Triarylamine‐Pyridine‐Carbonitriles for Organic Light‐Emitting Devices with EQE Nearly 40

Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid‐state lighting and full‐color displays. Here, the design and synthesis of three triarylamine‐pyridine‐carbonitrile‐based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit ex...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 35; pp. e2008032 - n/a
Main Authors Chen, Yi‐Kuan, Jayakumar, Jayachandran, Hsieh, Chia‐Min, Wu, Tien‐Lin, Liao, Chun‐Cheng, Pandidurai, Jayabalan, Ko, Chang‐Lun, Hung, Wen‐Yi, Cheng, Chien‐Hong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid‐state lighting and full‐color displays. Here, the design and synthesis of three triarylamine‐pyridine‐carbonitrile‐based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79−100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ// = 86−88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light‐emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A–1, and a power efficiency of 136.3 ± 2.2 lm W–1. The highest device efficiency of 39.8% appears to be record‐breaking among TADF‐based OLEDs to date. In addition, the TPAmPPC‐based device shows superior operation lifetime and high‐temperature resistance. It is worth noting that the TPA‐PPC‐based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application. Three 2,6‐diphenylpyridine‐3,5‐dicarbonitrile‐based compounds with excellent photoluminescent quantum yields (79–100%) and high horizontal dipole ratios (86−88%) in the thin films are demonstrated. With two methyl groups on the triarylamines, the spin−orbit coupling is enhanced due to the elevated locally excited triplet states (3LE), leading to a fast reverse intersystem crossing. Green thermally activated delayed fluorescence (TADF) organic light‐emitting diodes based on them exhibit a record‐high external quantum efficiency of 39.8% without any optical extraction technique.
AbstractList Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid‐state lighting and full‐color displays. Here, the design and synthesis of three triarylamine‐pyridine‐carbonitrile‐based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79−100% with small Δ E ST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ //  = 86−88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light‐emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A –1 , and a power efficiency of 136.3 ± 2.2 lm W –1 . The highest device efficiency of 39.8% appears to be record‐breaking among TADF‐based OLEDs to date. In addition, the TPAmPPC‐based device shows superior operation lifetime and high‐temperature resistance. It is worth noting that the TPA‐PPC‐based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application.
Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid‐state lighting and full‐color displays. Here, the design and synthesis of three triarylamine‐pyridine‐carbonitrile‐based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79−100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ// = 86−88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light‐emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A–1, and a power efficiency of 136.3 ± 2.2 lm W–1. The highest device efficiency of 39.8% appears to be record‐breaking among TADF‐based OLEDs to date. In addition, the TPAmPPC‐based device shows superior operation lifetime and high‐temperature resistance. It is worth noting that the TPA‐PPC‐based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application. Three 2,6‐diphenylpyridine‐3,5‐dicarbonitrile‐based compounds with excellent photoluminescent quantum yields (79–100%) and high horizontal dipole ratios (86−88%) in the thin films are demonstrated. With two methyl groups on the triarylamines, the spin−orbit coupling is enhanced due to the elevated locally excited triplet states (3LE), leading to a fast reverse intersystem crossing. Green thermally activated delayed fluorescence (TADF) organic light‐emitting diodes based on them exhibit a record‐high external quantum efficiency of 39.8% without any optical extraction technique.
Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid‐state lighting and full‐color displays. Here, the design and synthesis of three triarylamine‐pyridine‐carbonitrile‐based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79−100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ// = 86−88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light‐emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A–1, and a power efficiency of 136.3 ± 2.2 lm W–1. The highest device efficiency of 39.8% appears to be record‐breaking among TADF‐based OLEDs to date. In addition, the TPAmPPC‐based device shows superior operation lifetime and high‐temperature resistance. It is worth noting that the TPA‐PPC‐based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application.
Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid-state lighting and full-color displays. Here, the design and synthesis of three triarylamine-pyridine-carbonitrile-based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79-100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ// = 86-88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light-emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A-1 , and a power efficiency of 136.3 ± 2.2 lm W-1 . The highest device efficiency of 39.8% appears to be record-breaking among TADF-based OLEDs to date. In addition, the TPAmPPC-based device shows superior operation lifetime and high-temperature resistance. It is worth noting that the TPA-PPC-based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application.Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid-state lighting and full-color displays. Here, the design and synthesis of three triarylamine-pyridine-carbonitrile-based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79-100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ// = 86-88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light-emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A-1 , and a power efficiency of 136.3 ± 2.2 lm W-1 . The highest device efficiency of 39.8% appears to be record-breaking among TADF-based OLEDs to date. In addition, the TPAmPPC-based device shows superior operation lifetime and high-temperature resistance. It is worth noting that the TPA-PPC-based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application.
Author Chen, Yi‐Kuan
Jayakumar, Jayachandran
Hsieh, Chia‐Min
Liao, Chun‐Cheng
Pandidurai, Jayabalan
Hung, Wen‐Yi
Ko, Chang‐Lun
Cheng, Chien‐Hong
Wu, Tien‐Lin
Author_xml – sequence: 1
  givenname: Yi‐Kuan
  surname: Chen
  fullname: Chen, Yi‐Kuan
  organization: National Tsing Hua University
– sequence: 2
  givenname: Jayachandran
  orcidid: 0000-0003-3135-1535
  surname: Jayakumar
  fullname: Jayakumar, Jayachandran
  organization: National Tsing Hua University
– sequence: 3
  givenname: Chia‐Min
  surname: Hsieh
  fullname: Hsieh, Chia‐Min
  organization: National Tsing Hua University
– sequence: 4
  givenname: Tien‐Lin
  orcidid: 0000-0001-9061-6279
  surname: Wu
  fullname: Wu, Tien‐Lin
  organization: Massachusetts Institute of Technology
– sequence: 5
  givenname: Chun‐Cheng
  surname: Liao
  fullname: Liao, Chun‐Cheng
  organization: National Tsing Hua University
– sequence: 6
  givenname: Jayabalan
  surname: Pandidurai
  fullname: Pandidurai, Jayabalan
  organization: National Tsing Hua University
– sequence: 7
  givenname: Chang‐Lun
  surname: Ko
  fullname: Ko, Chang‐Lun
  organization: National Taiwan Ocean University
– sequence: 8
  givenname: Wen‐Yi
  surname: Hung
  fullname: Hung, Wen‐Yi
  organization: National Taiwan Ocean University
– sequence: 9
  givenname: Chien‐Hong
  orcidid: 0000-0003-3838-6845
  surname: Cheng
  fullname: Cheng, Chien‐Hong
  email: chcheng@mx.nthu.edu.tw
  organization: National Sun Yat‐sen University
BookMark eNqFkMtKAzEUQIMoWB9b1wNu3Ey9SSbpZFlqfUB9ga5DOpOpKTOZmqSW2fkJfqNfYmREQRBXuYtz7g1nD23b1mqEjjAMMQA5VWWjhgQIQA6UbKEBZgSnGQi2jQYgKEsFz_JdtOf9EgAEBz5A8sEZ5bpaNcbq99e3u86Zsh8nys1ba4IztfZJ1brk1i2UNUUyM4unEIlpY0IwdpGc6RdTRGhjwlMyvZ8mN1q5uksyOEA7laq9Pvx699Hj-fRhcpnObi-uJuNZWlAGJK2oYHM8EgrmCkpMRywTwFVecqE51YRiLDJQeZUJzhkuRkpXUAlS5ERXRHC6j076vSvXPq-1D7IxvtB1raxu114SxhjGJKcsose_0GW7djb-LlI8x6N4QUQq66nCtd47XcnCBBVMa4NTppYY5Gd1-VldfleP2vCXtnKmiYX_FkQvbGLm7h9ajs-uxz_uB7B7mHU
CitedBy_id crossref_primary_10_1002_chem_202303169
crossref_primary_10_1002_ange_202204652
crossref_primary_10_1038_s44287_024_00059_0
crossref_primary_10_3390_molecules29122807
crossref_primary_10_1246_bcsj_20220327
crossref_primary_10_1016_j_cej_2023_142678
crossref_primary_10_1039_D4CP00737A
crossref_primary_10_1002_adfm_202112881
crossref_primary_10_1002_adfm_202305324
crossref_primary_10_1021_acs_jpcc_3c08315
crossref_primary_10_1016_j_dyepig_2023_111134
crossref_primary_10_1021_acs_langmuir_3c03059
crossref_primary_10_1016_j_cej_2022_137805
crossref_primary_10_1021_acs_joc_3c02561
crossref_primary_10_1088_2515_7647_ad46a6
crossref_primary_10_1038_s41467_022_32967_w
crossref_primary_10_1016_j_cej_2023_147562
crossref_primary_10_1039_D3TC00499F
crossref_primary_10_1002_chem_202304263
crossref_primary_10_1039_D1TC05372H
crossref_primary_10_1039_D3TC01632C
crossref_primary_10_1016_j_cej_2022_135234
crossref_primary_10_1039_D1TC04699C
crossref_primary_10_1039_D2TC03448D
crossref_primary_10_1002_smm2_1122
crossref_primary_10_1002_tcr_202300208
crossref_primary_10_1039_D3QM00051F
crossref_primary_10_1002_adma_202403584
crossref_primary_10_1002_anie_202423812
crossref_primary_10_1039_D3QM01125A
crossref_primary_10_1002_adpr_202200204
crossref_primary_10_1021_acsami_2c17492
crossref_primary_10_1002_chem_202500287
crossref_primary_10_1039_D3RE00410D
crossref_primary_10_1016_j_cej_2023_143508
crossref_primary_10_1002_adma_202207416
crossref_primary_10_1002_anie_202213157
crossref_primary_10_1016_j_cej_2023_148351
crossref_primary_10_1039_D2CP05119B
crossref_primary_10_1002_adom_202400025
crossref_primary_10_1002_advs_202104435
crossref_primary_10_1002_jcc_27352
crossref_primary_10_1016_j_dyepig_2025_112752
crossref_primary_10_1002_adts_202200725
crossref_primary_10_1016_j_cej_2021_134381
crossref_primary_10_1016_j_dyepig_2023_111858
crossref_primary_10_1002_advs_202300808
crossref_primary_10_1016_j_dyepig_2023_111856
crossref_primary_10_1021_acs_jpcc_4c04475
crossref_primary_10_1002_adfm_202410250
crossref_primary_10_1016_j_apsusc_2022_155948
crossref_primary_10_1016_j_cej_2022_137158
crossref_primary_10_1016_j_cej_2022_137717
crossref_primary_10_1002_sdtp_15662
crossref_primary_10_1063_5_0141588
crossref_primary_10_1016_j_cej_2023_143721
crossref_primary_10_1002_slct_202300274
crossref_primary_10_1016_j_cej_2022_138498
crossref_primary_10_1002_smll_202407220
crossref_primary_10_1007_s00214_024_03145_6
crossref_primary_10_1002_adma_202208602
crossref_primary_10_1021_acsmaterialslett_3c00073
crossref_primary_10_1002_asia_202300940
crossref_primary_10_1016_j_dyepig_2023_111578
crossref_primary_10_1039_D2SC04725J
crossref_primary_10_1021_acs_orglett_3c02168
crossref_primary_10_1039_D4TC00933A
crossref_primary_10_1038_s41467_023_37687_3
crossref_primary_10_1016_j_dyepig_2022_110085
crossref_primary_10_1039_D2TC02045A
crossref_primary_10_59717_j_xinn_mater_2023_100012
crossref_primary_10_1016_j_mtchem_2021_100645
crossref_primary_10_1002_smll_202306800
crossref_primary_10_1002_chem_202301197
crossref_primary_10_1021_acs_chemrev_3c00755
crossref_primary_10_1021_acs_cgd_3c00911
crossref_primary_10_1002_ange_202423812
crossref_primary_10_1038_s42004_022_00766_5
crossref_primary_10_1016_j_jlumin_2024_120812
crossref_primary_10_1039_D1TC05691C
crossref_primary_10_1039_D3NJ00423F
crossref_primary_10_1016_j_cej_2024_150782
crossref_primary_10_1021_acsmaterialslett_4c00273
crossref_primary_10_1002_adma_202205166
crossref_primary_10_1002_smll_202107574
crossref_primary_10_1002_ange_202213157
crossref_primary_10_1002_adom_202302486
crossref_primary_10_1016_j_cej_2021_133598
crossref_primary_10_1039_D3CS01102J
crossref_primary_10_1039_D2MH00639A
crossref_primary_10_1007_s10853_023_09196_7
crossref_primary_10_1002_adma_202109147
crossref_primary_10_1016_j_cej_2023_146897
crossref_primary_10_1039_D2SC00329E
crossref_primary_10_1039_D3SC00246B
crossref_primary_10_1021_acs_macromol_4c02674
crossref_primary_10_1039_D3ME00127J
crossref_primary_10_1039_D2NJ04439K
crossref_primary_10_1002_adom_202300404
crossref_primary_10_1039_D1NJ05251A
crossref_primary_10_6023_A21070355
crossref_primary_10_1002_adfm_202409244
crossref_primary_10_1039_D1TC04397H
crossref_primary_10_1021_acsaom_4c00234
crossref_primary_10_1039_D2CC02930H
crossref_primary_10_1021_acsami_3c15565
crossref_primary_10_1002_adma_202106954
crossref_primary_10_1002_cjoc_202100776
crossref_primary_10_1021_acs_chemmater_4c00850
crossref_primary_10_1002_adom_202202610
crossref_primary_10_1002_adma_202300510
crossref_primary_10_1038_s41467_024_49127_x
crossref_primary_10_1002_anie_202204652
crossref_primary_10_1021_acsami_3c05243
crossref_primary_10_6023_cjoc202208023
crossref_primary_10_1002_adom_202202292
crossref_primary_10_1021_acsmaterialslett_3c01620
crossref_primary_10_1002_adma_202206598
crossref_primary_10_1039_D2TC01435A
crossref_primary_10_1088_1361_6633_ace06a
crossref_primary_10_1039_D3TC01254A
crossref_primary_10_1039_D2CC06802H
crossref_primary_10_1039_D4MH00605D
crossref_primary_10_1039_D4TC05181E
Cites_doi 10.1038/s41566-020-0667-0
10.1021/jacs.8b08438
10.1038/s41467-020-15558-5
10.1002/asia.201601641
10.1021/acsami.9b04664
10.1039/C8SC01485J
10.1063/1.3382344
10.1002/adfm.202000019
10.1002/adfm.201300104
10.1038/srep22463
10.1002/jcc.21759
10.1002/adma.201301603
10.1016/j.saa.2020.118952
10.1016/j.catcom.2018.09.018
10.1021/jacs.0c10081
10.1016/j.orgel.2020.106013
10.1039/c2jm32717a
10.1246/bcsj.20180336
10.1002/advs.201600166
10.1021/acs.chemmater.6b03428
10.1038/s41566-018-0112-9
10.1039/c1jm13417e
10.1021/acsami.5b05648
10.1002/adfm.201602501
10.1039/D0SC01238F
10.1021/jacs.7b03848
10.1002/adma.202003885
10.1038/s41566-019-0415-5
10.1002/adma.201504451
10.1038/nature11687
10.1039/C7TC02481A
10.1039/C7TC04852A
10.1002/wcms.1327
10.1364/OE.22.019919
10.1002/adma.201603253
10.1021/acsami.5b01220
10.1021/acs.chemmater.7b02403
10.1016/j.progpolymsci.2015.01.005
10.1002/adma.201605444
10.1038/srep40805
10.1002/adma.201906950
10.1039/C5TC03849A
10.1002/adma.202001248
10.1021/acsami.9b06364
10.1002/adma.201902368
10.1038/s41563-020-0710-z
10.1038/nphoton.2012.31
10.1246/cl.141054
10.1038/nmat4277
10.1021/acs.macromol.7b01114
10.1039/C9TC05340A
10.1021/acs.jpclett.6b00780
10.1002/adma.201601675
10.1021/ja306538w
10.1039/C9TC04284A
10.1002/anie.201912556
10.1038/25954
10.1063/1.4954163
10.1016/j.cej.2020.126107
10.1002/adma.201803524
10.1039/C8TC01698D
10.3389/fchem.2019.00254
10.1002/adma.201401407
10.1002/adma.202004083
10.1246/cl.2007.262
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202008032
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202008032
ADMA202008032
Genre article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3502-f395b179a0ba0d13754906a8d69e63e2311940a8f496651c7aef0f92c82ef2963
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 19:30:49 EDT 2025
Fri Jul 25 02:21:18 EDT 2025
Tue Jul 01 02:33:05 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Wed Jan 22 17:22:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3502-f395b179a0ba0d13754906a8d69e63e2311940a8f496651c7aef0f92c82ef2963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9061-6279
0000-0003-3838-6845
0000-0003-3135-1535
PQID 2568176659
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2555112835
proquest_journals_2568176659
crossref_citationtrail_10_1002_adma_202008032
crossref_primary_10_1002_adma_202008032
wiley_primary_10_1002_adma_202008032_ADMA202008032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011 2019; 21 92
2017 2020; 139 30
2019 2017; 7 29
2019 2017; 7 5
2013; 25
2015 2014; 7 26
2019; 31
2010 2016 2011; 132 7 32
2017 2018; 4 140
2016 2014; 108 44
2020 2018 2019; 142 12 13
2016 2013; 28 23
2017 2021; 7 88
2020; 59
2019 2017; 119 50
1998 2015 2017; 395 47 29
2020; 14
2015 2017; 14 29
2014; 22
2019 2016; 31 6
2012; 492
2019 2012; 11 134
2007 2012 2020; 36 22 11
2016 2018; 4 9
2021 2018; 246 8
2020 2020 2015 2017 2016 2019 2018; 8 401 7 12 26 11 6
2012; 6
2016; 28
2020 2020 2020 2018 2016; 32 32 19 6 28
2020 2020 2020; 32 32 11
e_1_2_9_10_2
e_1_2_9_10_1
e_1_2_9_12_2
e_1_2_9_10_3
e_1_2_9_12_1
e_1_2_9_12_4
e_1_2_9_14_2
e_1_2_9_12_3
e_1_2_9_14_1
e_1_2_9_16_2
e_1_2_9_12_5
e_1_2_9_16_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_4_3
e_1_2_9_6_1
e_1_2_9_4_2
e_1_2_9_4_1
e_1_2_9_2_2
e_1_2_9_2_1
e_1_2_9_8_2
e_1_2_9_24_3
e_1_2_9_26_1
e_1_2_9_24_2
e_1_2_9_28_1
e_1_2_9_28_2
e_1_2_9_30_1
e_1_2_9_30_2
e_1_2_9_11_1
e_1_2_9_13_1
e_1_2_9_11_2
e_1_2_9_15_1
e_1_2_9_13_2
e_1_2_9_15_3
e_1_2_9_17_1
e_1_2_9_15_2
e_1_2_9_15_5
e_1_2_9_19_1
e_1_2_9_15_4
e_1_2_9_15_7
e_1_2_9_19_3
e_1_2_9_15_6
e_1_2_9_19_2
e_1_2_9_21_2
e_1_2_9_21_1
e_1_2_9_23_2
e_1_2_9_23_1
e_1_2_9_7_2
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_2
e_1_2_9_3_1
e_1_2_9_1_2
e_1_2_9_1_1
e_1_2_9_9_2
e_1_2_9_9_1
e_1_2_9_25_2
e_1_2_9_25_1
e_1_2_9_25_3
e_1_2_9_27_1
e_1_2_9_29_2
e_1_2_9_29_1
References_xml – volume: 246 8
  year: 2021 2018
  publication-title: Spectrochim. Acta, Part A WIREs Comput. Mol. Sci.
– volume: 25
  start-page: 6801
  year: 2013
  publication-title: Adv. Mater.
– volume: 31 6
  year: 2019 2016
  publication-title: Adv. Mater. Sci. Rep.
– volume: 11 134
  year: 2019 2012
  publication-title: ACS Appl. Mater. Interfaces J. Am. Chem. Soc.
– volume: 21 92
  start-page: 716
  year: 2011 2019
  publication-title: J. Mater. Chem. Bull. Chem. Soc. Jpn.
– volume: 395 47 29
  start-page: 151 92
  year: 1998 2015 2017
  publication-title: Nature Prog. Polym. Sci. Adv. Mater.
– volume: 14
  start-page: 643
  year: 2020
  publication-title: Nat. Photonics
– volume: 108 44
  start-page: 360
  year: 2016 2014
  publication-title: Appl. Phys. Lett. Chem. Lett.
– volume: 28
  start-page: 7505
  year: 2016
  publication-title: Chem. Mater.
– volume: 32 32 19 6 28
  start-page: 1332 1343 6976
  year: 2020 2020 2020 2018 2016
  publication-title: Adv. Mater. Adv. Mater. Nat. Mater. J. Mater. Chem. C Adv. Mater.
– volume: 59
  start-page: 1320
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 28 23
  start-page: 2526 3896
  year: 2016 2013
  publication-title: Adv. Mater. Adv. Funct. Mater.
– volume: 7 26
  start-page: 9625 5684
  year: 2015 2014
  publication-title: ACS Appl. Mater. Interfaces Adv. Mater.
– volume: 7 5
  start-page: 254 7699
  year: 2019 2017
  publication-title: Front. Chem. J. Mater. Chem. C
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 4 9
  start-page: 3815 6150
  year: 2016 2018
  publication-title: J. Mater. Chem. C Chem. Sci.
– volume: 6
  start-page: 253
  year: 2012
  publication-title: Nat. Photonics
– volume: 32 32 11
  start-page: 1765
  year: 2020 2020 2020
  publication-title: Adv. Mater. Adv. Mater. Nat. Commun.
– volume: 36 22 11
  start-page: 262 4887
  year: 2007 2012 2020
  publication-title: Chem. Lett. J. Mater. Chem. Chem. Sci.
– volume: 139 30
  year: 2017 2020
  publication-title: J. Am. Chem. Soc. Adv. Funct. Mater.
– volume: 132 7 32
  start-page: 2197 1456
  year: 2010 2016 2011
  publication-title: J. Chem. Phys. J. Phys. Chem. Lett. J. Comput. Chem.
– volume: 142 12 13
  start-page: 235 540
  year: 2020 2018 2019
  publication-title: J. Am. Chem. Soc. Nat. Photonics Nat. Photonics
– volume: 7 88
  year: 2017 2021
  publication-title: Sci. Rep. Org. Electron.
– volume: 4 140
  year: 2017 2018
  publication-title: Adv. Sci. J. Am. Chem. Soc.
– volume: 8 401 7 12 26 11 6
  start-page: 602 648 7560 6543
  year: 2020 2020 2015 2017 2016 2019 2018
  publication-title: J. Mater. Chem. C Chem. Eng. J. ACS Appl. Mater. Interfaces Chem. Asian J. Adv. Funct. Mater. ACS Appl. Mater. Interfaces J. Mater. Chem. C
– volume: 7 29
  start-page: 8630
  year: 2019 2017
  publication-title: J. Mater. Chem. C Chem. Mater.
– volume: 492
  start-page: 234
  year: 2012
  publication-title: Nature
– volume: 119 50
  start-page: 11 4913
  year: 2019 2017
  publication-title: Catal. Commun. Macromolecules
– volume: 14 29
  start-page: 459
  year: 2015 2017
  publication-title: Nat. Mater. Adv. Mater.
– volume: 22
  year: 2014
  publication-title: Opt. Express
– ident: e_1_2_9_5_1
  doi: 10.1038/s41566-020-0667-0
– ident: e_1_2_9_2_2
  doi: 10.1021/jacs.8b08438
– ident: e_1_2_9_24_3
  doi: 10.1038/s41467-020-15558-5
– ident: e_1_2_9_15_4
  doi: 10.1002/asia.201601641
– ident: e_1_2_9_15_6
  doi: 10.1021/acsami.9b04664
– ident: e_1_2_9_21_2
  doi: 10.1039/C8SC01485J
– ident: e_1_2_9_19_1
  doi: 10.1063/1.3382344
– ident: e_1_2_9_8_2
  doi: 10.1002/adfm.202000019
– ident: e_1_2_9_28_2
  doi: 10.1002/adfm.201300104
– ident: e_1_2_9_30_2
  doi: 10.1038/srep22463
– ident: e_1_2_9_19_3
  doi: 10.1002/jcc.21759
– ident: e_1_2_9_26_1
  doi: 10.1002/adma.201301603
– ident: e_1_2_9_23_1
  doi: 10.1016/j.saa.2020.118952
– ident: e_1_2_9_3_1
  doi: 10.1016/j.catcom.2018.09.018
– ident: e_1_2_9_10_1
  doi: 10.1021/jacs.0c10081
– ident: e_1_2_9_29_2
  doi: 10.1016/j.orgel.2020.106013
– ident: e_1_2_9_25_2
  doi: 10.1039/c2jm32717a
– ident: e_1_2_9_16_2
  doi: 10.1246/bcsj.20180336
– ident: e_1_2_9_2_1
  doi: 10.1002/advs.201600166
– ident: e_1_2_9_18_1
  doi: 10.1021/acs.chemmater.6b03428
– ident: e_1_2_9_10_2
  doi: 10.1038/s41566-018-0112-9
– ident: e_1_2_9_16_1
  doi: 10.1039/c1jm13417e
– ident: e_1_2_9_15_3
  doi: 10.1021/acsami.5b05648
– ident: e_1_2_9_15_5
  doi: 10.1002/adfm.201602501
– ident: e_1_2_9_25_3
  doi: 10.1039/D0SC01238F
– ident: e_1_2_9_8_1
  doi: 10.1021/jacs.7b03848
– ident: e_1_2_9_12_2
  doi: 10.1002/adma.202003885
– ident: e_1_2_9_10_3
  doi: 10.1038/s41566-019-0415-5
– ident: e_1_2_9_28_1
  doi: 10.1002/adma.201504451
– ident: e_1_2_9_6_1
  doi: 10.1038/nature11687
– ident: e_1_2_9_14_2
  doi: 10.1039/C7TC02481A
– ident: e_1_2_9_12_4
  doi: 10.1039/C7TC04852A
– ident: e_1_2_9_23_2
  doi: 10.1002/wcms.1327
– ident: e_1_2_9_27_1
  doi: 10.1364/OE.22.019919
– ident: e_1_2_9_4_3
  doi: 10.1002/adma.201603253
– ident: e_1_2_9_7_1
  doi: 10.1021/acsami.5b01220
– ident: e_1_2_9_11_2
  doi: 10.1021/acs.chemmater.7b02403
– ident: e_1_2_9_4_2
  doi: 10.1016/j.progpolymsci.2015.01.005
– ident: e_1_2_9_1_2
  doi: 10.1002/adma.201605444
– ident: e_1_2_9_29_1
  doi: 10.1038/srep40805
– ident: e_1_2_9_12_1
  doi: 10.1002/adma.201906950
– ident: e_1_2_9_21_1
  doi: 10.1039/C5TC03849A
– ident: e_1_2_9_24_2
  doi: 10.1002/adma.202001248
– ident: e_1_2_9_9_1
  doi: 10.1021/acsami.9b06364
– ident: e_1_2_9_17_1
  doi: 10.1002/adma.201902368
– ident: e_1_2_9_12_3
  doi: 10.1038/s41563-020-0710-z
– ident: e_1_2_9_22_1
  doi: 10.1038/nphoton.2012.31
– ident: e_1_2_9_13_2
  doi: 10.1246/cl.141054
– ident: e_1_2_9_1_1
  doi: 10.1038/nmat4277
– ident: e_1_2_9_3_2
  doi: 10.1021/acs.macromol.7b01114
– ident: e_1_2_9_15_1
  doi: 10.1039/C9TC05340A
– ident: e_1_2_9_19_2
  doi: 10.1021/acs.jpclett.6b00780
– ident: e_1_2_9_12_5
  doi: 10.1002/adma.201601675
– ident: e_1_2_9_9_2
  doi: 10.1021/ja306538w
– ident: e_1_2_9_11_1
  doi: 10.1039/C9TC04284A
– ident: e_1_2_9_20_1
  doi: 10.1002/anie.201912556
– ident: e_1_2_9_4_1
  doi: 10.1038/25954
– ident: e_1_2_9_13_1
  doi: 10.1063/1.4954163
– ident: e_1_2_9_15_2
  doi: 10.1016/j.cej.2020.126107
– ident: e_1_2_9_30_1
  doi: 10.1002/adma.201803524
– ident: e_1_2_9_15_7
  doi: 10.1039/C8TC01698D
– ident: e_1_2_9_14_1
  doi: 10.3389/fchem.2019.00254
– ident: e_1_2_9_7_2
  doi: 10.1002/adma.201401407
– ident: e_1_2_9_24_1
  doi: 10.1002/adma.202004083
– ident: e_1_2_9_25_1
  doi: 10.1246/cl.2007.262
SSID ssj0009606
Score 2.6536052
Snippet Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid‐state lighting and full‐color displays. Here, the...
Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid-state lighting and full-color displays. Here, the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2008032
SubjectTerms Current efficiency
Dipoles
Efficiency
external quantum efficiency of nearly 40
Fluorescence
Materials science
molecular orientation
operational stability
Optical properties
organic light‐emitting diodes
Photoluminescence
Power efficiency
pyridine‐carbonitrile
Quantum efficiency
Service life assessment
thermally activated delayed fluorescence
Thin films
triphenylamine
Title Triarylamine‐Pyridine‐Carbonitriles for Organic Light‐Emitting Devices with EQE Nearly 40
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202008032
https://www.proquest.com/docview/2568176659
https://www.proquest.com/docview/2555112835
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iSQ--xfoiguBp22z20c2x9IGIFRWF3pYkm4CorWzbg578Cf5Gf4kz2XbbCiLobR8Tkk1mZr9JJl8IOY1FmMQKohPJFAQomVWeUtx6NgsdvZjmDDc4d6_i8_vwohf15nbxF_wQ5YQbWobz12jgUg1rM9JQmTneIFy_ZwE6YUzYQlR0O-OPQnjuyPaCyBNxmExZGxmvLRZf_CvNoOY8YHV_nM46kdO2Fokmj9XxSFX12zcax_98zAZZm8BR2ij0Z5Msmf4WWZ0jKdwm6R3oaP4KmgPPPt8_rl_zh6y4bMpcoU_Ioc4hBfhLi62dml5izA8S7ecHl1hNW8a5JIrzvrR906ZXBqmVach2yH2nfdc89ybHMng6iMB_2kBECuwYRleyzMczdAWLZZLFwsSBAcDoi5DJxIYQSkW-rktjmRVcJ9xYDga_S5b7g77ZIxTAmxK-sjaIIU6XUmjf1HXClA6s72eiQrzpsKR6wlmOR2c8pQXbMk-x49Ky4yrkrJR_Kdg6fpQ8nI5yOrHaYcqRja0OjYaKT8rXYG-4iCL7ZjBGmQgxKgDXCuFuSH-pKW20uo3ybv8vhQ7ICsdUGpfadkiWR_nYHAEWGqljp-9fRx0B2Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LThsxFLUQXdAuoNBWpNDiSkhdDXg8j4yXEQwKNImgSqTuLNtjSwgYqiFZ0FU_od_YL-m9nkdIpapSu5uHLXt8H3OufX1MyGEq4izVEJ0opiFAKZwOtOYucEXs6cUMZ7jBeTxJh7P44kvSZhPiXpiaH6KbcEPL8P4aDRwnpI-XrKGq8MRBuIDPIvDCz_BYbx9VfV4ySCFA93R7URKINM5a3kbGj1frr_6XlmDzKWT1_5yzLaLb3tapJjdHi7k-Mt9-I3L8r895STYbREoHtQptkzVb7pAXT3gKXxE5BTWtHkF54NnP7z8uH6vror48UZVGt1BBow8UEDCtd3caOsKwH0rkd9c-t5qeWu-VKE790vwqpxOL7Mo0Zq_J7CyfngyD5mSGwEQJuFAXiUSDKYOAFStCPEZXsFRlRSpsGlnAjKGImcpcDNFUEpq-so45wU3GreNg82_Ienlf2l1CAb9pEWrnohRCdaWECW3fZEybyIVhIXokaOUiTUNbjqdn3MqacJlLHDjZDVyPfOzKf60JO_5Ycr8Vs2wM90FyJGTrQ6eh4Q_dazA5XEdRpb1fYJkEYSpg1x7hXqZ_aUkOTseD7u7tv1Q6IBvD6XgkR-eTT3vkOcfMGp_ptk_W59XCvgNoNNfvvfL_AmMVBfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYQlVA58GzVQGiNhMRpwevdddbHiCSiPCJAIHGzbK8tobYBLckhnPgJ_Y38Ema8ySZUqiqV2z7Gsteemf3GHn8mZE_INBcGohPNDAQohTeRMdxHvkgDvZjlDDc4n_fF8U16cpvdzu3ir_gh6gk3tIzgr9HAHwp_OCMN1UXgDcL1e5aAE_6QCpajXneuZgRSiM8D216SRVKk-ZS2kfHDt-Xf_pZmWHMesYZfTm-V6Gljq0yTHwejoTmwT3_wOL7na9bIygSP0nalQOtkwQ02yPIcS-EmUdegpOUYVAeevTz_vhiXd0V1eaRLg06hhDofKeBfWu3ttPQMg36Q6P66C5nVtOOCT6I48Uu7l13ad8itTFP2idz0utdHx9HkXIbIJhk4UJ_IzIAhw_BqVsR4iK5kQueFkE4kDhBjLFOmc59CLJXFtqWdZ15ym3PnOVj8Z7I4uB-4L4QCejMyNt4nAgJ1raWNXcvmzNjEx3EhGySaDouyE9JyPDvjp6rolrnCjlN1xzXIfi3_UNF1_FWyOR1lNTHbR8WRjq0FjYaKd-vXYHC4iqIH7n6EMhmCVECuDcLDkP6jJtXunLfru63_KfSNLF10eurse_90m3zkmFYT0tyaZHFYjtwO4KKh-RpU_xVkugSs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triarylamine%E2%80%90Pyridine%E2%80%90Carbonitriles+for+Organic+Light%E2%80%90Emitting+Devices+with+EQE+Nearly+40&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Yi%E2%80%90Kuan&rft.au=Jayakumar%2C+Jayachandran&rft.au=Hsieh%2C+Chia%E2%80%90Min&rft.au=Wu%2C+Tien%E2%80%90Lin&rft.date=2021-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202008032&rft.externalDBID=10.1002%252Fadma.202008032&rft.externalDocID=ADMA202008032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon