Ultrahigh Adsorption Capacity and Kinetics of Vertically Oriented Mesoporous Coatings for Removal of Organic Pollutants
Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes have been developed via the single‐micelle directing assembly strategy,...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 32; pp. e2101363 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes have been developed via the single‐micelle directing assembly strategy, which show good adsorption performances toward a wide range of organic pollutants. The micelle size and structure can be precisely regulated by oil molecules based on their n‐octanol/water partition coefficients (Log P) in the oil–water diphase assembly system, which are critical to the pore size and pore surface property of the MCs. The affinity and steric effects of the MCs can be on‐demand adjusted, as a result, the MCs show a ultrahigh adsorption capacity (263 mg g−1), surface occupancy ratio (≈41.92%), and adsorption rate (≈10.85 mg g−1 min−1) for microcystin‐LR, which is among the best performances up to date. The MCs also show an excellent universality to remove organic pollutants with different properties. Moreover, overcoming the challenges proposed by particulate absorbents, the MCs are stable and can be easily regenerated and reused without secondary contamination. This work paves a new route to the synthesis of high‐quality MCs for water purification.
A single‐micelle directing assembly strategy is developed for the synthesis of vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes. The affinity and steric effects of MCs can be on‐demand adjusted; as a result, the MCs show an ultrahigh adsorption capacity, surface occupancy ratio, and adsorption rate for organic pollutants. |
---|---|
AbstractList | Abstract
Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes have been developed via the single‐micelle directing assembly strategy, which show good adsorption performances toward a wide range of organic pollutants. The micelle size and structure can be precisely regulated by oil molecules based on their n‐octanol/water partition coefficients (Log
P
) in the oil–water diphase assembly system, which are critical to the pore size and pore surface property of the MCs. The affinity and steric effects of the MCs can be on‐demand adjusted, as a result, the MCs show a ultrahigh adsorption capacity (263 mg g
−1
), surface occupancy ratio (≈41.92%), and adsorption rate (≈10.85 mg g
−1
min
−1
) for microcystin‐LR, which is among the best performances up to date. The MCs also show an excellent universality to remove organic pollutants with different properties. Moreover, overcoming the challenges proposed by particulate absorbents, the MCs are stable and can be easily regenerated and reused without secondary contamination. This work paves a new route to the synthesis of high‐quality MCs for water purification. Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes have been developed via the single‐micelle directing assembly strategy, which show good adsorption performances toward a wide range of organic pollutants. The micelle size and structure can be precisely regulated by oil molecules based on their n‐octanol/water partition coefficients (Log P) in the oil–water diphase assembly system, which are critical to the pore size and pore surface property of the MCs. The affinity and steric effects of the MCs can be on‐demand adjusted, as a result, the MCs show a ultrahigh adsorption capacity (263 mg g−1), surface occupancy ratio (≈41.92%), and adsorption rate (≈10.85 mg g−1 min−1) for microcystin‐LR, which is among the best performances up to date. The MCs also show an excellent universality to remove organic pollutants with different properties. Moreover, overcoming the challenges proposed by particulate absorbents, the MCs are stable and can be easily regenerated and reused without secondary contamination. This work paves a new route to the synthesis of high‐quality MCs for water purification. Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes have been developed via the single‐micelle directing assembly strategy, which show good adsorption performances toward a wide range of organic pollutants. The micelle size and structure can be precisely regulated by oil molecules based on their n‐octanol/water partition coefficients (Log P) in the oil–water diphase assembly system, which are critical to the pore size and pore surface property of the MCs. The affinity and steric effects of the MCs can be on‐demand adjusted, as a result, the MCs show a ultrahigh adsorption capacity (263 mg g−1), surface occupancy ratio (≈41.92%), and adsorption rate (≈10.85 mg g−1 min−1) for microcystin‐LR, which is among the best performances up to date. The MCs also show an excellent universality to remove organic pollutants with different properties. Moreover, overcoming the challenges proposed by particulate absorbents, the MCs are stable and can be easily regenerated and reused without secondary contamination. This work paves a new route to the synthesis of high‐quality MCs for water purification. A single‐micelle directing assembly strategy is developed for the synthesis of vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes. The affinity and steric effects of MCs can be on‐demand adjusted; as a result, the MCs show an ultrahigh adsorption capacity, surface occupancy ratio, and adsorption rate for organic pollutants. |
Author | Hung, Chin‐Te Wang, Jinxiu Li, Wei Liu, Yupu Teng, Wei Shen, Dengke Zhai, Yunpu |
Author_xml | – sequence: 1 givenname: Yupu surname: Liu fullname: Liu, Yupu organization: Fudan University – sequence: 2 givenname: Jinxiu surname: Wang fullname: Wang, Jinxiu organization: Fudan University – sequence: 3 givenname: Wei surname: Teng fullname: Teng, Wei organization: Fudan University – sequence: 4 givenname: Chin‐Te surname: Hung fullname: Hung, Chin‐Te organization: Fudan University – sequence: 5 givenname: Yunpu surname: Zhai fullname: Zhai, Yunpu organization: Zhengzhou University – sequence: 6 givenname: Dengke surname: Shen fullname: Shen, Dengke organization: Anhui University – sequence: 7 givenname: Wei orcidid: 0000-0002-4641-620X surname: Li fullname: Li, Wei email: weilichem@fudan.edu.cn organization: Fudan University |
BookMark | eNqFkT1PwzAQhi0EEqWwMltiYWk520mcjCjiSxQV8bVGxrWLK8cOtgvKvydVEUgsTPcOz3M63XuAdp13CqFjAlMCQM9ia-2UAiVAWMF20IgUhE2Kkla7P5nAPjqIcQXACM34CH0-2xTEm1m-4fNF9KFLxjtci05Ik3os3ALfGqeSkRF7jV9UGKKwtsfzYJRLaoHvVPSdD34dce1FMm4ZsfYBP6jWfwi70eZhKZyR-N5bu07CpXiI9rSwUR19zzF6vrx4qq8ns_nVTX0-m0iWA5uwV8YKARkVtGA5e9UFl7LkADIXHLiWmoPWlFe6YsCppFmZQ6HzSsuqkrliY3S63dsF_75WMTWtiVJZK5waLm5onpUZ4eXwszE6-YOu_Dq44bqBKoBSNnADNd1SMvgYg9JNF0wrQt8QaDY9NJsemp8eBqHaCp_Gqv4funm8m81-3S_NzI7o |
CitedBy_id | crossref_primary_10_1021_acsestwater_3c00240 crossref_primary_10_1038_s41427_023_00500_0 crossref_primary_10_1016_j_cej_2022_139969 crossref_primary_10_1016_j_ijbiomac_2023_124194 crossref_primary_10_1016_j_molliq_2024_124234 crossref_primary_10_1002_macp_202200463 crossref_primary_10_1007_s12274_021_4055_y crossref_primary_10_1007_s11356_022_22275_7 |
Cites_doi | 10.1126/science.aau2405 10.1039/C7TA04859A 10.1021/jacs.7b06863 10.1021/acs.chemrev.8b00401 10.1039/C7TA01255A 10.1126/sciadv.aav9308 10.1039/c3ee41775a 10.1002/adma.201702274 10.1016/j.carbon.2018.03.093 10.1039/c3cs35377j 10.1021/acssensors.7b00920 10.14233/ajchem.2013.12889 10.1002/ange.201309447 10.1021/acsami.8b13662 10.1038/nature16185 10.1007/s10311-018-00818-0 10.1039/c2cs35300h 10.1016/j.molliq.2017.06.116 10.1002/ange.201108748 10.1007/s10853-013-7612-2 10.1016/j.chemosphere.2020.125811 10.1021/cm5037953 10.1016/S1001-0742(10)60391-9 10.1016/j.molliq.2018.10.154 10.1002/ange.202009113 10.1016/j.jhazmat.2010.08.051 10.1038/s41565-018-0307-8 10.1002/adma.201800683 10.1002/anie.202013015 10.1021/es103729m 10.1039/C8CS00493E 10.1002/ange.202008031 10.1021/es400659b 10.1039/C8TA03114B 10.1002/anie.201108748 10.1016/j.micromeso.2019.109909 10.1039/C6CS00424E 10.1021/cm201356n 10.1021/acsomega.7b01496 10.1002/adma.201907932 10.1002/anie.202009113 10.1002/ange.202013015 10.1038/s41467-017-01208-w 10.1039/c0nr00039f 10.1021/jacs.5b01180 10.1038/s41565-018-0203-2 10.1038/ncomms13377 10.1039/b924316j 10.1002/adma.201706395 10.1016/j.cej.2014.03.025 10.1002/anie.202008031 10.1021/acs.chemmater.8b04113 10.1016/j.jcis.2016.10.042 10.1021/acsnano.5b04887 10.1021/jacs.8b08788 10.1021/acs.analchem.5b00433 10.1021/acs.chemmater.7b05116 10.1039/C6CS00921B 10.1002/adma.201302184 10.1021/ja2056227 10.1016/j.snb.2019.02.038 10.1021/acs.chemmater.8b03789 10.1002/admi.201500440 10.1021/acs.analchem.6b01866 10.1021/acsami.8b04889 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202101363 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202101363 SMLL202101363 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2018YFE0201701; 2018YFA0209401 – fundername: National Natural Science Foundation of China funderid: 21733003; 21975050 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 19JC1410700 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AASGY AAYOK AAYXX ACBWZ ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3503-3b336a042a26353bf67cc8700c5a707fcf70ff279f93072c248506f59fc99c5e3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Fri Aug 16 07:20:58 EDT 2024 Sun Oct 27 05:01:53 EDT 2024 Fri Aug 23 01:09:06 EDT 2024 Sat Aug 24 01:09:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3503-3b336a042a26353bf67cc8700c5a707fcf70ff279f93072c248506f59fc99c5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4641-620X |
PQID | 2560223178 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2548417801 proquest_journals_2560223178 crossref_primary_10_1002_smll_202101363 wiley_primary_10_1002_smll_202101363_SMLL202101363 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2018; 361 2017; 8 2013; 48 2013; 47 2013; 25 2018; 140 2019; 5 2017; 46 2013; 42 2019; 14 2016; 529 2019; 17 2020; 247 2021 2021; 133 133 2010; 184 2017; 29 2020; 32 2015; 9 2014; 251 2013; 6 2019; 287 2011; 133 2018; 6 2016; 7 2010; 20 2018; 3 2015; 27 2020 2020; 132 132 2016; 3 2015; 137 2020; 294 2018; 134 2019; 48 2015; 87 2018; 30 2019; 119 2011; 45 2011; 23 2012 2012; 124 124 2017; 242 2010; 2 2018; 10 2017; 487 2014; 126 2019; 274 2018; 13 2016; 88 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_36_2 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_10_2 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 27 start-page: 808 year: 2015 publication-title: Chem. Mater. – volume: 45 start-page: 2641 year: 2011 publication-title: Environ. Sci. Technol. – volume: 30 start-page: 2589 year: 2018 publication-title: Chem. Mater. – volume: 9 year: 2015 publication-title: ACS Nano – volume: 487 start-page: 354 year: 2017 publication-title: J. Colloid Interface Sci. – volume: 140 start-page: 3892 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 8303 year: 2018 publication-title: Chem. Mater. – volume: 133 133 start-page: 2903 2939 year: 2021 2021 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 132 132 year: 2020 2020 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 5 start-page: 9156 year: 2017 publication-title: J. Mater. Chem. A – volume: 294 year: 2020 publication-title: Microporous Mesoporous Mater. – volume: 13 start-page: 634 year: 2018 publication-title: Nat. Nanotechnol. – volume: 25 start-page: 771 year: 2013 publication-title: Asian J. Chem. – volume: 137 start-page: 3779 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 683 year: 2019 publication-title: Environ. Chem. Lett. – volume: 361 start-page: 222 year: 2018 publication-title: Science – volume: 25 start-page: 5129 year: 2013 publication-title: Adv. Mater. – volume: 47 start-page: 8633 year: 2013 publication-title: Environ. Sci. Technol. – volume: 251 start-page: 91 year: 2014 publication-title: Chem. Eng. J. – volume: 247 year: 2020 publication-title: Chemosphere – volume: 134 start-page: 207 year: 2018 publication-title: Carbon – volume: 287 start-page: 296 year: 2019 publication-title: Sens. Actuators, B – volume: 529 start-page: 190 year: 2016 publication-title: Nature – volume: 184 start-page: 417 year: 2010 publication-title: J. Hazard. Mater. – volume: 23 start-page: 3583 year: 2011 publication-title: Chem. Mater. – volume: 274 start-page: 505 year: 2019 publication-title: J. Mol. Liq. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 126 start-page: 2989 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 1354 year: 2017 publication-title: Nat. Commun. – volume: 30 start-page: 8905 year: 2018 publication-title: Chem. Mater. – volume: 14 start-page: 64 year: 2019 publication-title: Nat. Nanotechnol. – volume: 20 start-page: 4478 year: 2010 publication-title: J. Mater. Chem. – volume: 3 start-page: 484 year: 2018 publication-title: ACS Sens. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 119 start-page: 1666 year: 2019 publication-title: Chem. Rev. – volume: 88 start-page: 7821 year: 2016 publication-title: Anal. Chem. – volume: 6 start-page: 2765 year: 2013 publication-title: Energy Environ. Sci. – volume: 242 start-page: 40 year: 2017 publication-title: J. Mol. Liq. – volume: 46 start-page: 6946 year: 2017 publication-title: Chem. Soc. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 48 start-page: 463 year: 2019 publication-title: Chem. Soc. Rev. – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 124 124 start-page: 2173 2215 year: 2012 2012 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 2 start-page: 887 year: 2010 publication-title: Nanoscale – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 23 start-page: 177 year: 2011 publication-title: J. Environ. Sci. – volume: 46 start-page: 1842 year: 2017 publication-title: Chem. Soc. Rev. – volume: 87 start-page: 4436 year: 2015 publication-title: Anal. Chem. – volume: 3 start-page: 446 year: 2018 publication-title: ACS Omega – volume: 42 start-page: 3765 year: 2013 publication-title: Chem. Soc. Rev. – volume: 48 start-page: 8003 year: 2013 publication-title: J. Mater. Sci. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 42 start-page: 4198 year: 2013 publication-title: Chem. Soc. Rev. – ident: e_1_2_8_5_1 doi: 10.1126/science.aau2405 – ident: e_1_2_8_49_1 doi: 10.1039/C7TA04859A – ident: e_1_2_8_54_1 doi: 10.1021/jacs.7b06863 – ident: e_1_2_8_55_1 doi: 10.1021/acs.chemrev.8b00401 – ident: e_1_2_8_13_1 doi: 10.1039/C7TA01255A – ident: e_1_2_8_34_1 doi: 10.1126/sciadv.aav9308 – ident: e_1_2_8_17_1 doi: 10.1039/c3ee41775a – ident: e_1_2_8_39_1 doi: 10.1002/adma.201702274 – ident: e_1_2_8_14_1 doi: 10.1016/j.carbon.2018.03.093 – ident: e_1_2_8_33_1 doi: 10.1039/c3cs35377j – ident: e_1_2_8_31_1 doi: 10.1021/acssensors.7b00920 – ident: e_1_2_8_58_1 doi: 10.14233/ajchem.2013.12889 – ident: e_1_2_8_43_1 doi: 10.1002/ange.201309447 – ident: e_1_2_8_37_1 doi: 10.1021/acsami.8b13662 – ident: e_1_2_8_3_1 doi: 10.1038/nature16185 – ident: e_1_2_8_19_1 doi: 10.1007/s10311-018-00818-0 – ident: e_1_2_8_32_1 doi: 10.1039/c2cs35300h – ident: e_1_2_8_61_1 doi: 10.1016/j.molliq.2017.06.116 – ident: e_1_2_8_36_2 doi: 10.1002/ange.201108748 – ident: e_1_2_8_57_1 doi: 10.1007/s10853-013-7612-2 – ident: e_1_2_8_56_1 doi: 10.1016/j.chemosphere.2020.125811 – ident: e_1_2_8_48_1 doi: 10.1021/cm5037953 – ident: e_1_2_8_59_1 doi: 10.1016/S1001-0742(10)60391-9 – ident: e_1_2_8_52_1 doi: 10.1016/j.molliq.2018.10.154 – ident: e_1_2_8_10_2 doi: 10.1002/ange.202009113 – ident: e_1_2_8_15_1 doi: 10.1016/j.jhazmat.2010.08.051 – ident: e_1_2_8_1_1 doi: 10.1038/s41565-018-0307-8 – ident: e_1_2_8_11_1 doi: 10.1002/adma.201800683 – ident: e_1_2_8_7_1 doi: 10.1002/anie.202013015 – ident: e_1_2_8_16_1 doi: 10.1021/es103729m – ident: e_1_2_8_29_1 doi: 10.1039/C8CS00493E – ident: e_1_2_8_8_2 doi: 10.1002/ange.202008031 – ident: e_1_2_8_9_1 doi: 10.1021/es400659b – ident: e_1_2_8_50_1 doi: 10.1039/C8TA03114B – ident: e_1_2_8_36_1 doi: 10.1002/anie.201108748 – ident: e_1_2_8_20_1 doi: 10.1016/j.micromeso.2019.109909 – ident: e_1_2_8_46_1 doi: 10.1039/C6CS00424E – ident: e_1_2_8_35_1 doi: 10.1021/cm201356n – ident: e_1_2_8_30_1 doi: 10.1021/acsomega.7b01496 – ident: e_1_2_8_6_1 doi: 10.1002/adma.201907932 – ident: e_1_2_8_10_1 doi: 10.1002/anie.202009113 – ident: e_1_2_8_7_2 doi: 10.1002/ange.202013015 – ident: e_1_2_8_4_1 doi: 10.1038/s41467-017-01208-w – ident: e_1_2_8_47_1 doi: 10.1039/c0nr00039f – ident: e_1_2_8_38_1 doi: 10.1021/jacs.5b01180 – ident: e_1_2_8_2_1 doi: 10.1038/s41565-018-0203-2 – ident: e_1_2_8_12_1 doi: 10.1038/ncomms13377 – ident: e_1_2_8_18_1 doi: 10.1039/b924316j – ident: e_1_2_8_23_1 doi: 10.1002/adma.201706395 – ident: e_1_2_8_60_1 doi: 10.1016/j.cej.2014.03.025 – ident: e_1_2_8_8_1 doi: 10.1002/anie.202008031 – ident: e_1_2_8_51_1 doi: 10.1021/acs.chemmater.8b04113 – ident: e_1_2_8_53_1 doi: 10.1016/j.jcis.2016.10.042 – ident: e_1_2_8_41_1 doi: 10.1021/acsnano.5b04887 – ident: e_1_2_8_21_1 doi: 10.1021/jacs.8b08788 – ident: e_1_2_8_40_1 doi: 10.1021/acs.analchem.5b00433 – ident: e_1_2_8_25_1 doi: 10.1021/acs.chemmater.7b05116 – ident: e_1_2_8_28_1 doi: 10.1039/C6CS00921B – ident: e_1_2_8_26_1 doi: 10.1002/adma.201302184 – ident: e_1_2_8_27_1 doi: 10.1021/ja2056227 – ident: e_1_2_8_45_1 doi: 10.1016/j.snb.2019.02.038 – ident: e_1_2_8_22_1 doi: 10.1021/acs.chemmater.8b03789 – ident: e_1_2_8_44_1 doi: 10.1002/admi.201500440 – ident: e_1_2_8_42_1 doi: 10.1021/acs.analchem.6b01866 – ident: e_1_2_8_24_1 doi: 10.1021/acsami.8b04889 |
SSID | ssj0031247 |
Score | 2.4733994 |
Snippet | Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically oriented... Abstract Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2101363 |
SubjectTerms | Adsorption Assembly Coatings controllable synthesis mesoporous materials Micelles Nanotechnology Occupancy organic pollutants Pollutants Pore size self‐assembly Steric effects Surface chemistry Surface properties Water purification Water treatment |
Title | Ultrahigh Adsorption Capacity and Kinetics of Vertically Oriented Mesoporous Coatings for Removal of Organic Pollutants |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202101363 https://www.proquest.com/docview/2560223178 https://search.proquest.com/docview/2548417801 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT4MwFG-MJz34bZxOUxMTT2xAgcJxmS6LbmqmM7uRUtqLDMzYYvSv9z3Y2ObFRG8Q2gDt-_i99vX3CLnike9YgtkGWEgOAYpShoiRLc8XTFm-Yq7Edcj-g9cdOncjd7Ryir_kh6gW3FAzCnuNCi6ivLkkDc3HCW4dQMhiMQ_pPi3GMafrZlDxRzFwXkV1FfBZBhJvLVgbTbu53n3dKy2h5ipgLTxOZ5eIxbeWiSZvjdk0asivHzSO__mZPbIzh6O0VcrPPtlQ6QHZXiEpPCQfw2QKFgmCeNqK82xS2BjaBicrAcFTkcb0Hloj3TPNNH0tErVFknzSR-RQBkRL-yrPAOdns5y2M4GJ1jkFsEwHapyBpGO38kyopE9YehkrG-dHZNi5fWl3jXm5BkMyF0_pRYx5AoyAQIIbFmmPSwnmwJSu4CbXUnNTa5sHOgDDYkskUzM97QZaBoF0FTsmm2mWqhNChZJurJgjPG06KraiWGsNYb82ma-1Z9bI9WK6wveSlSMs-ZftEIcyrIayRuqL2Qzn2pmHCPMAFlncr5HL6jHoFW6WiFTBcEAbB6SYgwOvEbuYul_eFD73e73q7vQvnc7IFl6X-YV1sjmdzNQ5YJ5pdFHI9TffTvsQ |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb5swFH_qx6HbYevaVcuada40aScSwIDhGGWL0jZppyypdkPG2JcmMJVE0_bX9z0IJNll0noEbAH2-_g9-_n3AD6JJPQcyV0LLaTAAEVrS6bElhdKrp1Qc1_ROuT4NhjOvOsffp1NSGdhKn6IZsGNNKO016TgtCDd3bCGFos57R1gzOLwgO_DIeo8p-oNXyYNgxRH91XWV0GvZRH1Vs3baLvd3f67fmkDNrcha-lzBq8hqb-2SjV56KyWSUf9-YvI8Vm_cwyv1oiU9SoRegN7OjuBl1s8hafwazZfolHCOJ710iJ_LM0M66OfVQjimcxSdoOtifGZ5Ybdl7nacj7_ze6IRhlBLRvrIkeon68K1s8l5VoXDPEym-hFjsJO3apjoYp9o-rLVNy4eAuzwddpf2itKzZYivt0UC_hPJBoByRx3PDEBEIptAi28qWwhVFG2Ma4IjIR2hZXEZ-aHRg_MiqKlK_5GRxkeabfAZNa-anmngyM7enUSVJjDEb-xuahMYHdgs_1fMU_K2KOuKJgdmMayrgZyha06-mM1wpaxIT0EBk5ImzBZfMYVYv2S2SmcTiwjYeCLNCHt8At5-4fb4q_j0ej5ur9_3T6CEfD6XgUj65ub87hBd2v0g3bcLB8XOkPCIGWyUUp5E-Dt_8o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkCp64FGoukDBSEg9BZI4iZMj2nbFYxcQZRG3yHE8ly4JIrtC9Nd3JtkNSy9I9JjEVhJ7Ht_Y428ADlQWB56WvkMWUlGAYq2jc2bLi7W0XmxlaHgdcnARnQyDs7vwbu4Uf8MP0S64sWbU9poV_CHHoxfS0Op-xFsHFLJ4MpIfYCmICP4yLLpuCaQkea-6vAo5LYeZt2a0ja5_9Lr_a7f0gjXnEWvtcnqroGcf22Sa_D6cjLND8-cfHsf_-Zs1WJniUXHcCNA6LNjiM3yaYyncgKfhaEwmiaJ4cZxX5WNtZESXvKwhCC90kYtzas18z6JEcVtnauvR6FlcMokyQVoxsFVJQL-cVKJbas60rgShZXFt70sSde7WHAo14oprL3Np42oThr2fN90TZ1qvwTEy5GN6mZSRJiugmeFGZhgpY8geuCbUylVoULmIvkowIcviG2ZTcyMMEzRJYkIrv8BiURb2KwhtTZhbGegI3cDmXpYjIsX96MoYMXI78H02XelDQ8uRNgTMfspDmbZD2YGd2WymU_WsUsZ5hIs8FXdgv31MisW7JbqwNBzUJiAxVuTBO-DXU_fGm9Jfg36_vdp6T6c9-Hj1o5f2Ty_Ot2GZbze5hjuwOH6c2G-Ef8bZbi3ifwGJB_3X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrahigh+Adsorption+Capacity+and+Kinetics+of+Vertically+Oriented+Mesoporous+Coatings+for+Removal+of+Organic+Pollutants&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Yupu&rft.au=Wang%2C+Jinxiu&rft.au=Teng%2C+Wei&rft.au=Hung%2C+Chin-Te&rft.date=2021-08-01&rft.eissn=1613-6829&rft.volume=17&rft.issue=32&rft.spage=e2101363&rft.epage=e2101363&rft_id=info:doi/10.1002%2Fsmll.202101363&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |