Wiggling Mesopores Kinetically Amplify the Adsorptive Separation of Propylene/Propane

Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling meso...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 35; pp. 19063 - 19067
Main Authors Yuan, Ya‐Fei, Wang, Yong‐Sheng, Zhang, Xue‐Liang, Li, Wen‐Cui, Hao, Guang‐Ping, Han, Lu, Lu, An‐Hui
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 23.08.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling mesopores in structurally robust carbon monoliths. The wiggling mesopores with alternating wide and narrow segments afford a surface area of 413 m2 g−1 and a tri‐modal pore size distribution centered at 1.5, 4.2 and 6.6 nm, respectively. The synergistically kinetic and equilibrium effects were observed and quantitatively assessed, which together ensured a remarkable propylene/propane selectivity up to 39. This selectivity outperformed not only the available carbon adsorbents but also highly competitive among the dominated crystalline porous adsorbents. In addition, the wiggling mesoporous carbon adsorbent showed excellent dynamical separation stability, which ensured its great potential in practical molecular separations. Wiggling mesopores in monolithic carbon adsorbents lead to synergistic kinetic and equilibrium effects, allowing highly selective C3H6/C3H8 separation under practical dynamic conditions.
AbstractList Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling mesopores in structurally robust carbon monoliths. The wiggling mesopores with alternating wide and narrow segments afford a surface area of 413 m 2  g −1 and a tri‐modal pore size distribution centered at 1.5, 4.2 and 6.6 nm, respectively. The synergistically kinetic and equilibrium effects were observed and quantitatively assessed, which together ensured a remarkable propylene/propane selectivity up to 39. This selectivity outperformed not only the available carbon adsorbents but also highly competitive among the dominated crystalline porous adsorbents. In addition, the wiggling mesoporous carbon adsorbent showed excellent dynamical separation stability, which ensured its great potential in practical molecular separations.
Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling mesopores in structurally robust carbon monoliths. The wiggling mesopores with alternating wide and narrow segments afford a surface area of 413 m2 g−1 and a tri‐modal pore size distribution centered at 1.5, 4.2 and 6.6 nm, respectively. The synergistically kinetic and equilibrium effects were observed and quantitatively assessed, which together ensured a remarkable propylene/propane selectivity up to 39. This selectivity outperformed not only the available carbon adsorbents but also highly competitive among the dominated crystalline porous adsorbents. In addition, the wiggling mesoporous carbon adsorbent showed excellent dynamical separation stability, which ensured its great potential in practical molecular separations.
Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling mesopores in structurally robust carbon monoliths. The wiggling mesopores with alternating wide and narrow segments afford a surface area of 413 m2  g-1 and a tri-modal pore size distribution centered at 1.5, 4.2 and 6.6 nm, respectively. The synergistically kinetic and equilibrium effects were observed and quantitatively assessed, which together ensured a remarkable propylene/propane selectivity up to 39. This selectivity outperformed not only the available carbon adsorbents but also highly competitive among the dominated crystalline porous adsorbents. In addition, the wiggling mesoporous carbon adsorbent showed excellent dynamical separation stability, which ensured its great potential in practical molecular separations.Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling mesopores in structurally robust carbon monoliths. The wiggling mesopores with alternating wide and narrow segments afford a surface area of 413 m2  g-1 and a tri-modal pore size distribution centered at 1.5, 4.2 and 6.6 nm, respectively. The synergistically kinetic and equilibrium effects were observed and quantitatively assessed, which together ensured a remarkable propylene/propane selectivity up to 39. This selectivity outperformed not only the available carbon adsorbents but also highly competitive among the dominated crystalline porous adsorbents. In addition, the wiggling mesoporous carbon adsorbent showed excellent dynamical separation stability, which ensured its great potential in practical molecular separations.
Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling mesopores in structurally robust carbon monoliths. The wiggling mesopores with alternating wide and narrow segments afford a surface area of 413 m2 g−1 and a tri‐modal pore size distribution centered at 1.5, 4.2 and 6.6 nm, respectively. The synergistically kinetic and equilibrium effects were observed and quantitatively assessed, which together ensured a remarkable propylene/propane selectivity up to 39. This selectivity outperformed not only the available carbon adsorbents but also highly competitive among the dominated crystalline porous adsorbents. In addition, the wiggling mesoporous carbon adsorbent showed excellent dynamical separation stability, which ensured its great potential in practical molecular separations. Wiggling mesopores in monolithic carbon adsorbents lead to synergistic kinetic and equilibrium effects, allowing highly selective C3H6/C3H8 separation under practical dynamic conditions.
Author Li, Wen‐Cui
Yuan, Ya‐Fei
Lu, An‐Hui
Wang, Yong‐Sheng
Zhang, Xue‐Liang
Han, Lu
Hao, Guang‐Ping
Author_xml – sequence: 1
  givenname: Ya‐Fei
  surname: Yuan
  fullname: Yuan, Ya‐Fei
  organization: Dalian University of Technology
– sequence: 2
  givenname: Yong‐Sheng
  surname: Wang
  fullname: Wang, Yong‐Sheng
  organization: Dalian University of Technology
– sequence: 3
  givenname: Xue‐Liang
  surname: Zhang
  fullname: Zhang, Xue‐Liang
  organization: Tongji University
– sequence: 4
  givenname: Wen‐Cui
  surname: Li
  fullname: Li, Wen‐Cui
  organization: Dalian University of Technology
– sequence: 5
  givenname: Guang‐Ping
  surname: Hao
  fullname: Hao, Guang‐Ping
  email: guangpinghao@dlut.edu.cn
  organization: Dalian University of Technology
– sequence: 6
  givenname: Lu
  surname: Han
  fullname: Han, Lu
  email: luhan@tongji.edu.cn
  organization: Tongji University
– sequence: 7
  givenname: An‐Hui
  orcidid: 0000-0003-1294-5928
  surname: Lu
  fullname: Lu, An‐Hui
  email: anhuilu@dlut.edu.cn
  organization: Dalian University of Technology
BookMark eNqFkE1rGzEQhkVIoHGSa88LvfSyjqTR7mqPxritySckpsdF0c66MrK0ldYt--8jxyWBQMlp3sPzDDPvhBw775CQz4xOGaX8UjmDU045o2XB4YicsoKzHKoKjlMWAHklC_aJTGLcJF5KWp6S1U-zXlvj1tkNRt_7gDG7Mg4Ho5W1Yzbb9tZ0Yzb8wmzWRh_6wfzB7AF7FdRgvMt8l90H348WHV7uk3J4Tk46ZSNe_JtnZPVt8Tj_kV_ffV_OZ9e5hoJCXoNui5ZTaFFCTbVoJdMaiw6h6lRZIS1qWbYdIhed1LJmT6oE8SRqzRKj4Yx8Peztg_-9wzg0WxM1Wptu8LvY8EKAEMAkTeiXd-jG74JL1yWqZKkZ4JAocaB08DEG7Bpthpc_h6CMbRht9l03-66b166TNn2n9cFsVRj_L9QH4a-xOH5AN7Pb5eLNfQY7CpSj
CitedBy_id crossref_primary_10_1016_j_seppur_2022_121059
crossref_primary_10_1002_anie_202308579
crossref_primary_10_1021_acs_analchem_4c06353
crossref_primary_10_1021_acsmaterialslett_2c00119
crossref_primary_10_1038_s41467_023_36890_6
crossref_primary_10_1016_j_cej_2024_151425
crossref_primary_10_1016_j_scca_2023_100015
crossref_primary_10_1007_s12274_023_5932_3
crossref_primary_10_1016_j_cej_2024_157133
crossref_primary_10_1002_adma_202209635
crossref_primary_10_1016_j_cej_2022_137104
crossref_primary_10_1007_s40242_021_1394_x
crossref_primary_10_1016_j_seppur_2023_125496
crossref_primary_10_1021_acsami_2c09189
crossref_primary_10_1002_aic_18354
crossref_primary_10_1002_ange_202501191
crossref_primary_10_1016_j_cjche_2021_11_005
crossref_primary_10_1021_acs_energyfuels_2c01427
crossref_primary_10_1016_j_giant_2023_100181
crossref_primary_10_1021_acs_nanolett_2c01930
crossref_primary_10_1002_ange_202212732
crossref_primary_10_1002_ange_202308579
crossref_primary_10_1016_j_cej_2023_146891
crossref_primary_10_1039_D1TA07261G
crossref_primary_10_1021_acsami_3c15729
crossref_primary_10_1007_s11696_024_03422_5
crossref_primary_10_1002_smtd_202400838
crossref_primary_10_1002_adma_202409474
crossref_primary_10_1016_S1872_5805_22_60576_6
crossref_primary_10_34133_2022_9780864
crossref_primary_10_1021_jacs_3c10495
crossref_primary_10_1016_j_carbon_2024_119839
crossref_primary_10_1016_j_jssc_2023_124138
crossref_primary_10_1038_s41596_022_00784_6
crossref_primary_10_1021_acssuschemeng_4c01892
crossref_primary_10_1002_adfm_202412457
crossref_primary_10_1016_j_micromeso_2021_111453
crossref_primary_10_1002_aic_18027
crossref_primary_10_1016_j_carbon_2025_120147
crossref_primary_10_1016_j_carbon_2023_118451
crossref_primary_10_1021_acsami_4c05308
crossref_primary_10_1016_j_seppur_2022_122436
crossref_primary_10_1002_anie_202212732
crossref_primary_10_1002_anie_202501191
Cites_doi 10.1016/j.micromeso.2020.110099
10.1002/adma.202002603
10.1038/532435a
10.1038/s41567-018-0239-0
10.1021/jacs.7b06397
10.1002/anie.202002051
10.1002/adma.201806445
10.1002/adma.202002475
10.1039/D0CC04645K
10.1021/ja9039983
10.1002/smll.201900058
10.1002/anie.201712959
10.1002/ange.201903600
10.1002/anie.202014231
10.1016/j.cej.2017.09.016
10.1016/S0008-6223(03)00304-X
10.1039/C7CC03529B
10.1021/ie970897h
10.1016/j.chempr.2021.01.001
10.1021/ie049327p
10.1002/anie.201107534
10.1002/ange.202002051
10.1126/science.aay8447
10.1002/aic.17285
10.1016/j.micromeso.2008.09.022
10.1021/je0340553
10.1016/j.cej.2018.08.108
10.1002/ange.201712959
10.1038/s41578-019-0144-x
10.1021/acs.jced.9b00948
10.1002/ange.201902209
10.1002/ange.202014231
10.1002/anie.201903600
10.1002/ange.201107534
10.1002/adfm.201908371
10.1021/acs.iecr.9b06294
10.1021/la2030473
10.1016/j.carbon.2017.07.068
10.1002/adma.201805088
10.1016/j.micromeso.2020.110341
10.1002/anie.201902209
10.1016/j.carbon.2020.08.010
10.1021/jacs.0c09466
10.1126/science.aao0092
10.1021/acs.iecr.8b00377
10.1126/sciadv.aaz4322
10.1021/jacs.7b05761
10.1038/nature06398
10.1016/j.carbon.2014.12.089
10.1126/science.aaf6323
10.5012/bkcs.2010.31.01.220
10.1039/c3tb20425a
10.1021/ie3026955
10.1126/science.aag2267
10.1021/la036400s
10.1007/s10450-008-9106-0
10.1016/j.cej.2017.07.044
10.1016/j.micromeso.2018.12.041
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202106523
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 19067
ExternalDocumentID 10_1002_anie_202106523
ANIE202106523
Genre shortCommunication
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21975037; 21922304
– fundername: Liao Ning Revitalization Talents Program
  funderid: XLYC1807205
– fundername: China National Funds for Distinguished Young Scientists
  funderid: 21225312
– fundername: Changjiang Scholar Program of Chinese Ministry of Education
  funderid: T2015036
– fundername: Fundamental Research Funds for the Central Universities
  funderid: DUT20GJ215; DUT18RC(3)075
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3503-93cd5d203de8390c4d81cce5fe37fa67e05986dfee24f8c891ba634b49c1fe3c3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:19:41 EDT 2025
Fri Jul 25 12:01:17 EDT 2025
Tue Jul 01 01:18:03 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Wed Jan 22 16:28:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3503-93cd5d203de8390c4d81cce5fe37fa67e05986dfee24f8c891ba634b49c1fe3c3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1294-5928
PQID 2561851323
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2543443180
proquest_journals_2561851323
crossref_citationtrail_10_1002_anie_202106523
crossref_primary_10_1002_anie_202106523
wiley_primary_10_1002_anie_202106523_ANIE202106523
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 23, 2021
PublicationDateYYYYMMDD 2021-08-23
PublicationDate_xml – month: 08
  year: 2021
  text: August 23, 2021
  day: 23
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 43
2021; 7
2004; 20
2010; 31
2019; 4
2013; 1
2020; 142
2019; 15
2008; 14
2020 2020; 59 132
2020; 368
2020; 305
2020; 59
2020; 56
2009; 131
2020; 32
2009; 118
2017; 358
2019 2019; 58 131
2017; 139
2017; 328
1998; 37
2017; 53
2020; 6
2018; 331
2020; 30
2021
2020
2012 2012; 51 124
2018 2018; 57 130
2018; 354
2015; 85
2020; 170
2007; 450
2013; 52
2021 2021; 60 133
2016; 353
2003; 48
2019; 279
2020; 299
2018; 30
2016; 532
2020; 65
2017; 123
2011; 27
2003; 41
2018; 14
2018; 57
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_47_3
e_1_2_2_22_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_62_2
e_1_2_2_41_2
e_1_2_2_64_1
e_1_2_2_6_3
e_1_2_2_8_2
e_1_2_2_66_2
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_45_3
e_1_2_2_60_2
e_1_2_2_36_2
e_1_2_2_59_2
e_1_2_2_13_1
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_51_1
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_19_1
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_34_1
e_1_2_2_53_3
e_1_2_2_15_2
e_1_2_2_57_2
e_1_2_2_3_2
e_1_2_2_5_1
e_1_2_2_48_2
e_1_2_2_23_1
e_1_2_2_48_3
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_61_2
e_1_2_2_42_2
e_1_2_2_63_2
e_1_2_2_7_2
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_27_2
e_1_2_2_65_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_67_2
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_58_2
e_1_2_2_39_2
e_1_2_2_10_1
e_1_2_2_39_3
Du S. (e_1_2_2_28_2) 2021
e_1_2_2_50_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_56_1
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_16_1
e_1_2_2_14_2
e_1_2_2_35_2
Ding Q. (e_1_2_2_43_2) 2020
References_xml – volume: 57 130
  start-page: 2894 2944
  year: 2018 2018
  end-page: 2898 2948
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 5291
  year: 2004
  end-page: 5297
  publication-title: Langmuir
– volume: 328
  start-page: 360
  year: 2017
  end-page: 367
  publication-title: Chem. Eng. J.
– volume: 170
  start-page: 550
  year: 2020
  end-page: 557
  publication-title: Carbon
– volume: 27
  start-page: 13554
  year: 2011
  end-page: 13562
  publication-title: Langmuir
– volume: 52
  start-page: 3877
  year: 2013
  end-page: 3892
  publication-title: Ind. Eng. Chem. Res.
– volume: 1
  start-page: 3897
  year: 2013
  end-page: 3905
  publication-title: J. Mater. Chem. B
– volume: 57
  start-page: 6609
  year: 2018
  end-page: 6617
  publication-title: Ind. Eng. Chem. Res.
– volume: 59 132
  start-page: 11053 11146
  year: 2020 2020
  end-page: 11060 11153
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 8057
  year: 2004
  end-page: 8065
  publication-title: Ind. Eng. Chem. Res.
– volume: 353
  start-page: 121
  year: 2016
  end-page: 122
  publication-title: Science
– volume: 58 131
  start-page: 8145 8229
  year: 2019 2019
  end-page: 8150 8234
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 11325
  year: 2017
  end-page: 11328
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– year: 2020
  publication-title: AIChE J.
– volume: 60 133
  start-page: 6339 6409
  year: 2021 2021
  end-page: 6343 6413
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 1020
  year: 2021
  end-page: 1032
  publication-title: Chem
– volume: 331
  start-page: 777
  year: 2018
  end-page: 784
  publication-title: Chem. Eng. J.
– volume: 353
  start-page: 137
  year: 2016
  end-page: 140
  publication-title: Science
– volume: 354
  start-page: 977
  year: 2018
  end-page: 982
  publication-title: Chem. Eng. J.
– volume: 142
  start-page: 17795
  year: 2020
  end-page: 17801
  publication-title: J. Am. Chem. Soc.
– volume: 279
  start-page: 271
  year: 2019
  end-page: 277
  publication-title: Microporous Mesoporous Mater.
– volume: 48
  start-page: 1256
  year: 2003
  end-page: 1261
  publication-title: J. Chem. Eng. Data
– volume: 450
  start-page: 705
  year: 2007
  end-page: 708
  publication-title: Nature
– volume: 305
  year: 2020
  publication-title: Microporous Mesoporous Mater.
– year: 2021
  publication-title: AIChE J.
– volume: 65
  start-page: 706
  year: 2020
  end-page: 716
  publication-title: J. Chem. Eng. Data
– volume: 41
  start-page: 2533
  year: 2003
  end-page: 2545
  publication-title: Carbon
– volume: 58 131
  start-page: 7692 7774
  year: 2019 2019
  end-page: 7696 7778
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 368
  start-page: 1002
  year: 2020
  end-page: 1006
  publication-title: Science
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 56
  start-page: 10419
  year: 2020
  end-page: 10441
  publication-title: Chem. Commun.
– volume: 118
  start-page: 435
  year: 2009
  end-page: 442
  publication-title: Microporous Mesoporous Mater.
– volume: 37
  start-page: 2571
  year: 1998
  end-page: 2581
  publication-title: Ind. Eng. Chem. Res.
– volume: 358
  start-page: 1068
  year: 2017
  end-page: 1071
  publication-title: Science
– volume: 51 124
  start-page: 1857 1893
  year: 2012 2012
  end-page: 1860 1896
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 123
  start-page: 273
  year: 2017
  end-page: 282
  publication-title: Carbon
– volume: 59
  start-page: 3531
  year: 2020
  end-page: 3537
  publication-title: Ind. Eng. Chem. Res.
– volume: 53
  start-page: 9332
  year: 2017
  end-page: 9335
  publication-title: Chem. Commun.
– volume: 85
  start-page: 201
  year: 2015
  end-page: 211
  publication-title: Carbon
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  start-page: 775
  year: 2019
  end-page: 791
  publication-title: Nat. Rev. Mater.
– volume: 139
  start-page: 15363
  year: 2017
  end-page: 15370
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1108
  year: 2018
  end-page: 1113
  publication-title: Nat. Phys.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 131
  start-page: 10368
  year: 2009
  end-page: 10369
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 220
  year: 2010
  end-page: 223
  publication-title: Bull. Korean Chem. Soc.
– volume: 14
  start-page: 241
  year: 2008
  end-page: 246
  publication-title: Adsorption
– volume: 532
  start-page: 435
  year: 2016
  end-page: 437
  publication-title: Nature
– volume: 299
  year: 2020
  publication-title: Microporous Mesoporous Mater.
– ident: e_1_2_2_7_2
  doi: 10.1016/j.micromeso.2020.110099
– ident: e_1_2_2_40_1
– ident: e_1_2_2_20_2
  doi: 10.1002/adma.202002603
– ident: e_1_2_2_2_2
  doi: 10.1038/532435a
– ident: e_1_2_2_65_2
  doi: 10.1038/s41567-018-0239-0
– ident: e_1_2_2_55_2
  doi: 10.1021/jacs.7b06397
– ident: e_1_2_2_48_2
  doi: 10.1002/anie.202002051
– ident: e_1_2_2_21_2
  doi: 10.1002/adma.201806445
– ident: e_1_2_2_49_2
  doi: 10.1002/adma.202002475
– ident: e_1_2_2_23_1
– ident: e_1_2_2_37_2
  doi: 10.1039/D0CC04645K
– ident: e_1_2_2_18_2
  doi: 10.1021/ja9039983
– ident: e_1_2_2_29_1
– ident: e_1_2_2_4_2
  doi: 10.1002/smll.201900058
– ident: e_1_2_2_47_2
  doi: 10.1002/anie.201712959
– ident: e_1_2_2_39_3
  doi: 10.1002/ange.201903600
– ident: e_1_2_2_45_2
  doi: 10.1002/anie.202014231
– ident: e_1_2_2_54_2
  doi: 10.1016/j.cej.2017.09.016
– ident: e_1_2_2_27_2
  doi: 10.1016/S0008-6223(03)00304-X
– ident: e_1_2_2_17_2
  doi: 10.1039/C7CC03529B
– ident: e_1_2_2_9_2
  doi: 10.1021/ie970897h
– ident: e_1_2_2_46_2
  doi: 10.1016/j.chempr.2021.01.001
– ident: e_1_2_2_61_2
  doi: 10.1021/ie049327p
– ident: e_1_2_2_6_2
  doi: 10.1002/anie.201107534
– ident: e_1_2_2_48_3
  doi: 10.1002/ange.202002051
– ident: e_1_2_2_14_2
  doi: 10.1126/science.aay8447
– ident: e_1_2_2_44_1
– year: 2021
  ident: e_1_2_2_28_2
  publication-title: AIChE J.
  doi: 10.1002/aic.17285
– ident: e_1_2_2_67_2
  doi: 10.1016/j.micromeso.2008.09.022
– ident: e_1_2_2_30_2
  doi: 10.1021/je0340553
– ident: e_1_2_2_11_2
  doi: 10.1016/j.cej.2018.08.108
– ident: e_1_2_2_47_3
  doi: 10.1002/ange.201712959
– ident: e_1_2_2_50_2
  doi: 10.1038/s41578-019-0144-x
– ident: e_1_2_2_57_2
  doi: 10.1021/acs.jced.9b00948
– ident: e_1_2_2_53_3
  doi: 10.1002/ange.201902209
– ident: e_1_2_2_1_1
– ident: e_1_2_2_45_3
  doi: 10.1002/ange.202014231
– ident: e_1_2_2_39_2
  doi: 10.1002/anie.201903600
– ident: e_1_2_2_51_1
– ident: e_1_2_2_6_3
  doi: 10.1002/ange.201107534
– ident: e_1_2_2_33_2
  doi: 10.1002/adfm.201908371
– ident: e_1_2_2_52_2
  doi: 10.1021/acs.iecr.9b06294
– ident: e_1_2_2_42_2
  doi: 10.1021/la2030473
– ident: e_1_2_2_25_2
  doi: 10.1016/j.carbon.2017.07.068
– ident: e_1_2_2_63_2
  doi: 10.1002/adma.201805088
– ident: e_1_2_2_34_1
– ident: e_1_2_2_24_2
  doi: 10.1016/j.micromeso.2020.110341
– ident: e_1_2_2_53_2
  doi: 10.1002/anie.201902209
– ident: e_1_2_2_64_1
– ident: e_1_2_2_32_2
  doi: 10.1016/j.carbon.2020.08.010
– ident: e_1_2_2_56_1
– ident: e_1_2_2_60_2
  doi: 10.1021/jacs.0c09466
– ident: e_1_2_2_35_2
  doi: 10.1126/science.aao0092
– ident: e_1_2_2_31_2
  doi: 10.1021/acs.iecr.8b00377
– ident: e_1_2_2_38_2
  doi: 10.1126/sciadv.aaz4322
– year: 2020
  ident: e_1_2_2_43_2
  publication-title: AIChE J.
– ident: e_1_2_2_12_2
  doi: 10.1021/jacs.7b05761
– ident: e_1_2_2_13_1
– ident: e_1_2_2_36_2
  doi: 10.1038/nature06398
– ident: e_1_2_2_19_1
– ident: e_1_2_2_5_1
– ident: e_1_2_2_26_2
  doi: 10.1016/j.carbon.2014.12.089
– ident: e_1_2_2_16_1
– ident: e_1_2_2_59_2
  doi: 10.1126/science.aaf6323
– ident: e_1_2_2_62_2
  doi: 10.5012/bkcs.2010.31.01.220
– ident: e_1_2_2_66_2
  doi: 10.1039/c3tb20425a
– ident: e_1_2_2_41_2
  doi: 10.1021/ie3026955
– ident: e_1_2_2_3_2
  doi: 10.1126/science.aag2267
– ident: e_1_2_2_10_1
– ident: e_1_2_2_58_2
  doi: 10.1021/la036400s
– ident: e_1_2_2_15_2
  doi: 10.1007/s10450-008-9106-0
– ident: e_1_2_2_22_2
  doi: 10.1016/j.cej.2017.07.044
– ident: e_1_2_2_8_2
  doi: 10.1016/j.micromeso.2018.12.041
SSID ssj0028806
Score 2.5537379
Snippet Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19063
SubjectTerms Adsorbents
adsorption separation
Adsorptivity
C3H6/C3H8 separation
Carbon
carbon monoliths
Dynamic stability
Pore size
Pore size distribution
Propane
Propylene
Selectivity
self-assembly
Separation
Size distribution
wiggling mesoporous carbons
Title Wiggling Mesopores Kinetically Amplify the Adsorptive Separation of Propylene/Propane
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202106523
https://www.proquest.com/docview/2561851323
https://www.proquest.com/docview/2543443180
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG4WL-7F1VXR9UEvCJ7iJF2d13EQxd1FEXXQW-h0qkVWkmEycxh_vVXJJD5gEdxbh1TTnap-fNXp-kqIA1PkADHGXgo28nRgYs_Y1Ho5JMaENoihocw_v4jORvr3XXj3Koq_5YfoD9x4ZjTrNU9wk9eDF9JQjsAm_45cloicKVqE-cIWo6Krnj9K0eBsw4sAPM5C37E2-mrwtvrbXekFar4GrM2Oc_pNmK6v7UWTv0ezaX5kn97ROP7Px6yKlQUclcN2_KyJL1h-F8vHXRa4dTG6fbi_55B1eY51RWAda_mHmmuOwB_ncsg30t1cEo6Uw6KuJmNeP-U1tpziVSkrJy8n1XhO2xsOuGRK3BCj05Ob4zNvkYrBsxD6wJYswkL5UCAhKt_qIgmsxdAhxM5EMfrM8144RKVdYpM0yE0EOtepDUjGwqZYKqsSt4R0DiLAII4QOVeWTvwidxgoGwZoVepvC68zRWYXPOWcLuMxaxmWVcbKynplbYvDXn7cMnT8U3K3s2y2mKl1RpCPIAv55PT6Z_-alMw_Tkgh1YxlNGhCWgl1TjVm_KClbHjx66R_-vGZSjviK5f5-FrBrliaTma4R_hnmu83Y_wZWor9Tw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYKPcCFtjwElLZGQuIUNvE4r-OKgpbCrlDLCm5R4owRAiWrfRyWX9-ZZBMeEqpEb0k8VhyPH99MPN8IcZDmGUCIoRODCRztpaGTmtg4GURp6hsvhIoyvz8IekP968ZvThNyLEzND9E63HhmVOs1T3B2SHeeWEM5BJsMPLJZArKmlsRHTuvN9Pk_f7cMUoqGZx1gBOBwHvqGt9FVnZf1X-5LT2DzOWSt9pzTTyJrWlsfNbk_mk2zI_P4isjxvz7ns1hbIFLZrYfQF_EBi3WxctwkgtsQw-u721uOWpd9nJSE13Eiz-l9lRf8YS67fCjdziVBSdnNJ-V4xEuo_IM1rXhZyNLKy3E5mtMOhx2-SgvcFMPTk6vjnrPIxuAY8F1gZeZ-rlzIkUCVa3QeecagbxFCmwYhukz1nltEpW1kotjL0gB0pmPjkYyBLbFclAVuC2ktBIBeGCByuiwduXlm0VPG99Co2N0RTqOLxCyoyjljxkNSkyyrhDsraTtrRxy28qOapONNyb1Gtclisk4SQn2EWsgsp-L9tpg6mf-dUIeUM5bRoAlsRdQ4VenxH29KuoOzk_Zu9z2VfoiV3lX_Irk4G5x_Fav8nL3ZCvbE8nQ8w28Eh6bZ92rA_wU1VQF6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNALb0QfgJGQOKWbeJzXcdV21VK6qoAVvUWOPa4QVbLax2H59Z1JNmmLVCGVWxKPFWfGj28czzdCfDKuBEgxDXKwSaAjkwbG5jYoITMmtlEKDWX-6Tg5mugv5_H5jSj-lh-i33DjkdHM1zzAp84PrklDOQKb_DtyWRJyph6KRzoJc07ecPCtJ5BS1Dvb-CKAgNPQd7SNoRrcrn97WbrGmjcRa7PkjJ4J0zW2PWnye2-5KPfsn794HP_na56Lp2s8KodtB3ohHmD1UjzZ79LAvRKTn78uLjhmXZ7ivCa0jnN5Qq9r9sAvV3LIR9L9ShKQlEM3r2dTnkDld2xJxetK1l6ezerpitY3HPCVqfC1mIwOf-wfBetcDIGFOAQ2pYudCsEhQarQapdF1mLsEVJvkhRDJnp3HlFpn9ksj0qTgC51biOSsfBGbFR1hW-F9B4SwChNEDlZls5CV3qMlI0jtCoPt0TQmaKwa6JyzpdxWbQUy6pgZRW9srbE515-2lJ03Cm521m2WA_VeUGYjzALOeVU_LEvJiXznxNSSL1kGQ2aoFZGjVONGf_xpmI4Pj7s77bvU-mDeHx2MCq-Ho9PdsQmP-atbAW7YmMxW-I7wkKL8n3T3a8AK9oAKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wiggling+Mesopores+Kinetically+Amplify+the+Adsorptive+Separation+of+Propylene%2FPropane&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yuan%2C+Ya%E2%80%90Fei&rft.au=Wang%2C+Yong%E2%80%90Sheng&rft.au=Zhang%2C+Xue%E2%80%90Liang&rft.au=Li%2C+Wen%E2%80%90Cui&rft.date=2021-08-23&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=35&rft.spage=19063&rft.epage=19067&rft_id=info:doi/10.1002%2Fanie.202106523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202106523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon