Ultrahigh Adsorption Capacity and Kinetics of Vertically Oriented Mesoporous Coatings for Removal of Organic Pollutants

Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes have been developed via the single‐micelle directing assembly strategy,...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 32; pp. e2101363 - n/a
Main Authors Liu, Yupu, Wang, Jinxiu, Teng, Wei, Hung, Chin‐Te, Zhai, Yunpu, Shen, Dengke, Li, Wei
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes have been developed via the single‐micelle directing assembly strategy, which show good adsorption performances toward a wide range of organic pollutants. The micelle size and structure can be precisely regulated by oil molecules based on their n‐octanol/water partition coefficients (Log P) in the oil–water diphase assembly system, which are critical to the pore size and pore surface property of the MCs. The affinity and steric effects of the MCs can be on‐demand adjusted, as a result, the MCs show a ultrahigh adsorption capacity (263 mg g−1), surface occupancy ratio (≈41.92%), and adsorption rate (≈10.85 mg g−1 min−1) for microcystin‐LR, which is among the best performances up to date. The MCs also show an excellent universality to remove organic pollutants with different properties. Moreover, overcoming the challenges proposed by particulate absorbents, the MCs are stable and can be easily regenerated and reused without secondary contamination. This work paves a new route to the synthesis of high‐quality MCs for water purification. A single‐micelle directing assembly strategy is developed for the synthesis of vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes. The affinity and steric effects of MCs can be on‐demand adjusted; as a result, the MCs show an ultrahigh adsorption capacity, surface occupancy ratio, and adsorption rate for organic pollutants.
AbstractList Abstract Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes have been developed via the single‐micelle directing assembly strategy, which show good adsorption performances toward a wide range of organic pollutants. The micelle size and structure can be precisely regulated by oil molecules based on their n‐octanol/water partition coefficients (Log P ) in the oil–water diphase assembly system, which are critical to the pore size and pore surface property of the MCs. The affinity and steric effects of the MCs can be on‐demand adjusted, as a result, the MCs show a ultrahigh adsorption capacity (263 mg g −1 ), surface occupancy ratio (≈41.92%), and adsorption rate (≈10.85 mg g −1  min −1 ) for microcystin‐LR, which is among the best performances up to date. The MCs also show an excellent universality to remove organic pollutants with different properties. Moreover, overcoming the challenges proposed by particulate absorbents, the MCs are stable and can be easily regenerated and reused without secondary contamination. This work paves a new route to the synthesis of high‐quality MCs for water purification.
Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes have been developed via the single‐micelle directing assembly strategy, which show good adsorption performances toward a wide range of organic pollutants. The micelle size and structure can be precisely regulated by oil molecules based on their n‐octanol/water partition coefficients (Log P) in the oil–water diphase assembly system, which are critical to the pore size and pore surface property of the MCs. The affinity and steric effects of the MCs can be on‐demand adjusted, as a result, the MCs show a ultrahigh adsorption capacity (263 mg g−1), surface occupancy ratio (≈41.92%), and adsorption rate (≈10.85 mg g−1 min−1) for microcystin‐LR, which is among the best performances up to date. The MCs also show an excellent universality to remove organic pollutants with different properties. Moreover, overcoming the challenges proposed by particulate absorbents, the MCs are stable and can be easily regenerated and reused without secondary contamination. This work paves a new route to the synthesis of high‐quality MCs for water purification.
Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes have been developed via the single‐micelle directing assembly strategy, which show good adsorption performances toward a wide range of organic pollutants. The micelle size and structure can be precisely regulated by oil molecules based on their n‐octanol/water partition coefficients (Log P) in the oil–water diphase assembly system, which are critical to the pore size and pore surface property of the MCs. The affinity and steric effects of the MCs can be on‐demand adjusted, as a result, the MCs show a ultrahigh adsorption capacity (263 mg g−1), surface occupancy ratio (≈41.92%), and adsorption rate (≈10.85 mg g−1 min−1) for microcystin‐LR, which is among the best performances up to date. The MCs also show an excellent universality to remove organic pollutants with different properties. Moreover, overcoming the challenges proposed by particulate absorbents, the MCs are stable and can be easily regenerated and reused without secondary contamination. This work paves a new route to the synthesis of high‐quality MCs for water purification. A single‐micelle directing assembly strategy is developed for the synthesis of vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes. The affinity and steric effects of MCs can be on‐demand adjusted; as a result, the MCs show an ultrahigh adsorption capacity, surface occupancy ratio, and adsorption rate for organic pollutants.
Author Hung, Chin‐Te
Wang, Jinxiu
Li, Wei
Liu, Yupu
Teng, Wei
Shen, Dengke
Zhai, Yunpu
Author_xml – sequence: 1
  givenname: Yupu
  surname: Liu
  fullname: Liu, Yupu
  organization: Fudan University
– sequence: 2
  givenname: Jinxiu
  surname: Wang
  fullname: Wang, Jinxiu
  organization: Fudan University
– sequence: 3
  givenname: Wei
  surname: Teng
  fullname: Teng, Wei
  organization: Fudan University
– sequence: 4
  givenname: Chin‐Te
  surname: Hung
  fullname: Hung, Chin‐Te
  organization: Fudan University
– sequence: 5
  givenname: Yunpu
  surname: Zhai
  fullname: Zhai, Yunpu
  organization: Zhengzhou University
– sequence: 6
  givenname: Dengke
  surname: Shen
  fullname: Shen, Dengke
  organization: Anhui University
– sequence: 7
  givenname: Wei
  orcidid: 0000-0002-4641-620X
  surname: Li
  fullname: Li, Wei
  email: weilichem@fudan.edu.cn
  organization: Fudan University
BookMark eNqFkT1PwzAQhi0EEqWwMltiYWk520mcjCjiSxQV8bVGxrWLK8cOtgvKvydVEUgsTPcOz3M63XuAdp13CqFjAlMCQM9ia-2UAiVAWMF20IgUhE2Kkla7P5nAPjqIcQXACM34CH0-2xTEm1m-4fNF9KFLxjtci05Ik3os3ALfGqeSkRF7jV9UGKKwtsfzYJRLaoHvVPSdD34dce1FMm4ZsfYBP6jWfwi70eZhKZyR-N5bu07CpXiI9rSwUR19zzF6vrx4qq8ns_nVTX0-m0iWA5uwV8YKARkVtGA5e9UFl7LkADIXHLiWmoPWlFe6YsCppFmZQ6HzSsuqkrliY3S63dsF_75WMTWtiVJZK5waLm5onpUZ4eXwszE6-YOu_Dq44bqBKoBSNnADNd1SMvgYg9JNF0wrQt8QaDY9NJsemp8eBqHaCp_Gqv4funm8m81-3S_NzI7o
CitedBy_id crossref_primary_10_1021_acsestwater_3c00240
crossref_primary_10_1038_s41427_023_00500_0
crossref_primary_10_1016_j_cej_2022_139969
crossref_primary_10_1016_j_ijbiomac_2023_124194
crossref_primary_10_1016_j_molliq_2024_124234
crossref_primary_10_1002_macp_202200463
crossref_primary_10_1007_s12274_021_4055_y
crossref_primary_10_1007_s11356_022_22275_7
Cites_doi 10.1126/science.aau2405
10.1039/C7TA04859A
10.1021/jacs.7b06863
10.1021/acs.chemrev.8b00401
10.1039/C7TA01255A
10.1126/sciadv.aav9308
10.1039/c3ee41775a
10.1002/adma.201702274
10.1016/j.carbon.2018.03.093
10.1039/c3cs35377j
10.1021/acssensors.7b00920
10.14233/ajchem.2013.12889
10.1002/ange.201309447
10.1021/acsami.8b13662
10.1038/nature16185
10.1007/s10311-018-00818-0
10.1039/c2cs35300h
10.1016/j.molliq.2017.06.116
10.1002/ange.201108748
10.1007/s10853-013-7612-2
10.1016/j.chemosphere.2020.125811
10.1021/cm5037953
10.1016/S1001-0742(10)60391-9
10.1016/j.molliq.2018.10.154
10.1002/ange.202009113
10.1016/j.jhazmat.2010.08.051
10.1038/s41565-018-0307-8
10.1002/adma.201800683
10.1002/anie.202013015
10.1021/es103729m
10.1039/C8CS00493E
10.1002/ange.202008031
10.1021/es400659b
10.1039/C8TA03114B
10.1002/anie.201108748
10.1016/j.micromeso.2019.109909
10.1039/C6CS00424E
10.1021/cm201356n
10.1021/acsomega.7b01496
10.1002/adma.201907932
10.1002/anie.202009113
10.1002/ange.202013015
10.1038/s41467-017-01208-w
10.1039/c0nr00039f
10.1021/jacs.5b01180
10.1038/s41565-018-0203-2
10.1038/ncomms13377
10.1039/b924316j
10.1002/adma.201706395
10.1016/j.cej.2014.03.025
10.1002/anie.202008031
10.1021/acs.chemmater.8b04113
10.1016/j.jcis.2016.10.042
10.1021/acsnano.5b04887
10.1021/jacs.8b08788
10.1021/acs.analchem.5b00433
10.1021/acs.chemmater.7b05116
10.1039/C6CS00921B
10.1002/adma.201302184
10.1021/ja2056227
10.1016/j.snb.2019.02.038
10.1021/acs.chemmater.8b03789
10.1002/admi.201500440
10.1021/acs.analchem.6b01866
10.1021/acsami.8b04889
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202101363
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202101363
SMLL202101363
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2018YFE0201701; 2018YFA0209401
– fundername: National Natural Science Foundation of China
  funderid: 21733003; 21975050
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 19JC1410700
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AASGY
AAYOK
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3503-3b336a042a26353bf67cc8700c5a707fcf70ff279f93072c248506f59fc99c5e3
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Fri Aug 16 07:20:58 EDT 2024
Sun Oct 27 05:01:53 EDT 2024
Fri Aug 23 01:09:06 EDT 2024
Sat Aug 24 01:09:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3503-3b336a042a26353bf67cc8700c5a707fcf70ff279f93072c248506f59fc99c5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4641-620X
PQID 2560223178
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_2548417801
proquest_journals_2560223178
crossref_primary_10_1002_smll_202101363
wiley_primary_10_1002_smll_202101363_SMLL202101363
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2018; 361
2017; 8
2013; 48
2013; 47
2013; 25
2018; 140
2019; 5
2017; 46
2013; 42
2019; 14
2016; 529
2019; 17
2020; 247
2021 2021; 133 133
2010; 184
2017; 29
2020; 32
2015; 9
2014; 251
2013; 6
2019; 287
2011; 133
2018; 6
2016; 7
2010; 20
2018; 3
2015; 27
2020 2020; 132 132
2016; 3
2015; 137
2020; 294
2018; 134
2019; 48
2015; 87
2018; 30
2019; 119
2011; 45
2011; 23
2012 2012; 124 124
2017; 242
2010; 2
2018; 10
2017; 487
2014; 126
2019; 274
2018; 13
2016; 88
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_36_2
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_10_2
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 27
  start-page: 808
  year: 2015
  publication-title: Chem. Mater.
– volume: 45
  start-page: 2641
  year: 2011
  publication-title: Environ. Sci. Technol.
– volume: 30
  start-page: 2589
  year: 2018
  publication-title: Chem. Mater.
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 487
  start-page: 354
  year: 2017
  publication-title: J. Colloid Interface Sci.
– volume: 140
  start-page: 3892
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 8303
  year: 2018
  publication-title: Chem. Mater.
– volume: 133 133
  start-page: 2903 2939
  year: 2021 2021
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 132 132
  year: 2020 2020
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 5
  start-page: 9156
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 294
  year: 2020
  publication-title: Microporous Mesoporous Mater.
– volume: 13
  start-page: 634
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 25
  start-page: 771
  year: 2013
  publication-title: Asian J. Chem.
– volume: 137
  start-page: 3779
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 683
  year: 2019
  publication-title: Environ. Chem. Lett.
– volume: 361
  start-page: 222
  year: 2018
  publication-title: Science
– volume: 25
  start-page: 5129
  year: 2013
  publication-title: Adv. Mater.
– volume: 47
  start-page: 8633
  year: 2013
  publication-title: Environ. Sci. Technol.
– volume: 251
  start-page: 91
  year: 2014
  publication-title: Chem. Eng. J.
– volume: 247
  year: 2020
  publication-title: Chemosphere
– volume: 134
  start-page: 207
  year: 2018
  publication-title: Carbon
– volume: 287
  start-page: 296
  year: 2019
  publication-title: Sens. Actuators, B
– volume: 529
  start-page: 190
  year: 2016
  publication-title: Nature
– volume: 184
  start-page: 417
  year: 2010
  publication-title: J. Hazard. Mater.
– volume: 23
  start-page: 3583
  year: 2011
  publication-title: Chem. Mater.
– volume: 274
  start-page: 505
  year: 2019
  publication-title: J. Mol. Liq.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 126
  start-page: 2989
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 1354
  year: 2017
  publication-title: Nat. Commun.
– volume: 30
  start-page: 8905
  year: 2018
  publication-title: Chem. Mater.
– volume: 14
  start-page: 64
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 20
  start-page: 4478
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 484
  year: 2018
  publication-title: ACS Sens.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 119
  start-page: 1666
  year: 2019
  publication-title: Chem. Rev.
– volume: 88
  start-page: 7821
  year: 2016
  publication-title: Anal. Chem.
– volume: 6
  start-page: 2765
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 242
  start-page: 40
  year: 2017
  publication-title: J. Mol. Liq.
– volume: 46
  start-page: 6946
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 48
  start-page: 463
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 124 124
  start-page: 2173 2215
  year: 2012 2012
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 2
  start-page: 887
  year: 2010
  publication-title: Nanoscale
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 23
  start-page: 177
  year: 2011
  publication-title: J. Environ. Sci.
– volume: 46
  start-page: 1842
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 87
  start-page: 4436
  year: 2015
  publication-title: Anal. Chem.
– volume: 3
  start-page: 446
  year: 2018
  publication-title: ACS Omega
– volume: 42
  start-page: 3765
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 48
  start-page: 8003
  year: 2013
  publication-title: J. Mater. Sci.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 42
  start-page: 4198
  year: 2013
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_8_5_1
  doi: 10.1126/science.aau2405
– ident: e_1_2_8_49_1
  doi: 10.1039/C7TA04859A
– ident: e_1_2_8_54_1
  doi: 10.1021/jacs.7b06863
– ident: e_1_2_8_55_1
  doi: 10.1021/acs.chemrev.8b00401
– ident: e_1_2_8_13_1
  doi: 10.1039/C7TA01255A
– ident: e_1_2_8_34_1
  doi: 10.1126/sciadv.aav9308
– ident: e_1_2_8_17_1
  doi: 10.1039/c3ee41775a
– ident: e_1_2_8_39_1
  doi: 10.1002/adma.201702274
– ident: e_1_2_8_14_1
  doi: 10.1016/j.carbon.2018.03.093
– ident: e_1_2_8_33_1
  doi: 10.1039/c3cs35377j
– ident: e_1_2_8_31_1
  doi: 10.1021/acssensors.7b00920
– ident: e_1_2_8_58_1
  doi: 10.14233/ajchem.2013.12889
– ident: e_1_2_8_43_1
  doi: 10.1002/ange.201309447
– ident: e_1_2_8_37_1
  doi: 10.1021/acsami.8b13662
– ident: e_1_2_8_3_1
  doi: 10.1038/nature16185
– ident: e_1_2_8_19_1
  doi: 10.1007/s10311-018-00818-0
– ident: e_1_2_8_32_1
  doi: 10.1039/c2cs35300h
– ident: e_1_2_8_61_1
  doi: 10.1016/j.molliq.2017.06.116
– ident: e_1_2_8_36_2
  doi: 10.1002/ange.201108748
– ident: e_1_2_8_57_1
  doi: 10.1007/s10853-013-7612-2
– ident: e_1_2_8_56_1
  doi: 10.1016/j.chemosphere.2020.125811
– ident: e_1_2_8_48_1
  doi: 10.1021/cm5037953
– ident: e_1_2_8_59_1
  doi: 10.1016/S1001-0742(10)60391-9
– ident: e_1_2_8_52_1
  doi: 10.1016/j.molliq.2018.10.154
– ident: e_1_2_8_10_2
  doi: 10.1002/ange.202009113
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jhazmat.2010.08.051
– ident: e_1_2_8_1_1
  doi: 10.1038/s41565-018-0307-8
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.201800683
– ident: e_1_2_8_7_1
  doi: 10.1002/anie.202013015
– ident: e_1_2_8_16_1
  doi: 10.1021/es103729m
– ident: e_1_2_8_29_1
  doi: 10.1039/C8CS00493E
– ident: e_1_2_8_8_2
  doi: 10.1002/ange.202008031
– ident: e_1_2_8_9_1
  doi: 10.1021/es400659b
– ident: e_1_2_8_50_1
  doi: 10.1039/C8TA03114B
– ident: e_1_2_8_36_1
  doi: 10.1002/anie.201108748
– ident: e_1_2_8_20_1
  doi: 10.1016/j.micromeso.2019.109909
– ident: e_1_2_8_46_1
  doi: 10.1039/C6CS00424E
– ident: e_1_2_8_35_1
  doi: 10.1021/cm201356n
– ident: e_1_2_8_30_1
  doi: 10.1021/acsomega.7b01496
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.201907932
– ident: e_1_2_8_10_1
  doi: 10.1002/anie.202009113
– ident: e_1_2_8_7_2
  doi: 10.1002/ange.202013015
– ident: e_1_2_8_4_1
  doi: 10.1038/s41467-017-01208-w
– ident: e_1_2_8_47_1
  doi: 10.1039/c0nr00039f
– ident: e_1_2_8_38_1
  doi: 10.1021/jacs.5b01180
– ident: e_1_2_8_2_1
  doi: 10.1038/s41565-018-0203-2
– ident: e_1_2_8_12_1
  doi: 10.1038/ncomms13377
– ident: e_1_2_8_18_1
  doi: 10.1039/b924316j
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.201706395
– ident: e_1_2_8_60_1
  doi: 10.1016/j.cej.2014.03.025
– ident: e_1_2_8_8_1
  doi: 10.1002/anie.202008031
– ident: e_1_2_8_51_1
  doi: 10.1021/acs.chemmater.8b04113
– ident: e_1_2_8_53_1
  doi: 10.1016/j.jcis.2016.10.042
– ident: e_1_2_8_41_1
  doi: 10.1021/acsnano.5b04887
– ident: e_1_2_8_21_1
  doi: 10.1021/jacs.8b08788
– ident: e_1_2_8_40_1
  doi: 10.1021/acs.analchem.5b00433
– ident: e_1_2_8_25_1
  doi: 10.1021/acs.chemmater.7b05116
– ident: e_1_2_8_28_1
  doi: 10.1039/C6CS00921B
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.201302184
– ident: e_1_2_8_27_1
  doi: 10.1021/ja2056227
– ident: e_1_2_8_45_1
  doi: 10.1016/j.snb.2019.02.038
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.chemmater.8b03789
– ident: e_1_2_8_44_1
  doi: 10.1002/admi.201500440
– ident: e_1_2_8_42_1
  doi: 10.1021/acs.analchem.6b01866
– ident: e_1_2_8_24_1
  doi: 10.1021/acsami.8b04889
SSID ssj0031247
Score 2.4733994
Snippet Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically oriented...
Abstract Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage e2101363
SubjectTerms Adsorption
Assembly
Coatings
controllable synthesis
mesoporous materials
Micelles
Nanotechnology
Occupancy
organic pollutants
Pollutants
Pore size
self‐assembly
Steric effects
Surface chemistry
Surface properties
Water purification
Water treatment
Title Ultrahigh Adsorption Capacity and Kinetics of Vertically Oriented Mesoporous Coatings for Removal of Organic Pollutants
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202101363
https://www.proquest.com/docview/2560223178
https://search.proquest.com/docview/2548417801
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT4MwFG-MJz34bZxOUxMTT2xAgcJxmS6LbmqmM7uRUtqLDMzYYvSv9z3Y2ObFRG8Q2gDt-_i99vX3CLnike9YgtkGWEgOAYpShoiRLc8XTFm-Yq7Edcj-g9cdOncjd7Ryir_kh6gW3FAzCnuNCi6ivLkkDc3HCW4dQMhiMQ_pPi3GMafrZlDxRzFwXkV1FfBZBhJvLVgbTbu53n3dKy2h5ipgLTxOZ5eIxbeWiSZvjdk0asivHzSO__mZPbIzh6O0VcrPPtlQ6QHZXiEpPCQfw2QKFgmCeNqK82xS2BjaBicrAcFTkcb0Hloj3TPNNH0tErVFknzSR-RQBkRL-yrPAOdns5y2M4GJ1jkFsEwHapyBpGO38kyopE9YehkrG-dHZNi5fWl3jXm5BkMyF0_pRYx5AoyAQIIbFmmPSwnmwJSu4CbXUnNTa5sHOgDDYkskUzM97QZaBoF0FTsmm2mWqhNChZJurJgjPG06KraiWGsNYb82ma-1Z9bI9WK6wveSlSMs-ZftEIcyrIayRuqL2Qzn2pmHCPMAFlncr5HL6jHoFW6WiFTBcEAbB6SYgwOvEbuYul_eFD73e73q7vQvnc7IFl6X-YV1sjmdzNQ5YJ5pdFHI9TffTvsQ
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb5swFH_qx6HbYevaVcuada40aScSwIDhGGWL0jZppyypdkPG2JcmMJVE0_bX9z0IJNll0noEbAH2-_g9-_n3AD6JJPQcyV0LLaTAAEVrS6bElhdKrp1Qc1_ROuT4NhjOvOsffp1NSGdhKn6IZsGNNKO016TgtCDd3bCGFos57R1gzOLwgO_DIeo8p-oNXyYNgxRH91XWV0GvZRH1Vs3baLvd3f67fmkDNrcha-lzBq8hqb-2SjV56KyWSUf9-YvI8Vm_cwyv1oiU9SoRegN7OjuBl1s8hafwazZfolHCOJ710iJ_LM0M66OfVQjimcxSdoOtifGZ5Ybdl7nacj7_ze6IRhlBLRvrIkeon68K1s8l5VoXDPEym-hFjsJO3apjoYp9o-rLVNy4eAuzwddpf2itKzZYivt0UC_hPJBoByRx3PDEBEIptAi28qWwhVFG2Ma4IjIR2hZXEZ-aHRg_MiqKlK_5GRxkeabfAZNa-anmngyM7enUSVJjDEb-xuahMYHdgs_1fMU_K2KOuKJgdmMayrgZyha06-mM1wpaxIT0EBk5ImzBZfMYVYv2S2SmcTiwjYeCLNCHt8At5-4fb4q_j0ej5ur9_3T6CEfD6XgUj65ub87hBd2v0g3bcLB8XOkPCIGWyUUp5E-Dt_8o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkCp64FGoukDBSEg9BZI4iZMj2nbFYxcQZRG3yHE8ly4JIrtC9Nd3JtkNSy9I9JjEVhJ7Ht_Y428ADlQWB56WvkMWUlGAYq2jc2bLi7W0XmxlaHgdcnARnQyDs7vwbu4Uf8MP0S64sWbU9poV_CHHoxfS0Op-xFsHFLJ4MpIfYCmICP4yLLpuCaQkea-6vAo5LYeZt2a0ja5_9Lr_a7f0gjXnEWvtcnqroGcf22Sa_D6cjLND8-cfHsf_-Zs1WJniUXHcCNA6LNjiM3yaYyncgKfhaEwmiaJ4cZxX5WNtZESXvKwhCC90kYtzas18z6JEcVtnauvR6FlcMokyQVoxsFVJQL-cVKJbas60rgShZXFt70sSde7WHAo14oprL3Np42oThr2fN90TZ1qvwTEy5GN6mZSRJiugmeFGZhgpY8geuCbUylVoULmIvkowIcviG2ZTcyMMEzRJYkIrv8BiURb2KwhtTZhbGegI3cDmXpYjIsX96MoYMXI78H02XelDQ8uRNgTMfspDmbZD2YGd2WymU_WsUsZ5hIs8FXdgv31MisW7JbqwNBzUJiAxVuTBO-DXU_fGm9Jfg36_vdp6T6c9-Hj1o5f2Ty_Ot2GZbze5hjuwOH6c2G-Ef8bZbi3ifwGJB_3X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrahigh+Adsorption+Capacity+and+Kinetics+of+Vertically+Oriented+Mesoporous+Coatings+for+Removal+of+Organic+Pollutants&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Yupu&rft.au=Wang%2C+Jinxiu&rft.au=Teng%2C+Wei&rft.au=Hung%2C+Chin-Te&rft.date=2021-08-01&rft.eissn=1613-6829&rft.volume=17&rft.issue=32&rft.spage=e2101363&rft.epage=e2101363&rft_id=info:doi/10.1002%2Fsmll.202101363&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon