU |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 17B 1KM 1KN BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3503-f381592e47e1709e1b953347e74e66d1e95ed88cc7776ba7396f9e98ca6c2f6e3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 18 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=001086053000001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 06:53:07 EDT 2025 Fri Jul 25 11:47:14 EDT 2025 Fri Aug 29 16:10:28 EDT 2025 Wed Jul 09 18:04:53 EDT 2025 Tue Jul 01 01:47:21 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Sun Jul 06 04:45:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Keywords | ELECTROREDUCTION Chemoselectivity ARENES PHOTO-BIRCH REDUCTION AROMATIC-COMPOUNDS SODIUM-BOROHYDRIDE Reduction Visible Light PHOTOREDUCTION Dearomatization Energy Transfer LITHIUM ELECTRON-TRANSFER REACTIONS ACCESS |
Language | English |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3503-f381592e47e1709e1b953347e74e66d1e95ed88cc7776ba7396f9e98ca6c2f6e3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1897-2249 0000-0002-4339-0462 |
PMID | 37803457 |
PQID | 2891955695 |
PQPubID | 946352 |
PageCount | 10 |
ParticipantIDs | webofscience_primary_001086053000001CitationCount proquest_journals_2891955695 webofscience_primary_001086053000001 crossref_citationtrail_10_1002_anie_202312203 crossref_primary_10_1002_anie_202312203 wiley_primary_10_1002_anie_202312203_ANIE202312203 proquest_miscellaneous_2874264048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 27, 2023 |
PublicationDateYYYYMMDD | 2023-11-27 |
PublicationDate_xml | – month: 11 year: 2023 text: November 27, 2023 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationYear | 2023 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2018; 361 2017; 8 2004; 248 2021; 20 1984; 25 1981; 103 1975; 16 2023; 145 2019; 58 1975 1981; 46 2020; 59 1985; 63 2022; 20 2020; 11 2017; 357 2018; 47 2017; 117 2022; 377 2019; 363 2023; 62 2021; 32 2009; 52 2020; 3 2015; 137 2013; 52 2010; 352 1972; 94 2016; 116 1996; 68 2016; 45 2021; 8 2021; 7 2023; 14 2021; 4 2015; 19 2020; 581 1973; 33 2020; 580 2023; 15 2020; 142 2015; 97 1999; 64 2021; 143 2019; 141 2016; 120 2017; 139 2018; 24 2022; 144 2021; 13 2012; 112 2019; 40 2021; 12 2022; 61 2022; 5 2002; 67 2008; 49 1971; 36 2017; 56 2021; 371 2022; 59 2021; 374 2022; 55 2022; 2 1987; 28 2000; 206–207 2014; 346 2018; 57 e_1_2_7_3_2 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_83_1 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_64_2 e_1_2_7_11_1 e_1_2_7_45_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_90_2 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_98_2 e_1_2_7_23_2 e_1_2_7_33_2 e_1_2_7_79_2 e_1_2_7_56_1 e_1_2_7_37_2 e_1_2_7_4_1 e_1_2_7_8_2 e_1_2_7_82_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_2 e_1_2_7_12_2 e_1_2_7_86_1 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_48_2 e_1_2_7_29_1 e_1_2_7_93_1 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_74_1 e_1_2_7_32_2 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_59_1 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_5_2 e_1_2_7_9_2 e_1_2_7_17_1 e_1_2_7_81_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_43_2 e_1_2_7_85_2 e_1_2_7_66_2 e_1_2_7_47_1 e_1_2_7_89_2 e_1_2_7_28_1 e_1_2_7_50_2 e_1_2_7_92_1 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_39_2 e_1_2_7_2_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_80_2 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_84_2 e_1_2_7_10_2 e_1_2_7_46_1 e_1_2_7_69_2 e_1_2_7_88_2 e_1_2_7_27_2 e_1_2_7_95_1 e_1_2_7_72_2 e_1_2_7_91_2 e_1_2_7_30_1 e_1_2_7_99_1 e_1_2_7_76_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_38_2 Giedyk, M (WOS:000509197600008) 2020; 3 Münster, N (WOS:000406385200040) 2017; 56 Balog, A (WOS:000626064300002) 2021; 20 Hu, NF (WOS:000432710100046) 2018; 57 Gunasekar, R (WOS:000754026500001) 2022; 20 Yu, H (WOS:000453829200033) 2018; 24 Ghosh, I (WOS:000344690100034) 2014; 346 Park, Y (WOS:000764197700014) 2022; 2 GEDYE, RN (WOS:A1985ATM4400015) 1985; 63 Park, Y (WOS:000672263000001) 2021; 13 Ma, JJ (WOS:000522525100001) 2020; 59 Ju, T (WOS:000640445900002) 2021; 4 Qiu, JY (WOS:000947009200001) 2023; 62 Hu, C (WOS:000905005800001) 2022 Yuan, T (WOS:000898466000002) 2022; 5 Lovering, F (WOS:000271427900027) 2009; 52 Zhou, QQ (WOS:000458826800006) 2019; 58 YASUDA, M (WOS:A1981LB70600028) 1981; 46 Ma, JJ (WOS:000636043400034) 2021; 371 Zhu, M (WOS:000459222100058) 2019; 141 Zhuang, WH (WOS:000611795900017) 2021; 8 Park, S (WOS:000403839000004) 2017; 56 Sherbrook, EM (WOS:000508917000027) 2020; 11 Lawson, GE (WOS:000081997500027) 1999; 64 MacKenzie, IA (WOS:000543789300003) 2020; 580 Chmiel, AF (WOS:000679913600013) 2021; 143 Barltrop, J. (001086053000001.47) 1973; 33 Glaser, F (WOS:000524308600001) 2020; 59 Smith, JA (WOS:000534818200012) 2020; 581 Constantin, T (WOS:000887933500041) 2022; 377 Wiesenfeldt, MP (WOS:000408734900040) 2017; 357 Widness, JK (WOS:000823599700001) 2022; 144 Wei, Y (WOS:000358896600014) 2015; 137 HOUSE, HO (WOS:A1972O099400028) 1972; 94 El-Shahat, M (WOS:000731426700001) 2022; 59 Zhu, M (WOS:000842892100001) 2022; 55 Burrows, J (WOS:000714952000034) 2021; 374 Afzal, O (WOS:000356734600058) 2015; 97 Wiesenfeldt, MP (WOS:000476919100009) 2019; 58 Wertjes, WC (WOS:000448662800009) 2018; 47 Zhou, WJ (WOS:000546312300001) 2020; 11 Cole, JP (WOS:000558793400042) 2020; 142 Sherbrook, EM (WOS:000702528800018) 2021; 12 Wei, ZZ (WOS:000475547300003) 2019; 40 Heitbaum, M (WOS:000275235800016) 2010; 352 KROPP, M (WOS:A1987K818300018) 1987; 28 Wang, MY (WOS:000848555600001) 2022; 61 Brooks, BC (WOS:000089839800002) 2000; 206 Yoshimi, Y (WOS:000256042500010) 2008; 49 Donohoe, TJ (WOS:000176600400060) 2002; 67 YANG, NCC (WOS:A1984SY14300008) 1984; 25 Chatterjee, A (WOS:000483706100001) 2019; 58 Lee, W (WOS:001020380800002) 2023; 15 Birch, AJ (WOS:A1996UM99400010) 1996; 68 McCallum, T (WOS:000413532800013) 2017; 8 Groenenboom, MC (WOS:000382596800025) 2016; 120 Wang, YJ (WOS:000493866300040) 2019; 141 Wilson, KB (WOS:000408519600019) 2017; 139 Heravi, MM (WOS:000357607200003) 2015; 19 Viereck, P (WOS:000819291400001) 2022; 144 Liebov, BK (WOS:000416500700005) 2017; 117 REMERS, WA (WOS:A1971I376100009) 1971; 36 Matada, BS (WOS:000616056900012) 2021; 32 Wang, DS (WOS:000303283900020) 2012; 112 Hayashi, K (WOS:000789021900015) 2022; 144 MIZUNO, K (WOS:A1975AT94200022) 1975 Xu, JH (WOS:000691789500045) 2021; 143 Qiao, YS (WOS:000442863700036) 2018; 57 Hu, AH (WOS:000442818200036) 2018; 361 Harman, WD (WOS:000223413000004) 2004; 248 Wang, YY (WOS:000652330400015) 2021; 7 MAJIMA, T (WOS:A1981LZ20400035) 1981; 103 Li, K (WOS:001002039000005) 2023; 14 Guo, RY (WOS:000855659900001) 2022 Skubi, KL (WOS:000383410100010) 2016; 116 Peters, BK (WOS:000459387100037) 2019; 363 Strieth-Kalthoff, F (WOS:000446095700001) 2018; 47 Cernak, T (WOS:000369532200007) 2016; 45 Schönherr, H (WOS:000326807900011) 2013; 52 KANO, K (WOS:A1975W171900021) 1975 |
References_xml | – volume: 13 start-page: 969 year: 2021 end-page: 976 publication-title: Nat. Chem. – volume: 144 start-page: 11203 year: 2022 end-page: 11214 publication-title: J. Am. Chem. Soc. – volume: 580 start-page: 76 year: 2020 end-page: 80 publication-title: Nature – volume: 40 start-page: 980 year: 2019 end-page: 1002 publication-title: Chin. J. Catal. – volume: 371 start-page: 1338 year: 2021 end-page: 1345 publication-title: Science – volume: 52 start-page: 6752 year: 2009 end-page: 6756 publication-title: J. Med. Chem. – volume: 68 start-page: 553 year: 1996 end-page: 556 publication-title: Pure Appl. Chem. – volume: 137 start-page: 9250 year: 2015 end-page: 9253 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 40 year: 2020 end-page: 47 publication-title: Nat. Catal. – volume: 94 start-page: 8471 year: 1972 end-page: 8475 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 788 year: 1981 end-page: 792 publication-title: J. Org. Chem. – volume: 112 start-page: 2557 year: 2012 end-page: 2590 publication-title: Chem. Rev. – volume: 12 start-page: 5735 year: 2021 publication-title: Nat. Commun. – volume: 374 start-page: 741 year: 2021 end-page: 746 publication-title: Science – volume: 103 start-page: 4499 year: 1981 end-page: 4508 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2021 publication-title: Bioorg. Med. Chem. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 59 start-page: 9639 year: 2020 end-page: 9645 publication-title: Angew. Chem. Int. Ed. – volume: 63 start-page: 2669 year: 1985 end-page: 2672 publication-title: Can. J. Chem. – volume: 59 start-page: 399 year: 2022 end-page: 421 publication-title: J. Heterocycl. Chem. – volume: 143 start-page: 13266 year: 2021 end-page: 13273 publication-title: J. Am. Chem. Soc. – volume: 248 start-page: 853 year: 2004 end-page: 866 publication-title: Coord. Chem. Rev. – volume: 45 start-page: 546 year: 2016 end-page: 576 publication-title: Chem. Soc. Rev. – volume: 59 start-page: 10266 year: 2020 end-page: 10284 publication-title: Angew. Chem. Int. Ed. – volume: 64 start-page: 5913 year: 1999 end-page: 5920 publication-title: J. Org. Chem. – volume: 25 start-page: 2855 year: 1984 end-page: 2858 publication-title: Tetrahedron Lett. – volume: 361 start-page: 668 year: 2018 end-page: 672 publication-title: Science – volume: 55 start-page: 2510 year: 2022 end-page: 2525 publication-title: Acc. Chem. Res. – volume: 19 start-page: 1491 year: 2015 end-page: 1525 publication-title: Curr. Org. Chem. – volume: 8 start-page: 7412 year: 2017 end-page: 7418 publication-title: Chem. Sci. – volume: 145 start-page: 25 year: 2023 end-page: 31 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 2170 year: 2023 publication-title: Nat. Commun. – volume: 142 start-page: 13573 year: 2020 end-page: 13581 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 179 year: 1973 end-page: 196 publication-title: Pure Appl. Chem. – volume: 20 start-page: 1794 year: 2022 end-page: 1827 publication-title: Org. Biomol. Chem. – volume: 352 start-page: 357 year: 2010 end-page: 362 publication-title: Adv. Synth. Catal. – volume: 57 start-page: 6242 year: 2018 end-page: 6246 publication-title: Angew. Chem. Int. Ed. – volume: 58 start-page: 1586 year: 2019 end-page: 1604 publication-title: Angew. Chem. Int. Ed. – volume: 581 start-page: 288 year: 2020 end-page: 293 publication-title: Nature – volume: 363 start-page: 838 year: 2019 end-page: 845 publication-title: Science – volume: 346 start-page: 725 year: 2014 end-page: 728 publication-title: Science – start-page: 839 year: 1975 end-page: 840 publication-title: J. Chem. Soc. Chem. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 56 start-page: 7720 year: 2017 end-page: 7738 publication-title: Angew. Chem. Int. Ed. – volume: 47 start-page: 7996 year: 2018 end-page: 8017 publication-title: Chem. Soc. Rev. – volume: 377 start-page: 1323 year: 2022 end-page: 1328 publication-title: Science – volume: 7 start-page: 1180 year: 2021 end-page: 1223 publication-title: Chem – volume: 57 start-page: 10999 year: 2018 end-page: 11003 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 407 year: 2022 end-page: 418 publication-title: JACS Au – volume: 49 start-page: 3400 year: 2008 end-page: 3404 publication-title: Tetrahedron Lett. – volume: 58 start-page: 14289 year: 2019 end-page: 14294 publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 12256 year: 2013 end-page: 12267 publication-title: Angew. Chem. Int. Ed. – volume: 120 start-page: 6888 year: 2016 end-page: 6894 publication-title: J. Phys. Chem. A – volume: 47 start-page: 7190 year: 2018 end-page: 7202 publication-title: Chem. Soc. Rev. – volume: 36 start-page: 279 year: 1971 end-page: 284 publication-title: J. Org. Chem. – volume: 144 start-page: 17680 year: 2022 end-page: 17691 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 467 year: 2021 end-page: 476 publication-title: Mol. Cancer Ther. – volume: 117 start-page: 13721 year: 2017 end-page: 13755 publication-title: Chem. Rev. – volume: 28 start-page: 5295 year: 1987 end-page: 5298 publication-title: Tetrahedron Lett. – volume: 5 start-page: 1157 year: 2022 end-page: 1168 publication-title: Nat. Catal. – volume: 144 start-page: 5762 year: 2022 end-page: 5768 publication-title: J. Am. Chem. Soc. – volume: 206–207 start-page: 3 year: 2000 end-page: 61 publication-title: Coord. Chem. Rev. – volume: 139 start-page: 11401 year: 2017 end-page: 11412 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 1091 year: 2023 end-page: 1099 publication-title: Nat. Chem. – volume: 8 start-page: 319 year: 2021 end-page: 325 publication-title: Org. Chem. Front. – volume: 11 start-page: 3263 year: 2020 publication-title: Nat. Commun. – volume: 56 start-page: 9468 year: 2017 end-page: 9472 publication-title: Angew. Chem. Int. Ed. – volume: 67 start-page: 5015 year: 2002 end-page: 5018 publication-title: J. Org. Chem. – volume: 143 start-page: 10882 year: 2021 end-page: 10889 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 17337 year: 2019 end-page: 17349 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 2636 year: 2019 end-page: 2644 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 19361 year: 2018 end-page: 19367 publication-title: Chem. Eur. J. – volume: 97 start-page: 871 year: 2015 end-page: 910 publication-title: Eur. J. Med. Chem. – volume: 58 start-page: 10460 year: 2019 end-page: 10476 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 304 year: 2021 end-page: 311 publication-title: Nat. Catal. – volume: 144 start-page: 12229 year: 2022 end-page: 12246 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 1389 year: 1975 end-page: 1392 publication-title: Tetrahedron Lett. – volume: 11 start-page: 856 year: 2020 end-page: 861 publication-title: Chem. Sci. – volume: 357 start-page: 908 year: 2017 end-page: 912 publication-title: Science – volume: 116 start-page: 10035 year: 2016 end-page: 10074 publication-title: Chem. Rev. – ident: e_1_2_7_99_1 doi: 10.1126/science.abq8663 – ident: e_1_2_7_88_2 doi: 10.1126/science.aat9750 – ident: e_1_2_7_26_2 doi: 10.1002/anie.202210312 – ident: e_1_2_7_91_2 doi: 10.1021/acs.chemrev.6b00018 – ident: e_1_2_7_56_1 – ident: e_1_2_7_11_1 – ident: e_1_2_7_27_2 doi: 10.1038/s41467-023-37882-2 – ident: e_1_2_7_14_2 doi: 10.1021/jacs.2c02102 – ident: e_1_2_7_92_1 doi: 10.1021/jo0257593 – ident: e_1_2_7_74_1 – ident: e_1_2_7_77_2 doi: 10.1002/anie.201612140 – ident: e_1_2_7_15_2 doi: 10.1126/science.abk3099 – ident: e_1_2_7_39_2 doi: 10.1038/s41557-023-01258-2 – ident: e_1_2_7_68_2 doi: 10.1016/S0040-4039(00)96711-X – ident: e_1_2_7_75_2 doi: 10.1002/jhet.4394 – ident: e_1_2_7_12_2 doi: 10.1021/jo00801a009 – ident: e_1_2_7_45_2 doi: 10.1002/anie.202309764 – ident: e_1_2_7_38_2 doi: 10.1021/acs.accounts.2c00412 – ident: e_1_2_7_9_2 doi: 10.1002/adsc.200900763 – ident: e_1_2_7_32_2 doi: 10.1039/C8CS00054A – ident: e_1_2_7_30_1 – ident: e_1_2_7_62_2 doi: 10.1021/jo00317a028 – ident: e_1_2_7_85_2 doi: 10.1039/C5CS00628G – ident: e_1_2_7_79_2 doi: 10.1016/S1872-2067(19)63336-X – ident: e_1_2_7_13_2 doi: 10.1126/science.aav5606 – ident: e_1_2_7_66_2 doi: 10.1016/S0040-4039(01)81308-3 – ident: e_1_2_7_10_2 doi: 10.1126/science.aao0270 – ident: e_1_2_7_54_2 doi: 10.1021/jacs.1c05994 – ident: e_1_2_7_80_2 doi: 10.1039/D1OB02331D – ident: e_1_2_7_3_2 doi: 10.1002/anie.201814471 – ident: e_1_2_7_93_1 – ident: e_1_2_7_19_2 doi: 10.1139/v85-443 – ident: e_1_2_7_50_2 doi: 10.1038/s41467-020-17085-9 – ident: e_1_2_7_89_2 doi: 10.1002/chem.201804600 – ident: e_1_2_7_71_1 – ident: e_1_2_7_58_2 doi: 10.1021/jacsau.1c00460 – ident: e_1_2_7_43_2 doi: 10.1021/jacs.0c05899 – ident: e_1_2_7_95_1 doi: 10.1021/jm901241e – ident: e_1_2_7_46_1 doi: 10.26434/chemrxiv-2022-6qpb8-v2 – ident: e_1_2_7_42_2 doi: 10.1038/s41929-022-00886-0 – ident: e_1_2_7_83_1 – ident: e_1_2_7_86_1 – ident: e_1_2_7_70_2 doi: 10.1021/jacs.2c11664 – ident: e_1_2_7_81_2 doi: 10.1021/jacs.9b09038 – ident: e_1_2_7_16_1 doi: 10.1021/acs.jpca.6b07291 – ident: e_1_2_7_78_2 doi: 10.1016/j.chempr.2020.11.013 – ident: e_1_2_7_48_2 doi: 10.1038/s41929-021-00594-1 – ident: e_1_2_7_29_1 doi: 10.1002/anie.202218961 – ident: e_1_2_7_35_2 doi: 10.1021/jacs.8b12965 – ident: e_1_2_7_44_2 doi: 10.1039/D0QO01322F – ident: e_1_2_7_37_2 doi: 10.1021/jacs.2c07726 – ident: e_1_2_7_5_2 doi: 10.1351/pac199668030553 – ident: e_1_2_7_49_2 doi: 10.1126/science.1258232 – ident: e_1_2_7_53_2 doi: 10.1021/jacs.2c03235 – ident: e_1_2_7_18_2 doi: 10.1038/s41586-020-2131-1 – ident: e_1_2_7_96_1 – ident: e_1_2_7_2_2 doi: 10.1039/C8CS00389K – ident: e_1_2_7_82_2 doi: 10.1021/jacs.2c02007 – ident: e_1_2_7_55_2 doi: 10.1021/jacs.1c05988 – ident: e_1_2_7_8_2 doi: 10.1021/jacs.5b05868 – ident: e_1_2_7_17_1 – ident: e_1_2_7_4_1 – ident: e_1_2_7_47_1 – ident: e_1_2_7_65_2 doi: 10.1021/ja00405a035 – ident: e_1_2_7_64_2 doi: 10.1039/C7SC03768F – ident: e_1_2_7_6_2 doi: 10.2174/1385272819666150608220335 – ident: e_1_2_7_76_2 doi: 10.1021/cr200328h – ident: e_1_2_7_21_1 – ident: e_1_2_7_23_2 doi: 10.1016/j.ccr.2004.03.013 – ident: e_1_2_7_52_2 doi: 10.1002/anie.201915762 – ident: e_1_2_7_33_2 doi: 10.1002/anie.201802891 – ident: e_1_2_7_61_2 doi: 10.1039/c39750000839 – ident: e_1_2_7_25_2 doi: 10.1021/jacs.7b05118 – ident: e_1_2_7_57_2 doi: 10.1038/s41557-021-00732-z – ident: e_1_2_7_20_2 doi: 10.1021/ja00779a028 – ident: e_1_2_7_73_2 doi: 10.1016/j.ejmech.2014.07.044 – ident: e_1_2_7_69_2 doi: 10.1016/S0040-4039(00)72150-2 – ident: e_1_2_7_94_1 doi: 10.1158/1535-7163.MCT-20-0251 – ident: e_1_2_7_59_1 – ident: e_1_2_7_40_1 – ident: e_1_2_7_98_2 doi: 10.1039/C9SC04822G – ident: e_1_2_7_28_1 doi: 10.1038/s41586-020-2268-y – ident: e_1_2_7_87_2 doi: 10.1002/anie.201804022 – ident: e_1_2_7_90_2 doi: 10.1002/anie.202001200 – ident: e_1_2_7_36_2 doi: 10.1126/science.abg0720 – ident: e_1_2_7_1_1 – ident: e_1_2_7_24_2 doi: 10.1021/acs.chemrev.7b00480 – ident: e_1_2_7_63_2 doi: 10.1016/j.tetlet.2008.03.123 – ident: e_1_2_7_72_2 doi: 10.1016/j.bmc.2020.115973 – ident: e_1_2_7_7_1 – ident: e_1_2_7_51_2 doi: 10.1038/s41929-019-0369-5 – ident: e_1_2_7_34_2 doi: 10.1002/anie.201803102 – ident: e_1_2_7_22_2 doi: 10.1016/S0010-8545(99)00249-0 – ident: e_1_2_7_60_2 doi: 10.1351/pac197333020179 – ident: e_1_2_7_97_2 doi: 10.1038/s41467-021-25878-9 – ident: e_1_2_7_31_2 doi: 10.1002/anie.201705333 – ident: e_1_2_7_41_2 doi: 10.1002/anie.201905485 – ident: e_1_2_7_67_2 doi: 10.1021/jo9904112 – ident: e_1_2_7_84_2 doi: 10.1002/anie.201303207 – volume: 61 start-page: ARTN e202210312 year: 2022 ident: WOS:000848555600001 article-title: Dearomative Aminocarbonylation of Arenes via Bifunctional Coordination to Chromium publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202210312 – volume: 139 start-page: 11401 year: 2017 ident: WOS:000408519600019 article-title: Sequential Tandem Addition to a Tungsten-Trifluorotoluene Complex: A Versatile Method for the Preparation of Highly Functionalized Trifluoromethylated Cyclohexenes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b05118 – volume: 103 start-page: 4499 year: 1981 ident: WOS:A1981LZ20400035 article-title: REDOX-PHOTOSENSITIZED REACTIONS .7. AROMATIC HYDROCARBON-PHOTOSENSITIZED ELECTRON-TRANSFER REACTIONS OF FURAN, METHYLATED FURANS, 1,1-DIPHENYLETHYLENE, AND INDENE WITH P-DICYANOBENZENE publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 144 start-page: 12229 year: 2022 ident: WOS:000823599700001 article-title: CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c03235 – volume: 14 start-page: ARTN 2170 year: 2023 ident: WOS:001002039000005 article-title: Asymmetric hydrogenation of 1,1-diarylethylenes and benzophenones through a relay strategy publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-023-37882-2 – volume: 581 start-page: 288 year: 2020 ident: WOS:000534818200012 article-title: Preparation of cyclohexene isotopologues and stereoisotopomers from benzene publication-title: NATURE doi: 10.1038/s41586-020-2268-y – volume: 58 start-page: 1586 year: 2019 ident: WOS:000458826800006 article-title: Visible-Light-Induced Organic Photochemical Reactions through Energy-Transfer Pathways publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201803102 – volume: 580 start-page: 76 year: 2020 ident: WOS:000543789300003 article-title: Discovery and characterization of an acridine radical photoreductant publication-title: NATURE doi: 10.1038/s41586-020-2131-1 – volume: 20 start-page: 467 year: 2021 ident: WOS:000626064300002 article-title: Preclinical Characterization of Linrodostat Mesylate, a Novel, Potent, and Selective Oral Indoleamine 2,3-Dioxygenase 1 Inhibitor publication-title: MOLECULAR CANCER THERAPEUTICS doi: 10.1158/1535-7163.MCT-20-0251 – volume: 55 start-page: 2510 year: 2022 ident: WOS:000842892100001 article-title: Energy-Transfer-Enabled Dearomative Cycloaddition Reactions of Indoles/Pyrroles via Excited-State Aromatics publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.2c00412 – volume: 59 start-page: 399 year: 2022 ident: WOS:000731426700001 article-title: Advances in the reduction of quinolines to 1,2,3,4-tetrahydroquinolines publication-title: JOURNAL OF HETEROCYCLIC CHEMISTRY doi: 10.1002/jhet.4394 – volume: 377 start-page: 1323 year: 2022 ident: WOS:000887933500041 article-title: Halogen-atom and group transfer reactivity enabled by hydrogen tunneling publication-title: SCIENCE doi: 10.1126/science.abq8663 – volume: 32 start-page: ARTN 115973 year: 2021 ident: WOS:000616056900012 article-title: A comprehensive review on the biological interest of quinoline and its derivatives publication-title: BIOORGANIC & MEDICINAL CHEMISTRY doi: 10.1016/j.bmc.2020.115973 – volume: 143 start-page: 13266 year: 2021 ident: WOS:000691789500045 article-title: Unveiling Extreme Photoreduction Potentials of Donor-Acceptor Cyanoarenes to Access Aryl Radicals from Aryl Chlorides publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c05994 – volume: 24 start-page: 19361 year: 2018 ident: WOS:000453829200033 article-title: Enantioselective [2+2] Photocycloaddition Reactions of Enones and Olefins with Visible Light Mediated by N,N′-Dioxide-Metal Complexes publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201804600 – volume: 116 start-page: 10035 year: 2016 ident: WOS:000383410100010 article-title: Dual Catalysis Strategies in Photochemical Synthesis publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00018 – volume: 20 start-page: 1794 year: 2022 ident: WOS:000754026500001 article-title: Recent developments in enantio- and diastereoselective hydrogenation of N-heteroaromatic compounds publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/d1ob02331d – volume: 64 start-page: 5913 year: 1999 ident: WOS:000081997500027 article-title: Photoinduced electron-transfer reactions of [60]fullerene with triethylamine publication-title: JOURNAL OF ORGANIC CHEMISTRY – volume: 346 start-page: 725 year: 2014 ident: WOS:000344690100034 article-title: Reduction of aryl halides by consecutive visible light-induced electron transfer processes publication-title: SCIENCE doi: 10.1126/science.1258232 – volume: 67 start-page: 5015 year: 2002 ident: WOS:000176600400060 article-title: Ammonia free partial reduction of aromatic compounds using lithium di-tert-butylbiphenyl (LiDBB) publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo0257593 – volume: 141 start-page: 17337 year: 2019 ident: WOS:000493866300040 article-title: Unmasking the Ligand Effect in Manganese-Catalyzed Hydrogenation: Mechanistic Insight and Catalytic Application publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b09038 – volume: 15 start-page: 1091 year: 2023 ident: WOS:001020380800002 article-title: Energy-transfer-induced [3+2] cycloadditions of N-N pyridinium ylides publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-023-01258-2 – volume: 13 start-page: 969 year: 2021 ident: WOS:000672263000001 article-title: Visible light enables catalytic formation of weak chemical bonds with molecular hydrogen publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-021-00732-z – volume: 144 start-page: 11203 year: 2022 ident: WOS:000819291400001 article-title: Molybdenum-Catalyzed Asymmetric Hydrogenation of Fused Arenes and Heteroarenes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c02007 – volume: 59 start-page: 10266 year: 2020 ident: WOS:000524308600001 article-title: Multi-Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201915762 – year: 2022 ident: WOS:000855659900001 article-title: Photochemical Dearomative Cycloadditions of Quinolines and Alkenes: Scope and Mechanism Studies publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c07726 – volume: 206 start-page: 3 year: 2000 ident: WOS:000089839800002 article-title: Dihapto binding of aromatic molecules by π-basic transition metal complexes:: development of alternatives to the {Os(NH3)5}2+ fragment publication-title: COORDINATION CHEMISTRY REVIEWS – volume: 45 start-page: 546 year: 2016 ident: WOS:000369532200007 article-title: The medicinal chemist's toolbox for late stage functionalization of drug-like molecules publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c5cs00628g – volume: 33 start-page: 179 year: 1973 ident: 001086053000001.47 publication-title: Pure Appl. Chem – volume: 68 start-page: 553 year: 1996 ident: WOS:A1996UM99400010 article-title: The Birch reduction in organic synthesis publication-title: PURE AND APPLIED CHEMISTRY – volume: 97 start-page: 871 year: 2015 ident: WOS:000356734600058 article-title: A review on anticancer potential of bioactive heterocycle quinoline publication-title: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1016/j.ejmech.2014.07.044 – volume: 94 start-page: 8471 year: 1972 ident: WOS:A1972O099400028 article-title: EMPIRICAL RULES FOR ESTIMATING REDUCTION POTENTIAL OF ALPHA, BETA-UNSATURATED CARBONYL-COMPOUNDS publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 62 year: 2023 ident: WOS:000947009200001 article-title: Chemoselective 1,2-Reduction and Regiodivergent Deuteration of Chromium-Bound Arenes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202218961 – volume: 49 start-page: 3400 year: 2008 ident: WOS:000256042500010 article-title: Hydroxide ion as electron source for photochemical Birch-type reduction and photodehalogenation publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2008.03.123 – start-page: 839 year: 1975 ident: WOS:A1975AT94200022 article-title: PHOTO-BIRCH REDUCTION OF AROMATIC-HYDROCARBONS USING SODIUM-BOROHYDRIDE AND 1,4-DICYANOBENZENE publication-title: JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS – volume: 141 start-page: 2636 year: 2019 ident: WOS:000459222100058 article-title: Synthesis of Cyclobutane-Fused Angular Tetracyclic Spiroindolines via Visible-Light-Promoted Intramolecular Dearomatization of Indole Derivatives publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b12965 – volume: 4 start-page: 304 year: 2021 ident: WOS:000640445900002 article-title: Dicarboxylation of alkenes, allenes and (hetero)arenes with CO2 via visible-light photoredox catalysis publication-title: NATURE CATALYSIS doi: 10.1038/s41929-021-00594-1 – volume: 363 start-page: 838 year: 2019 ident: WOS:000459387100037 article-title: Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry publication-title: SCIENCE doi: 10.1126/science.aav5606 – volume: 47 start-page: 7996 year: 2018 ident: WOS:000448662800009 article-title: Recent advances in chemical dearomatization of nonactivated arenes publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c8cs00389k – volume: 52 start-page: 12256 year: 2013 ident: WOS:000326807900011 article-title: Profound Methyl Effects in Drug Discovery and a Call for New C-H Methylation Reactions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201303207 – volume: 117 start-page: 13721 year: 2017 ident: WOS:000416500700005 article-title: Group 6 Dihapto-Coordinate Dearomatization Agents for Organic Synthesis publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.7b00480 – volume: 11 start-page: 856 year: 2020 ident: WOS:000508917000027 article-title: Bronsted acid catalysis of photosensitized cycloadditions publication-title: CHEMICAL SCIENCE doi: 10.1039/c9sc04822g – volume: 58 start-page: 14289 year: 2019 ident: WOS:000483706100001 article-title: Birch-Type Photoreduction of Arenes and Heteroarenes by Sensitized Electron Transfer publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201905485 – volume: 374 start-page: 741 year: 2021 ident: WOS:000714952000034 article-title: Scalable Birch reduction with lithium and ethylenediamine in tetrahydrofuran publication-title: SCIENCE doi: 10.1126/science.abk3099 – volume: 40 start-page: 980 year: 2019 ident: WOS:000475547300003 article-title: Recent advances in heterogeneous catalytic hydrogenation and dehydrogenation of N-heterocycles publication-title: CHINESE JOURNAL OF CATALYSIS doi: 10.1016/S1872-2067(19)63336-X – volume: 8 start-page: 319 year: 2021 ident: WOS:000611795900017 article-title: Visible-light induced divergent dearomatization of indole derivatives: controlled access to cyclobutane-fused polycycles and 2-substituted indolines publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/d0qo01322f – volume: 19 start-page: 1491 year: 2015 ident: WOS:000357607200003 article-title: Recent Applications of Birch Reduction in Total Synthesis of Natural Products publication-title: CURRENT ORGANIC CHEMISTRY – volume: 57 start-page: 10999 year: 2018 ident: WOS:000442863700036 article-title: Photoinduced Miyaura Borylation by a Rare-Earth-Metal Photoreductant: The Hexachlorocerate(III) Anion publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201804022 – volume: 36 start-page: 279 year: 1971 ident: WOS:A1971I376100009 article-title: REDUCTION OF NITROGEN HETEROCYCLES BY LITHIUM IN LIQUID AMMONIA .3. INDOLES AND QUINOLINES publication-title: JOURNAL OF ORGANIC CHEMISTRY – volume: 47 start-page: 7190 year: 2018 ident: WOS:000446095700001 article-title: Energy transfer catalysis mediated by visible light: principles, applications, directions publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c8cs00054a – volume: 361 start-page: 668 year: 2018 ident: WOS:000442818200036 article-title: Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis publication-title: SCIENCE doi: 10.1126/science.aat9750 – volume: 248 start-page: 853 year: 2004 ident: WOS:000223413000004 article-title: Conformational and linkage isomerizations for dihapto-coordinated arenes and aromatic heterocycles: controlling the stereochemistry of ligand transformations publication-title: COORDINATION CHEMISTRY REVIEWS doi: 10.1016/j.ccr.2004.03.013 – volume: 58 start-page: 10460 year: 2019 ident: WOS:000476919100009 article-title: Selective Arene Hydrogenation for Direct Access to Saturated Carbo- and Heterocycles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201814471 – volume: 56 start-page: 9468 year: 2017 ident: WOS:000406385200040 article-title: Visible Light Photocatalysis of 6π Heterocyclization publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201705333 – volume: 7 year: 2021 ident: WOS:000652330400015 article-title: A see-through electrochromic display via dynamic metal-ligand interactions publication-title: CHEM doi: 10.1016/j.chempr.2021.02.005 – volume: 46 start-page: 788 year: 1981 ident: WOS:A1981LB70600028 article-title: PHOTOCHEMICAL-REACTIONS OF AROMATIC-COMPOUNDS .35. PHOTO-BIRCH REDUCTION OF ARENES WITH SODIUM-BOROHYDRIDE IN THE PRESENCE OF DICYANOBENZENE publication-title: JOURNAL OF ORGANIC CHEMISTRY – volume: 11 year: 2020 ident: WOS:000546312300001 article-title: Reductive dearomative arylcarboxylation of indoles with CO2 via visible-light photoredox catalysis publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-020-17085-9 – volume: 12 start-page: ARTN 5735 year: 2021 ident: WOS:000702528800018 article-title: Chiral Bronsted acid-controlled intermolecular asymmetric [2+2] photocycloadditions publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-021-25878-9 – volume: 8 start-page: 7412 year: 2017 ident: WOS:000413532800013 article-title: The photochemical alkylation and reduction of heteroarenes publication-title: CHEMICAL SCIENCE doi: 10.1039/c7sc03768f – volume: 120 start-page: 6888 year: 2016 ident: WOS:000382596800025 article-title: Structural and Substituent Group Effects on Multielectron Standard Reduction Potentials of Aromatic N-Heterocycles publication-title: JOURNAL OF PHYSICAL CHEMISTRY A doi: 10.1021/acs.jpca.6b07291 – volume: 352 start-page: 357 year: 2010 ident: WOS:000275235800016 article-title: Diastereoselective Hydrogenation of Substituted Quinolines to Enantiomerically Pure Decahydroquinolines publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.200900763 – volume: 142 start-page: 13573 year: 2020 ident: WOS:000558793400042 article-title: Organocatalyzed Birch Reduction Driven by Visible Light publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c05899 – volume: 2 start-page: 407 year: 2022 ident: WOS:000764197700014 article-title: Visible-Light-Driven, Iridium-Catalyzed Hydrogen Atom Transfer: Mechanistic Studies, Identification of Intermediates, and Catalyst Improvements publication-title: JACS AU doi: 10.1021/jacsau.1c00460 – volume: 357 start-page: 908 year: 2017 ident: WOS:000408734900040 article-title: Hydrogenation of fluoroarenes: Direct access to all-cis-(multi)fluorinated cycloalkanes publication-title: SCIENCE doi: 10.1126/science.aao0270 – volume: 3 start-page: 40 year: 2020 ident: WOS:000509197600008 article-title: Photocatalytic activation of alkyl chlorides by assembly-promoted single electron transfer in microheterogeneous solutions publication-title: NATURE CATALYSIS doi: 10.1038/s41929-019-0369-5 – start-page: 1389 year: 1975 ident: WOS:A1975W171900021 article-title: PHOTOCHEMICAL REDUCTION OF PYRIDINIUM AND PYRIDINE COMPOUNDS IN PRESENCE OF DIETHYLAMINE publication-title: TETRAHEDRON LETTERS – volume: 56 start-page: 7720 year: 2017 ident: WOS:000403839000004 article-title: Catalytic Dearomatization of N-Heteroarenes with Silicon and Boron Compounds publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201612140 – volume: 137 start-page: 9250 year: 2015 ident: WOS:000358896600014 article-title: Highly Selective Hydrogenation of Aromatic Ketones and Phenols Enabled by Cyclic (Amino)(alkyl)carbene Rhodium Complexes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b05868 – volume: 59 start-page: 9639 year: 2020 ident: WOS:000522525100001 article-title: Gadolinium Photocatalysis: Dearomative [2+2] Cycloaddition/Ring-Expansion Sequence with Indoles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202001200 – volume: 63 start-page: 2669 year: 1985 ident: WOS:A1985ATM4400015 article-title: THE ELECTROREDUCTION OF HALOGENATED THIOPHENES publication-title: CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE – volume: 112 start-page: 2557 year: 2012 ident: WOS:000303283900020 article-title: Asymmetric Hydrogenation of Heteroarenes and Arenes publication-title: CHEMICAL REVIEWS doi: 10.1021/cr200328h – volume: 144 start-page: 5762 year: 2022 ident: WOS:000789021900015 article-title: Chemoselective (Hetero)Arene Electroreduction Enabled by RapidAlternating Polarity publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c02102 – volume: 57 start-page: 6242 year: 2018 ident: WOS:000432710100046 article-title: Catalytic Asymmetric Dearomatization by Visible-Light-Activated [2+2] Photocycloaddition publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201802891 – volume: 25 start-page: 2855 year: 1984 ident: WOS:A1984SY14300008 article-title: PHOTOREDUCTION OF AROMATIC-COMPOUNDS VIA AMINE EXCIPLEXES publication-title: TETRAHEDRON LETTERS – volume: 371 start-page: 1338 year: 2021 ident: WOS:000636043400034 article-title: Photochemical intermolecular dearomative cycloaddition of bicyclic azaarenes with alkenes publication-title: SCIENCE doi: 10.1126/science.abg0720 – volume: 143 start-page: 10882 year: 2021 ident: WOS:000679913600013 article-title: Non-innocent Radical Ion Intermediates in Photoredox Catalysis: Parallel Reduction Modes Enable Coupling of Diverse Aryl Chlorides publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c05988 – volume: 28 start-page: 5295 year: 1987 ident: WOS:A1987K818300018 article-title: PHOTOREDUCTION OF SUBSTITUTED ARENES WITH BORATES AND BOROHYDRIDE - AN ELECTRON-TRANSFER MECHANISM publication-title: TETRAHEDRON LETTERS – volume: 5 start-page: 1157 year: 2022 ident: WOS:000898466000002 article-title: Mild and metal-free Birch-type hydrogenation of (hetero)arenes with boron carbonitride in water publication-title: NATURE CATALYSIS doi: 10.1038/s41929-022-00886-0 – year: 2022 ident: WOS:000905005800001 article-title: Uncanonical Semireduction of Quinolines and Isoquinolines via Regioselective HAT-Promoted Hydrosilylation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c11664 – volume: 52 start-page: 6752 year: 2009 ident: WOS:000271427900027 article-title: Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm901241e |
SSID | ssj0028806 |
Score | 2.5197897 |
Snippet | (Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are... |
Source | Web of Science |
SourceID | proquest webofscience crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202312203 |
SubjectTerms | Alkanes Alkenes Catalysis Chemical reduction Chemistry Chemistry, Multidisciplinary Chemoselectivity Dearomatization Energy Transfer Functional groups Hydrogen Hydrogen atoms Physical Sciences Quinoline Reduction Science & Technology Visible Light |
Title | Chemoselective Quinoline and Isoquinoline Reduction by Energy Transfer Catalysis Enabled Hydrogen Atom Transfer |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202312203 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=001086053000001 https://www.proquest.com/docview/2891955695 https://www.proquest.com/docview/2874264048 |
Volume | 62 |
WOS | 001086053000001 |
WOSCitedRecordID | wos001086053000001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KLu2l71K3SVEh0JM2a9mSrOOybNgUGmhoIDcjS2Mobe2w6z2kvz4a-ZFsobS0N8kaYUuakT7Jmm8Ajm2hbREsiTsnKp4blXMrc8edqS16b63zdN7x6VytL_OPV_Lqnhd_zw8xHbiRZcT5mgzcVtuTO9JQ8sCeUfDvVIhI90kXtggVXUz8USIoZ-9elGWcotCPrI1zcbJffX9VuoOae4vRPn6NC9DpE7Djp_f3Tr7Ndl01cz9_YXX8n7Y9hccDOmWLXp2ewQNsnsPD5RgU7gW0lG63MXhOmCfZ593XhsL-ILONZ2fb0KLxwQWRwtKws-qGraKLIYsrY40btqRTIyJDCSXkvOXZ-sZv2qDNbNG1PybBl3B5uvqyXPMhZgN3mZxnvA4IQBqBucZUzw2mFd1fDTmdo1I-RSPRF4VzWmtVWZ0ZVRs0hbPKiVph9goOmrbB18BQz1HmKU1JPsBKVQlr8qBN3gfQ59AkwMcxK91AaE5xNb6XPRWzKKkby6kbE_gwyV_3VB6_lTwcVaAcTHpbhp1paqRURibwfioO3U9_WGyD7Y5kNCHMMCsmcHxfdaYX0h68CFvILO7O0gTSvxFbDs0jnoIuARF15w-NKBfnZ6sp9-ZfKr2FR5Qm10uhD-Gg2-zwKGCwrnoX7ewW13goBA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-h8TBe-EYEBhhpEk_uGie248eqdGphq8S0SbxFjn2REJCgNn0Yfz2-fI0iIRC8xfZZydl357Pj-x3Asc20zYImcedEwVOjUm5l6rgzpUXvrXWezjvO12p5lb77KIfbhBQL0-FDjAdupBmtvSYFpwPpkxvUUArBnlD271gIwvu8TWm9CT7_7cWIICWCeHYBRknCKQ_9gNs4FSf7_ffXpRtnc2852vdg2yXo9B4Uw8d3N08-T3ZNMXHff8F1_C_u7sPd3kFls06iHsAtrB7C4XzIC_cIanqut23-nGAq2Yfdp4oy_yCzlWerbWBpqLggXFiaeVZcs0UbZcjaxbHEDZvTwRHhoYQWit_ybHntN3UQaDZr6q8j4WO4Ol1czpe8T9vAXSKnCS-DEyCNwFRjrKcG44KusIaSTlEpH6OR6LPMOa21KqxOjCoNmsxZ5USpMHkCB1Vd4VNgqKco05iskg-epSqENWkQKO-D3-fQRMCHSctdj2lOqTW-5B0as8hpGPNxGCN4M9J_69A8fkt5NMhA3mv1Ng-b09hIqYyM4PXYHIaffrLYCusd0WhyMoNhjOD4Z9kZX0jb8CzsIpN2gxZHEP8N2bxnj6AKmghEKzx_YCKfrVeLsfTsXzq9gsPl5flZfrZav38Od6ieIjGFPoKDZrPDF8Ela4qXrdL9AE_TLCA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD7ICuqLd7G6aoQFnzLbprk0j8PsDDNeBl1c2LeSJimI2i4znYf115vT2-4Iouhbk5zQJjm3pDnfATgymTJZkCRqLSso15JTI7ilVpfGO2eMdXje8WEtl2f87bk4vxbF3-FDjAduKBmtvkYBv3Dl8RVoKEZgTzD5d8IYwn3e5DLWmLzh5HQEkGKBO7v4ojSlmIZ-gG2M2fF-_32zdOVr7lmjfQe2tUCLe2CGb-8unnyd7JpiYn_8Auv4P4O7D3d795RMO356ADd89RBuz4ascI-gxud622bPCYqSfNp9qTDvjyemcmS1DSMaKk4RFRbXnRSXZN7GGJLWNJZ-Q2Z4bIRoKKEFo7ccWV66TR3YmUyb-vtI-BjOFvPPsyXtkzZQm4o4pWVwAYRmniufqFj7pMALrKGkuJfSJV4L77LMWqWULIxKtSy115k10rJS-vQJHFR15Z8C8Sr2gieok1zwK2XBjOaBnZwLXp_1OgI6rFlue0RzTKzxLe-wmFmO05iP0xjBm5H-osPy-C3l4cACeS_T2zxsTRMthNQigtdjc5h-_MViKl_vkEahixnUYgRH11lnfCFuwrOwh0zb7VkSQfI3ZLN-eAhU0ETAWt75wyDy6Xo1H0vP_qXTK7j18WSRv1-t3z2HO1iNYZhMHcJBs9n5F8Efa4qXrcj9BJ37Ks8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemoselective+Quinoline+and+Isoquinoline+Reduction+by+Energy+Transfer+Catalysis+Enabled+Hydrogen+Atom+Transfer&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+De%E2%80%90Hai&rft.au=Nagashima%2C+Kyogo&rft.au=Liang%2C+Hui&rft.au=Yue%2C+Xue%E2%80%90Lin&rft.date=2023-11-27&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=48&rft_id=info:doi/10.1002%2Fanie.202312203&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202312203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |