A Pyridine‐Stabilized N‐Phosphinoamidinato N‐Heterocyclic Carbene‐Diboravinyl Cation: Boron Analogue of Vinyl Cation
A boron analogue of vinyl cation, pyridine‐stabilized N‐phosphinoamidinato N‐heterocyclic carbene (NHC)‐diboravinyl cation 2+, was synthesized by displacement of bromide in diborene 1 with excess pyridine. Experimental and computational studies showed that the positive charge is mainly at the B−B sk...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 46; pp. e202212842 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
14.11.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A boron analogue of vinyl cation, pyridine‐stabilized N‐phosphinoamidinato N‐heterocyclic carbene (NHC)‐diboravinyl cation 2+, was synthesized by displacement of bromide in diborene 1 with excess pyridine. Experimental and computational studies showed that the positive charge is mainly at the B−B skeleton with delocalization to the pyridine ligand. One of the main modes of reactivity is through the B=B double bond alongside activation of the pyridine substituent, where the Bpyridine center is the predominant nucleophilic center and the predominant electrophilic center is either the activated pyridine para position or the BNHC center, illustrating the presence of diborene cation A, borylene‐borenium cation B and diborene‐pyridinium cation C resonance structures in cation 2+.
A pyridine‐stabilized N‐phosphinoamidinato N‐heterocyclic carbene‐diboravinyl cation was obtained through the displacement reaction of the bromide substituent on a diborene derivative using pyridine. This newly formed species was shown to be a boron analogue of the vinyl cation which could be used for the activation of small molecules. |
---|---|
AbstractList | A boron analogue of vinyl cation, pyridine‐stabilized N‐phosphinoamidinato N‐heterocyclic carbene (NHC)‐diboravinyl cation 2+, was synthesized by displacement of bromide in diborene 1 with excess pyridine. Experimental and computational studies showed that the positive charge is mainly at the B−B skeleton with delocalization to the pyridine ligand. One of the main modes of reactivity is through the B=B double bond alongside activation of the pyridine substituent, where the Bpyridine center is the predominant nucleophilic center and the predominant electrophilic center is either the activated pyridine para position or the BNHC center, illustrating the presence of diborene cation A, borylene‐borenium cation B and diborene‐pyridinium cation C resonance structures in cation 2+.
A pyridine‐stabilized N‐phosphinoamidinato N‐heterocyclic carbene‐diboravinyl cation was obtained through the displacement reaction of the bromide substituent on a diborene derivative using pyridine. This newly formed species was shown to be a boron analogue of the vinyl cation which could be used for the activation of small molecules. A boron analogue of vinyl cation, pyridine‐stabilized N‐phosphinoamidinato N‐heterocyclic carbene (NHC)‐diboravinyl cation 2+, was synthesized by displacement of bromide in diborene 1 with excess pyridine. Experimental and computational studies showed that the positive charge is mainly at the B−B skeleton with delocalization to the pyridine ligand. One of the main modes of reactivity is through the B=B double bond alongside activation of the pyridine substituent, where the Bpyridine center is the predominant nucleophilic center and the predominant electrophilic center is either the activated pyridine para position or the BNHC center, illustrating the presence of diborene cation A, borylene‐borenium cation B and diborene‐pyridinium cation C resonance structures in cation 2+. A boron analogue of vinyl cation, pyridine-stabilized N-phosphinoamidinato N-heterocyclic carbene (NHC)-diboravinyl cation 2+ , was synthesized by displacement of bromide in diborene 1 with excess pyridine. Experimental and computational studies showed that the positive charge is mainly at the B-B skeleton with delocalization to the pyridine ligand. One of the main modes of reactivity is through the B=B double bond alongside activation of the pyridine substituent, where the Bpyridine center is the predominant nucleophilic center and the predominant electrophilic center is either the activated pyridine para position or the BNHC center, illustrating the presence of diborene cation A, borylene-borenium cation B and diborene-pyridinium cation C resonance structures in cation 2+ .A boron analogue of vinyl cation, pyridine-stabilized N-phosphinoamidinato N-heterocyclic carbene (NHC)-diboravinyl cation 2+ , was synthesized by displacement of bromide in diborene 1 with excess pyridine. Experimental and computational studies showed that the positive charge is mainly at the B-B skeleton with delocalization to the pyridine ligand. One of the main modes of reactivity is through the B=B double bond alongside activation of the pyridine substituent, where the Bpyridine center is the predominant nucleophilic center and the predominant electrophilic center is either the activated pyridine para position or the BNHC center, illustrating the presence of diborene cation A, borylene-borenium cation B and diborene-pyridinium cation C resonance structures in cation 2+ . A boron analogue of vinyl cation, pyridine‐stabilized N ‐phosphinoamidinato N ‐heterocyclic carbene (NHC)‐diboravinyl cation 2 + , was synthesized by displacement of bromide in diborene 1 with excess pyridine. Experimental and computational studies showed that the positive charge is mainly at the B−B skeleton with delocalization to the pyridine ligand. One of the main modes of reactivity is through the B=B double bond alongside activation of the pyridine substituent, where the B pyridine center is the predominant nucleophilic center and the predominant electrophilic center is either the activated pyridine para position or the B NHC center, illustrating the presence of diborene cation A , borylene‐borenium cation B and diborene‐pyridinium cation C resonance structures in cation 2 + . |
Author | Zhang, Zheng‐Feng Yang, Ming‐Chung Chia, Pei‐Ting Fan, Jun So, Cheuk‐Wai Su, Ming‐Der |
Author_xml | – sequence: 1 givenname: Jun surname: Fan fullname: Fan, Jun organization: Nanyang Technological University – sequence: 2 givenname: Pei‐Ting surname: Chia fullname: Chia, Pei‐Ting organization: Nanyang Technological University – sequence: 3 givenname: Zheng‐Feng surname: Zhang fullname: Zhang, Zheng‐Feng organization: National Chiayi University – sequence: 4 givenname: Ming‐Chung surname: Yang fullname: Yang, Ming‐Chung organization: National Chiayi University – sequence: 5 givenname: Ming‐Der surname: Su fullname: Su, Ming‐Der email: midesu@mail.ncyu.edu.tw organization: Kaohsiung Medical University – sequence: 6 givenname: Cheuk‐Wai orcidid: 0000-0003-4816-9801 surname: So fullname: So, Cheuk‐Wai email: CWSo@ntu.edu.sg organization: Nanyang Technological University |
BookMark | eNqFkU1PGzEQhi1EJT6vnFfqpZcN9tjObnpLw6eEKFIp15XXngUjx07tDWgRB34Cv5FfwiapACFVPdkeP89oRu8WWffBIyF7jA4YpbCvvMUBUAAGpYA1sskksJwXBV_v74LzvCgl2yBbKd32fFnS4SZ5HGcXXbTGenx5ev7Vqto6-4AmO--fFzchzW6sD2q6IFQbluUTbDEG3WlndTZRscalfGDrENWd9Z3rq60N_nv2I8Tgs7FXLlzPMQtNdvXhf4d8aZRLuPv33Ca_jw4vJyf52c_j08n4LNdcUsgNozXX0hTNSGIhDC0VK0eN4BS0rJUpZSOaGmFYCq4LhmA0CmpkDQ3owhi-Tb6t-s5i-DPH1FZTmzQ6pzyGeaqgYIIOQQxpj379hN6GeeznX1AcJHDGoKfEitIxpBSxqbRtlyu1UVlXMVotIqkWkVRvkfTa4JM2i3aqYvdvYbQS7q3D7j90NT4_PXx3XwFTyqYb |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_2c03660 crossref_primary_10_1021_jacs_4c17463 crossref_primary_10_1039_D4SC03743J crossref_primary_10_1021_jacs_3c01801 crossref_primary_10_1002_ange_202405905 crossref_primary_10_1021_jacs_4c06579 crossref_primary_10_1002_anie_202405905 crossref_primary_10_1039_D5SC00047E |
Cites_doi | 10.1002/anie.201407809 10.1021/ja074019e 10.1002/ange.201900889 10.1002/anie.201409513 10.1021/jacs.0c02306 10.1021/ja305679m 10.1002/anie.201809976 10.1002/anie.201911645 10.1021/jacs.9b02110 10.1021/acs.orglett.0c01745 10.1002/chem.201602805 10.1002/chem.202004852 10.1021/jacs.1c10131 10.1002/ange.201311110 10.1002/anie.202012101 10.1002/ange.201810916 10.1007/s11426-021-1117-2 10.1021/ja504361y 10.1021/jacs.6b10889 10.1021/acs.inorgchem.1c02541 10.1002/anie.200504288 10.1002/anie.201601691 10.1002/anie.201311110 10.1002/ange.202012101 10.1021/ar50106a004 10.1021/ja906139m 10.1021/ja210669n 10.1002/ange.201809217 10.1002/ange.201610072 10.1002/anie.201906671 10.1002/anie.201902656 10.1002/ange.201208189 10.1021/jacs.9b07991 10.1002/ange.201814230 10.1021/ar0100374 10.1002/ange.201911645 10.1002/anie.201809217 10.1002/ange.201809976 10.1021/acs.chemrev.8b00561 10.1039/D1SC02081A 10.1002/ange.201906671 10.1002/anie.201508670 10.1002/anie.197803331 10.1039/C7SC04789D 10.1002/anie.201708215 10.1021/acs.inorgchem.0c00426 10.1002/chem.201704669 10.1002/ange.201800671 10.1002/anie.201208189 10.1021/acs.inorgchem.1c01169 10.1002/anie.201810701 10.1002/ange.201802117 10.1021/ja101633x 10.1002/ange.201407809 10.1002/ange.201805394 10.1021/acs.orglett.1c02065 10.1002/ange.202113947 10.1021/acscatal.8b02448 10.1002/anie.201805394 10.1002/anie.202113947 10.1021/ol501655g 10.1002/anie.201610072 10.1021/ja405972h 10.1002/ange.201902656 10.1039/D0CC02300K 10.1002/ange.201508670 10.1002/anie.201814230 10.1002/anie.201810916 10.1021/ar50031a001 10.1021/jacs.0c12627 10.1002/ange.201708215 10.1002/anie.201900889 10.1039/D0CC06398C 10.1021/jacs.5b03147 10.1126/science.aat5440 10.1002/anie.201800671 10.1002/ange.201409513 10.1002/ange.200504288 10.1002/ange.201810701 10.1002/ange.19780900506 10.1002/ange.201601691 10.1021/jacs.2c00479 10.1002/anie.201802117 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202212842 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202212842 ANIE202212842 |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Education Singapore funderid: MOE2019-T2-2-129 – fundername: A*STAR MTC funderid: M21K2c0117 – fundername: Ministry of Science and Technology, Taiwan |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3502-d10b3c5d7f95e74d08a189f4302c5bad85f4fbe26843c71e2dce40d5b2f2c7dd3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 07:06:34 EDT 2025 Fri Jul 25 12:10:52 EDT 2025 Tue Jul 01 01:18:29 EDT 2025 Thu Apr 24 23:07:45 EDT 2025 Wed Jan 22 16:30:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3502-d10b3c5d7f95e74d08a189f4302c5bad85f4fbe26843c71e2dce40d5b2f2c7dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4816-9801 |
PQID | 2732523112 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2714062460 proquest_journals_2732523112 crossref_citationtrail_10_1002_anie_202212842 crossref_primary_10_1002_anie_202212842 wiley_primary_10_1002_anie_202212842_ANIE202212842 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 14, 2022 |
PublicationDateYYYYMMDD | 2022-11-14 |
PublicationDate_xml | – month: 11 year: 2022 text: November 14, 2022 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2018; 361 2021; 27 2007; 129 2021; 23 2020; 142 2002; 35 2020 2020; 59 132 1997 2020; 59 2020; 56 2022; 65 2017 2017; 56 129 2021; 143 2019; 141 1976; 9 2014; 136 1979 2019 2019; 58 131 1970; 3 2017; 139 2013 2013; 52 125 2018; 24 2022; 144 2006 2006; 45 118 2018; 9 2018; 8 2022 2022; 61 134 2016 2016; 55 128 2012; 134 2021; 12 2015; 137 2018 2018; 57 130 2010; 132 2014; 16 2021 2021; 60 133 2015 2015; 54 127 2013; 135 2019; 119 2020; 22 2021; 60 1978 1978; 17 90 2016; 22 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_60_1 e_1_2_7_15_3 e_1_2_7_15_2 e_1_2_7_41_2 e_1_2_7_41_3 e_1_2_7_64_3 e_1_2_7_64_2 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_2 e_1_2_7_49_3 e_1_2_7_71_1 e_1_2_7_52_2 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_56_1 e_1_2_7_37_2 e_1_2_7_37_3 Rappoport Z. (e_1_2_7_2_2) 1997 e_1_2_7_4_2 e_1_2_7_8_1 e_1_2_7_16_3 e_1_2_7_16_2 e_1_2_7_40_2 e_1_2_7_40_3 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_2 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_2 e_1_2_7_29_3 e_1_2_7_51_1 e_1_2_7_70_2 e_1_2_7_24_3 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_74_1 e_1_2_7_32_2 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_59_3 e_1_2_7_59_2 e_1_2_7_5_2 e_1_2_7_9_1 e_1_2_7_17_2 e_1_2_7_62_3 e_1_2_7_1_1 e_1_2_7_62_2 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_43_2 e_1_2_7_66_2 e_1_2_7_47_1 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_73_3 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_58_3 e_1_2_7_39_2 (e_1_2_7_31_3) 2022; 134 e_1_2_7_6_3 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_14_1 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_42_3 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_65_3 e_1_2_7_69_2 e_1_2_7_27_1 Stang P. J. (e_1_2_7_3_2) 1979 e_1_2_7_72_2 e_1_2_7_53_1 e_1_2_7_30_2 e_1_2_7_30_3 e_1_2_7_22_2 e_1_2_7_57_1 e_1_2_7_34_2 e_1_2_7_34_3 e_1_2_7_38_2 e_1_2_7_38_3 |
References_xml | – volume: 53 126 start-page: 14264 14489 year: 2014 2014 end-page: 14268 14493 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 65 start-page: 20 year: 2022 end-page: 30 publication-title: Sci. China Chem. – volume: 136 start-page: 8851 year: 2014 end-page: 8854 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 6449 6516 year: 2019 2019 end-page: 6454 6521 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 4098 4162 year: 2018 2018 end-page: 4102 4167 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 15084 15299 year: 2015 2015 end-page: 15088 15303 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 325 333 year: 2020 2020 end-page: 329 337 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 2252 year: 2018 end-page: 2260 publication-title: Chem. Sci. – volume: 119 start-page: 8231 year: 2019 end-page: 8261 publication-title: Chem. Rev. – volume: 22 start-page: 13927 year: 2016 end-page: 13934 publication-title: Chem. Eur. J. – volume: 57 130 start-page: 5947 6055 year: 2018 2018 end-page: 5951 6059 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 24 start-page: 266 year: 2018 end-page: 273 publication-title: Chem. Eur. J. – volume: 132 start-page: 215 year: 2010 end-page: 222 publication-title: J. Am. Chem. Soc. – year: 1979 – volume: 58 131 start-page: 9782 9884 year: 2019 2019 end-page: 9786 9889 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 start-page: 9551 year: 2020 end-page: 9559 publication-title: Inorg. Chem. – volume: 141 start-page: 14898 year: 2019 end-page: 14903 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 7760 year: 2018 end-page: 7765 publication-title: ACS Catal. – volume: 56 129 start-page: 96 100 year: 2017 2017 end-page: 115 120 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 886 year: 2012 end-page: 889 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 15276 15498 year: 2018 2018 end-page: 15281 15503 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 359 366 year: 2015 2015 end-page: 362 369 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 16942 17186 year: 2018 2018 end-page: 16944 17188 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 start-page: 6507 year: 2020 end-page: 6510 publication-title: Chem. Commun. – volume: 134 start-page: 20352 year: 2012 end-page: 20364 publication-title: J. Am. Chem. Soc. – year: 1997 – volume: 12 start-page: 9506 year: 2021 end-page: 9515 publication-title: Chem. Sci. – volume: 57 130 start-page: 15896 16123 year: 2018 2018 end-page: 15901 16128 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 125 start-page: 3574 3658 year: 2013 2013 end-page: 3583 3667 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 4405 4451 year: 2019 2019 end-page: 4409 4456 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 5562 year: 2020 end-page: 5567 publication-title: J. Am. Chem. Soc. – volume: 17 90 start-page: 333 346 year: 1978 1978 end-page: 341 359 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 60 133 start-page: 736 747 year: 2021 2021 end-page: 741 752 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 364 year: 1976 end-page: 371 publication-title: Acc. Chem. Res. – volume: 132 start-page: 5590 year: 2010 end-page: 5591 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 4916 year: 2015 end-page: 4919 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 18339 year: 2021 end-page: 18345 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 5998 year: 2021 end-page: 6003 publication-title: Org. Lett. – volume: 45 118 start-page: 3076 3146 year: 2006 2006 end-page: 3079 3150 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 12532 year: 2013 end-page: 12535 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 4993 year: 2021 end-page: 5002 publication-title: J. Am. Chem. Soc. – volume: 361 start-page: 381 year: 2018 end-page: 387 publication-title: Science – volume: 129 start-page: 12049 year: 2007 end-page: 12054 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 15234 15436 year: 2017 2017 end-page: 15240 15442 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 5119 5173 year: 2019 2019 end-page: 5123 5177 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 35 start-page: 12 year: 2002 end-page: 18 publication-title: Acc. Chem. Res. – volume: 141 start-page: 9140 year: 2019 end-page: 9144 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 14809 year: 2020 end-page: 14812 publication-title: Chem. Commun. – volume: 27 start-page: 4932 year: 2021 end-page: 4938 publication-title: Chem. Eur. J. – volume: 144 start-page: 3376 year: 2022 end-page: 3380 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 1499 year: 2017 end-page: 1511 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 12625 year: 2021 end-page: 12633 publication-title: Inorg. Chem. – volume: 53 126 start-page: 5689 5797 year: 2014 2014 end-page: 5693 5801 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 12893 13025 year: 2019 2019 end-page: 12897 13029 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 start-page: 16065 year: 2021 end-page: 16069 publication-title: Inorg. Chem. – volume: 55 128 start-page: 5606 5697 year: 2016 2016 end-page: 5609 5700 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 209 year: 1970 end-page: 216 publication-title: Acc. Chem. Res. – volume: 22 start-page: 7775 year: 2020 end-page: 7779 publication-title: Org. Lett. – volume: 57 130 start-page: 10091 10248 year: 2018 2018 end-page: 10095 10252 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 16 start-page: 3776 year: 2014 end-page: 3779 publication-title: Org. Lett. – ident: e_1_2_7_56_1 doi: 10.1002/anie.201407809 – ident: e_1_2_7_46_1 doi: 10.1021/ja074019e – ident: e_1_2_7_37_3 doi: 10.1002/ange.201900889 – ident: e_1_2_7_74_1 – ident: e_1_2_7_60_1 – ident: e_1_2_7_59_2 doi: 10.1002/anie.201409513 – ident: e_1_2_7_36_2 doi: 10.1021/jacs.0c02306 – ident: e_1_2_7_69_2 doi: 10.1021/ja305679m – ident: e_1_2_7_41_2 doi: 10.1002/anie.201809976 – ident: e_1_2_7_34_2 doi: 10.1002/anie.201911645 – ident: e_1_2_7_12_1 doi: 10.1021/jacs.9b02110 – ident: e_1_2_7_27_1 – ident: e_1_2_7_13_1 doi: 10.1021/acs.orglett.0c01745 – ident: e_1_2_7_55_2 doi: 10.1002/chem.201602805 – ident: e_1_2_7_70_2 doi: 10.1002/chem.202004852 – ident: e_1_2_7_32_2 doi: 10.1021/jacs.1c10131 – ident: e_1_2_7_57_1 – ident: e_1_2_7_58_3 doi: 10.1002/ange.201311110 – ident: e_1_2_7_68_1 – ident: e_1_2_7_66_1 doi: 10.1002/anie.202012101 – ident: e_1_2_7_16_3 doi: 10.1002/ange.201810916 – volume-title: Vinyl Cations year: 1979 ident: e_1_2_7_3_2 – ident: e_1_2_7_7_2 doi: 10.1007/s11426-021-1117-2 – ident: e_1_2_7_19_2 doi: 10.1021/ja504361y – ident: e_1_2_7_14_1 – ident: e_1_2_7_9_1 doi: 10.1021/jacs.6b10889 – ident: e_1_2_7_71_1 – ident: e_1_2_7_50_2 doi: 10.1021/acs.inorgchem.1c02541 – ident: e_1_2_7_15_2 doi: 10.1002/anie.200504288 – ident: e_1_2_7_73_2 doi: 10.1002/anie.201601691 – ident: e_1_2_7_58_2 doi: 10.1002/anie.201311110 – volume-title: Dicoordinated Carbocations year: 1997 ident: e_1_2_7_2_2 – ident: e_1_2_7_66_2 doi: 10.1002/ange.202012101 – ident: e_1_2_7_4_2 doi: 10.1021/ar50106a004 – ident: e_1_2_7_25_2 doi: 10.1021/ja906139m – ident: e_1_2_7_26_1 doi: 10.1021/ja210669n – ident: e_1_2_7_40_3 doi: 10.1002/ange.201809217 – ident: e_1_2_7_29_3 doi: 10.1002/ange.201610072 – ident: e_1_2_7_51_1 doi: 10.1002/anie.201906671 – ident: e_1_2_7_38_2 doi: 10.1002/anie.201902656 – ident: e_1_2_7_30_3 doi: 10.1002/ange.201208189 – ident: e_1_2_7_39_2 doi: 10.1021/jacs.9b07991 – ident: e_1_2_7_49_3 doi: 10.1002/ange.201814230 – ident: e_1_2_7_8_1 doi: 10.1021/ar0100374 – ident: e_1_2_7_23_1 – ident: e_1_2_7_34_3 doi: 10.1002/ange.201911645 – ident: e_1_2_7_40_2 doi: 10.1002/anie.201809217 – ident: e_1_2_7_41_3 doi: 10.1002/ange.201809976 – ident: e_1_2_7_28_2 doi: 10.1021/acs.chemrev.8b00561 – ident: e_1_2_7_33_2 doi: 10.1039/D1SC02081A – ident: e_1_2_7_51_2 doi: 10.1002/ange.201906671 – ident: e_1_2_7_65_2 doi: 10.1002/anie.201508670 – ident: e_1_2_7_6_2 doi: 10.1002/anie.197803331 – ident: e_1_2_7_48_1 – ident: e_1_2_7_43_2 doi: 10.1039/C7SC04789D – ident: e_1_2_7_64_2 doi: 10.1002/anie.201708215 – ident: e_1_2_7_54_2 doi: 10.1021/acs.inorgchem.0c00426 – ident: e_1_2_7_44_2 doi: 10.1002/chem.201704669 – ident: e_1_2_7_52_2 doi: 10.1002/ange.201800671 – ident: e_1_2_7_30_2 doi: 10.1002/anie.201208189 – ident: e_1_2_7_72_2 doi: 10.1021/acs.inorgchem.1c01169 – ident: e_1_2_7_24_2 doi: 10.1002/anie.201810701 – ident: e_1_2_7_47_1 – ident: e_1_2_7_62_3 doi: 10.1002/ange.201802117 – ident: e_1_2_7_18_2 doi: 10.1021/ja101633x – ident: e_1_2_7_56_2 doi: 10.1002/ange.201407809 – ident: e_1_2_7_42_3 doi: 10.1002/ange.201805394 – ident: e_1_2_7_22_2 doi: 10.1021/acs.orglett.1c02065 – volume: 134 start-page: e202113947 year: 2022 ident: e_1_2_7_31_3 publication-title: Angew. Chem. doi: 10.1002/ange.202113947 – ident: e_1_2_7_21_2 doi: 10.1021/acscatal.8b02448 – ident: e_1_2_7_42_2 doi: 10.1002/anie.201805394 – ident: e_1_2_7_31_2 doi: 10.1002/anie.202113947 – ident: e_1_2_7_20_2 doi: 10.1021/ol501655g – ident: e_1_2_7_29_2 doi: 10.1002/anie.201610072 – ident: e_1_2_7_17_2 doi: 10.1021/ja405972h – ident: e_1_2_7_38_3 doi: 10.1002/ange.201902656 – ident: e_1_2_7_11_1 doi: 10.1039/D0CC02300K – ident: e_1_2_7_65_3 doi: 10.1002/ange.201508670 – ident: e_1_2_7_1_1 – ident: e_1_2_7_63_1 – ident: e_1_2_7_49_2 doi: 10.1002/anie.201814230 – ident: e_1_2_7_16_2 doi: 10.1002/anie.201810916 – ident: e_1_2_7_5_2 doi: 10.1021/ar50031a001 – ident: e_1_2_7_45_1 doi: 10.1021/jacs.0c12627 – ident: e_1_2_7_64_3 doi: 10.1002/ange.201708215 – ident: e_1_2_7_37_2 doi: 10.1002/anie.201900889 – ident: e_1_2_7_35_2 doi: 10.1039/D0CC06398C – ident: e_1_2_7_67_1 doi: 10.1021/jacs.5b03147 – ident: e_1_2_7_10_1 doi: 10.1126/science.aat5440 – ident: e_1_2_7_52_1 doi: 10.1002/anie.201800671 – ident: e_1_2_7_53_1 – ident: e_1_2_7_59_3 doi: 10.1002/ange.201409513 – ident: e_1_2_7_15_3 doi: 10.1002/ange.200504288 – ident: e_1_2_7_24_3 doi: 10.1002/ange.201810701 – ident: e_1_2_7_6_3 doi: 10.1002/ange.19780900506 – ident: e_1_2_7_73_3 doi: 10.1002/ange.201601691 – ident: e_1_2_7_61_2 doi: 10.1021/jacs.2c00479 – ident: e_1_2_7_62_2 doi: 10.1002/anie.201802117 |
SSID | ssj0028806 |
Score | 2.4398224 |
Snippet | A boron analogue of vinyl cation, pyridine‐stabilized N‐phosphinoamidinato N‐heterocyclic carbene (NHC)‐diboravinyl cation 2+, was synthesized by displacement... A boron analogue of vinyl cation, pyridine‐stabilized N ‐phosphinoamidinato N ‐heterocyclic carbene (NHC)‐diboravinyl cation 2 + , was synthesized by... A boron analogue of vinyl cation, pyridine-stabilized N-phosphinoamidinato N-heterocyclic carbene (NHC)-diboravinyl cation 2+ , was synthesized by displacement... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202212842 |
SubjectTerms | Boron Carbenes Cations Computer applications Diborene Pyridines Pyridinium Small Molecule Activation Vinyl Cation |
Title | A Pyridine‐Stabilized N‐Phosphinoamidinato N‐Heterocyclic Carbene‐Diboravinyl Cation: Boron Analogue of Vinyl Cation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202212842 https://www.proquest.com/docview/2732523112 https://www.proquest.com/docview/2714062460 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLvQCpS3qtlAZqVJPgcSPTcJt2YKWSl2hqiBukR9jEbFN0D6QFvXQn8Bv5JfUk2zCgoSQyi2ObSWxZ8bfODOfCfkCEDqbqDiQqYkD4UAHKoz8hFhpUp6CX3Mw3_nHsDs4Fd_P5flSFn_ND9FuuKFmVPYaFVzpyd49aShmYHv_jjG0sGiEMWALUdHPlj-KeeGs04s4D_AU-oa1MWR7D7s_XJXuoeYyYK1WnKN1opp3rQNNLndnU71rbh7ROL7kY96QtQUcpb1afjbIKyjektV-cwrcO_KnR0_m49yvcHD399ZDUwymvQFLh754clFOri7yolS_sYX336vbAwyxKc3cjHJD-2qsoer8LUd5u86L-cjfRYHYpwdIoECRGQW3kGjp6NlS_XtyenT4qz8IFic2BIZLb1ptFGpupI1dKiEWNkxUlKRO8JAZqZVNpBNOAzLMcBNHwKwBEVqpmWMmtpZvkpWiLOADoSCV40zrVGMMnouTbsq5E-BYYhUzokOCZsYys6Azx1M1RllNxMwyHNOsHdMO-dq2v6qJPJ5sudUIQLZQ6EnmUR7zPrtHpx2y01b7ucD_K6qAcoZtvLfaZaIbdgirZvuZJ2W94fFhW_r4P50-kdd4jdmRkdgiK9PxDLY9TJrqz5Uq_APDtw9L |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqeqCXUqBVt9DiSkicAol_NklvywJaCqxQBVVvkX_GImKboGW30iIOPEKfkSepJ9kEqFRVao-2x0rimbFnnJlvCNkECJ1NVBzI1MSBcKADFUaeIVaalKfgzxzMdz4Zdgfn4vM32UQTYi5MjQ_RXrihZlT7NSo4XkjvPKCGYgq2d_AYwy3W78LPsax35VV9aRGkmBfPOsGI8wDr0De4jSHbeTr_6bn0YGw-NlmrM-dgiejmbetQk8vt6URvm5vfgBz_63NekZdzi5T2ahFaJs-gWCGL_aYQ3Cq57dHT2Tj3hxzc3_301inG096ApUPfPL0or68u8qJU35HCu_BV9wCjbEozM6Pc0L4aa6gm7-Uocj_yYjbyvSgTn-guYihQBEfBWyRaOvr10fhrcn6wf9YfBPOiDYHh0u-uNgo1N9LGLpUQCxsmKkpSJ3jIjNTKJtIJpwFBZriJI2DWgAit1MwxE1vL35CFoizgLaEgleNM61RjGJ6Lk27KuRPgWGIVM6JDgoZlmZkjmmNhjVFWYzGzDNc0a9e0Q7Za-qsay-OPlOuNBGRznb7OvKHHvNvuDdQO-dgOe17gLxZVQDlFGu-wdpnohh3CKnb_5UlZb3i437be_cukDbI4ODs5zo4Ph0dr5AX2Y7JkJNbJwmQ8hffeaproD5Ve_AKiExNm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hVgIuLU-RtsAiIXFya-8jtrmFpFHKI4oQRb1Z-1QtUjtKE6RUHPgJ_EZ-CTN27KZICAmOuzsr2zszuzPrmW8Ieelc6G2i4kCmJg6EdzpQYQQMsdKkPHVw5mC-84dxd3Qq3p7Js40s_hofor1wQ82o9mtU8Jn1R9egoZiBDf4dY7jDwia8LbphgnI9-NgCSDGQzjq_iPMAy9A3sI0hO7o5_-axdG1rblqs1ZEz3CWqedk60uTL4XKhD83VbziO__M198jO2h6lvVqA7pNbrnhA7vSbMnAPybcenazmORxx7uf3H2CbYjTtlbN0DM3JeXk5O8-LUl0gBTjwVfcIY2xKszLT3NC-mmtXTR7kKHBf82I1hV6UiNf0DSIoUIRGwTskWnr6eWP8ETkdHn_qj4J1yYbAcAl7q41CzY20sU-li4UNExUlqRc8ZEZqZRPphdcOIWa4iSPHrHEitFIzz0xsLX9MtoqycE8IdVJ5zrRONQbh-Tjpppx74TxLrGJGdEjQcCwzazxzLKsxzWokZpbhmmbtmnbIq5Z-ViN5_JHyoBGAbK3RlxmYeQycdjBPO-RFOwy8wB8sqnDlEmnAXe0yEMQOYRW3__KkrDc-OW5be_8y6Tm5PRkMs_cn43f75C52Y6ZkJA7I1mK-dE_BZFroZ5VW_AJ85xIe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pyridine-Stabilized+N-Phosphinoamidinato+N-Heterocyclic+Carbene-Diboravinyl+Cation%3A+Boron+Analogue+of+Vinyl+Cation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Fan%2C+Jun&rft.au=Chia%2C+Pei-Ting&rft.au=Zhang%2C+Zheng-Feng&rft.au=Yang%2C+Ming-Chung&rft.date=2022-11-14&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=46&rft.spage=e202212842&rft_id=info:doi/10.1002%2Fanie.202212842&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |