Wiggling Mesopores Kinetically Amplify the Adsorptive Separation of Propylene/Propane
Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling meso...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 35; pp. 19063 - 19067 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
23.08.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling mesopores in structurally robust carbon monoliths. The wiggling mesopores with alternating wide and narrow segments afford a surface area of 413 m2 g−1 and a tri‐modal pore size distribution centered at 1.5, 4.2 and 6.6 nm, respectively. The synergistically kinetic and equilibrium effects were observed and quantitatively assessed, which together ensured a remarkable propylene/propane selectivity up to 39. This selectivity outperformed not only the available carbon adsorbents but also highly competitive among the dominated crystalline porous adsorbents. In addition, the wiggling mesoporous carbon adsorbent showed excellent dynamical separation stability, which ensured its great potential in practical molecular separations.
Wiggling mesopores in monolithic carbon adsorbents lead to synergistic kinetic and equilibrium effects, allowing highly selective C3H6/C3H8 separation under practical dynamic conditions. |
---|---|
AbstractList | Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling mesopores in structurally robust carbon monoliths. The wiggling mesopores with alternating wide and narrow segments afford a surface area of 413 m
2
g
−1
and a tri‐modal pore size distribution centered at 1.5, 4.2 and 6.6 nm, respectively. The synergistically kinetic and equilibrium effects were observed and quantitatively assessed, which together ensured a remarkable propylene/propane selectivity up to 39. This selectivity outperformed not only the available carbon adsorbents but also highly competitive among the dominated crystalline porous adsorbents. In addition, the wiggling mesoporous carbon adsorbent showed excellent dynamical separation stability, which ensured its great potential in practical molecular separations. Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling mesopores in structurally robust carbon monoliths. The wiggling mesopores with alternating wide and narrow segments afford a surface area of 413 m2 g−1 and a tri‐modal pore size distribution centered at 1.5, 4.2 and 6.6 nm, respectively. The synergistically kinetic and equilibrium effects were observed and quantitatively assessed, which together ensured a remarkable propylene/propane selectivity up to 39. This selectivity outperformed not only the available carbon adsorbents but also highly competitive among the dominated crystalline porous adsorbents. In addition, the wiggling mesoporous carbon adsorbent showed excellent dynamical separation stability, which ensured its great potential in practical molecular separations. Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling mesopores in structurally robust carbon monoliths. The wiggling mesopores with alternating wide and narrow segments afford a surface area of 413 m2 g-1 and a tri-modal pore size distribution centered at 1.5, 4.2 and 6.6 nm, respectively. The synergistically kinetic and equilibrium effects were observed and quantitatively assessed, which together ensured a remarkable propylene/propane selectivity up to 39. This selectivity outperformed not only the available carbon adsorbents but also highly competitive among the dominated crystalline porous adsorbents. In addition, the wiggling mesoporous carbon adsorbent showed excellent dynamical separation stability, which ensured its great potential in practical molecular separations.Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling mesopores in structurally robust carbon monoliths. The wiggling mesopores with alternating wide and narrow segments afford a surface area of 413 m2 g-1 and a tri-modal pore size distribution centered at 1.5, 4.2 and 6.6 nm, respectively. The synergistically kinetic and equilibrium effects were observed and quantitatively assessed, which together ensured a remarkable propylene/propane selectivity up to 39. This selectivity outperformed not only the available carbon adsorbents but also highly competitive among the dominated crystalline porous adsorbents. In addition, the wiggling mesoporous carbon adsorbent showed excellent dynamical separation stability, which ensured its great potential in practical molecular separations. Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling mesopores in structurally robust carbon monoliths. The wiggling mesopores with alternating wide and narrow segments afford a surface area of 413 m2 g−1 and a tri‐modal pore size distribution centered at 1.5, 4.2 and 6.6 nm, respectively. The synergistically kinetic and equilibrium effects were observed and quantitatively assessed, which together ensured a remarkable propylene/propane selectivity up to 39. This selectivity outperformed not only the available carbon adsorbents but also highly competitive among the dominated crystalline porous adsorbents. In addition, the wiggling mesoporous carbon adsorbent showed excellent dynamical separation stability, which ensured its great potential in practical molecular separations. Wiggling mesopores in monolithic carbon adsorbents lead to synergistic kinetic and equilibrium effects, allowing highly selective C3H6/C3H8 separation under practical dynamic conditions. |
Author | Li, Wen‐Cui Yuan, Ya‐Fei Lu, An‐Hui Wang, Yong‐Sheng Zhang, Xue‐Liang Han, Lu Hao, Guang‐Ping |
Author_xml | – sequence: 1 givenname: Ya‐Fei surname: Yuan fullname: Yuan, Ya‐Fei organization: Dalian University of Technology – sequence: 2 givenname: Yong‐Sheng surname: Wang fullname: Wang, Yong‐Sheng organization: Dalian University of Technology – sequence: 3 givenname: Xue‐Liang surname: Zhang fullname: Zhang, Xue‐Liang organization: Tongji University – sequence: 4 givenname: Wen‐Cui surname: Li fullname: Li, Wen‐Cui organization: Dalian University of Technology – sequence: 5 givenname: Guang‐Ping surname: Hao fullname: Hao, Guang‐Ping email: guangpinghao@dlut.edu.cn organization: Dalian University of Technology – sequence: 6 givenname: Lu surname: Han fullname: Han, Lu email: luhan@tongji.edu.cn organization: Tongji University – sequence: 7 givenname: An‐Hui orcidid: 0000-0003-1294-5928 surname: Lu fullname: Lu, An‐Hui email: anhuilu@dlut.edu.cn organization: Dalian University of Technology |
BookMark | eNqFkE1rGzEQhkVIoHGSa88LvfSyjqTR7mqPxritySckpsdF0c66MrK0ldYt--8jxyWBQMlp3sPzDDPvhBw775CQz4xOGaX8UjmDU045o2XB4YicsoKzHKoKjlMWAHklC_aJTGLcJF5KWp6S1U-zXlvj1tkNRt_7gDG7Mg4Ho5W1Yzbb9tZ0Yzb8wmzWRh_6wfzB7AF7FdRgvMt8l90H348WHV7uk3J4Tk46ZSNe_JtnZPVt8Tj_kV_ffV_OZ9e5hoJCXoNui5ZTaFFCTbVoJdMaiw6h6lRZIS1qWbYdIhed1LJmT6oE8SRqzRKj4Yx8Peztg_-9wzg0WxM1Wptu8LvY8EKAEMAkTeiXd-jG74JL1yWqZKkZ4JAocaB08DEG7Bpthpc_h6CMbRht9l03-66b166TNn2n9cFsVRj_L9QH4a-xOH5AN7Pb5eLNfQY7CpSj |
CitedBy_id | crossref_primary_10_1016_j_seppur_2022_121059 crossref_primary_10_1002_anie_202308579 crossref_primary_10_1021_acs_analchem_4c06353 crossref_primary_10_1021_acsmaterialslett_2c00119 crossref_primary_10_1038_s41467_023_36890_6 crossref_primary_10_1016_j_cej_2024_151425 crossref_primary_10_1016_j_scca_2023_100015 crossref_primary_10_1007_s12274_023_5932_3 crossref_primary_10_1016_j_cej_2024_157133 crossref_primary_10_1002_adma_202209635 crossref_primary_10_1016_j_cej_2022_137104 crossref_primary_10_1007_s40242_021_1394_x crossref_primary_10_1016_j_seppur_2023_125496 crossref_primary_10_1021_acsami_2c09189 crossref_primary_10_1002_aic_18354 crossref_primary_10_1002_ange_202501191 crossref_primary_10_1016_j_cjche_2021_11_005 crossref_primary_10_1021_acs_energyfuels_2c01427 crossref_primary_10_1016_j_giant_2023_100181 crossref_primary_10_1021_acs_nanolett_2c01930 crossref_primary_10_1002_ange_202212732 crossref_primary_10_1002_ange_202308579 crossref_primary_10_1016_j_cej_2023_146891 crossref_primary_10_1039_D1TA07261G crossref_primary_10_1021_acsami_3c15729 crossref_primary_10_1007_s11696_024_03422_5 crossref_primary_10_1002_smtd_202400838 crossref_primary_10_1002_adma_202409474 crossref_primary_10_1016_S1872_5805_22_60576_6 crossref_primary_10_34133_2022_9780864 crossref_primary_10_1021_jacs_3c10495 crossref_primary_10_1016_j_carbon_2024_119839 crossref_primary_10_1016_j_jssc_2023_124138 crossref_primary_10_1038_s41596_022_00784_6 crossref_primary_10_1021_acssuschemeng_4c01892 crossref_primary_10_1002_adfm_202412457 crossref_primary_10_1016_j_micromeso_2021_111453 crossref_primary_10_1002_aic_18027 crossref_primary_10_1016_j_carbon_2025_120147 crossref_primary_10_1016_j_carbon_2023_118451 crossref_primary_10_1021_acsami_4c05308 crossref_primary_10_1016_j_seppur_2022_122436 crossref_primary_10_1002_anie_202212732 crossref_primary_10_1002_anie_202501191 |
Cites_doi | 10.1016/j.micromeso.2020.110099 10.1002/adma.202002603 10.1038/532435a 10.1038/s41567-018-0239-0 10.1021/jacs.7b06397 10.1002/anie.202002051 10.1002/adma.201806445 10.1002/adma.202002475 10.1039/D0CC04645K 10.1021/ja9039983 10.1002/smll.201900058 10.1002/anie.201712959 10.1002/ange.201903600 10.1002/anie.202014231 10.1016/j.cej.2017.09.016 10.1016/S0008-6223(03)00304-X 10.1039/C7CC03529B 10.1021/ie970897h 10.1016/j.chempr.2021.01.001 10.1021/ie049327p 10.1002/anie.201107534 10.1002/ange.202002051 10.1126/science.aay8447 10.1002/aic.17285 10.1016/j.micromeso.2008.09.022 10.1021/je0340553 10.1016/j.cej.2018.08.108 10.1002/ange.201712959 10.1038/s41578-019-0144-x 10.1021/acs.jced.9b00948 10.1002/ange.201902209 10.1002/ange.202014231 10.1002/anie.201903600 10.1002/ange.201107534 10.1002/adfm.201908371 10.1021/acs.iecr.9b06294 10.1021/la2030473 10.1016/j.carbon.2017.07.068 10.1002/adma.201805088 10.1016/j.micromeso.2020.110341 10.1002/anie.201902209 10.1016/j.carbon.2020.08.010 10.1021/jacs.0c09466 10.1126/science.aao0092 10.1021/acs.iecr.8b00377 10.1126/sciadv.aaz4322 10.1021/jacs.7b05761 10.1038/nature06398 10.1016/j.carbon.2014.12.089 10.1126/science.aaf6323 10.5012/bkcs.2010.31.01.220 10.1039/c3tb20425a 10.1021/ie3026955 10.1126/science.aag2267 10.1021/la036400s 10.1007/s10450-008-9106-0 10.1016/j.cej.2017.07.044 10.1016/j.micromeso.2018.12.041 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202106523 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 19067 |
ExternalDocumentID | 10_1002_anie_202106523 ANIE202106523 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21975037; 21922304 – fundername: Liao Ning Revitalization Talents Program funderid: XLYC1807205 – fundername: China National Funds for Distinguished Young Scientists funderid: 21225312 – fundername: Changjiang Scholar Program of Chinese Ministry of Education funderid: T2015036 – fundername: Fundamental Research Funds for the Central Universities funderid: DUT20GJ215; DUT18RC(3)075 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3503-93cd5d203de8390c4d81cce5fe37fa67e05986dfee24f8c891ba634b49c1fe3c3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 16:19:41 EDT 2025 Fri Jul 25 12:01:17 EDT 2025 Tue Jul 01 01:18:03 EDT 2025 Thu Apr 24 23:10:47 EDT 2025 Wed Jan 22 16:28:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3503-93cd5d203de8390c4d81cce5fe37fa67e05986dfee24f8c891ba634b49c1fe3c3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1294-5928 |
PQID | 2561851323 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2543443180 proquest_journals_2561851323 crossref_citationtrail_10_1002_anie_202106523 crossref_primary_10_1002_anie_202106523 wiley_primary_10_1002_anie_202106523_ANIE202106523 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 23, 2021 |
PublicationDateYYYYMMDD | 2021-08-23 |
PublicationDate_xml | – month: 08 year: 2021 text: August 23, 2021 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 43 2021; 7 2004; 20 2010; 31 2019; 4 2013; 1 2020; 142 2019; 15 2008; 14 2020 2020; 59 132 2020; 368 2020; 305 2020; 59 2020; 56 2009; 131 2020; 32 2009; 118 2017; 358 2019 2019; 58 131 2017; 139 2017; 328 1998; 37 2017; 53 2020; 6 2018; 331 2020; 30 2021 2020 2012 2012; 51 124 2018 2018; 57 130 2018; 354 2015; 85 2020; 170 2007; 450 2013; 52 2021 2021; 60 133 2016; 353 2003; 48 2019; 279 2020; 299 2018; 30 2016; 532 2020; 65 2017; 123 2011; 27 2003; 41 2018; 14 2018; 57 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_47_3 e_1_2_2_22_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_62_2 e_1_2_2_41_2 e_1_2_2_64_1 e_1_2_2_6_3 e_1_2_2_8_2 e_1_2_2_66_2 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_45_3 e_1_2_2_60_2 e_1_2_2_36_2 e_1_2_2_59_2 e_1_2_2_13_1 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_51_1 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_19_1 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_55_2 e_1_2_2_34_1 e_1_2_2_53_3 e_1_2_2_15_2 e_1_2_2_57_2 e_1_2_2_3_2 e_1_2_2_5_1 e_1_2_2_48_2 e_1_2_2_23_1 e_1_2_2_48_3 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_61_2 e_1_2_2_42_2 e_1_2_2_63_2 e_1_2_2_7_2 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_27_2 e_1_2_2_65_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_67_2 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_58_2 e_1_2_2_39_2 e_1_2_2_10_1 e_1_2_2_39_3 Du S. (e_1_2_2_28_2) 2021 e_1_2_2_50_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_56_1 e_1_2_2_33_2 e_1_2_2_54_2 e_1_2_2_16_1 e_1_2_2_14_2 e_1_2_2_35_2 Ding Q. (e_1_2_2_43_2) 2020 |
References_xml | – volume: 57 130 start-page: 2894 2944 year: 2018 2018 end-page: 2898 2948 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 5291 year: 2004 end-page: 5297 publication-title: Langmuir – volume: 328 start-page: 360 year: 2017 end-page: 367 publication-title: Chem. Eng. J. – volume: 170 start-page: 550 year: 2020 end-page: 557 publication-title: Carbon – volume: 27 start-page: 13554 year: 2011 end-page: 13562 publication-title: Langmuir – volume: 52 start-page: 3877 year: 2013 end-page: 3892 publication-title: Ind. Eng. Chem. Res. – volume: 1 start-page: 3897 year: 2013 end-page: 3905 publication-title: J. Mater. Chem. B – volume: 57 start-page: 6609 year: 2018 end-page: 6617 publication-title: Ind. Eng. Chem. Res. – volume: 59 132 start-page: 11053 11146 year: 2020 2020 end-page: 11060 11153 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 8057 year: 2004 end-page: 8065 publication-title: Ind. Eng. Chem. Res. – volume: 353 start-page: 121 year: 2016 end-page: 122 publication-title: Science – volume: 58 131 start-page: 8145 8229 year: 2019 2019 end-page: 8150 8234 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 11325 year: 2017 end-page: 11328 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – year: 2020 publication-title: AIChE J. – volume: 60 133 start-page: 6339 6409 year: 2021 2021 end-page: 6343 6413 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 1020 year: 2021 end-page: 1032 publication-title: Chem – volume: 331 start-page: 777 year: 2018 end-page: 784 publication-title: Chem. Eng. J. – volume: 353 start-page: 137 year: 2016 end-page: 140 publication-title: Science – volume: 354 start-page: 977 year: 2018 end-page: 982 publication-title: Chem. Eng. J. – volume: 142 start-page: 17795 year: 2020 end-page: 17801 publication-title: J. Am. Chem. Soc. – volume: 279 start-page: 271 year: 2019 end-page: 277 publication-title: Microporous Mesoporous Mater. – volume: 48 start-page: 1256 year: 2003 end-page: 1261 publication-title: J. Chem. Eng. Data – volume: 450 start-page: 705 year: 2007 end-page: 708 publication-title: Nature – volume: 305 year: 2020 publication-title: Microporous Mesoporous Mater. – year: 2021 publication-title: AIChE J. – volume: 65 start-page: 706 year: 2020 end-page: 716 publication-title: J. Chem. Eng. Data – volume: 41 start-page: 2533 year: 2003 end-page: 2545 publication-title: Carbon – volume: 58 131 start-page: 7692 7774 year: 2019 2019 end-page: 7696 7778 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 368 start-page: 1002 year: 2020 end-page: 1006 publication-title: Science – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 56 start-page: 10419 year: 2020 end-page: 10441 publication-title: Chem. Commun. – volume: 118 start-page: 435 year: 2009 end-page: 442 publication-title: Microporous Mesoporous Mater. – volume: 37 start-page: 2571 year: 1998 end-page: 2581 publication-title: Ind. Eng. Chem. Res. – volume: 358 start-page: 1068 year: 2017 end-page: 1071 publication-title: Science – volume: 51 124 start-page: 1857 1893 year: 2012 2012 end-page: 1860 1896 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 year: 2019 publication-title: Small – volume: 123 start-page: 273 year: 2017 end-page: 282 publication-title: Carbon – volume: 59 start-page: 3531 year: 2020 end-page: 3537 publication-title: Ind. Eng. Chem. Res. – volume: 53 start-page: 9332 year: 2017 end-page: 9335 publication-title: Chem. Commun. – volume: 85 start-page: 201 year: 2015 end-page: 211 publication-title: Carbon – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 start-page: 775 year: 2019 end-page: 791 publication-title: Nat. Rev. Mater. – volume: 139 start-page: 15363 year: 2017 end-page: 15370 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 1108 year: 2018 end-page: 1113 publication-title: Nat. Phys. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 131 start-page: 10368 year: 2009 end-page: 10369 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 220 year: 2010 end-page: 223 publication-title: Bull. Korean Chem. Soc. – volume: 14 start-page: 241 year: 2008 end-page: 246 publication-title: Adsorption – volume: 532 start-page: 435 year: 2016 end-page: 437 publication-title: Nature – volume: 299 year: 2020 publication-title: Microporous Mesoporous Mater. – ident: e_1_2_2_7_2 doi: 10.1016/j.micromeso.2020.110099 – ident: e_1_2_2_40_1 – ident: e_1_2_2_20_2 doi: 10.1002/adma.202002603 – ident: e_1_2_2_2_2 doi: 10.1038/532435a – ident: e_1_2_2_65_2 doi: 10.1038/s41567-018-0239-0 – ident: e_1_2_2_55_2 doi: 10.1021/jacs.7b06397 – ident: e_1_2_2_48_2 doi: 10.1002/anie.202002051 – ident: e_1_2_2_21_2 doi: 10.1002/adma.201806445 – ident: e_1_2_2_49_2 doi: 10.1002/adma.202002475 – ident: e_1_2_2_23_1 – ident: e_1_2_2_37_2 doi: 10.1039/D0CC04645K – ident: e_1_2_2_18_2 doi: 10.1021/ja9039983 – ident: e_1_2_2_29_1 – ident: e_1_2_2_4_2 doi: 10.1002/smll.201900058 – ident: e_1_2_2_47_2 doi: 10.1002/anie.201712959 – ident: e_1_2_2_39_3 doi: 10.1002/ange.201903600 – ident: e_1_2_2_45_2 doi: 10.1002/anie.202014231 – ident: e_1_2_2_54_2 doi: 10.1016/j.cej.2017.09.016 – ident: e_1_2_2_27_2 doi: 10.1016/S0008-6223(03)00304-X – ident: e_1_2_2_17_2 doi: 10.1039/C7CC03529B – ident: e_1_2_2_9_2 doi: 10.1021/ie970897h – ident: e_1_2_2_46_2 doi: 10.1016/j.chempr.2021.01.001 – ident: e_1_2_2_61_2 doi: 10.1021/ie049327p – ident: e_1_2_2_6_2 doi: 10.1002/anie.201107534 – ident: e_1_2_2_48_3 doi: 10.1002/ange.202002051 – ident: e_1_2_2_14_2 doi: 10.1126/science.aay8447 – ident: e_1_2_2_44_1 – year: 2021 ident: e_1_2_2_28_2 publication-title: AIChE J. doi: 10.1002/aic.17285 – ident: e_1_2_2_67_2 doi: 10.1016/j.micromeso.2008.09.022 – ident: e_1_2_2_30_2 doi: 10.1021/je0340553 – ident: e_1_2_2_11_2 doi: 10.1016/j.cej.2018.08.108 – ident: e_1_2_2_47_3 doi: 10.1002/ange.201712959 – ident: e_1_2_2_50_2 doi: 10.1038/s41578-019-0144-x – ident: e_1_2_2_57_2 doi: 10.1021/acs.jced.9b00948 – ident: e_1_2_2_53_3 doi: 10.1002/ange.201902209 – ident: e_1_2_2_1_1 – ident: e_1_2_2_45_3 doi: 10.1002/ange.202014231 – ident: e_1_2_2_39_2 doi: 10.1002/anie.201903600 – ident: e_1_2_2_51_1 – ident: e_1_2_2_6_3 doi: 10.1002/ange.201107534 – ident: e_1_2_2_33_2 doi: 10.1002/adfm.201908371 – ident: e_1_2_2_52_2 doi: 10.1021/acs.iecr.9b06294 – ident: e_1_2_2_42_2 doi: 10.1021/la2030473 – ident: e_1_2_2_25_2 doi: 10.1016/j.carbon.2017.07.068 – ident: e_1_2_2_63_2 doi: 10.1002/adma.201805088 – ident: e_1_2_2_34_1 – ident: e_1_2_2_24_2 doi: 10.1016/j.micromeso.2020.110341 – ident: e_1_2_2_53_2 doi: 10.1002/anie.201902209 – ident: e_1_2_2_64_1 – ident: e_1_2_2_32_2 doi: 10.1016/j.carbon.2020.08.010 – ident: e_1_2_2_56_1 – ident: e_1_2_2_60_2 doi: 10.1021/jacs.0c09466 – ident: e_1_2_2_35_2 doi: 10.1126/science.aao0092 – ident: e_1_2_2_31_2 doi: 10.1021/acs.iecr.8b00377 – ident: e_1_2_2_38_2 doi: 10.1126/sciadv.aaz4322 – year: 2020 ident: e_1_2_2_43_2 publication-title: AIChE J. – ident: e_1_2_2_12_2 doi: 10.1021/jacs.7b05761 – ident: e_1_2_2_13_1 – ident: e_1_2_2_36_2 doi: 10.1038/nature06398 – ident: e_1_2_2_19_1 – ident: e_1_2_2_5_1 – ident: e_1_2_2_26_2 doi: 10.1016/j.carbon.2014.12.089 – ident: e_1_2_2_16_1 – ident: e_1_2_2_59_2 doi: 10.1126/science.aaf6323 – ident: e_1_2_2_62_2 doi: 10.5012/bkcs.2010.31.01.220 – ident: e_1_2_2_66_2 doi: 10.1039/c3tb20425a – ident: e_1_2_2_41_2 doi: 10.1021/ie3026955 – ident: e_1_2_2_3_2 doi: 10.1126/science.aag2267 – ident: e_1_2_2_10_1 – ident: e_1_2_2_58_2 doi: 10.1021/la036400s – ident: e_1_2_2_15_2 doi: 10.1007/s10450-008-9106-0 – ident: e_1_2_2_22_2 doi: 10.1016/j.cej.2017.07.044 – ident: e_1_2_2_8_2 doi: 10.1016/j.micromeso.2018.12.041 |
SSID | ssj0028806 |
Score | 2.5537379 |
Snippet | Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 19063 |
SubjectTerms | Adsorbents adsorption separation Adsorptivity C3H6/C3H8 separation Carbon carbon monoliths Dynamic stability Pore size Pore size distribution Propane Propylene Selectivity self-assembly Separation Size distribution wiggling mesoporous carbons |
Title | Wiggling Mesopores Kinetically Amplify the Adsorptive Separation of Propylene/Propane |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202106523 https://www.proquest.com/docview/2561851323 https://www.proquest.com/docview/2543443180 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG4WL-7F1VXR9UEvCJ7iJF2d13EQxd1FEXXQW-h0qkVWkmEycxh_vVXJJD5gEdxbh1TTnap-fNXp-kqIA1PkADHGXgo28nRgYs_Y1Ho5JMaENoihocw_v4jORvr3XXj3Koq_5YfoD9x4ZjTrNU9wk9eDF9JQjsAm_45cloicKVqE-cIWo6Krnj9K0eBsw4sAPM5C37E2-mrwtvrbXekFar4GrM2Oc_pNmK6v7UWTv0ezaX5kn97ROP7Px6yKlQUclcN2_KyJL1h-F8vHXRa4dTG6fbi_55B1eY51RWAda_mHmmuOwB_ncsg30t1cEo6Uw6KuJmNeP-U1tpziVSkrJy8n1XhO2xsOuGRK3BCj05Ob4zNvkYrBsxD6wJYswkL5UCAhKt_qIgmsxdAhxM5EMfrM8144RKVdYpM0yE0EOtepDUjGwqZYKqsSt4R0DiLAII4QOVeWTvwidxgoGwZoVepvC68zRWYXPOWcLuMxaxmWVcbKynplbYvDXn7cMnT8U3K3s2y2mKl1RpCPIAv55PT6Z_-alMw_Tkgh1YxlNGhCWgl1TjVm_KClbHjx66R_-vGZSjviK5f5-FrBrliaTma4R_hnmu83Y_wZWor9Tw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYKPcCFtjwElLZGQuIUNvE4r-OKgpbCrlDLCm5R4owRAiWrfRyWX9-ZZBMeEqpEb0k8VhyPH99MPN8IcZDmGUCIoRODCRztpaGTmtg4GURp6hsvhIoyvz8IekP968ZvThNyLEzND9E63HhmVOs1T3B2SHeeWEM5BJsMPLJZArKmlsRHTuvN9Pk_f7cMUoqGZx1gBOBwHvqGt9FVnZf1X-5LT2DzOWSt9pzTTyJrWlsfNbk_mk2zI_P4isjxvz7ns1hbIFLZrYfQF_EBi3WxctwkgtsQw-u721uOWpd9nJSE13Eiz-l9lRf8YS67fCjdziVBSdnNJ-V4xEuo_IM1rXhZyNLKy3E5mtMOhx2-SgvcFMPTk6vjnrPIxuAY8F1gZeZ-rlzIkUCVa3QeecagbxFCmwYhukz1nltEpW1kotjL0gB0pmPjkYyBLbFclAVuC2ktBIBeGCByuiwduXlm0VPG99Co2N0RTqOLxCyoyjljxkNSkyyrhDsraTtrRxy28qOapONNyb1Gtclisk4SQn2EWsgsp-L9tpg6mf-dUIeUM5bRoAlsRdQ4VenxH29KuoOzk_Zu9z2VfoiV3lX_Irk4G5x_Fav8nL3ZCvbE8nQ8w28Eh6bZ92rA_wU1VQF6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNALb0QfgJGQOKWbeJzXcdV21VK6qoAVvUWOPa4QVbLax2H59Z1JNmmLVCGVWxKPFWfGj28czzdCfDKuBEgxDXKwSaAjkwbG5jYoITMmtlEKDWX-6Tg5mugv5_H5jSj-lh-i33DjkdHM1zzAp84PrklDOQKb_DtyWRJyph6KRzoJc07ecPCtJ5BS1Dvb-CKAgNPQd7SNoRrcrn97WbrGmjcRa7PkjJ4J0zW2PWnye2-5KPfsn794HP_na56Lp2s8KodtB3ohHmD1UjzZ79LAvRKTn78uLjhmXZ7ivCa0jnN5Qq9r9sAvV3LIR9L9ShKQlEM3r2dTnkDld2xJxetK1l6ezerpitY3HPCVqfC1mIwOf-wfBetcDIGFOAQ2pYudCsEhQarQapdF1mLsEVJvkhRDJnp3HlFpn9ksj0qTgC51biOSsfBGbFR1hW-F9B4SwChNEDlZls5CV3qMlI0jtCoPt0TQmaKwa6JyzpdxWbQUy6pgZRW9srbE515-2lJ03Cm521m2WA_VeUGYjzALOeVU_LEvJiXznxNSSL1kGQ2aoFZGjVONGf_xpmI4Pj7s77bvU-mDeHx2MCq-Ho9PdsQmP-atbAW7YmMxW-I7wkKL8n3T3a8AK9oAKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wiggling+Mesopores+Kinetically+Amplify+the+Adsorptive+Separation+of+Propylene%2FPropane&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yuan%2C+Ya%E2%80%90Fei&rft.au=Wang%2C+Yong%E2%80%90Sheng&rft.au=Zhang%2C+Xue%E2%80%90Liang&rft.au=Li%2C+Wen%E2%80%90Cui&rft.date=2021-08-23&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=35&rft.spage=19063&rft.epage=19067&rft_id=info:doi/10.1002%2Fanie.202106523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202106523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |