Triarylamine‐Pyridine‐Carbonitriles for Organic Light‐Emitting Devices with EQE Nearly 40
Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid‐state lighting and full‐color displays. Here, the design and synthesis of three triarylamine‐pyridine‐carbonitrile‐based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit ex...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 35; pp. e2008032 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid‐state lighting and full‐color displays. Here, the design and synthesis of three triarylamine‐pyridine‐carbonitrile‐based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79−100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ// = 86−88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light‐emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A–1, and a power efficiency of 136.3 ± 2.2 lm W–1. The highest device efficiency of 39.8% appears to be record‐breaking among TADF‐based OLEDs to date. In addition, the TPAmPPC‐based device shows superior operation lifetime and high‐temperature resistance. It is worth noting that the TPA‐PPC‐based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application.
Three 2,6‐diphenylpyridine‐3,5‐dicarbonitrile‐based compounds with excellent photoluminescent quantum yields (79–100%) and high horizontal dipole ratios (86−88%) in the thin films are demonstrated. With two methyl groups on the triarylamines, the spin−orbit coupling is enhanced due to the elevated locally excited triplet states (3LE), leading to a fast reverse intersystem crossing. Green thermally activated delayed fluorescence (TADF) organic light‐emitting diodes based on them exhibit a record‐high external quantum efficiency of 39.8% without any optical extraction technique. |
---|---|
AbstractList | Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid‐state lighting and full‐color displays. Here, the design and synthesis of three triarylamine‐pyridine‐carbonitrile‐based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79−100% with small Δ
E
ST
values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ
//
= 86−88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light‐emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A
–1
, and a power efficiency of 136.3 ± 2.2 lm W
–1
. The highest device efficiency of 39.8% appears to be record‐breaking among TADF‐based OLEDs to date. In addition, the TPAmPPC‐based device shows superior operation lifetime and high‐temperature resistance. It is worth noting that the TPA‐PPC‐based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application. Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid‐state lighting and full‐color displays. Here, the design and synthesis of three triarylamine‐pyridine‐carbonitrile‐based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79−100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ// = 86−88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light‐emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A–1, and a power efficiency of 136.3 ± 2.2 lm W–1. The highest device efficiency of 39.8% appears to be record‐breaking among TADF‐based OLEDs to date. In addition, the TPAmPPC‐based device shows superior operation lifetime and high‐temperature resistance. It is worth noting that the TPA‐PPC‐based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application. Three 2,6‐diphenylpyridine‐3,5‐dicarbonitrile‐based compounds with excellent photoluminescent quantum yields (79–100%) and high horizontal dipole ratios (86−88%) in the thin films are demonstrated. With two methyl groups on the triarylamines, the spin−orbit coupling is enhanced due to the elevated locally excited triplet states (3LE), leading to a fast reverse intersystem crossing. Green thermally activated delayed fluorescence (TADF) organic light‐emitting diodes based on them exhibit a record‐high external quantum efficiency of 39.8% without any optical extraction technique. Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid‐state lighting and full‐color displays. Here, the design and synthesis of three triarylamine‐pyridine‐carbonitrile‐based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79−100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ// = 86−88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light‐emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A–1, and a power efficiency of 136.3 ± 2.2 lm W–1. The highest device efficiency of 39.8% appears to be record‐breaking among TADF‐based OLEDs to date. In addition, the TPAmPPC‐based device shows superior operation lifetime and high‐temperature resistance. It is worth noting that the TPA‐PPC‐based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application. Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid-state lighting and full-color displays. Here, the design and synthesis of three triarylamine-pyridine-carbonitrile-based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79-100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ// = 86-88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light-emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A-1 , and a power efficiency of 136.3 ± 2.2 lm W-1 . The highest device efficiency of 39.8% appears to be record-breaking among TADF-based OLEDs to date. In addition, the TPAmPPC-based device shows superior operation lifetime and high-temperature resistance. It is worth noting that the TPA-PPC-based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application.Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid-state lighting and full-color displays. Here, the design and synthesis of three triarylamine-pyridine-carbonitrile-based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79-100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ// = 86-88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light-emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A-1 , and a power efficiency of 136.3 ± 2.2 lm W-1 . The highest device efficiency of 39.8% appears to be record-breaking among TADF-based OLEDs to date. In addition, the TPAmPPC-based device shows superior operation lifetime and high-temperature resistance. It is worth noting that the TPA-PPC-based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application. |
Author | Chen, Yi‐Kuan Jayakumar, Jayachandran Hsieh, Chia‐Min Liao, Chun‐Cheng Pandidurai, Jayabalan Hung, Wen‐Yi Ko, Chang‐Lun Cheng, Chien‐Hong Wu, Tien‐Lin |
Author_xml | – sequence: 1 givenname: Yi‐Kuan surname: Chen fullname: Chen, Yi‐Kuan organization: National Tsing Hua University – sequence: 2 givenname: Jayachandran orcidid: 0000-0003-3135-1535 surname: Jayakumar fullname: Jayakumar, Jayachandran organization: National Tsing Hua University – sequence: 3 givenname: Chia‐Min surname: Hsieh fullname: Hsieh, Chia‐Min organization: National Tsing Hua University – sequence: 4 givenname: Tien‐Lin orcidid: 0000-0001-9061-6279 surname: Wu fullname: Wu, Tien‐Lin organization: Massachusetts Institute of Technology – sequence: 5 givenname: Chun‐Cheng surname: Liao fullname: Liao, Chun‐Cheng organization: National Tsing Hua University – sequence: 6 givenname: Jayabalan surname: Pandidurai fullname: Pandidurai, Jayabalan organization: National Tsing Hua University – sequence: 7 givenname: Chang‐Lun surname: Ko fullname: Ko, Chang‐Lun organization: National Taiwan Ocean University – sequence: 8 givenname: Wen‐Yi surname: Hung fullname: Hung, Wen‐Yi organization: National Taiwan Ocean University – sequence: 9 givenname: Chien‐Hong orcidid: 0000-0003-3838-6845 surname: Cheng fullname: Cheng, Chien‐Hong email: chcheng@mx.nthu.edu.tw organization: National Sun Yat‐sen University |
BookMark | eNqFkMtKAzEUQIMoWB9b1wNu3Ey9SSbpZFlqfUB9ga5DOpOpKTOZmqSW2fkJfqNfYmREQRBXuYtz7g1nD23b1mqEjjAMMQA5VWWjhgQIQA6UbKEBZgSnGQi2jQYgKEsFz_JdtOf9EgAEBz5A8sEZ5bpaNcbq99e3u86Zsh8nys1ba4IztfZJ1brk1i2UNUUyM4unEIlpY0IwdpGc6RdTRGhjwlMyvZ8mN1q5uksyOEA7laq9Pvx699Hj-fRhcpnObi-uJuNZWlAGJK2oYHM8EgrmCkpMRywTwFVecqE51YRiLDJQeZUJzhkuRkpXUAlS5ERXRHC6j076vSvXPq-1D7IxvtB1raxu114SxhjGJKcsose_0GW7djb-LlI8x6N4QUQq66nCtd47XcnCBBVMa4NTppYY5Gd1-VldfleP2vCXtnKmiYX_FkQvbGLm7h9ajs-uxz_uB7B7mHU |
CitedBy_id | crossref_primary_10_1002_chem_202303169 crossref_primary_10_1002_ange_202204652 crossref_primary_10_1038_s44287_024_00059_0 crossref_primary_10_3390_molecules29122807 crossref_primary_10_1246_bcsj_20220327 crossref_primary_10_1016_j_cej_2023_142678 crossref_primary_10_1039_D4CP00737A crossref_primary_10_1002_adfm_202112881 crossref_primary_10_1002_adfm_202305324 crossref_primary_10_1021_acs_jpcc_3c08315 crossref_primary_10_1016_j_dyepig_2023_111134 crossref_primary_10_1021_acs_langmuir_3c03059 crossref_primary_10_1016_j_cej_2022_137805 crossref_primary_10_1021_acs_joc_3c02561 crossref_primary_10_1088_2515_7647_ad46a6 crossref_primary_10_1038_s41467_022_32967_w crossref_primary_10_1016_j_cej_2023_147562 crossref_primary_10_1039_D3TC00499F crossref_primary_10_1002_chem_202304263 crossref_primary_10_1039_D1TC05372H crossref_primary_10_1039_D3TC01632C crossref_primary_10_1016_j_cej_2022_135234 crossref_primary_10_1039_D1TC04699C crossref_primary_10_1039_D2TC03448D crossref_primary_10_1002_smm2_1122 crossref_primary_10_1002_tcr_202300208 crossref_primary_10_1039_D3QM00051F crossref_primary_10_1002_adma_202403584 crossref_primary_10_1002_anie_202423812 crossref_primary_10_1039_D3QM01125A crossref_primary_10_1002_adpr_202200204 crossref_primary_10_1021_acsami_2c17492 crossref_primary_10_1002_chem_202500287 crossref_primary_10_1039_D3RE00410D crossref_primary_10_1016_j_cej_2023_143508 crossref_primary_10_1002_adma_202207416 crossref_primary_10_1002_anie_202213157 crossref_primary_10_1016_j_cej_2023_148351 crossref_primary_10_1039_D2CP05119B crossref_primary_10_1002_adom_202400025 crossref_primary_10_1002_advs_202104435 crossref_primary_10_1002_jcc_27352 crossref_primary_10_1016_j_dyepig_2025_112752 crossref_primary_10_1002_adts_202200725 crossref_primary_10_1016_j_cej_2021_134381 crossref_primary_10_1016_j_dyepig_2023_111858 crossref_primary_10_1002_advs_202300808 crossref_primary_10_1016_j_dyepig_2023_111856 crossref_primary_10_1021_acs_jpcc_4c04475 crossref_primary_10_1002_adfm_202410250 crossref_primary_10_1016_j_apsusc_2022_155948 crossref_primary_10_1016_j_cej_2022_137158 crossref_primary_10_1016_j_cej_2022_137717 crossref_primary_10_1002_sdtp_15662 crossref_primary_10_1063_5_0141588 crossref_primary_10_1016_j_cej_2023_143721 crossref_primary_10_1002_slct_202300274 crossref_primary_10_1016_j_cej_2022_138498 crossref_primary_10_1002_smll_202407220 crossref_primary_10_1007_s00214_024_03145_6 crossref_primary_10_1002_adma_202208602 crossref_primary_10_1021_acsmaterialslett_3c00073 crossref_primary_10_1002_asia_202300940 crossref_primary_10_1016_j_dyepig_2023_111578 crossref_primary_10_1039_D2SC04725J crossref_primary_10_1021_acs_orglett_3c02168 crossref_primary_10_1039_D4TC00933A crossref_primary_10_1038_s41467_023_37687_3 crossref_primary_10_1016_j_dyepig_2022_110085 crossref_primary_10_1039_D2TC02045A crossref_primary_10_59717_j_xinn_mater_2023_100012 crossref_primary_10_1016_j_mtchem_2021_100645 crossref_primary_10_1002_smll_202306800 crossref_primary_10_1002_chem_202301197 crossref_primary_10_1021_acs_chemrev_3c00755 crossref_primary_10_1021_acs_cgd_3c00911 crossref_primary_10_1002_ange_202423812 crossref_primary_10_1038_s42004_022_00766_5 crossref_primary_10_1016_j_jlumin_2024_120812 crossref_primary_10_1039_D1TC05691C crossref_primary_10_1039_D3NJ00423F crossref_primary_10_1016_j_cej_2024_150782 crossref_primary_10_1021_acsmaterialslett_4c00273 crossref_primary_10_1002_adma_202205166 crossref_primary_10_1002_smll_202107574 crossref_primary_10_1002_ange_202213157 crossref_primary_10_1002_adom_202302486 crossref_primary_10_1016_j_cej_2021_133598 crossref_primary_10_1039_D3CS01102J crossref_primary_10_1039_D2MH00639A crossref_primary_10_1007_s10853_023_09196_7 crossref_primary_10_1002_adma_202109147 crossref_primary_10_1016_j_cej_2023_146897 crossref_primary_10_1039_D2SC00329E crossref_primary_10_1039_D3SC00246B crossref_primary_10_1021_acs_macromol_4c02674 crossref_primary_10_1039_D3ME00127J crossref_primary_10_1039_D2NJ04439K crossref_primary_10_1002_adom_202300404 crossref_primary_10_1039_D1NJ05251A crossref_primary_10_6023_A21070355 crossref_primary_10_1002_adfm_202409244 crossref_primary_10_1039_D1TC04397H crossref_primary_10_1021_acsaom_4c00234 crossref_primary_10_1039_D2CC02930H crossref_primary_10_1021_acsami_3c15565 crossref_primary_10_1002_adma_202106954 crossref_primary_10_1002_cjoc_202100776 crossref_primary_10_1021_acs_chemmater_4c00850 crossref_primary_10_1002_adom_202202610 crossref_primary_10_1002_adma_202300510 crossref_primary_10_1038_s41467_024_49127_x crossref_primary_10_1002_anie_202204652 crossref_primary_10_1021_acsami_3c05243 crossref_primary_10_6023_cjoc202208023 crossref_primary_10_1002_adom_202202292 crossref_primary_10_1021_acsmaterialslett_3c01620 crossref_primary_10_1002_adma_202206598 crossref_primary_10_1039_D2TC01435A crossref_primary_10_1088_1361_6633_ace06a crossref_primary_10_1039_D3TC01254A crossref_primary_10_1039_D2CC06802H crossref_primary_10_1039_D4MH00605D crossref_primary_10_1039_D4TC05181E |
Cites_doi | 10.1038/s41566-020-0667-0 10.1021/jacs.8b08438 10.1038/s41467-020-15558-5 10.1002/asia.201601641 10.1021/acsami.9b04664 10.1039/C8SC01485J 10.1063/1.3382344 10.1002/adfm.202000019 10.1002/adfm.201300104 10.1038/srep22463 10.1002/jcc.21759 10.1002/adma.201301603 10.1016/j.saa.2020.118952 10.1016/j.catcom.2018.09.018 10.1021/jacs.0c10081 10.1016/j.orgel.2020.106013 10.1039/c2jm32717a 10.1246/bcsj.20180336 10.1002/advs.201600166 10.1021/acs.chemmater.6b03428 10.1038/s41566-018-0112-9 10.1039/c1jm13417e 10.1021/acsami.5b05648 10.1002/adfm.201602501 10.1039/D0SC01238F 10.1021/jacs.7b03848 10.1002/adma.202003885 10.1038/s41566-019-0415-5 10.1002/adma.201504451 10.1038/nature11687 10.1039/C7TC02481A 10.1039/C7TC04852A 10.1002/wcms.1327 10.1364/OE.22.019919 10.1002/adma.201603253 10.1021/acsami.5b01220 10.1021/acs.chemmater.7b02403 10.1016/j.progpolymsci.2015.01.005 10.1002/adma.201605444 10.1038/srep40805 10.1002/adma.201906950 10.1039/C5TC03849A 10.1002/adma.202001248 10.1021/acsami.9b06364 10.1002/adma.201902368 10.1038/s41563-020-0710-z 10.1038/nphoton.2012.31 10.1246/cl.141054 10.1038/nmat4277 10.1021/acs.macromol.7b01114 10.1039/C9TC05340A 10.1021/acs.jpclett.6b00780 10.1002/adma.201601675 10.1021/ja306538w 10.1039/C9TC04284A 10.1002/anie.201912556 10.1038/25954 10.1063/1.4954163 10.1016/j.cej.2020.126107 10.1002/adma.201803524 10.1039/C8TC01698D 10.3389/fchem.2019.00254 10.1002/adma.201401407 10.1002/adma.202004083 10.1246/cl.2007.262 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202008032 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202008032 ADMA202008032 |
Genre | article |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3502-f395b179a0ba0d13754906a8d69e63e2311940a8f496651c7aef0f92c82ef2963 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 19:30:49 EDT 2025 Fri Jul 25 02:21:18 EDT 2025 Tue Jul 01 02:33:05 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Wed Jan 22 17:22:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3502-f395b179a0ba0d13754906a8d69e63e2311940a8f496651c7aef0f92c82ef2963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9061-6279 0000-0003-3838-6845 0000-0003-3135-1535 |
PQID | 2568176659 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2555112835 proquest_journals_2568176659 crossref_citationtrail_10_1002_adma_202008032 crossref_primary_10_1002_adma_202008032 wiley_primary_10_1002_adma_202008032_ADMA202008032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011 2019; 21 92 2017 2020; 139 30 2019 2017; 7 29 2019 2017; 7 5 2013; 25 2015 2014; 7 26 2019; 31 2010 2016 2011; 132 7 32 2017 2018; 4 140 2016 2014; 108 44 2020 2018 2019; 142 12 13 2016 2013; 28 23 2017 2021; 7 88 2020; 59 2019 2017; 119 50 1998 2015 2017; 395 47 29 2020; 14 2015 2017; 14 29 2014; 22 2019 2016; 31 6 2012; 492 2019 2012; 11 134 2007 2012 2020; 36 22 11 2016 2018; 4 9 2021 2018; 246 8 2020 2020 2015 2017 2016 2019 2018; 8 401 7 12 26 11 6 2012; 6 2016; 28 2020 2020 2020 2018 2016; 32 32 19 6 28 2020 2020 2020; 32 32 11 e_1_2_9_10_2 e_1_2_9_10_1 e_1_2_9_12_2 e_1_2_9_10_3 e_1_2_9_12_1 e_1_2_9_12_4 e_1_2_9_14_2 e_1_2_9_12_3 e_1_2_9_14_1 e_1_2_9_16_2 e_1_2_9_12_5 e_1_2_9_16_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_4_3 e_1_2_9_6_1 e_1_2_9_4_2 e_1_2_9_4_1 e_1_2_9_2_2 e_1_2_9_2_1 e_1_2_9_8_2 e_1_2_9_24_3 e_1_2_9_26_1 e_1_2_9_24_2 e_1_2_9_28_1 e_1_2_9_28_2 e_1_2_9_30_1 e_1_2_9_30_2 e_1_2_9_11_1 e_1_2_9_13_1 e_1_2_9_11_2 e_1_2_9_15_1 e_1_2_9_13_2 e_1_2_9_15_3 e_1_2_9_17_1 e_1_2_9_15_2 e_1_2_9_15_5 e_1_2_9_19_1 e_1_2_9_15_4 e_1_2_9_15_7 e_1_2_9_19_3 e_1_2_9_15_6 e_1_2_9_19_2 e_1_2_9_21_2 e_1_2_9_21_1 e_1_2_9_23_2 e_1_2_9_23_1 e_1_2_9_7_2 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_2 e_1_2_9_3_1 e_1_2_9_1_2 e_1_2_9_1_1 e_1_2_9_9_2 e_1_2_9_9_1 e_1_2_9_25_2 e_1_2_9_25_1 e_1_2_9_25_3 e_1_2_9_27_1 e_1_2_9_29_2 e_1_2_9_29_1 |
References_xml | – volume: 246 8 year: 2021 2018 publication-title: Spectrochim. Acta, Part A WIREs Comput. Mol. Sci. – volume: 25 start-page: 6801 year: 2013 publication-title: Adv. Mater. – volume: 31 6 year: 2019 2016 publication-title: Adv. Mater. Sci. Rep. – volume: 11 134 year: 2019 2012 publication-title: ACS Appl. Mater. Interfaces J. Am. Chem. Soc. – volume: 21 92 start-page: 716 year: 2011 2019 publication-title: J. Mater. Chem. Bull. Chem. Soc. Jpn. – volume: 395 47 29 start-page: 151 92 year: 1998 2015 2017 publication-title: Nature Prog. Polym. Sci. Adv. Mater. – volume: 14 start-page: 643 year: 2020 publication-title: Nat. Photonics – volume: 108 44 start-page: 360 year: 2016 2014 publication-title: Appl. Phys. Lett. Chem. Lett. – volume: 28 start-page: 7505 year: 2016 publication-title: Chem. Mater. – volume: 32 32 19 6 28 start-page: 1332 1343 6976 year: 2020 2020 2020 2018 2016 publication-title: Adv. Mater. Adv. Mater. Nat. Mater. J. Mater. Chem. C Adv. Mater. – volume: 59 start-page: 1320 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 28 23 start-page: 2526 3896 year: 2016 2013 publication-title: Adv. Mater. Adv. Funct. Mater. – volume: 7 26 start-page: 9625 5684 year: 2015 2014 publication-title: ACS Appl. Mater. Interfaces Adv. Mater. – volume: 7 5 start-page: 254 7699 year: 2019 2017 publication-title: Front. Chem. J. Mater. Chem. C – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 4 9 start-page: 3815 6150 year: 2016 2018 publication-title: J. Mater. Chem. C Chem. Sci. – volume: 6 start-page: 253 year: 2012 publication-title: Nat. Photonics – volume: 32 32 11 start-page: 1765 year: 2020 2020 2020 publication-title: Adv. Mater. Adv. Mater. Nat. Commun. – volume: 36 22 11 start-page: 262 4887 year: 2007 2012 2020 publication-title: Chem. Lett. J. Mater. Chem. Chem. Sci. – volume: 139 30 year: 2017 2020 publication-title: J. Am. Chem. Soc. Adv. Funct. Mater. – volume: 132 7 32 start-page: 2197 1456 year: 2010 2016 2011 publication-title: J. Chem. Phys. J. Phys. Chem. Lett. J. Comput. Chem. – volume: 142 12 13 start-page: 235 540 year: 2020 2018 2019 publication-title: J. Am. Chem. Soc. Nat. Photonics Nat. Photonics – volume: 7 88 year: 2017 2021 publication-title: Sci. Rep. Org. Electron. – volume: 4 140 year: 2017 2018 publication-title: Adv. Sci. J. Am. Chem. Soc. – volume: 8 401 7 12 26 11 6 start-page: 602 648 7560 6543 year: 2020 2020 2015 2017 2016 2019 2018 publication-title: J. Mater. Chem. C Chem. Eng. J. ACS Appl. Mater. Interfaces Chem. Asian J. Adv. Funct. Mater. ACS Appl. Mater. Interfaces J. Mater. Chem. C – volume: 7 29 start-page: 8630 year: 2019 2017 publication-title: J. Mater. Chem. C Chem. Mater. – volume: 492 start-page: 234 year: 2012 publication-title: Nature – volume: 119 50 start-page: 11 4913 year: 2019 2017 publication-title: Catal. Commun. Macromolecules – volume: 14 29 start-page: 459 year: 2015 2017 publication-title: Nat. Mater. Adv. Mater. – volume: 22 year: 2014 publication-title: Opt. Express – ident: e_1_2_9_5_1 doi: 10.1038/s41566-020-0667-0 – ident: e_1_2_9_2_2 doi: 10.1021/jacs.8b08438 – ident: e_1_2_9_24_3 doi: 10.1038/s41467-020-15558-5 – ident: e_1_2_9_15_4 doi: 10.1002/asia.201601641 – ident: e_1_2_9_15_6 doi: 10.1021/acsami.9b04664 – ident: e_1_2_9_21_2 doi: 10.1039/C8SC01485J – ident: e_1_2_9_19_1 doi: 10.1063/1.3382344 – ident: e_1_2_9_8_2 doi: 10.1002/adfm.202000019 – ident: e_1_2_9_28_2 doi: 10.1002/adfm.201300104 – ident: e_1_2_9_30_2 doi: 10.1038/srep22463 – ident: e_1_2_9_19_3 doi: 10.1002/jcc.21759 – ident: e_1_2_9_26_1 doi: 10.1002/adma.201301603 – ident: e_1_2_9_23_1 doi: 10.1016/j.saa.2020.118952 – ident: e_1_2_9_3_1 doi: 10.1016/j.catcom.2018.09.018 – ident: e_1_2_9_10_1 doi: 10.1021/jacs.0c10081 – ident: e_1_2_9_29_2 doi: 10.1016/j.orgel.2020.106013 – ident: e_1_2_9_25_2 doi: 10.1039/c2jm32717a – ident: e_1_2_9_16_2 doi: 10.1246/bcsj.20180336 – ident: e_1_2_9_2_1 doi: 10.1002/advs.201600166 – ident: e_1_2_9_18_1 doi: 10.1021/acs.chemmater.6b03428 – ident: e_1_2_9_10_2 doi: 10.1038/s41566-018-0112-9 – ident: e_1_2_9_16_1 doi: 10.1039/c1jm13417e – ident: e_1_2_9_15_3 doi: 10.1021/acsami.5b05648 – ident: e_1_2_9_15_5 doi: 10.1002/adfm.201602501 – ident: e_1_2_9_25_3 doi: 10.1039/D0SC01238F – ident: e_1_2_9_8_1 doi: 10.1021/jacs.7b03848 – ident: e_1_2_9_12_2 doi: 10.1002/adma.202003885 – ident: e_1_2_9_10_3 doi: 10.1038/s41566-019-0415-5 – ident: e_1_2_9_28_1 doi: 10.1002/adma.201504451 – ident: e_1_2_9_6_1 doi: 10.1038/nature11687 – ident: e_1_2_9_14_2 doi: 10.1039/C7TC02481A – ident: e_1_2_9_12_4 doi: 10.1039/C7TC04852A – ident: e_1_2_9_23_2 doi: 10.1002/wcms.1327 – ident: e_1_2_9_27_1 doi: 10.1364/OE.22.019919 – ident: e_1_2_9_4_3 doi: 10.1002/adma.201603253 – ident: e_1_2_9_7_1 doi: 10.1021/acsami.5b01220 – ident: e_1_2_9_11_2 doi: 10.1021/acs.chemmater.7b02403 – ident: e_1_2_9_4_2 doi: 10.1016/j.progpolymsci.2015.01.005 – ident: e_1_2_9_1_2 doi: 10.1002/adma.201605444 – ident: e_1_2_9_29_1 doi: 10.1038/srep40805 – ident: e_1_2_9_12_1 doi: 10.1002/adma.201906950 – ident: e_1_2_9_21_1 doi: 10.1039/C5TC03849A – ident: e_1_2_9_24_2 doi: 10.1002/adma.202001248 – ident: e_1_2_9_9_1 doi: 10.1021/acsami.9b06364 – ident: e_1_2_9_17_1 doi: 10.1002/adma.201902368 – ident: e_1_2_9_12_3 doi: 10.1038/s41563-020-0710-z – ident: e_1_2_9_22_1 doi: 10.1038/nphoton.2012.31 – ident: e_1_2_9_13_2 doi: 10.1246/cl.141054 – ident: e_1_2_9_1_1 doi: 10.1038/nmat4277 – ident: e_1_2_9_3_2 doi: 10.1021/acs.macromol.7b01114 – ident: e_1_2_9_15_1 doi: 10.1039/C9TC05340A – ident: e_1_2_9_19_2 doi: 10.1021/acs.jpclett.6b00780 – ident: e_1_2_9_12_5 doi: 10.1002/adma.201601675 – ident: e_1_2_9_9_2 doi: 10.1021/ja306538w – ident: e_1_2_9_11_1 doi: 10.1039/C9TC04284A – ident: e_1_2_9_20_1 doi: 10.1002/anie.201912556 – ident: e_1_2_9_4_1 doi: 10.1038/25954 – ident: e_1_2_9_13_1 doi: 10.1063/1.4954163 – ident: e_1_2_9_15_2 doi: 10.1016/j.cej.2020.126107 – ident: e_1_2_9_30_1 doi: 10.1002/adma.201803524 – ident: e_1_2_9_15_7 doi: 10.1039/C8TC01698D – ident: e_1_2_9_14_1 doi: 10.3389/fchem.2019.00254 – ident: e_1_2_9_7_2 doi: 10.1002/adma.201401407 – ident: e_1_2_9_24_1 doi: 10.1002/adma.202004083 – ident: e_1_2_9_25_1 doi: 10.1246/cl.2007.262 |
SSID | ssj0009606 |
Score | 2.6536052 |
Snippet | Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid‐state lighting and full‐color displays. Here, the... Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid-state lighting and full-color displays. Here, the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2008032 |
SubjectTerms | Current efficiency Dipoles Efficiency external quantum efficiency of nearly 40 Fluorescence Materials science molecular orientation operational stability Optical properties organic light‐emitting diodes Photoluminescence Power efficiency pyridine‐carbonitrile Quantum efficiency Service life assessment thermally activated delayed fluorescence Thin films triphenylamine |
Title | Triarylamine‐Pyridine‐Carbonitriles for Organic Light‐Emitting Devices with EQE Nearly 40 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202008032 https://www.proquest.com/docview/2568176659 https://www.proquest.com/docview/2555112835 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iSQ--xfoiguBp22z20c2x9IGIFRWF3pYkm4CorWzbg578Cf5Gf4kz2XbbCiLobR8Tkk1mZr9JJl8IOY1FmMQKohPJFAQomVWeUtx6NgsdvZjmDDc4d6_i8_vwohf15nbxF_wQ5YQbWobz12jgUg1rM9JQmTneIFy_ZwE6YUzYQlR0O-OPQnjuyPaCyBNxmExZGxmvLRZf_CvNoOY8YHV_nM46kdO2Fokmj9XxSFX12zcax_98zAZZm8BR2ij0Z5Msmf4WWZ0jKdwm6R3oaP4KmgPPPt8_rl_zh6y4bMpcoU_Ioc4hBfhLi62dml5izA8S7ecHl1hNW8a5JIrzvrR906ZXBqmVach2yH2nfdc89ybHMng6iMB_2kBECuwYRleyzMczdAWLZZLFwsSBAcDoi5DJxIYQSkW-rktjmRVcJ9xYDga_S5b7g77ZIxTAmxK-sjaIIU6XUmjf1HXClA6s72eiQrzpsKR6wlmOR2c8pQXbMk-x49Ky4yrkrJR_Kdg6fpQ8nI5yOrHaYcqRja0OjYaKT8rXYG-4iCL7ZjBGmQgxKgDXCuFuSH-pKW20uo3ybv8vhQ7ICsdUGpfadkiWR_nYHAEWGqljp-9fRx0B2Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LThsxFLUQXdAuoNBWpNDiSkhdDXg8j4yXEQwKNImgSqTuLNtjSwgYqiFZ0FU_od_YL-m9nkdIpapSu5uHLXt8H3OufX1MyGEq4izVEJ0opiFAKZwOtOYucEXs6cUMZ7jBeTxJh7P44kvSZhPiXpiaH6KbcEPL8P4aDRwnpI-XrKGq8MRBuIDPIvDCz_BYbx9VfV4ySCFA93R7URKINM5a3kbGj1frr_6XlmDzKWT1_5yzLaLb3tapJjdHi7k-Mt9-I3L8r895STYbREoHtQptkzVb7pAXT3gKXxE5BTWtHkF54NnP7z8uH6vror48UZVGt1BBow8UEDCtd3caOsKwH0rkd9c-t5qeWu-VKE790vwqpxOL7Mo0Zq_J7CyfngyD5mSGwEQJuFAXiUSDKYOAFStCPEZXsFRlRSpsGlnAjKGImcpcDNFUEpq-so45wU3GreNg82_Ienlf2l1CAb9pEWrnohRCdaWECW3fZEybyIVhIXokaOUiTUNbjqdn3MqacJlLHDjZDVyPfOzKf60JO_5Ycr8Vs2wM90FyJGTrQ6eh4Q_dazA5XEdRpb1fYJkEYSpg1x7hXqZ_aUkOTseD7u7tv1Q6IBvD6XgkR-eTT3vkOcfMGp_ptk_W59XCvgNoNNfvvfL_AmMVBfQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYQlVA58GzVQGiNhMRpwevdddbHiCSiPCJAIHGzbK8tobYBLckhnPgJ_Y38Ema8ySZUqiqV2z7Gsteemf3GHn8mZE_INBcGohPNDAQohTeRMdxHvkgDvZjlDDc4n_fF8U16cpvdzu3ir_gh6gk3tIzgr9HAHwp_OCMN1UXgDcL1e5aAE_6QCpajXneuZgRSiM8D216SRVKk-ZS2kfHDt-Xf_pZmWHMesYZfTm-V6Gljq0yTHwejoTmwT3_wOL7na9bIygSP0nalQOtkwQ02yPIcS-EmUdegpOUYVAeevTz_vhiXd0V1eaRLg06hhDofKeBfWu3ttPQMg36Q6P66C5nVtOOCT6I48Uu7l13ad8itTFP2idz0utdHx9HkXIbIJhk4UJ_IzIAhw_BqVsR4iK5kQueFkE4kDhBjLFOmc59CLJXFtqWdZ15ym3PnOVj8Z7I4uB-4L4QCejMyNt4nAgJ1raWNXcvmzNjEx3EhGySaDouyE9JyPDvjp6rolrnCjlN1xzXIfi3_UNF1_FWyOR1lNTHbR8WRjq0FjYaKd-vXYHC4iqIH7n6EMhmCVECuDcLDkP6jJtXunLfru63_KfSNLF10eurse_90m3zkmFYT0tyaZHFYjtwO4KKh-RpU_xVkugSs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triarylamine%E2%80%90Pyridine%E2%80%90Carbonitriles+for+Organic+Light%E2%80%90Emitting+Devices+with+EQE+Nearly+40&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Yi%E2%80%90Kuan&rft.au=Jayakumar%2C+Jayachandran&rft.au=Hsieh%2C+Chia%E2%80%90Min&rft.au=Wu%2C+Tien%E2%80%90Lin&rft.date=2021-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202008032&rft.externalDBID=10.1002%252Fadma.202008032&rft.externalDocID=ADMA202008032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |